Amplify Science New York City

New Administrators' Orientation Grades 6-8

August 6, 2020 Presented by Your Name

Introductions! Who do we have in the room?

Think-Type-Chat!

• Please share:

- Your name
- Your DBN
- Something you're excited about with implementing Amplify Science.

Overarching goals

By the end of this workshop, you will be able to:

- Recognize how lessons engage students in three-dimensional learning.
- Understand how the program's multimodal approach supports students in figuring out the unit phenomenon.
- Become familiar with "look fors" that administrators should see in an effective three dimensional science instruction.
- Discuss ways in which administrators can support the teaching of science in the coming school year.
- Make an informed decision about which of the Amplify Science Hybrid Learning Resources (@Home Unit and @Home Videos) will best support their teachers.

Remote Professional Learning Norms

Take some time to orient yourself to the platform

• "where's the chat box? what are these squares at the top of my screen?, where's the mute button?"

Mute your microphone to reduce background noise unless sharing with the group

The chat box is available for posting questions or responses to during the training

Make sure you have a note-catcher present

Engage at your comfort level - chat, ask questions, discuss, share!

Plan for the day

• Framing the day

• What is Amplify Science?

• Phenomenon-based learning

- What is phenomena-based instruction?
- What does this look like in Amplify Science?

• Supporting instruction

• Progress builds and assessments

- Supporting implementation
 - Administrator resources
 - Remote & hybrid resources
- Closing
 - Reflection & survey

Capturing key takeaways!

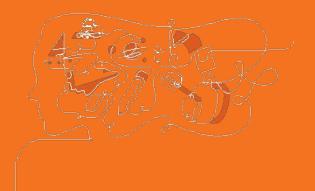
Notes	Phenomenon- based instruction
Supporting instruction	Supporting implementation

Plan for the day

Framing the day
 What is Amplify Science?

• Phenomenon-based learning

- What is phenomena-based instruction?
- What does this look like in Amplify Science?

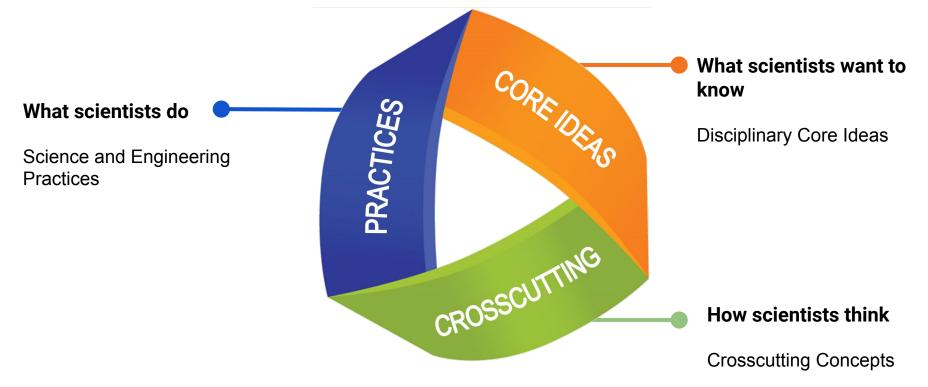

• Supporting instruction

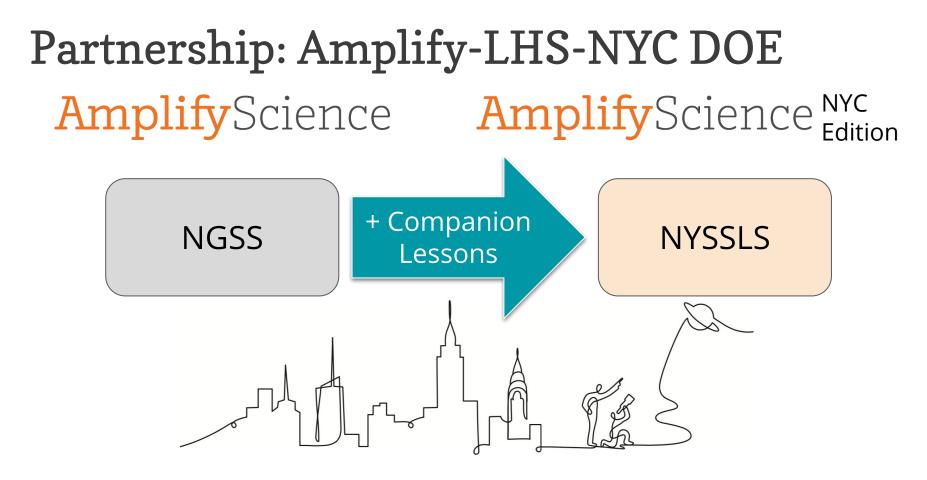
• Progress builds and assessments

- Supporting implementation
 - Administrator resources
 - Remote & hybrid resources
- Closing
 - Reflection & survey

What is Amplify Science?

THE LAWRENCE HALL OF SCIENCE


UNIVERSITY OF CALIFORNIA, BERKELEY



Amplify Science

Next Generation Science Standards

Designed to help students build a cohesive understanding of science

Middle School Curriculum New York City Edition

Grade 6

- Launch: Harnessing Human Energy
- Thermal Energy
- Populations and Resources
- Matter and Energy in Ecosystems
- Weather Patterns
- Ocean, Atmosphere,and Climate
- Earth's Changing Climate

Grade 7

- Launch: Microbiome
- Metabolism
- Phase Change
- Chemical Reactions
- Plate Motion
- Engineering Internship: Plate Motion
- Rock Transformations
- Engineering Internship: Earth's Changing Climate

Grade 8

- Launch: Geology on Mars
- Earth, Moon, and Sun
- Force and Motion
- Engineering Internship: Force and Motion
- Magnetic Fields
- Light Waves
- Traits and Reproduction
- Natural Selection
- Evolutionary History

