Amplify Math

Grade 8

Volume 1: Units 1-4

Teacher Edition

About Amplify

Amplify is dedicated to collaborating with educators to create learning experiences that are rigorous and riveting for all students. Amplify creates K-12 core and supplemental curriculum, assessment, and intervention programs for today's students.

A pioneer in K-12 education since 2000, Amplify is leading the way in next-generation curriculum and assessment. All of our programs provide teachers with powerful tools that help them understand and respond to the needs of every student.

Abstract

Amplify Math is based on the Illustrative Mathematics (IM) curriculum. IM 6-8 Math ${ }^{\text {™ }}$ was originally developed by Open Up Resources and authored by Illustrative Mathematics, and is © 2017-2019 Open Up Resources. Additional adaptations and updates to IM 6-8 Math ${ }^{\text {TM }}$ are © 2019 Illustrative Mathematics. IM 9-12 Math ${ }^{\top M}$ is © 2019 Illustrative Mathematics. IM 6-8 Math ${ }^{\text {™ }}$ and IM 9-12 Math ${ }^{\text {TM }}$ are licensed under the Creative Commons Attribution 4.0 International license (CC BY 4.0). Additional modifications contained in Amplify Math are © 2020 Amplify Education, Inc. and its licensors. Amplify is not affiliated with the Illustrative Mathematics organization.

[^0]No part of this publication may be reproduced or distributed in its original form, or stored in a database or retrieval system, without the prior written consent of Amplify Education, Inc., except for the classroom use of the worksheets included for students in some lessons.

Cover illustration by Caroline Hadilaksono.
© 2023 by Amplify Education, Inc. 55 Washington Street, Suite 800, Brooklyn, NY 11201 www.amplify.com

ISBN: 978-1-63643-489-6
Printed in [e.g., the United States of America] [\# of print run] [print vendor] [year of printing]

Dear Teacher,

Thank you for choosing Amplify Math. Our team has worked hard to ensure you have strong, easy-to-follow instructional supports that get all students talking and thinking together about grade-level math.

You can learn more about the program design in the pages that follow, but we wanted to call out a few things that really drive our point home about the student experience:

Make math social
The student experience is social and collaborative. Your students will have plenty of opportunities to talk through their reasoning and work with their peers to come to new understandings. Thanks to our partnership with Desmos, you can kick off these social math experiences both offline and while logged in.

Power-ups

Your priority is teaching grade-level math to each and every student in your classroom, every day. To help with that, we've developed Power-ups to provide just-in-time support for your students.

Narrative

We kick off each sub-unit with a short, engaging narrative about historical or current-day events or phenomena. That way, your students can see the relevance of math in their everyday lives.

Featured Mathematicians

It's important to us that students see themselves in our materials. To that end, we've woven in the work of innovative mathematical thinkers. We've also included some of their personal stories, so that students can see themselves mirrored in the living history of mathematics.

Data

We provide plenty of data to help you drive your instruction and talk about student performance with your colleagues, as well as with caregivers who may not have had the best experiences with math when they were in school.

We hope you see the quality work of our team of editors and advisors in the program.

Sincerely,
The Amplify Math Team

Acknowledgments

Program Advisors

Amplify gratefully acknowledges the outstanding contributions and work of distinguished program advisors who have been integral to the development of Amplify Math. This product is testimony to their expertise, understanding of student learning needs, and dedication to rigorous and equitable mathematics instruction.

Phil Daro
Board member: Strategic
Education Research Partnership (SERP)
Area of focus: Content strategy

Fawn Nguyen

Rio School District, California Area of focus: Problem solving

Sunil Singh
Educator, author, storyteller Area of focus: Narrative and storytelling

Paulo Tan, Ph.D.
Johns Hopkins University, School of Education Area of focus: Meeting the needs of all students

Educator Advisory Board

Amplify gratefully acknowledges the outstanding contributions and work of esteemed members of our Educator Advisory Board. This product exhibits their respected observations and reflections.

Melvin Burnett

Alamance Burlington
Schools, North Carolina

Jessica Childers

Putnam County Schools, Tennessee

Brent Christensen

Spokane Public Schools,
Washington

Rhonda Creed-Harry

New York City Schools,
New York

Jenny Croitoru

Chicago Public Schools, Illinois

Tara DeVaughn

Fairbanks Northstar Borough
School District, Alaska

Elizabeth Hailey

Springfield R-XII School District, Missouri

Howie Hua

California State University at Fresno, California

Rachael Jones

Durham Public Schools, North Carolina

Rita Leskovec

Cleveland Metropolitan School District, Ohio

Corey Levin

New York City Schools, New York

Sandhya Raman

Berryessa Union School District, California

Jerry Schmidt
Brentwood School
District, Missouri

Deloris Scott

Yazoo County School
District, Mississippi

Noah Sharrow

Clarkston Community Schools, Michigan

Myla Simmons
Plainfield Public Schools, New Jersey

Michele Stassfurth

North Plainfield School District, New Jersey

Field Trials

Amplify gratefully acknowledges the time and efforts of educators from the following districts and schools whose participation in field trials provided constructive critiques and resulting improvements. This product reflects their valuable feedback.

Berryessa Union School	Leadership Learning
District, California	Academy, Utah
Chicago Jesuit Academy,	Lusher Charter School, Illinois
Lrvisiana Unified School District,	Memphis Grizzlies Preparatory California
Charter School, Tennessee	
District, California	

Saddleback Valley Unified
School District, California
San Juan Unified School
District, California
Santa Paula Unified
School District, California
Silver Summit Academy, Utah

Streetsboro City Schools, Ohio

West Contra Costa Unified School District, California

Wyoming City Schools, Ohio
Young Women's Leadership School of Brooklyn, New York

Amplify Math Product Development

Product

Molly Batchik
Candy Bratton
Stephanie Cheng
Rebecca Copley
Marsheela Evans
Christina Lee
Brad Shank
Kathleen Sheehy
Jennifer Skelley
Rey Vargas
Allen von Pallandt
Steven Zavari
Curriculum and Editorial
Toni Brokaw
Anna Buchina
Nora Castiglione
Jaclyn Claiborne
Kristina Clayton
Drew Corley
Karen Douglass
Karen Everly
Chris Ignaciuk
Justine Jackson
Louise Jarvis
Brian Kam
Rachel King
Suzanne Magargee
Mark Marzen
Nana Nam
Kim Petersen
Molly Pooler
Elizabeth Re
Allison Shatzman
Kristen Shebek
Ben Simon
Evan Spellman
Amy Sroka
Shelby Strong
Rajan Vedula
Zach Wissner-Gross
Digital Curriculum
Ian Cross
Phil DeOrsey
Ryan de la Garza
Sheila Jaung
Nokware Knight
Michelle Palker

Vincent Panetta	Marketing
Aaron Robson	Megan Hunter
Sam Rodriguez	Zach Slack
Eileen Rutherford	Heath Williams
Elliot Shields	
Gabe Turow	Engineering
	Jessica Graham
Design and Illustration	Matt Hayes
Amanda Behm	Bardh Jahjaga
Irene Chan	Eduard Korolchuk
Tim Chi Ly	Nick Maddalena
Cindy Chung	Syed Rizvi
Caroline Hadilaksono	Jon Tully
Justin Moore	
Christina Ogbotiti	Digital Production
Renée Park Andrew Avery	
Eddie Peña	Ryan Cooper
Todd Rawson	Jessica Yin Gerena
Jordan Stine	
Veronica Tolentino	
J Yang	Julie Palomba
	Heather Ruiz
Narrative Design	Ana Zapata
Bill Cheng	
Gala Mukomolova	
Raj Parameswaran	

Program Scope and Sequence

Unit 5	Unit 6	Unit 7	Unit 8
Arithmetic in Base Ten	Expressions and Equations	Rational Numbers	Data Sets and Distributions
14 Instructional Days	19 Instructional Days	19 Instructional Days	17 Instructional Days
2 Assessment Days	2 Assessment Days	2 Assessment Days	3 Assessment Days
16 days total	21 days total	21 days total	20 days total

Rational Number Arithmetic	Expressions, Equations, and Inequalities	Angles, Triangles, and Prisms	Probability and Sampling
20 Instructional Days	23 Instructional Days	18 Instructional Days	17 Instructional Days
3 Assessment Days	3 Assessment Days	3 Assessment Days	3 Assessment Days
23 days total	26 days total	21 days total	20 days total

Introducing		Quadratic
Quadratic		Equations
Functions	$\ldots .{ }^{\text {Qus }}$	
23 Instructional Days		24 Instructional Days
3 Assessment Days		3 Assessment Days
26 days total		27 days total

Unit 1 Rigid Transformations and Congruence

Students begin Grade 8 by joining talented architects, artists, and mathematicians in the study of two-dimensional figures. Equipped with their geometry toolkits, students manipulate familiar figures with new methods, and make key discoveries along the way.

PRE-UNIT READINESS ASSESSMENT

1.01 Tessellations..

Sub-Unit 1 Rigid Transformations
 11

1.03 Symmetry and Reflection ...- 19A

1.05 Making the Moves ... 34A
1.06 Coordinate Moves (Part 1) ... \quad 40A
1.07 Coordinate Moves (Part 2)..

MID-UNIT ASSESSMENT

Sub-Unit 2 Rigid Transformations
and Congruence 61
1.09 No Bending or Stretching 62A
1.10 What Is the Same? 69A
1.11 Congruent Polygons 76A
1.12 Congruence (optional) 83A
Sub-Unit 3 Angles in a Triangle91
1.13 Line Moves 92A
1.14 Rotation Patterns 98A
1.15 Alternate Interior Angles 105A
1.16 Adding the Angles in a Triangle 112A
1.17 Parallel Lines and the Angles in a Triangle 118A

[^1]
Sub-Unit Narrative:

How do you make a piece of cardboard come alive?
Pack your geometry toolkits for a transformational journey into the movement of figures

Sub-Unit Narrative

How can a crack make a piece of art priceless?
Something special happens when you perform rigid transformations on a figure.

[^2]
Unit 2 Dilations and Similarity

Students explore a new type of transformation, dilations, and practice using dilations to create and recognize similar figures. Students' understanding of the characteristics of these similar figures, of similar triangles specifically, will serve as the foundation for their study of the slope of a line.

Unit Narrative:
More Than
Meets the Eye

Sub-Unit Narrative:
Would you put poison in your eye?
Shrink and stretch objects on and off the plane and study the characteristics of the figures you dilate.

Sub-Unit Narrative: Do you really get what you pay for?
Learn how some companies use dilations to create similar, and slightly smaller, sized packaging, in a process called "shrinkflation."

Unit 3 Linear Relationships

Students make connections between the rate of change, slope, and the constant of proportionality, drawing on previous knowledge to explore an exciting new relationship: the linear relationship.

PRE-UNIT READINESS ASSESSMENT
3.01 Visual Patterns

222A

Sub-Unit 1 Proportional Relationships
229
3.02 Proportional Relationships \quad 230A
3.03 Understanding Proportional Relationships237A
3.04 Graphs of Proportional Relationships243A
3.05 Representing Proportional Relationships 249A
3.06 Comparing Proportional Relationships255A

Sub-Unit 2 Linear Relationships 261
3.07 Introducing Linear Relationships ... 262A
3.08 Comparing Relationships ...
3.09 More Linear Relationships ..
3.10 Representations of Linear Relationships 284A
3.11 Writing Equations for Lines Using Two Points 290A
3.12 Translating to $y=m x+b \ldots \square . \quad$ 297A
3.13 Slopes Don't Have to Be Positive303A
3.14 Writing Equations for Lines Using Two Points,
Revisited
3.15 Equations for All Kinds of Lines 317A

Sub-Unit 3 Linear Equations 325
3.16 Solutions to Linear Equations 326A
3.17 More Solutions to Linear Equations333A
3.18 Coordinating Linear Relationships 339A

CAPSTONE 3.19 Rogue Planes

346A
END-OF-UNIT ASSESSMENT

Unit 4 Linear Equations and Systems of Linear Equations

Students begin this unit by developing algebraic methods for solving linear equations with variables on both sides of the equation. They then use these algebraic methods, along with graphs and tables, to solve systems of linear equations.

PRE-UNIT READINESS ASSESSMENT

Sulb-Unit 1 Linear Equations in
One Variable
4.02 Writing Expressions and Equations364A

4.04 Balanced Moves (Part 1)...37 37
4.05 Balanced Moves (Part 2)..................................... 384A
4.06 Solving Linear Equations ..392A
4.07 How Many Solutions? (Part 1)......399A
4.08 How Many Solutions? (Part 2).......................................
4.09 Strategic Solving .. 411A
4.10 When Are They the Same? (optional)..................417A

Sulb-Unit 2 Systems of Linear Equations
425
4.11 On or Off the Line? .. 426A

4.13 Systems of Linear Equations
4.14 Solving Systems of Linear Equations (Part 1) 445A
4.15 Solving Systems of Linear Equations (Part 2) 452A
4.16 Writing Systems of Linear Equations 459A

CAPSTONE 4.17 Pay Gaps
465A
END-OF-UNIT ASSESSMENT

Sub-Unit Narrative:
Who was the Father of Algebra?
When traders in 9th century Baghdad needed a better system for solving problems
a mathematician
developed a new
method he called
"al-jabr" or algebra.

Sub-Unit Narrative:

How is anesthesia like buying live lobsters? Now that you have practiced solving equations, take a closer look at how you can use linear equations to solve everyday problems.

Unit 5 Functions and Volume

By the end of this unit, students will have derived the formulas for the volumes of cylinders, cones, and spheres. But it all starts with a deep dive into the concept of what makes a relationship a function at the beginning of the unit.

PRE-UNIT READINESS ASSESSMENT
5.01 Pick a Pitch
Sub-Unit 1 Representing and Interpreting Functions 481
5.02 Introduction to Functions 482A
5.03 Equations for Functions 490A
5.04 Graphs of Functions (Part 1) 496A
5.05 Graphs of Functions (Part 2) 502A
5.06 Graphs of Functions (Part 3) 508A
5.07 Connecting Representations of Functions 514A
5.08 Comparing Linear Functions 520A
5.09 Modeling With Linear Functions 527A
5.10 Piecewise Functions 533A
Sulb-Unit 2 Cylinders, Cones, andSpheres539
5.11 Filling Containers 540A
5.12 The Volume of a Cylinder 547A
5.13 Determining Dimensions of Cylinders 553A
5.14 The Volume of a Cone 559A
5.15 Determining Dimensions of Cones 565A
5.16 Estimating a Hemisphere 571A
5.17 The Volume of a Sphere 578A
5.18 Cylinders, Cones, and Spheres 585A
5.19 Scaling One Dimension (optional) 592A
5.20 Scaling Two Dimensions (optional) 598A
CAPSTONE 5.21 Packing Spheres 605A
END-OF-UNIT ASSESSMENT

Unit 6 Exponents and Scientific Notation

This unit is about the numbers so large and so small that students must develop new ways of working with them. Students deepen their knowledge of exponents before exploring how powers of 10 and scientific notation can be used to write and work with numbers as small as the mass of a bacterium or as large as the number of atoms in the Universe.

Sub-Unit Narrative:

How many carbs are in a game of chess? You probably already know a thing or two about exponents, but what happens when you multiply or divide expressions with exponents?

Sub-Unit 2 Scientific Notation
669
6.09 Representing Large Numbers on the Number Line 670A
6.10 Representing Small Numbers on the Number Line677A
6.11 Applications of Arithmetic With Powers of $10 \ldots . . . \quad$ 683A
6.12 Definition of Scientific Notation

6.14 Adding and Subtracting With Scientific Notation703A

CAPSTONE
6.15 Is a Smartphone Smart Enough to Go to the Moon? 710A

END-OF-UNIT ASSESSMENT

Sub-Unit Narrative:
Who should we call when we run out of numbers?
You'll work with
numbers that are super small and incredibly large. But you won't waste your time writing pesky zeros!

Unit 7 Irrationals and the Pythagorean Theorem

Students study rational and irrational numbers using geometry and expressions before exploring a proof of the Pythagorean Theorem.

Sub-Unit 2 The Pythagorean Theorem 773
7.09 Observing the Pythagorean Theorem774A
7.10 Proving the Pythagorean Theorem
7.11 Determining Unknown Side Lengths 787A
7.12 Converse of the Pythagorean Theorem 793A
7.13 Distances on the Coordinate Plane (Part 1) 800A
7.14 Distances on the Coordinate Plane (Part 2) 806A
7.15 Applications of the Pythagorean Theorem812A

CAPSTONE
7.16 Pythagorean Triples

818A
END-OF-UNIT ASSESSMENT

Sub-Unit Narrative:

How rational were the Pythagoreans?
Find out if every number can be represented by a fraction.

Sub-Unit Narrative

What do the President of the United States and Albert Einstein have in common?
Uncover a special property of right triangles when you explore one of the nearly 500 proofs of the Pythagorean Theorem.

Unit 8 Associations in Data

What makes a cat logo consumer friendly? Is there a relationship between eye distance and height for a species of krill? Are adults just as likely to ride a bike as kids? Did the hole in the ozone layer have an association with skin cancer rates in Australia? In this unit, students will grapple with these questions and more, as they discover new ways to represent associations in data and build their data literacy.

PRE-UNIT READINESS ASSESSMENT

8.01 Creating a Scatter Plot

826A

Sub-Unit 1 Associations in Data 833
8.02 Interpreting Points on a Scatter Plot 834A
8.03 Observing Patterns in Scatter Plots 841A
8.04 Fitting a Line to Data
8.05 Using a Linear Model ...
8.06 Interpreting Slope and y-intercept \quad 864A

CAPSTONE 8.09 Using Data Displays to Find Associations 887A

END-OF-UNIT ASSESSMENT

Sub-Unit Narrative:
Who is the biggest mover and shaker in the Antarctic Ocean?
Explore the ozone hole using scatter plots, while learning about the different kinds of associations data can have.

Get all students talking and thinking about grade-level math.

Amplify Math was designed around the idea that core math needs to serve 100\% of students in accessing grade-level math every day. To that end, the program delivers:

1 Productive discourse made easier to facilitate and more accessible for students

Clean and clear lesson design

The lessons all include straightforward " $1,2,3$ step" guidance for launching and facilitating discussions around the tasks. Thoughtful and specific differentiation supports are included for every activity. Every lesson ends with a summary and reflection moment, an Exit Ticket, and a practice problem set.