Middle School Unit Types: Launch, Core, & Internship

11 Lessons Geology on Mars

19 Lessons
Plate Motion

10 Lessons
Plate Motion Engineering Internship

AmplifyScience

All curriculum materials @2016 The Regents of the University of California. @ 2017 Amplify Education, Inc. All trademarks and copyrights are the property of Amplify or its licensors

Middle School Unit Resources

NYC Print student editions

Investigation Notebooks or digital student experience

Teacher's Guide (digital or print)

Articles (digital or print)

-	ACTIVITIE	s	IVELS
- 11000 R	210mi - Al		
RUBALGOVE	LAST SUBMISSION \$	PERMANE	
26/26	5-36-PM Mod. 4-13108	۰	,
23/26	5:00 PM Mid 4/010	2	,
23/26	4:57 PM Hist 4/0708		2
23/26	1.42 PM	0	,

Assessments and Reporting

Simulations and other digital tools

Hands-on and print

materials

Chapter 1 Question Why does Disa feel tired all the time?

Hands-on Flextensions

Remote and hybrid

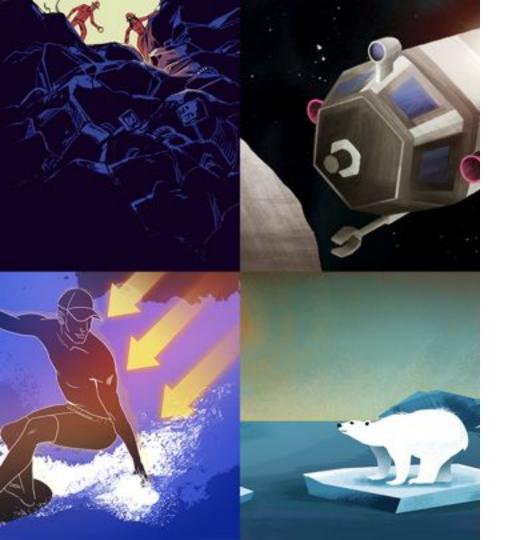
ONLINE

Students learn at home and have access to some level of technology

OFFLINE Students learn at home and do not have access to technology other than potentially smartphones

Students spend some time in school and some at home and have access to technology

IN-PERSON/OFFLINE AT HOME Students spend some time in school and some at home and do not have access to technology



Plan for the day

• Framing the day

• What is Amplify Science?

• Phenomenon-based learning

- What is phenomena-based instruction?
- What does this look like in Amplify Science?

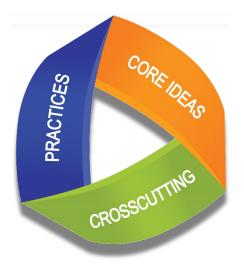
• Supporting instruction

• Progress builds and assessments

- Supporting implementation
 - Administrator resources
 - Remote & hybrid resources
- Closing
 - Reflection & survey

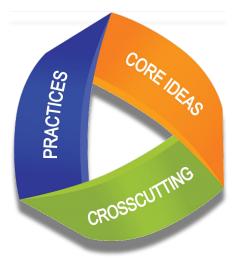
What is phenomenon-based instruction?

A scientific **phenomenon** is an **observable event** that occurs in the universe that we can use science ideas to explain or predict.

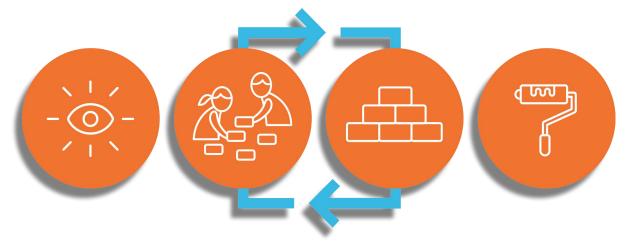

Next Generation Science Standards Think-Type-Discuss: How might learning be different?

Topic-based	Phenomenon-based
What is the water cycle?	What caused the storms in this area to be severe?
What is an ecosystem?	Why are there suddenly so many moon jellies?
How does light energy interact with matter?	Why does Australia have an elevated skin cancer rate?

Figure out not just learn about



Using three dimensions to figure out **like a scientist**

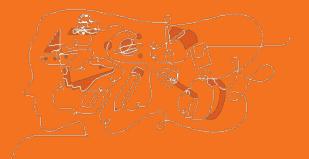


...through the Amplify Science approach

The Amplify Science Approach

Unit 19 Lessons Metabolism Chapters Chapter 3: Cellular Chapter 4: Respiration 5 Lessons Lesson 3.1: Lesson 3.2: Lesson 3.3: Lesson 3.4: Cellular Respiration, Lessons Growth, and Repair WARM-UP READING ĒQ. STUDENT-TO-STUDENT 5 TEACHER-LED DISCUSSION \$ DISCUSSION **Activities** Warm-Up Examining Evidence Considering Claim 2 About Jordan Jones's... **Discussing Evidence** About Jordan Jones's...

Amplify.


Lesson 3.5:

-

© 2018 The Regents of the University of California


What does phenomenon-based instruction look like in Amplify Science?

Introducing the phenomenon and setting the purpose for investigating

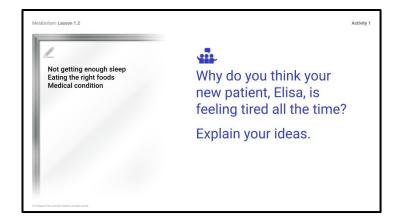
Pay attention to the student role and the phenomenon that students are asked to figure out.

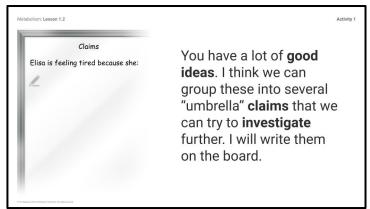
Metabolism

Lesson 1.2: Welcome to Medical School

AmplifyScience

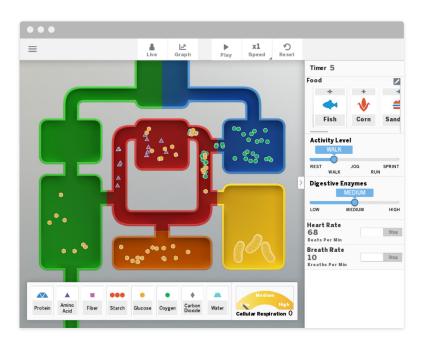
Activity 1 Warm-Up



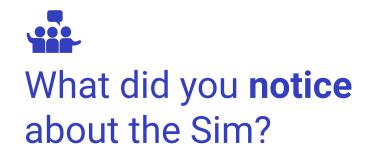

Metabolism: Lesson 1.2

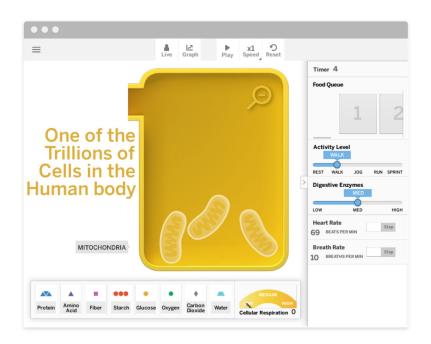
Today, we will begin a new unit called *Metabolism*.

We will start with a Warm-Up each day to get us thinking about science ideas. For today's Warm-Up, you will watch and respond to a video that introduces your new role as **medical students.** Activity 1

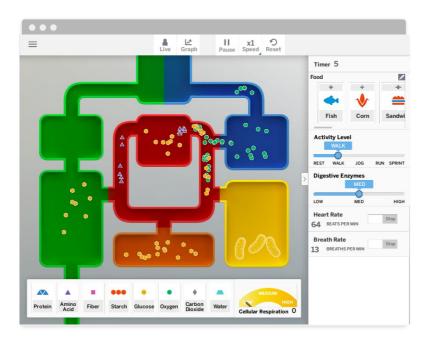

Metabolism: Lesson 1.2	Activity 1
Warm-Up	
Who do you this lower new actions. Film is fasting thad all the time? Final is you ideas	
Why do you think your new patient, Elisa, is feeling tired all the time? Explain your ideas.	
i The hyperter of exchange of California All optics exercise.	estigation Notebook pg 6 🔯

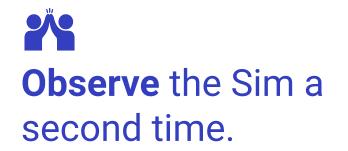
Activity 2 Introducing the Metabolism Simulation


This simulation is called the Metabolism Simulation. It's a scientific model of the human body that simulates many things that happen inside the human body.

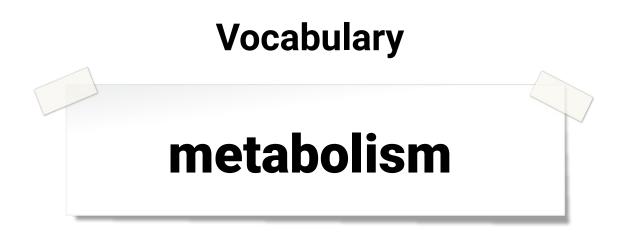

This **key** identifies the different types of **molecules** entering the system.

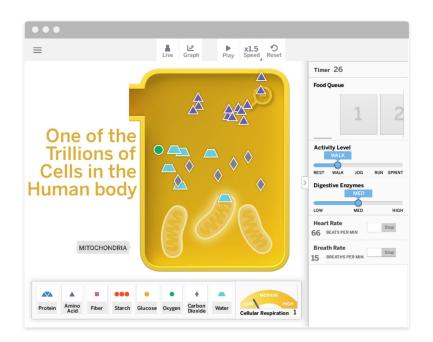
By pressing them, you can also turn the molecule visibility **off and back on**.





The trillions of cells in the body have some similarities in the ways they function, so we can learn more about what all cells need by observing one cell in the Simulation.

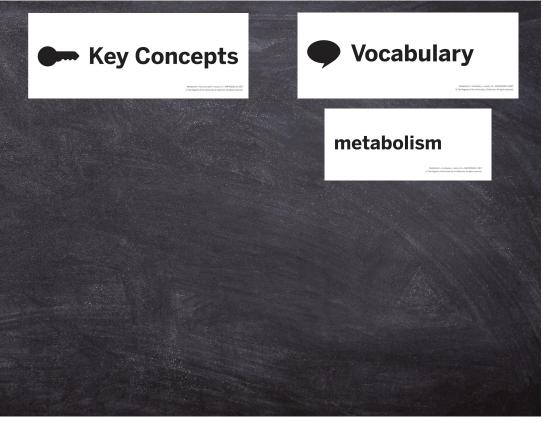



This time, watch what happens to the **food and air** that enter this healthy Simulation body.

Activity 3 Returning to the Patient

the body's use of molecules for energy and growth

In the Sim, you observed that in a functioning, healthy body, certain molecules that come from food and air are transported into the body's cells.


Digital classroom wall

Unit Question

How do the trillions of cells in the human body get what they need to function, and what do the cells do with the things they absorb?

Chapter 1 Question Why does Elisa feel tired all the time?

Which molecules do cells need to function?

Activity 4 Homework

Homework

Testing Diets in the Sim

In this homework, you will experiment with different diets in the Simulation to see how the diet affects the number of molecules getting to the cells.

- 1. Launch the *Metabolism* Simulation.
- 2. Select HEALTHY BODY and then select TEST.
 - In Test Mode, you set up a pre-planned diet by pressing on items under Add Food Source. Then you press Play and
 observe the Simulation. The diet you selected is fed to the body automatically, and the test runs until the Timer reaches
 200. During the test, you can observe the *Metabolism* Sim in the Live View or switch to the Graph View. In the Graph
 View, you can see the final results for Total Molecules Absorbed by Cells, which is the data you will record below.