Narrative and storytelling

All students ask "Why do I need to know this? When am I ever going to use this in the real world?" Amplify Math helps students make the connections with math and their everyday lives to help them see and appreciate the relevance of the math they're figuring out in class. Throughout the units, students will be introduced to historical and current narratives that show the many places mathematics inhabits in our world and how the work they do in class connects to our history and their own reality.

2 Flexible, social problemsolving experiences online

Social learning experiences online

By partnering with Desmos, we've been able to deliver digital lessons, which we call Amps, that get students thinking, talking, revising, and celebrating their ideas. As students work in the interactive slides, new functionality may appear and they will often be asked to justify their actions and thinking. All of this is made visible to the teacher in real time.

Automatically differentiated activities

Our Power-ups automatically provide differentiated activities to students who need pre-requisite support, based on performance on past problems and assessments. They're available in this Teacher Edition, too. Phil Daro partnered with us on this feature to ensure we were giving all students, even the ones who might be three years behind in math, but only 15 minutes behind the day's lesson, the chance to experience success in math.

3 Real-time insights, data, and reporting that inform instruction

Teacher orchestration tools

Once a teacher launches an Amp, students will be automatically moved to the lesson of the day and will see the interactive screens. Teachers will have the ability not only to pace the lesson the way they want to, but also to see student work in real time. The orchestration tools offer teachers ways to overlay student work to spot misconceptions and also the ability to spotlight student work anonymously to discuss with the class.

Embedded and standalone assessments

Amplify Math includes both a suite of standalone assessments and embedded assessments that allow teachers and leaders insights into where students are and how they might best be supported. The full reporting suite covers student and class performance based on work done in lessons, Exit Tickets, and practice sets, performance by standards, and performance on Interim assessments.

Amplify Math resources

Student Materials

Student workbooks, 2 volumes

Amps, our exclusive collection of digital lessons powered by desmos

Hands-on manipulatives (optional)

Teacher Materials

Teacher Edition, 2 volumes

Digital Teacher Edition and classroom monitoring tools

Additional Practice and Assessment Guide blackline masters

Program architecture

Note: Interim assessments may be administered according to your district/school's timeline; this depiction is just one of many possible administrations.

Unit

Note: The number of sub-units and lessons vary from unit to unit; this depiction shows the general structure of a unit.

Lesson

(0	(1)	(1)	(1)	(0)	(1)
Warm-up	Activity 1	Activity 2	Summary	Exit Ticket	Practice
(1) 5 min	(0) 15 min	(0) 15 min	(1) 5 min	(1) 5 min	(0) timing varies
$\bigcirc \bigcirc$	$\bigcirc \bigcirc$		\% \% ${ }_{\text {\% }}^{\text {\% }}$	\bigcirc	\bigcirc

Note: The number of activities vary from lesson to lesson; this depiction shows the general structure of a lesson.

[^3]
Navigating This Program

Lesson Brief

Symmetry and Reflection

Let's describe ways figures reflect on the plane.

Lesson goals, coherence

Focus

Rigor

Goals

1. Language Goal: Describe the movement of figures informally and formally using the terms reflection, line of reflection, image, and preimage. (Speaking and Listening, Reading and Writing)
2. Language Goal: Identify the features that determine a reflection. (Speaking and Listening, Reading and Writing)

Coherence

- Today

Students begin by studying different figures to review lines of symmetry They move into drawing and measuring reflected triangles, coming to understand that the line of reflection lies halfway between the two triangles and is perpendicular to the line segments that connect the corresponding vertices

< Previously

In Lesson 2, students described the features that identified translations and rotations.

> Coming Soon

In Lesson 4, students will translate, reflect, and rotate figures on a grid.

LESSON BRIEF	WARM-UP	ACTIVIties	SUMMARY	EXIT TICKET	PRACTICE

Suggested timing for the lesson and each activity is included for quick reference.	Pacing Guide				sted Total Lesson Time $\sim \mathbf{4 5}$ min	
	Warm-u	Activity	Activity 2	Activity	Summary	Exit Ticket
	(J) 5 min	(1) 15 min	(1) 8 min	(1) 8 min	(1) 5 min	(1) 5 min
	กํํํ Pairs	\bigcirc ํํํ Pairs	ํํํ Pairs	$\bigcirc{ }^{\circ} \mathrm{O}$ (Pairs	คั่ำคำ Whole Class	\bigcirc 응 f symmetry from Grad
	Amps powered by desmos \quad Activity and Presentation Slides					
	For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.					
The benefits of teaching one or more of the activities online are outlined for each lesson.	Materials - Exit Ticket - Additional Practice - geometry toolkits: rulers, tracing paper, protractors (optional)		Math Language Development New words - image - line of reflection - orientation - preimage* - prime notation - reflection Review words - corresponding points - perpendicular - symmetry - vertex		Activity 1 Real-Time Reflections When students adjust the line of reflection, an animation shows the reflected image, giving students an opportunity to revise their response, if needed.	
Every lesson pacing guide includes modification suggestions.	*Students may confuse preimage and image throughout the unit when discussing the original image and the transformed image. Highlight the prefix pre in preimage indicates the original image.					
Building Math Identity and Community supports for teachers are included in the Lesson Brief. Student supports appear online and in the printed Student Edition.	Building Math Identity and Community Connecting to Mathematical Practices Students may not want to make the effort required to use precise units and measuring tools to measure the exact distance of corresponding points to the line of reflection. Ask them to identify what the stumbling block is. By identifying the cause of their negative emotions, students will be able to form a plan that will help them regulate their behavior in response. For example, they might just need a peer to remind them how to use and read measurements on a ruler.				Modifications to Pacing You may want to consider these additional modifications if you are short on time. - In Activity 2, Problem choices D, E, and F may be omitted. - Activity 3, Problem 1 may be omitted. In this activity, students practice drawing reflections. Students will have other opportunities to practice drawing reflections in the Practice.	

Navigating This Program

Lesson

The student-facing content is presented to the left.

Activity 3 Drawing Reflections

Students practice drawing reflections, strengthening their understanding of how the line of reflection relates to the corresponding points in the preimage and image.

(1) Launch

Have students use a ruler to draw the reflection of each figure and only use tracing paper to check their work.

(2) Monito

Help students get started by having them draw a perpendicular line from point A to the line ℓ in Problem 1, and then measure the distance from point A to the line ℓ.

Look for points of confusion
Drawing a reflected point the same distance from the line as point A, but not perpendicular to line ℓ in Problem 2. Use a protractor, or corner of an index card or paper, to help students create a right angle formed by line ℓ and point A
Look for productive strategies:

- Using rulers to measure the distance from each point in the preimage to the line of reflection.
- Only using tracing paper to check their reflected image after it is drawn.

Connect

Display correct student drawings.
Have students share the strategies they used for drawing each image.

Highlight that an image is determined by the preimage and placement of the line of reflection The line of reflection may not always be strictly vertical (as in Problem 1) or horizontal. The line of reflection may be slanted (as in Problem 2)

4 Differentiated Support

Accessibility: Vary Demands to Optimize Challenge
If students need more processing time, have them focus on completing Problem 1, and only work on Problem 2 as time allows.

Accessibility: Optimize Access to Tools

Provide access to tracing paper, should students wish to use it during
the activity.

Extension: Math Enrichment
Have students draw their own reflections and lines of reflections that satisfy the given criteria
Draw the reflection of a preimage in which the image overlaps the preimage.
Draw the reflection of a preimage in which the image touches exactly one of the vertices of the preimage.
Draw the reflection of a preimage in which the image touches exactly one of
the sides of the preimage.

A short description of the activity and its targeted goal is outlined at the top.

Easy 1-2-3 guidance for teachers shortens the amount of time required to plan. The "look for" prompts are helpful to scan while teaching.

Differentiation supports,
including our alternative warm-ups called Power-ups, provide practical guidance for scaffolding or extending the learning for all students. Differentiation supports, including our just-in-time supports called Power-ups, provide practical guidance for scaffolding or extending the learning for all students.

Each lesson ends with an
Exit Ticket which includes a
self assessment for students.

Students demonstrate their understanding of reflection by critiquing the work of another student and constructing a viable argument.

Social, collaborative digital experiences

Digital lessons, when designed the right way, can be powerful in their ability to surface student thinking and spark interesting and productive discussions. To bring our vision of what digital lessons can and should be to life, we've partnered with Desmos to create our complete library of Amps-social, collaborative lessons powered by Desmos technology that recast technology from simply mirroring what can be done in a workbook to presenting captivating
O.Amps
powered by desmos scenarios where students work together and interact with the mathematics in real time.

1 Launch

Teachers launch an activity and ensure students understand what's being asked.

Teacher experience

[^4]
2 Monitor

Students interact with each other to discuss and work out strategies for solving a problem.

After students have started working you can access the Class Progress screen to see where students are in the lesson and even control which problems they have access to.

When you launch an Amp, you will be kickstarting small group and whole class discussions where students can see how their thinking can impact a situation and learn how their peers are justifying their actions and decisions.

3 Connect

Students construct viable arguments and critique each other's reasoning, then synthesize with the teacher at the end.

All student responses can be viewed easily on the All Students screen. You can often view a composite view of responses and spotlight student work anonymously.

4 Review

After class, teachers can provide feedback on submitted student work and run reports.

After students complete work that's ready for grading, you can head to Classwork to quickly provide feedback.