3. Plan at least three different tests of the diet for the healthy body. Record your plan in the Diet Plan tables below.

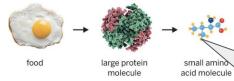
1. Pun your tasts and record your results: the number of molecules absorbed by the colls.

Metabolism: Lesson 1.2

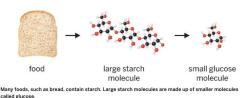
End of Lesson

Published and Distributed by Amplify. www.amplify.com

© The Regents of the University of California. All rights reserved.


Active reading: student articles

- Articles provide a valuable source of evidence to figure out phenomena.
- Explicit instruction in reading like a scientist.
- Multiple reads of the same text each with a different purpose.


Molecules Cells Need

When your body is healthy, it runs so smoothly that you probably don't even notice it: without thinking about it, you can get up in the morning, breathe, laugh, dance, grow, fight of diseases, and live your lifel But what makes a body healthy, and how does it stay that way? In a healthy body, all the systems work together to make sure every cell gets the molecules it needs: oxygen, glucose, and amino acids. Metabolism is the body's use of these molecules for energy and growth.

We need to breathe in oxygen molecules from the air around us to keep our bodies alive. Our bodies get other important molecules, such as amino acids and glucose, from the food we eat.

Many foods, such as eggs, contain protein. Large protein molecules are made up of smaller molecules called amino acids.

Amino acid molecules are the building blocks of proteins, and we get them from protein-rich foods like beans, meat, and eggs. We get glucose molecules mainly by breaking down foods that contain starch, such as fruits, vegetables, and grains.

The oxygen, glucose, and amino acid molecules you get from air and food are the fuel your bodyneeds to function every day. Without the molecules, your cells can't do whe to do to keep your body hearting-many medical conditions cause problems because they can keep these molecules from reaching your cells consistently. Where does the body get glucose, amino acids, and oxygen molecules?

What might happen if the body doesn't take in one or all of these molecules?

Returning to Elisa's problem

Claims:

- Elisa isn't getting enough sleep.
- Elisa is not eating enough food or not eating the right foods.
- Elisa has a medical condition.

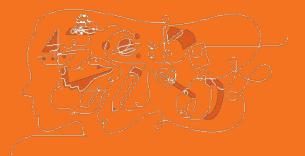
Healthy Sleep Comparison

Average Teenage Sleep Patterns	Elisa's Sleep Pattern
Many scientific studies of teenagers show that most healthy teenagers get between 8 and 10 hours of sleep each night.	Elisa's sleep journal shows that she is getting about 9 hours of sleep every night.

Healthy Eating Comparison

Average Teenage Eating Habits	Elisa's Eating Habits
A scientific study done on 1,000 healthy 14-year-olds found that they ate between 5 and 8 servings of starch per day and between 1 and 4 servings of protein per day.	Elisa's food journal shows that she ate between 6 and 8 servings of food that contained starch every day. She ate between 2 and 4 servings of food that contained protein every day.

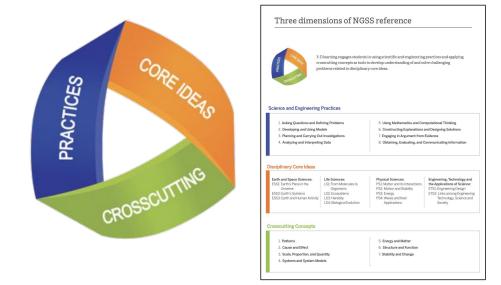
Advanced Literacies for Academic Success


- Hallmark 1: Work with a variety of texts that feature big ideas and rich content
- Hallmark 2: Engage in talk and discussion to build both conversational and academic language and knowledge
- Hallmark 3: Write to build language and knowledge
- Hallmark 4: Study a small set of high-utility vocabulary words and academic language structures to build breadth and depth of knowledge
- Hallmark 5: Use Schoolwide protocols to support reading, writing, speaking and Listening

Amplify.

Reflecting on phenomenon-based learning

Example lesson reflection Think-Type-Discuss


What new insights do you have about phenomenon-based learning?

What connections did you notice to Advanced Literacies?

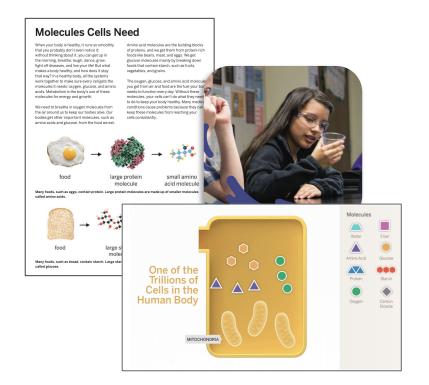
- **Hallmark 1:** Work with a variety of texts that feature big ideas and rich content
- Hallmark 2: Engage in talk and discussion to build both conversational and academic language and knowledge
- Hallmark 3: Write to build language and knowledge
- Hallmark 4: Study a small set of high-utility vocabulary words and academic language structures to build breadth and depth of knowledge
- Hallmark 5: Use Schoolwide protocols to support reading, writing, speaking and Listening

3-D Statement Metabolism Lesson 1.3

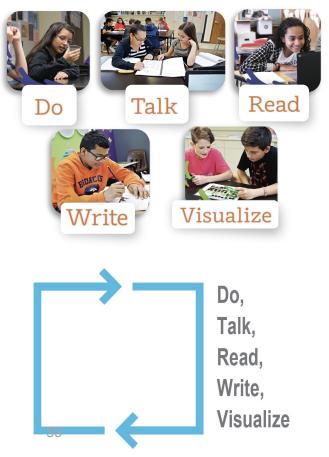
Lesson 1.3: Evaluating Initial Claims About Elisa

Students obtain information from a digital model and an article in order to determine the molecules that cells need to function in a healthy body (scale, proportion, and quantity).

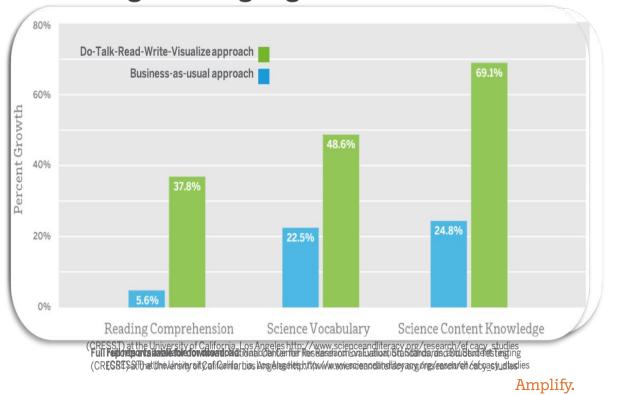
Multimodal Instruction



© 2018 The Regents of the University of California


Evidence sources work together

Teaching tip


- Every evidence source plays an important role in student learning.
- Be sure to teach every activity in order!

The approach: Multimodal instruction

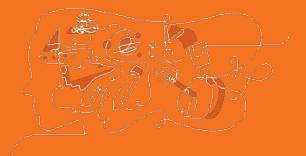
Studen English dan by uniging an improvement literacy

Plan for the day

• Framing the day

• What is Amplify Science?

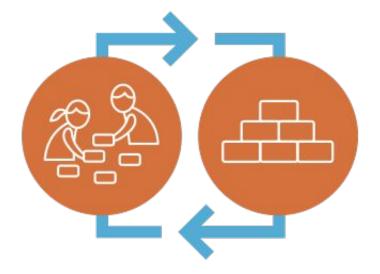
• Phenomenon-based learning


- What is phenomena-based instruction?
- What does this look like in Amplify Science?
- Supporting instruction
 - Progress builds and assessments

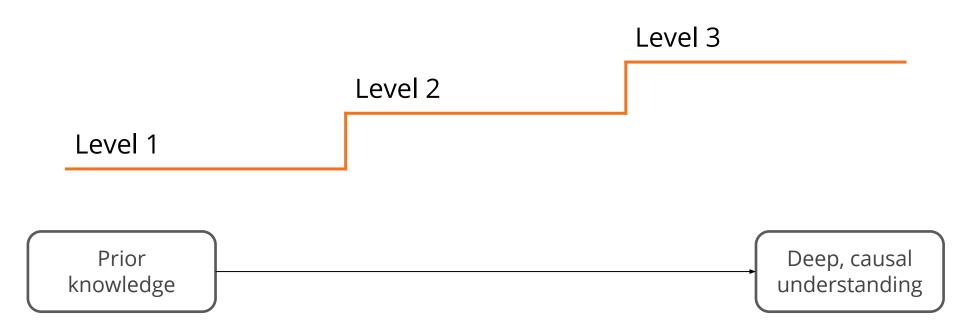
Amplify.

- Supporting implementation
 - Administrator resources
 - Remote & hybrid resources
- Closing
 - Reflection & survey

Supporting Instruction: Progress Build and Assessment



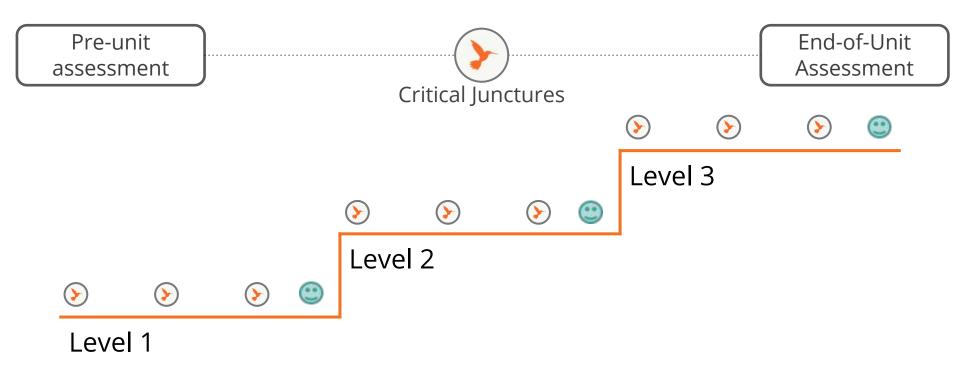
Anchoring phenomena


Driving instruction through a whole unit

Students gather evidence and use it to build **increasingly complex explanations** about a rich, real-world anchoring phenomenon.

Progress Build

A unit-specific learning progression


Metabolism Progress Build

	Level 2	Cells can use these
Level 1	Systems in the body work together to take	molecules to release energy for the body to
Cells in the body need molecules from outside to function.	in, break down, and deliver needed molecules to the cells.	function.