Once students have completed an Exit Ticket, a practice problem set, or an assessment, you can run reports at the class, student, and standards levels to check in on student progress.

Connecting everyone in the classroom

The student experience is interactive and responsive. As students manipulate the interactive elements of the Amps, they will be asked to justify their thinking, and often they will get to see how their peers are thinking, too. All along the way, teachers can monitor work in real time.

Student experience

The student experience is intuitive and engaging, offering students low floors and high ceilings as they engage with the lesson content.
Math $>$ Unit 6 : Expressions and Equations $>$ Sub-Unit 1 $>$ Lesson 2 2

Many of the lessons feature rich, visual moments that students can interact with. Amps are meant to feel intuitive, immersive, and sometimes even playful.

As students work, the slides change, prompting students to describe their strategies. Teachers can see student work in real time and spotlight responses anonymously to support in-class discussion.

When working online, students will sometimes see their peers' thinking on their own screens. These connection points are great for sparking discussions ahead of the synthesis moment in the lesson.

Routines in Amplify Math

Routines help you and your students to maintain a sense of familiarity and structure throughout the school year. As the year progresses, routines free up time you would otherwise spend giving new directions for each activity.

Routine	What is it?	Where is it?
Turn and Talk	Turn and Talk can be done anytime, needs little preparation, and only takes a minute or two. Students turn and talk to their partner about another student's thinking, eventually deciding whether they agree or not and why. The students then switch roles. Eventually you will call on a few students to say what they think, or report what their partner said.	Use anytime students are working
Ask Three Before Me	Do you find yourself responding to all of your students' questions? This routine saves you time and empowers your students' agency and voice, while allowing them to view each other as knowledgeable resources. The routine is simple: When a student has a question, let them know they should ask three other students before they ask you.	
Go Find a Good Idea	When students are stuck and productive struggle has stalled, direct them to get up and walk around the room to find a good idea in the written work of other students. Encourage them to ask questions of other students and to explain their work. Then, they should bring a good idea back and continue working with it, citing from whom they got it.	
Notice and Wonder	Students are shown some media or a mathematical representation. They are prompted with "What do you notice? What do you wonder?," and are given a few minutes to think and share with a partner. Then you then ask several students to share what they noticed and wondered, recording responses for all to see.	Warm-ups, Activity launches
	Note: Notice and Wonder and I Notice/I Wonder are trademarks of NCTM and the Math Forum and used in these materials with permission.	
Math Talks and Strings	Typically, one problem is displayed at a time. Problems are purposefully chosen to elicit different approaches, often in a way that builds from one problem to the next. These problems could be numerical or algebraic in nature.	Warm-ups
	Give students a few moments to quietly think and give you a signal when they have an answer and a strategy, then select some to share different strategies for each problem. Ask questions like "Who thought about it a different way?"	
Which One Doesn't Belong?	Students are asked "Which one doesn't belong?" when presented with several figures, diagrams, graphs, or expressions. The best part is that every answer choice is correct! It's the similarities and differences among the options that are mathematically meaningful here. Prompt students to explain their rationale for deciding which option doesn't belong, and give them opportunities to make their rationale more precise.	Warm-ups
Card Sort	A card sort uses cards or slips of paper that can be manipulated and moved around. Individually, in pairs, or in small groups students put things into categories or groups based on shared characteristics or connections.	Activities
Find and Fix	Students are presented with the work of another hypothetical student whose work contains a flaw or error. They first identify any errors, then show or explain how to correct these errors, and explain why the person may have made the error.	Activities
Group Presentations and Gallery Tours	Instruct students-typically in groups-to create a visual display of their work, such as how they solved a problem with mathematical modeling, invented a new problem, designed a simulation or experiment, or organized and displayed data.	Activities
	In the Gallery Tour version of this routine, student work is captured on a piece of paper, a poster, or on an assigned portion of the board. Students then move around the room to observe, record notes or questions on their own paper, or write on each other's work (posing clarifying questions, giving kudos, or identifying portions they may disagree with). You lead a discussion, allowing students to respond to questions or critiques of their work.	
Info Gap	One partner receives a problem card with a math question that doesn't have enough given information, and the other partner receives a data card with information relevant to the problem card. Students ask each other questions, such as "What information do you need?" and "Why do you need this information?" and are expected to explain what they will do with the information.	Activities

Math language development

All students, including English Learners, benefit from math lessons that are designed with strong math language development supports. Working in close partnership with the English Learners Success Forum (ELSF), the Amplify curriculum writers ensured the math language development strategies and supports in the program were clear, useful, and appropriate for all students. This was achieved by infusing the instruction with research-based Math Language Routines (MLRs) and by providing sentence frames where appropriate, both in the teacher language provided for each task and in the differentiation supports section. ELSF has helped review all studentfacing content to ensure it's developmentally appropriate and reflects the fact that math is a new language students are mastering.

The math language development story starts at the unit level where teachers will see new vocabulary and a correlation of MLRs to lessons listed in the unit planning materials. In the Unit Study materials, one of the MLRs is highlighted under the Focus on Differentiated support section.

Embedded language development support

- Course level: The course design centers the development of communication skills.
- Unit level: Teachers will understand how language development progresses throughout the unit.
- Lesson level: Each lesson includes definitions of new vocabulary and language goals.
- Activities: Math Language Routines support the development of new vocabulary and activities often include additional supports based on language demands.
- Assessments: Suggested next steps offer guidance for teachers to support students' mathematical language development, based on their performance on assessment items.

Sentence frames

Sentence frames can give a student a sensible jumping off point for verbalizing or writing out an idea. Amplify Math leans on sentence frames that all serve one or more language functions, including describing a topic, explaining it, justifying thinking, generalizing, critiquing, representing, and interpreting ideas.

Math Language Routines

The Math Language Routines deployed throughout the Teacher Edition:

MLR1: Stronger and Clearer Each Time
MLR2: Collect and Display
MLR3: Critique, Correct, Clarify
MLR4: Information Gap
MLR5: Co-craft Questions
MLR6: Three Reads
MLR7: Compare and Connect
MLR8: Discussion Supports

[^5]
UNIT 1

Rigid Transformations and Congruence

Students begin Grade 8 by joining talented architects, artists, and mathematicians in the study of two-dimensional figures. Equipped with their geometry toolkits, students manipulate familiar figures with new methods, and make key discoveries along the way.

Essential Questions

- What happens to a figure as you move it around a two-dimensional plane?
- What does it mean for two figures to be "the same"?
- Do the measures of the interior angles of a triangle really add up to 180° ?
- (By the way, can you spot a fraudulent painting of the Mona Lisa?)

Key Shifts in Mathematics

Focus

- In this unit...

Students explore the properties of rigid transformations - translations, rotations, and reflections - and use these properties to reason about plane figures. Students learn that angles and distances are preserved when rigid transformations are performed, and that two figures are congruent if they can be mapped onto one another using rigid transformations. With the understanding that lines can also be transformed, students reason that when two parallel lines are cut by a transversal, the alternate interior angles formed are congruent. By deconstructing a straight angle, students also discover that the sum of the angle measures in a triangle is 180°.

Coherence

< Previously...

Students began studying geometry in kindergarten and continued exploring shapes throughout elementary school. Fast forward to Grade 7 where students discovered that angle measures are preserved in scaled copies. They also saw that areas increase or decrease proportionally to the square of the scale factor. Their study of scaled copies was limited to pairs of figures with the same orientation.

Coming soon...

In the next unit, students will study a new type of transformation: dilations. With an understanding of dilations and scale factor, students will develop informal arguments for proving similar triangles, arguments they will build on in later years in high school. The study of dilations and similarity provides background for understanding the slope of a line in the coordinate plane.

Rigor

In this unit, students engage in rich tasks that address one or more of these aspects of rigor. The following are examples of how each pillar is addressed. See each Lesson Brief to learn more about how rigor is balanced throughout the unit.

[^6]
Procedural Fluency

Over the first part of the unit, through Practice and Additional Practice, students develop fluency as they perform rigid transformations with figures. They also gain valuable practice measuring with precision using tools from their geometry toolkits.

Application

Students examine different patterns formed by tiling on an Omani mosque and create their own border patterns (Lesson 18).

The Art of Transformation

SUB-UNIT

Lessons 2-8

Rigid Transformations

Students first explore transformations on the plane, without the added structure of a grid or coordinate system. In later lessons, they use the precision of a grid and coordinates to further their understanding of translations, rotations, and reflections

Narrative: The world's first animated feature film was created using geometric transformations.

SUB-UNIT

Rigid Transformations and Congruence

Equipped with their geometry toolkits, students explore what it means for two objects or figures to be "the same" and develop the mathematical vocabulary-congruence - to precisely describe when two figures are "the same."

Narrative: Spotting forgeries of artistic works involves an understanding of congruent polygons.

Launch

Tessellations

Students create patterns with shapes, drawing inspiration from the tiles of an Omani palace, the artwork of M.C. Escher, and the pentagons of Marjorie Rice. You will want to display these tessellations for all to see.

SUB-UNIT

Angles in a Triangle

Turns out, lines and angles can also be transformed. Students encounter parallel lines and transversals, exploring the measures of the alternate interior angles. that are formed. They establish a framework that will help them understand dilations, similarity, and slope in upcoming units.

Narrative: Discover what the sum of the angles in a triangle tells us about our Universe.

Creating a Border Pattern Using Transformations

Students apply what they have learned about transformations to study and create border patterns.