Level 3

Prior knowledge Deep, causal understanding

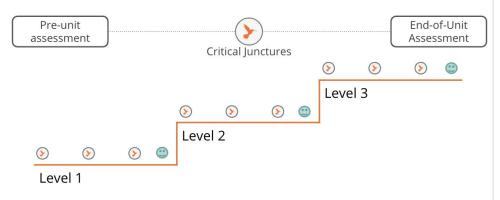
6-8 Assessment System

Assessment System reference

Assessment System reference

Assessment type	Description	Student experience	Teacher resources
Pre-Unit Assessment	Formative, 3-D assessment meant to gauge students' initial understanding and pre-conceptions about core ideas in the unit, including the unit's focal crosscutting concept.	Multiple choice questions Two written response questions	 Pre-Unit Assessment Answer Key and Scoring Quide (available in Digital Resources), includes rubrics for both disciplinary core ideas and crosscutting concepts. Reporting Function provides analysis of results, places students along the Progress Build, and provides information to the teacher about specific preconceptions students may hold
End-of-Unit Assessment	Summative, 3-D assessment to evaluate students' growth in understanding about core ideas in the unit, including the unit is local crosscutting concept	Multiple choice questions Two written response questions	 End-of-Unit Assessment Answer Key and Scoring Guide (realiable in Digital Resources), includes rubrics for both disciplinary core ideas and crosscutting concepts Reporting Function provides analysis of results, places students along the Progress Buid, and provides information to the teacher about specific preconceptions students may hold
Critical Juncture Assessment	Formative, 3-D assessment meant to gauge student's growing understanding and pre-conceptions about core ideas in the unit, including the unit's focal crosscutting concept, in order to inform a differentiated lesson to bring all students to a point where they can move on together.	Multiple choice questions Two written response questions Following lesson is differentiated based on the results to help students review and construct needed concepts	Critical Juncture Assessment Answer Key and Scoring Guide (available in Digital Resources), includes rubrics for both disciplinary core ideas and crosscutting concepts Reporting Function provides analysis of results, places students along the Progress Build, provides information to the teacher about specific preconceptions students may hold, and recommends grouping for following differentiated lesson
On-the-Fly Assessments	Embedded formative assessments for noting students' progress with one or more of the following: disciplinary core ideas, science and engineering practices, and crosscutting concepts	 Activities are embedded into existing instructional activities, leveraged for assessment opportunities. Artifacts can include discussion, use of a digital tool, notebook pages, etc. 	 Full text of assessment includes "What to look for?" and 'Now what?" instructional Guide by clicking the orange hummingbird icon All On-the-FX sessments are included in: Embedded Formative Assessments (available in the Unit Guide)

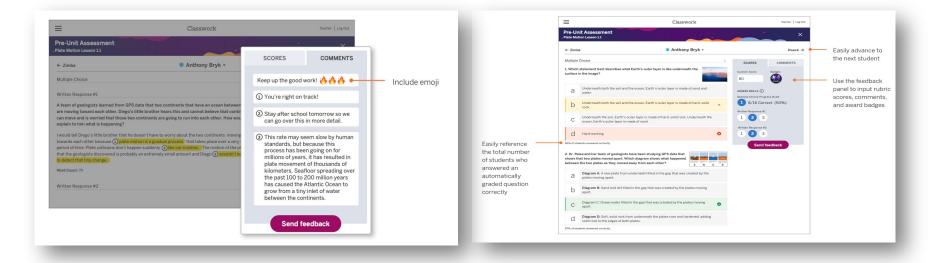
Assessment System reference cont.


Assessment type	Description	Student experience	Teacher resources
Final Written Argument	Embedded summative assessment to gauge students' understanding of core ideas in the Progress Build, application of a crosscutting concept central to the unit, and their use of several science practices, including engaging in argument from evidence	Written argument about the Chapter 4 Science Seminar question Multiple embedded pedagogical supports	Rubriss for Final Written Argument (available in Digital Resources)
Student Self-Assessments	Opportunity for students to reflect on whether they understand or don't yet understand about the core concepts from the unit and key nature of science ideas	Reflection prompts Provided at or near the end of each chapter	Information about Student Self- Assessments in Assessment System (available in the Unit Guide) Teacher Support notes accessible in Instructional Guide by citicking the Teacher Support tab
Investigation Assessments (1 or 2 per year)	Summative, 3-D performance assessment to evaluate students' performance of the science and engineering practices of Planning and Conducting Investigations and Analyzing and Interpreting Data, as well as their application of disciplinary core ideas and crosscutting concepts	Prompts for planning investigation and recording results in the Investigation Notebook or copymaster (available in Digital Resources) Materials (physical or digital) for conducting investigation	Rubrics and Possible Responses Possible Responses also accessible in Instructional Guide by clicking the Possible Responses tab
Portfolio Assessments	Opportunity for students to compile and reflect on key work products, collected at the end of each unit. Final portfolic compulation excurs, at the end of the school year and allows students to select and reflect on work products which they feel best demonstrate their growth in understanding throughout the year.	Complation of work products (written explanations and/or arguments, models) that: show growth over the course of the year Reflection on chosen work products Rubrics for evaluating work products (available in Program Guide Assessment S-additional Assessment S-additional	Assessment rubrics (available in Program Guide → Assessments → Additional Assessment Resources) Guidance for communicating to parents about student progress (available in Program Guide → Assessments → Additional Assessment Resources)

Amplify.

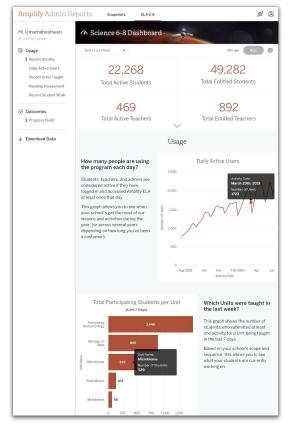
Capture your thinking!

 How can you support teachers in successfully implementing the embedded assessment opportunities?


6-8 Assessment System

Classwork

			ACTIVITIE	S LE	EVELS
UNIT	CHAPTER	LESSON	ACTIVI	ГҮ-ТҮРЕ	
Force and Motion	▼ 1 Force and Velo	ocity 🔹 1 Pre >	2 Des X ▼ All		•
ACTIVITY		SUBMISSIONS	LAST SUBMISSION	FEEDBACK	
class Multiple Choice Lesson 1		26/26	5:38 PM Wed. 4/17/19	0	>
cLASS Written-Response Que Lesson 1	estion #1	23/26	5:00 PM Wed. 4/17/19	2 awaiting	>
cLASS Written-Response Que Lesson 1	estion #2	23/26	4:57 PM Wed. 4/17/19	0	>



Administrator reports: Grades 6-8

Coming soon!

- Available for both building and district administrators, reports will include usage and assessment data including:
 - o daily active users
 - recent units taught
 - recent assessments
 - Progress Build outcomes
- Reports can be easily exported for integration with school and district learning management systems.

Plan for the day

• Framing the day

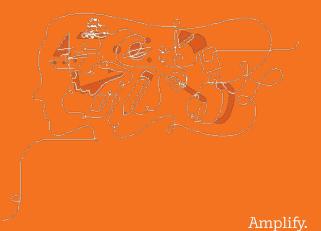
• What is Amplify Science?