Unit at a Glance

Spoiler Alert: Translations, rotations, and reflections are all examples of rigid transformations, meaning they preserve a figure's shape and size when the figure is transformed.

Assessment

A Pre-Unit Readiness Assessment

Launch Lesson

1 Tessellations

Create patterns using tessellations.

2
Describe and identify translations and rotations.

3 Symmetry and

 Reflection -Describe and identify reflections.

8

Describing Transformations

Create a drawing on a coordinate
plane of a transformed object
using verbal descriptions.

Assessment

A
Mid-Unit Assessment

Sub-Unit 2: Rigid Transformations and Congruence

9 No Bending or Stretching

Identify and draw sequences of rigid transformations.

10 What Is the Same?
Define the term congruent using rigid transformations, side lengths, and angle measures.

15 \begin{tabular}{llll}
Alternate Interior

Angles

$\quad 16$

Adding the Angles in a

Calculate angle measures using
alternate interior, adjacent,
vertical, and supplementary angle

\end{tabular}

Key Concepts

Lesson 5: Describe and perform a sequence of transformations. Lesson 10: Define and determine congruence
Lesson 16: Make a discovery about the interior angles of a triangle

Pacing

18 Lessons: 45 min each Full Unit: 21 days
3 Assessments: 45 min each - Modified Unit: 18 days
Assumes 45-minute class periods per day. For block scheduling or other durations, adjust the number of days accordingly.

4 Grid Moves
Perform translations, rotations, and reflections on a grid by drawing and labeling the resulting image.

5

Explain the sequence of transformations that maps one image onto another.

6 Coordinate Moves
(Part 1)
Generalize the process for reflecting or translating any point on the coordinate plane.

7 Coordinate Moves (Part 2)
Perform coordinate moves, now with rotations. Generalize the process for rotating any point on the coordinate plane

Sub-Unit 3: Angles in a Triangle

13 Line Moves
Rotate a line segment 180° using centers of the midpoint, a point on the segment, and a point not on the segment.

11 Congruent Polygons
Determine whether two polygons are congruent.

12 Congruence (optional)
Explore ideas of congruence with other figures.

14 Rotation Patterns

Rotate angles to discover a new way to show that vertical angles have the same measure.

Assessment

A End-of-Unit Assessment

- Modifications to Pacing

Lessons 2-3: Early lessons on transformations help students see the movements without the restrictions of a grid. If pressed for time, you may choose to combine Lessons 2 and 3 and have students work with translations, rotations, and reflections in one lesson.

Lessons 6-7: Transformations with coordinates are intended to be taught over two lessons so that students have time to internalize these concepts, but if needed, these lessons can be combined into one.

Lesson 12: Lesson 12 may be omitted as no new standards are introduced. Consider adding non-polygons from Lesson 12 to Lesson 11

Unit Supports

Math Language Development

Lesson	New Vocabulary			
1	tessellation			
2	angle of rotation center of rotation rotation translation			
image				
line of reflection				
orientation				
preimage				
prime notation				
reflection		,	transformation	
:---	:---			
4	sequence of transformations			
5	rigid transformation			
9	congruent			
10	alternate interior angle transversal			
15	exterior angle Triangle Sum Theorem			
17				

Mathematical Language Routines (MLRs) support students' language development in the context of mathematical sense-making.

Lesson(s)	Mathematical Language Routines
10	MLR1: Stronger and Clearer Each Time
$1-3,5,7,9,10$, $13,15,16$	MLR2: Collect and Display
7	MLR3: Critique, Correct, Clarify
8	MLR4: Information Gap
12	MLR5: Co-craft Questions
$1,4-7,12-14$, 16	MLR7: Compare and Connect
3, 4, 6, 9, 11,	
$12-15,17,18$	

Materials

Every lesson includes:

Exit Ticket
(i) Additional Practice

Additional required materials include:

Lesson(s)	Materials
1,10, 17, 18	colored pencils
2-18	geometry toolkits - ruler - protractor - tracing paper - index card
8	graph paper
1	pattern blocks
$\begin{aligned} & 1,2,4,5,7,8 \\ & 16,18 \end{aligned}$	PDFs are required for these lessons. Refer to each lesson's overview to see which activities require PDFs.
1,18	plain sheets of paper
1,16	scissors

Instructional Routines

Activities throughout this unit include the following instructional routines:

Lesson(s)	Instructional Routines
$1,2,15,18$	Notice and Wonder
3	Which One Doesn't Belong?
4	True or False
6	Partner Problems
8	Gallery Tour
$1,16,18$	Poll the Class
3,10-12,14, 16	Think Pair Share $6,7,9,12$

Unit Assessments

Assessments

Pre-Unit Readiness Assessment

This diagnostic assessment evaluates students' proficiency with prerequisite concepts and skills they need to feel successful in this unit.

Exit Tickets

Each lesson includes formative assessments to evaluate students' proficiency with the concepts and skills they learned.

Mid-Unit Assessment

This summative assessment provides students the opportunity to demonstrate their proficiency with the concepts and skills they learned in the first part of the unit.

End-of-Unit Assessment

This summative assessment allows students to demonstrate their mastery of the concepts and skills they learned in the lessons preceding this assessment. Additionally, this unit's Performance Task is available in the Assessment Guide

When to Administer

Prior to Lesson 1

End of each lesson

After Lesson 8

After Lesson 18

Social \& Collaborative Digital Moments

Featured Activity

Sides and Angles

Put on your student hat and work through Lesson 9, Activity 1:

Points to Ponder . .

- What was it like to engage in this activity as a learner?
- How might you pace your students through this activity?
- What best practices might you employ for integrating technology into your classroom?

Other Featured Activities:

- Frog Dance (Lesson 2)
- Rotations in Different Directions (Lesson 7)
- Digital Tessellations (Lesson 1)
- Transformation Golf (Lessons 5-9)

Unit Study
 Professional Learning

This unit study is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can engage in a meaningful professional learning experience to deepen your own understanding of this unit and employ effective pedagogical practices to support your students.

Anticipating the Student Experience With Fawn Nguyen

Sub-Unit 1 introduces three types of rigid transformations - translation, reflection, and rotation. Students learn to perform the different transformations on a preimage based on given instructions. In turn, they are asked to describe the transformation, or sequence of transformations, that would map a preimage to its image. Equip yourself to support your students with this concept by engaging in a brief problem-solving exercise to deepen your own learning.

Do the Math

Put on your student hat and tackle these problems from Lesson 7, Activity 2:

Put your teacher hat back on to share your work with one or more colleagues and discuss your approaches.

Points to Ponder . . .

-What was it like to engage in this problem as a learner?

- Some students find rotations more challenging than other rigid transformations. What strategy did you use to complete this activity?
- What implications might this have for your teaching in this unit?

Focus on Instructional Routines

Notice and Wonder

Rehearse...

How you'll facilitate the Notice and Wonder instructional routine in Lesson 15, Warm-up:

Points to Ponder . . .

- What is the mathematical value of a good "I wonder . . ." statement? How can you encourage students to think deeply about these?

This routine . .

- Makes a mathematical task accessible to all students with these two approachable questions.
- Provides students with an entry point into the mathematics and/or context of a problem
- Piques students' curiosity about the mathematics and/or context of a problem.
- Helps students build their sense-making and observation skills.

Anticipate...

- What student statements will you be looking for as you monitor student progress during the Warm-up? How will you determine how to sequence those statements during the discussion?
- How can you help a student who does not know what to write for the "I notice . . ." or "I wonder . . ." prompts?
- If you haven't used this routine before, what classroom management strategies might you need to put in place to help it run smoothly?
- If you have used this routine before, what went well? What would you want to refine?

Strengthening Your Effective Teaching Practices

Establish mathematics goals to focus learning.

This effective teaching practice ...

- Establishes clear goals for both you and your students so that you both know what the lesson is targeting. If you know the target, you know whether or not you hit it.
- Provides a benchmark, which will help you to make instructional decisions based on your students' performance.

Math Language Development

MLR7: Compare and Connect

MLR7 appears in Lessons 1, 4-7, 12-14, and 16.

- In Lesson 6, have students share strategies for finding the coordinates of images with the class, and then prompt students to reflect on the strategies of their peers.
- In Lesson 14, as students share what they noticed about the rotation of a line, ask them to consider what changes and what stays the same when 180° rotations are applied to the figures. This will help them make deeper connections.
- English Learners: Use gestures to demonstrate what it looks like to slide, turn, or flip an object or figure.

Point to Ponder ...

- How can you help students make connections or comparisons to previous lessons or learnings that may be challenging for students to recall at first?

Unit Assessments

Use the results of the Pre-Unit Readiness Assessment to understand your students' prior knowledge and determine their prerequisite skills.

Look Ahead . . .

- Review and unpack the Mid- and End-of-Unit Assessments, noting the concepts and skills assessed in each.
- With your student hat on, complete each problem

Points to Ponder . . .

-What concepts or skills in this unit might need more emphasis?

- Where might your students need additional scaffolding and support?
- How might you support your students with performing and describing transformations in this unit? Do you think your students will generally:
» have more difficulty with one of the transformations over the others?
» struggle to be precise with their language? Or struggle to use their geometry toolkits effectively?
» be unable to identify which transformations are part of a sequence of transformations?
» find it more challenging to perform transformations or describe transformations?

Points to Ponder .. .

- How will understanding the target goals for each lesson or activity help you when planning how to spend your instructional time?
- How can you use the lesson goals to know whether you need to redirect instruction or provide additional support?

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Opportunities to vary the demands of a task or activity appear in Lessons 1-18

- Chunking a complex task into smaller, more manageable parts allows students to focus on one part at a time.
- Providing pre-created copies of transformations instead of having students perform the physical transformations themselves, if the goal of the activity is to use the transformations to understand a connected mathematical concept.
- Some students may benefit from more processing time. When restricting the number of tasks or problems students need to complete, consider allowing them to choose which problem(s) to complete. Students are often more engaged when they have choice.

Cos. Point to Ponder ...

- As you preview or teach the unit, how will you decide when to vary the demands of a particular task or activity? What clues will you gather from your students?

Building Math Identity and Community

Throughout this unit, each lesson includes opportunities to support your students' capacity to build strong mathematical habits of mind.

In this unit, pay particular attention to supporting students in building their social awareness and self-management.

Points to Ponder ...

- Are students able to set goals that help them show whether two figures are congruent? Can they stay focused on the task at hand, controlling their impulses in order to achieve that goal?
- Are students able to analyze each situation understanding the results of each choice of transformation? Can they evaluate their work to draw a conclusion about the congruence of figures?

Tessellations

Let's discover patterns with shapes.

Focus

Goals

1. Create tessellations using pattern blocks or triangles.
2. Language Goal: Describe patterns in tessellations. (Speaking and Listening, Writing)

Coherence

- Today

Students look at historical examples to learn about tessellations. They apply what they discover about tessellations by using pattern blocks to make their own tessellations. Working with a partner, students then explore the relationship of triangles in tessellations as they consider that any type of triangle can be used to make a tessellation.

< Previously

Students began their study of shapes in kindergarten, learning about their names and attributes in later elementary grades. In Grade 5, students began classifying two-dimensional shapes based on their attributes. In Grade 6, students explored triangles in greater depth as they learned how to find the area and its relation to a rectangle.

> Coming Soon

Students will more formally describe and perform transformations of points, lines, and figures, discovering that some transformations create congruent figures. They will analyze and determine whether two figures are congruent by using rigid transformations or by measuring sides and angles. At the end of the unit, students will explore the relationship between intersecting lines and angles, and will consider the interior angles of a triangle in greater depth, as well as determine that any triangle can be used for a tessellation.

Rigor

- Students experiment with slides, flips, and turns to build conceptual understanding of patterns among shapes.
- Students apply geometric patterns to artwork.

Warm-up

Activity 1

Activity 2

Summary

Exit Ticket

(1) 3 min	$\bigodot 15$ min
\circ Independent	ㅇํㅇ Small Groups

\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- plain sheets of paper
- colored pencils
- pattern blocks or Pattern Blocks PDF, pre-cut, one per group
- scissors

Math Language Development

New word

- tessellation

Review words

- polygon
- quadrilateral

Building Math Identity and Community Connecting to Mathematical Practices

Some students may compare themselves to their peers and think that their tessellations are not as artistic or neat as others in their small group. Announce beforehand that students will be entering these activities with a variety of artistic skills and interests. Point out that the goal of the lesson is for students to create their own unique tessellation, using the structure of the pattern blocks, that will not be judged on artistic ability, while still encouraging students to be as creative and neat as they can.

Amps ! Featured Activity

Activity 1
 Digital Tessellations

Students can create tessellations digitally using draggable pattern blocks on a virtual canvas. Consider printing them to post around the classroom.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- Activity 1 may be omitted.
- In Activity 2, have pre-cut triangles ready for students to use.

Warm-up Notice and Wonder

Students analyze a tessellation by M.C. Escher to build curiosity around the concept of tessellations and patterns of geometric shapes.

Unit 1 | Lesson 1 - Launch

Tessellations

Let's discover patterns with shapes.

Warm-up Notice and Wonder
The artwork shown was created by the Dutch artist Maurits C. (M.C.) Escher (1898-1972). What do you notice? What do you wonder?
>1. Inotice
Sample responses:

- There are repeated shapes or figures in the painting.
- The shapes look like birds.
- Some birds look like they are flying in one direction, and other birds are flying in the opposite direction.
- The birds fit together perfectly. There are no gaps between birds and

 no overlap.

2. I wonder.

Sample responses:

- What inspired the artist to make this painting?
-What other shapes or animals can fit a pattern like this?
- Did the artist create any other drawings or paintings that are similar?

Differentiated Support

Extension: Interdisciplinary Connections

Have students explore the M.C. Escher website created by the M.C. Escher Foundation and The M.C. Escher Company. Have them read M.C. Escher's biography and/or his route to fame. Alternatively, you may wish to read these sections with students or provide a summary. As time permits, allow them to explore the online gallery which contains selected works by M.C. Escher. Particular ones students may be interested in are the following categories: Most Popular, Mathematical, Impossible Constructions, and Transformation Prints. Consider having them choose one of his works and describe what they see, using their own words. (Art)

1 Launch

Consider displaying other works by M.C. Escher to introduce the artist to students and pique curiosity. Conduct the Notice and Wonder routine using the artwork shown.

(2) Monitor

Help students get started by asking them what repeating object or animal they see in the artwork.

Look for points of confusion:

- Not realizing the birds flying in either direction are the exact same shape. Have students trace a bird flying in one direction onto a sheet of paper and overlay it on top of a bird flying in the other direction.

Look for productive strategies:

- Noticing all of the birds are the exact same shape.
- Noticing that the birds fit together perfectly.
- Extending their thinking by asking themselves what other animals or objects could create similar patterns.

(3) Connect

Display the image of M.C. Escher's artwork.
Have students share what they noticed and wondered about the artwork with a partner before sharing with the whole class.

Highlight student responses that connected M.C. Escher's work to geometric shapes or patterns. Then highlight student questions about the pattern and methods used to make the pattern.

Define a tessellation as any pattern made of repeating shapes that completely covers a plane, without any gaps or overlaps.

Ask, "How does M.C. Escher's artwork show a tessellation? How do you know that there are no gaps? No overlaps?"

Activity 1 Tessellate

Students experiment with pattern blocks to create a tessellation to understand how a pattern of shapes can fill a plane without any gaps or overlaps.

1 Launch

Distribute pattern blocks, plain pieces of paper, and colored pencils. If pattern blocks are not available, distribute pre-cut shapes from the Pattern Blocks PDF. Show students an example of a completed tessellation using pattern blocks. Then show them a non-example, one with gaps or overlaps.
(2) Monitor

Help students get started by having them show you how they can outline a block as their initial shape.

Look for points of confusion:

- Thinking they must use only one type of a shape in their tessellations. Tell students that they can use several different shapes and provide an example of tessellation that uses a triangle and a rhombus.
- Not realizing that they can experiment with the position or orientation of the shapes. Show an example of sliding a shape, flipping a shape, or rotating a shape to help students get started thinking about the different ways they can manipulate the shapes to create a tessellation.

Connect

Display several examples of student tessellations.
Have students share how they created their tessellations.

Highlight interesting strategies that were used or patterns that were created. Highlight ideas of shapes that have been "slid," "flipped," or "turned." Ask students to point out any examples of symmetry among the patterns.

Ask, "How can the pattern you made be used to fill the whole plane?"

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge, Optimize Access to Technology

Consider demonstrating how to create a tessellation using the pattern blocks for students to reference. Alternatively, have students use the Amps slides for this activity, in which they can create tessellations digitally using draggable pattern blocks on a virtual canvas. Consider printing student work to display around the classroom.

Extension: Math Enrichment

Have students create a second tessellation that highlights a different pattern among the pattern blocks.

Math Language Development

MLR7: Compare and Connect

Display multiple examples of students' tessellations, and invite students to share what they notice. During the discussion, amplify language students use to communicate about geometric features of tessellations, e.g., no gaps or overlaps, or the pattern can be extended by sliding the shapes to the right or left.

English Learners

Use gestures to amplify language as students discuss geometric features and patterns.

Activity 2 Triangle Tessellations

Students create a tessellation using only triangles to see that any triangle can be used to create tessellations.

Activity 2 Triangle Tessellations

1. You will be given a plain sheet of paper and scissors. Draw a triangle and cut it out. Exchange triangles with your partner, and create a tessellation using your partner's triangle. Draw a sketch of your tessellation here
Sample response shown.

2. Can you think of a triangle that does not work for making tessellations?
Sample response: No; regardless of what type of triangle I draw, I can always find a way to make a tessellation.

Collect and Display: As you share your response, your
teacher will add the math language you use to a class display. You will continue to add and refer to this display throughout the unit.

1. Launch

Distribute a sheet of plain paper to each student and a pair of scissors to each pair of students.
(2) Monitor

Help students get started by having students outline their partner's triangle on their own paper.

Look for points of confusion:

- Not understanding how to create a tessellation using their partner's triangle. Have students slide, flip, or turn the triangle until they can create a shape made up of several triangles which then can be repeated.

Look for productive strategies:

- Attempting to create tessellations using different kinds of triangles, e.g., acute, obtuse, right, equilateral, isosceles, or scalene.
- Making a conjecture that any triangle can be used to create a tessellation.
(3) Connect

Display students' tessellations around the room, and conduct the Gallery Tour routine so that students can view each other's tessellations.