• Phenomenon-based learning

- What is phenomena-based instruction?
 - coherent activity sequence

Amplify.

• Supporting instruction


• Progress builds and assessments

Supporting implementation

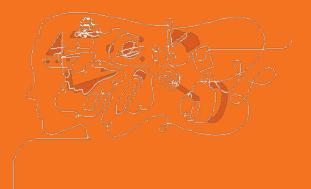
- Administrator resources
- Remote & hybrid resources
- Closing
 - Reflection & survey

Administrator Resources

Getting Started Look-For Tool

Amplify Science: Getting started look-for tool

Look for #1: Students are accessing the resources: This categories observations can be made over 5-10 minutes or longer.	ory is intended to highlight visible signs of using the Amplify Science curriculum. These		
Sample evidence through observations and questions	Notes and observations		
 Lassroom environment look fors: Classroom wall Co-constructed charts Established routines for ease of access to resources Projections and posters are clear Rtudent look-fors: Referencing classroom wall resources as appropriate Accessing digital tools, print, and physical resources with ease 		iple sources to Investigate Phenomena. This category is intended to ree-dimensional learning. These look-fors need at least 15 minutes to a full fic lesson you are observing for the specific core ideas, crosscutting concepts and figuring out phenomena like a scientist, engaged in 3-D learning. You will visualize), during which they use academic language and unit words to portunities to construct understanding. Notes and observations	Progress Build. This category is intended to highlight how students an me, across multiple class periods within a unit. w students constructing increasingly complex explanations over time. Y in response to assessment. Over time, students working towards meetin Notes and observations
	Students reading Students reading Student discussing Student Questions to ask: What are you figuring out today? What are you tell me about the chapter question? How did you figure that out? What is your evidence?	_	

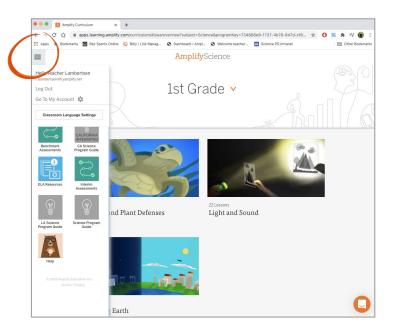

Getting Started Checklist

Getting started with 6-8 Amplify Science: Administrator's Guide

	Organizational area	Points to remember
INIT	TAL TRAINING & PROFESSIONAL LEARNING OPPORTUNITIES	 Teacher buy-in
	Schedule time for teachers to receive training	
	Provide an opportunity for teachers to understand your school's vision for	
	implementing Amplify Science prior to their training	
	Devise and deliver messaging to parents	
PAC	ING UNITS THROUGHOUT THE SCHOOL YEAR	 1 Launch unit
	Determine pacing/scope and sequence of units and time allocated for daily	 11 lessons
	science instruction in collaboration with the department chair/grade-level lead	 6 Core units
	Identify how much time is dedicated to science instruction at each grade level	 19 lessons
	and modify the schedule to accommodate full implementation	 2 Engineering units
		 10 lessons
		 Year at a glance (pg. 3)
	HNOLOGY READINESS & ACCESS	Contact
	Identify a technology support person (school & district level)	scihelp@amplify.com if
	Test internet connection speeds to ensure successful internet access	you have any teacher
	Ensure all teachers have account log-ins and accessed the digital Teacher's	log-in issues.
	Guide and no content filters block access (learning amplify.com)	 Technology readiness
	Ensure all teachers establish routines and logistics for device management in their classroom (if applicable)	will support teachers' ability to teach all units
	Ensure that all teachers are using either Chrome or Safari web browsers	and address all
	Devices in-use by teachers (and students) are: iPad 3 or more recent models,	standards.
-	MacBooks, Chromebooks, or Windows laptops or desktops	stanuarus.
MAA	VAGING SCIENCE RESOURCES	The Amplify Science
	Appoint a point-of-contact to organize and distribute kit resources for	curriculum integrates
	immediate teacher access based on unit order and pacing	hands-on materials and
	Ensure kit resources are provided to the teacher at least 1 week prior to the	classroom wall
	expected start of instruction	resources. Some items
	Review the materials list inside of each kit, at each grade level, and identify the	are provided in the kit
	items on the list that are "teacher provided items"; secure these items at least	and others are "teacher
	1 week prior to the expected start of instruction	provided."
	Ensure all teachers establish routines for managing kit resources in their	
	classrooms (manipulatives, Investigations Notebooks, etc.)	
мо	NITORING INITIAL IMPLEMENTATION	 Amplify Science: Getting
	Schedule time to observe initial implementation, at least two weeks after the	started look-for tool
	units' start date (pacing, routines for technology and materials management)	(pgs.12-14)
	Visit classes to identify successes/challenges and provide feedback	
	Identify successes and coordinate opportunities for peer-to-peer supports to	
	build capacity and consistency of routines	
	Devise an ongoing Professional Learning Plan	
	PORTING REMOTE LEARNING	 amplify.com/remote
	First, ask yourself:	learning
	 How much time do students have to learn science in the upcoming school 	 Access resources and
	year?	suggestions for using
	 Do your students have access to technology at home, or do you need a print anti-activities? 	Amplify programs remotely.
	print-only solution? Use Amplify Science@Home Units if:	
	 You have significantly less time to teach science than usual 	 Program Hub Access Amplify
	You can choose from two different @Home Units formats, based on your	Science@Home
-	students' tech access:	Videos and Amplify
	@Home Packets: print-only version	Science@Home Units
	 @Home Factors: print-only version @Home Slides: digital version, integrating digital slide decks and print or 	Science@nome Units
	 pdf packets 	
	Use Amplify Science@Home Videos if:	
	 Your students have consistent access to digital devices at home 	
	 You have about the same amount of time for teaching science as you 	
	normally would	1

Hybrid learning resources

Amplify @home amplify.com/science-coming-soon/


Amplify is launching several new and exciting features for Amplify Science that will save you time, extend your reach, and support your efforts to deliver the types of rigorous and riveting learning experiences in remote and hybrid settings.