Have students share the different strategies they used to create their tessellations. Select different students who used different strategies, such as sliding, flipping, or turning the triangle to create different patterns.

Ask, "Can you think of a triangle that cannot be used to create a tessellation?" If students claim there is a triangle that cannot be used to create a tessellation, have them draw it and ask the class to attempt to create a tessellation.

Highlight that at the end of the unit, students will have an opportunity to prove whether any triangle can be used to create a tessellation.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Provide pre-cut triangles for students to manipulate and arrange without having to draw their own triangles and cut them out.

Extension: Math Enrichment

Let students know that a shape that can create a tessellation on its own, without gaps or overlaps, is a shape that can tessellate the plane. Have students explore other shapes to determine if they can tessellate the plane. Ask them to think of a shape that cannot tessellate the plane. Sample response: A circle cannot tessellate the plane because it is impossible to place circles next to each other without gaps.

Math Language Development

MLR2: Collect and Display

As students share strategies used to create their tessellations, create a class display to collect and display language used to describe sliding, flipping, and turning the tesselations. Encourage students to refer to this class display in future discussions about transformations in this unit.

English Learners

Use gestures to emphasize what it looks like to slide, turn, and flip.

Summary The Art of Transformation

Review the curiosity and perseverance involved in creating tessellations, and pique student excitement for the upcoming unit.

Narrative Connections

Read the narrative aloud as a class or have students read it individually.

Synthesize
Display the Summary from the Student Edition. Have students read the Summary or have a student volunteer read it aloud.

Have students share what they learned about tessellations and the geometric figures used to create tessellations. Then have them share what they hope to learn more about in this unit.

Highlight that students will continue to explore patterns with geometric shapes and figures in this unit. Mention that students can turn in their completed tessellations or continue working on them outside of class. Consider posting them around the room for the duration of this unit.

Formalize vocabulary: tessellation

(1) Reflect

After synthesizing the concepts of the lesson, allow a few moments for student reflection. To help students engage in meaningful reflection, consider asking:

- "What strategies or tools did you find helpful today when creating a tessellation?"
- "Were any strategies or tools not helpful? Why?"

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in this lesson. Ask them to review and reflect on any terms and phrases related to the term tessellation that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding of tessellations by recreating a butterfly pattern from one of Majorie Rice's tessellations.

Success looks like ...

- Goal: Creating tessellations using pattern blocks or triangles.
» Recreating the tessellation pattern.
- Language Goal: Describing patterns in tessellations. (Speaking and Listening, Writing)

- Suggested next steps

If students are unable to identify the pattern, consider:

- Showing how the butterfly shape is composed of two tessellated pentagons.
- Reviewing Activity 2.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.Point to Ponder . . .
What different strategies did your students use in creating tessellations? Were some of your students more comfortable trying new strategies? How can you encourage all of your students to try new strategies and ideas?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	1	Activity 1	2
	2	Activity 1	2
Spiral	3	Grade 6	1
	4	Grade 6	2
Formative 0	5	Unit 1 Lesson 2	1

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Sub-Unit 1

Rigid Transformations

Students begin by studying examples of transformations in the plane. Then, students attend to precision with transformations using the structure of a grid and the coordinates of points.

Narrative Connections

Read the narrative aloud as a class or have students read it individually. Students will continue to see the connections between animation and step-by-step, geometric transformations in the following places:

- Lesson 2, Warm-up: Notice and Wonder
- Lesson 2, Activity 1: Frog Dance
- Lesson 5, Activity 1: Make that Move

Moving on the Plane

Let's describe ways figures can move on the plane.

Focus

Goals

1. Language Goal: Describe the movement of figures informally and formally using the terms clockwise, counterclockwise, translation, and rotation. (Speaking and Listening, Writing)
2. Language Goal: Identify the features that determine a translation or rotation. (Speaking and Listening, Writing)

Coherence

- Today

Students are introduced to movements of figures on a plane. They use informal language to describe the movements, and then are introduced to the formal mathematical language, translation and rotation. Students attend to precision when describing these movements of figures.

< Previously

In Lesson 1, students created tessellations using pattern blocks and triangles. They informally described the patterns found in their tessellations, and in tessellations from works of art and famous math historians.

Coming Soon

In Lesson 3, students will learn the features that classify a reflection on a plane and use precise mathematical language to describe the reflection.

Rigor

- Students build conceptual understanding of how figures can slide or turn on the plane.
- Students build fluency in using precise mathematical vocabulary to describe translations and rotations.

Warm-up

Activity 1

Activity 2

Summary

Exit Ticket
$\sqsupseteq 5$ min

Independent
(20 min
$\circ \circ$ Pairs
$(-5 \mathrm{~min}$
ํํํํํํํ Whole Class
(J) 5 min
$\stackrel{\circ}{\cap}$ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice

\bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 1 PDF, one per pair
- Activity 1 PDF, Translations and Rotations, for display
- geometry toolkits: rulers, tracing paper, protractors (optional)

Math Language Development

New words

- angle of rotation
- center of rotation
- rotation
- translation

Review words

- clockwise
- corresponding
- counterclockwise
- vertex

Building Math Identity and Community
 Connecting to Mathematical Practices

In Activity 1, students may struggle to describe the precise moves of the Frog Dance using their developing math language. Have them ask clarifying questions, consider their partner's perspective, and be aware of their partner's thoughts and feelings in order to strengthen the effectiveness of communication.

Amps : Featured Activity

Activity 2
 Interactive Geometry

Students view an animation of their predicted response (translation or rotation), giving them a chance to reflect and revise as needed.

Warm-up Notice and Wonder

Students watch an animation as an introduction to movement of figures on the plane.

1 Launch

Have students watch Lotte Reiniger's Prince Frog 1961 video. Conduct the Notice and Wonder routine using the animation.

(2) Monitor

Help students get started by asking them what part of the animation stands out to them.

Look for productive strategies:

- Noticing the rigid movements of the objects in the animation.
- Noticing the animation resembles a stop-motion or claymation video.

3 Connect

Have students share what they notice and wonder. Record responses for all to see.

Ask, "What math do you see in the animation?" How do you think Lotte Reiniger created her animation?"

Highlight that Lotte Reiniger often used silhouette movements in her animations. She was able to use this technique because the parts of the characters stay the same, but the positions change. These types of moments are made using different types of symmetry.

(7) Power-up

To power up students' ability to estimating angles, have students complete:
Recall that a circle measures 360°, a straight line measures 180°, and a right angle measures 90° For each angle determine if it measures greater or less than 90°, then approximate its measure.

[^7]2.

a Greater or less than 90° ? Less than 90°
b Approximate measure Sample response: About 55 ${ }^{\circ}$

Use: Before Activity 2
Informed by: Performance on Lesson 1, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 7

Activity 1 Frog Dance

Students observe and describe movements of figures using informal language, and then are introduced to the precise mathematical language: rotation and translation.

1 Launch

Distribute the Activity 1 PDF to each pair of students.

2 Monitor

Help students get started by asking students what words they can use to describe the movement from Frame 1 to Frame 2.

Look for points of confusion:

- Not understanding what words they can use to describe the movements. Ask them if they are thinking from the perspective of an observer or from the perspective of the frog. Have them think of words from their everyday lives that describe movement, such as "move to the right," "turn," etc.
- Not describing the movements with enough detail. Ask them if the frog is facing the same direction each time and where in the square the frog is located.

Look for productive strategies:

- Using the words slide or turn to describe translations and rotations, respectively.
- Precisely describing how the frog is sliding or turning.

Activity 1 continued >

(1) Differentiated Support

Accessibility: Guide Visualization and Processing, Optimize Access to Tools, Vary Demands to Optimize Challenge
Complete Dance A together as a class and demonstrate - or ask a student volunteer to demonstrate - the frog's movements by using hand gestures or an inanimate object. Provide access to colored pencils or highlighters for students to mark the location of the crown, or other identifier, to assist them in tracking the frog's movements.

Math Language Development

MLR2: Collect and Display

Collect and add to the class display the new vocabulary terms translation and rotation. Connect these to the previously collected terms slide and turn.

English Learners

When discussing the definition of a rotation, the term about is likely to be unfamiliar in this context to many students. Highlight that rotating something about a point means to rotate it around a point.

Activity 1 Frog Dance (continued)

Students observe and describe movements of figures using informal language, and then are introduced to the precise mathematical language: rotation and translation.

Activity 1 Frog Dance (continued)

Dance C:

From . .	To ...	
Frame 1	Frame 2	The frog moves (or slides) to the right.
Frame 2	Frame 3	The frog turns (or rotates) to the side, so the crown is facing the left.
Frame 3	Frame 4	The frog moves (or slides) to the left.
Frame 4	Frame 5	The frog moves (or slides) up.
Frame 5	Frame 6	The frog turns (or rotates), so the crown is facing up.

3 Connect

Have pairs of students share their final descriptions for each dance. Record phrases that students used in two categories, those that describe translations and those that describe rotations.

Display the Activity 1 PDF, Translations and Rotations.

Define a translation as a movement that slides a figure without turning it. Then define a rotation........... as a movement that turns a figure a certain angle (called the angle of rotation) about a point (called the center of rotation).

Highlight that in a translation, each point in the figure moves the same distance in the same direction. The matching point in the original figure and translated figure are called corresponding points. In a rotation, each point in the figure travels along a circle around the center, forming the same angle. To describe a rotation, students need to provide the direction, clockwise or counterclockwise, the center of rotation, and the angle of rotation, usually measured in degrees.