Amplify Science Program Hub A new hub for Amplify Science resources

- Videos and resources to continue getting ready to teach
- Coming soon: Amplify@Home resources
- Keep checking back for updates

science.amplify.com/programhub

Remote learning guidance: two options

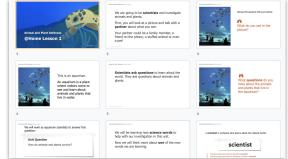
Amplify Science@Home Units

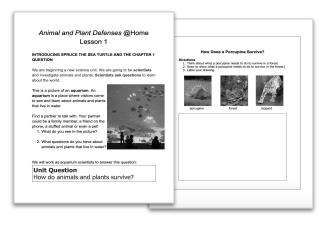
- **Condensed** Amplify Science units
- Options for a **digital** student experience (@Home Slides) or a **print-only** student experience (@Home Packets)
- Suggestions for enhancing if you have in-person or synchronous time

Amplify Science@Home Videos

- Videos of Amplify Science lessons adapted for remote learning
- Taught by real Amplify
 Science teachers
- Option to send to students or use as a model to record your own videos

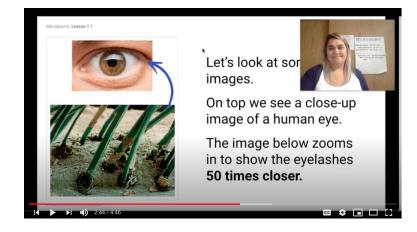
Selecting remote learning resources First, ask yourself...

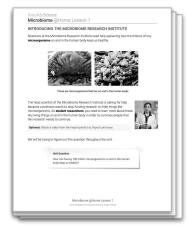

- How much **time** do students have to learn science in the upcoming school year?
- Do your students have **access to technology** at home, or do you need a **print-only solution**?


Selecting remote learning resources Use Amplify Science @Home Units if

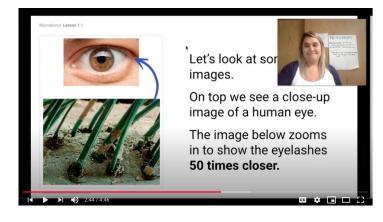
• You have **significantly less time** to teach science than you usually do.

You can choose from two different @Home Units formats, based on your students' tech access:


- **@Home Packets:** print-only version
- **@Home Slides:** digital version, integrating digital slide decks and print or .pdf packets



Selecting remote learning resources Use Amplify Science@Home Videos if


- Your students have consistent access to digital devices at home, and
- You have about the same amount of time for teaching science as you normally would

The @Home Resources can be used in tandem. @Home Units (packets or slides) @Home Videos

@Home Resources example use case Hybrid Model: remote asynchronous and live in person teaching

Monday Remote

Tuesday In-person

Assign: @Home Lesson 1 (slides or packet) Teach: @Home Lesson 2 using guidance for in-person instruction* Assign: @Home Lesson 3 with @Home Video clips to support

Wednesday

Remote

Thursday *Remote*

Assign: @Home Lesson 4 with @Home Video clips to support

Friday In-person

Revisit @Home Lessons 3-4 using guidance for in-person instruction* 84

*Ideas for in-person instruction includes hands-on or discourse-based activities

@Home Resources example use case Remote Model: with synchronous & asynchronous learning

Days 1 & 2

Asynchronous

Assign: @Home Lesson 1 (slides or packets) supplemented with @Home Videos.

Day 3

Day 4

Day 5

Synchronous

Teach: @Home Lesson 2 (slides or packet) using synchronous suggestions.

Asynchronous

Assign: @Home Lesson 3. Supplement with @Home Videos.

Synchronous

Revisit @Home Lesson 3, using synchronous suggestions.

Plan for the day

• Framing the day

• What is Amplify Science?

• Phenomenon-based learning

- What is phenomena-based instruction?
- What does this look like in Amplify Science?

• Supporting instruction

Progress builds and assessments

Amplify.

• Supporting implementation

- Administrator resources
- Remote & hybrid resources
- Closing
 - Reflection & survey

Revisiting our goals

Are you able to:

- Recognize how lessons engage students in three-dimensional learning?
- Understand how the program's multimodal approach supports students in figuring out the unit phenomenon?
- Become familiar with "look fors" that administrators should see in an effective three dimensional science instruction?
- Discuss ways in which administrators can support the teaching of science in the coming school year?
- Make an informed decision about which of the Amplify Science Hybrid Learning Resources (@Home Unit and @Home Videos) will best support their teachers?

Reflection

After today's session, what are you newly excited about with Amplify Science?

What are the new challenges that you are now anticipating?

© 2018 The Regents of the University of California

NYC Resources site

Amplify.

Welcome, New York City Department of Education

Resources for support

Welcome! This site contains supporting resources designed for the New York City Department of Education Amplify Science adoption for grades K-5.

amplify.com/amplify-science-nyc-doe-resources/

© 2018 The Regents of the University of California

Additional Amplify resources

Program Guide

Glean additional insight into the program's structure, intent, philosophies, supports, and flexibility.

my.amplify.com/programguide

Amplify Help

Find lots of advice and answers from the Amplify team.

my.amplify.com/help

Additional Amplify Support

Customer Care

Seek information specific to enrollment and rosters, technical support, materials and kits, and teaching support, weekdays 7AM-7PM EST.

scihelp@amplify.com

800-823-1969

When contacting the customer care team:

- Identify yourself as an Amplify Science user.
- Note the unit you are teaching.
- Note the type of device you are using (Chromebook, iPad, Windows, laptop).
- Note the web browser you are using (Chrome or Safari).
- Include a screenshot of the problem, if possible.
- Copy your district or site IT contact on emails.