Activity 2 How Did You Make That Move?
Students identify and describe a translation or rotation to practice using precise language when describing these moves.

1 Launch

As students translate figures for the first time in Problems 1 and 3, allow them to describe the translations that include diagonal lines. In later lessons, students will describe translations using a combination of vertical and horizontal lines.
Provide access to geometry toolkits.

2 Monitor

Help students get started by having them trace Figure A onto tracing paper. Then tell them to move the tracing paper so that Figure A maps onto, or matches, Figure B.

Look for points of confusion:

- Struggling to identify the center of rotation. Have students use their pencil to hold down the tracing paper and test different centers of rotation, while turning the tracing paper in a circular motion to map Figure A onto Figure B.
- Not understanding how to identify the angle of rotation. Have students draw the angle using corresponding points on Figure A and Figure B and the center of rotation as the vertex. Then have them estimate the angle or use their protractor to find the exact angle.

Look for productive strategies:

- Noticing Problem 2 can be rotated 90° clockwise or 270° counterclockwise.
- Noticing an 180° clockwise rotation has the same result as an 180° counterclockwise rotation.

3 Connect

Ask, "Can there be more than one response for Problem 2? Problem 4?"

Highlight that when describing a translation, both direction and distance need to be provided. When describing a rotation, the direction, the center of rotation, and the angle of rotation need to be provided.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on completing Problems 1 and 2, and only work on Problems 3 and 4 as time allows. Additionally, to assist students with organizational skills, create a checklist with the features needed to describe rotations and translations. Have students refer to this checklist each time they need to describe these movements.

Extension: Math Enrichment

Have students draw figures that show both a translation and a rotation. Have them trade papers with a partner and then record the precise language that describes each movement.

Summary

Review and synthesize the mathematical language used to describe how figures move on a plane (translations and rotations).

Summary

In today's lesson...

You described how a figure moves in a plane.
A translation slides a figure without turning it. Every point in the figure moves the same distance in the same direction. A translation can be described by two points.

- For example, if a translation maps point T onto point L, it moves the entire figure the same distance and direction as the distance and and direction of a translation can be shown by an arrow.
- Figure A was translated down and to the left, as shown by the arrows. Figure B is a translation of Figure A.
A rotation turns a figure about a point, called the center of rotation. Every point on the figure travels along the path of a circle around the center of rotation to form the angle of rotation. The rotation can be.
clockwise: traveling in the same direction as the hands of a clock, or
- counterclockwise: traveling in the opposite direction as the hands on a clock.
A rotation can be described by an angle, a center, and the direction of the rotation
- For example, Figure A was rotated 45° clockwise around
the center of rotation shown. Figure C is a rotation of Figure A .
If one point on the original figure moves to another point on the new figure, they are corresponding points.

Reflect:

Exit Ticket

Students demonstrate their understanding of translations and rotations by precisely describing each movement of a figure.

Success looks like ...

- Language Goal: Describing the movement of figures informally and formally using the terms clockwise, counterclockwise, translation, and rotation. (Speaking and Listening, Writing)
" Describing the movement from Figure 2 to Figure 3 with appropriate vocabulary in Problem 2.
- Language Goal: Identifying the features that determine a translation or rotation. (Speaking and Listening, Writing)

- Suggested next steps

If students do not describe all of the movements of the figure or do not include the distance or angle measure, consider:

- Providing a checklist for students to use as a reminder of what it means to precisely describe a figure's movement.
- Assigning Practice Problem 3.
- Reassessing after Lesson 4.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

CO. Points to Ponder . .
What did students find frustrating about describing the movements in the Frog Dance? What helped them work through this frustration?
How did you encourage each student to listen to one another's descriptions?

Math Language Development

Language Goal: Describing the movement of figures informally and formally using the terms clockwise, counterclockwise, translation, and rotation.

Reflect on students' language development toward this goal.

- How did students begin to informally describe the movement of figures in this lesson? What language did they use?
- How has their use of language progressed after being introduced to the terms clockwise, counterclockwise, translation, and rotation? How can you support them in using their developing math language?

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Symmetry and Reflection

Let's describe ways figures reflect on the plane.

Focus

Goals

1. Language Goal: Describe the movement of figures informally and formally using the terms reflection, line of reflection, image, and preimage. (Speaking and Listening, Reading and Writing)
2. Language Goal: Identify the features that determine a reflection. (Speaking and Listening, Reading and Writing)

Coherence

- Today

Students begin by studying different figures to review lines of symmetry. They move into drawing and measuring reflected triangles, coming to understand that the line of reflection lies halfway between the two triangles and is perpendicular to the line segments that connect the corresponding vertices.

\checkmark Previously

In Lesson 2, students described the features that identified translations and rotations.

> Coming Soon

In Lesson 4, students will translate, reflect, and rotate figures on a grid.

Rigor

- Students build conceptual understanding of how figures can be flipped or reflected on a plane.
- Students build fluency in using precise mathematical vocabulary to describe reflections.
Warm-up
Activity 1
Activity 2

Activity 3

Summary
Exit Ticket

(1) 5 min	(1) 15 min	(1) 8 min	(1) 8 min	(1) 5 min	(1) 5 min
คํํ Pairs	คํำ Pairs	กํํ Pairs	กำ Pairs	กัํากำ Whole Class	\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- geometry toolkits: rulers, tracing paper, protractors (optional)

Math Language
 Development

New words

- image
- line of reflection
- orientation
- preimage*
- prime notation
- reflection

Review words

- corresponding points
- perpendicular
- symmetry
- vertex

Students may confuse preimage and image throughout the unit when discussing the original image and the transformed image. Highlight the prefix pre in preimage indicates the original image.

Building Math Identity and Community Connecting to Mathematical Practices

Students may not want to make the effort required to use precise units and measuring tools to measure the exact distance of corresponding points to the line of reflection. Ask them to identify what the stumbling block is. By identifying the cause of their negative emotions, students will be able to form a plan that will help them regulate their behavior in response. For example, they might just need a peer to remind them how to use and read measurements on a ruler.

Amps \vdots Featured Activity

Activity 1
 Real-Time Reflections

When students adjust the line of reflection, an animation shows the reflected image, giving students an opportunity to revise their response, if needed.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 2, Problem choices D, E, and F may be omitted.
- Activity 3, Problem 1 may be omitted. In this activity, students practice drawing reflections. Students will have other opportunities to practice drawing reflections in the Practice.

Warm-up Which One Doesn't Belong?

Students compare four figures to review the characteristics and vocabulary that describe reflection symmetry.

1 Launch

Conduct the Which One Doesn't Belong? routine. Because there is no single correct response, attend to students' explanations, encourage use of math terminology, and ensure the reasons given are mathematically sound.

2 Monitor

Help students get started by asking them to choose any figure and identify what makes it different from the other figures.

Look for points of confusion:

- Not realizing that the figure in choice C does not show the correct line of symmetry. Ask students what would happen if they folded the figure along this line.

Look for productive strategies:

- Identifying any one figure that is different. Each figure has at least one characteristic that makes it different from the others.
- Noticing that the dotted line shows the line of symmetry in choices A, B, and D and that choice C does not show the correct line of symmetry.

Connect

Have pairs of students share their responses. Use the Poll the Class routine to see which figure students chose as not belonging. Begin from choices A, B, and D, and end with choice C. Have students share their explanations for why their chosen figure does not belong. If students do not notice the incorrect line of symmetry drawn in choice C, ask them if all the lines of symmetry are drawn correctly on all of the figures.

Highlight that choices A, B, and D have reflection symmetry because if students were to fold the figures along the lines of symmetry, each half of the figure looks exactly the same.

(12)
 Math Language Development

MLR8: Discussion Supports

To support student understanding of lines of symmetry, have them demonstrate using folding gestures with their hands as they think about each figure.

(7)
 Power-up

To power up students' ability to draw lines of symmetry, have students complete:

Recall that a line of symmetry is a line that divides a figure into two halves that match up exactly when the figure is folded along the line.
Determine which lines are lines of symmetry in the given rectangle. Select all that apply.
A. Line a
C. Line c
B. Line b
(D.) Line d

Use: Before the Warm-up

Informed by: Performance on Lesson 2, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 1

Activity 1 Mirror Image

Students draw the reflection of a triangle to see how the line of reflection is related to the line segments between corresponding points.

Amps Featured Activity

Activity 1 Mirror Image

You will need tracing paper from your geometry toolkit.

1. Use the tracing paper to complete the following steps.

- Draw a vertical line in the middle of the paper, and label it ℓ. On one side of the line, draw a triangle.
- Fold the paper along the line. Retrace the triangle on the other side of the line
- Unfold the paper. You should now have two triangles that are mirror images of each other.
Draw a dotted line segment to connect each of the corresponding points of the two triangles.
- Measure and label the distance from each point on the original triangle to its corresponding point on the new triangle.
Sample response shown.

2. How is the line ℓ related to each dotted line segment you drew? Sample responses:

- Line ℓ is perpendicular to all of the dotted line segments, which represent the distances marked from each point to line ℓ.
- Line ℓ is located halfway between the corresponding points. In other words, the points on line ℓ are midpoints of the dotted line segments representing these distances.

1. Launch

Have students complete Problem 1 individually, share their drawing with a partner, and then complete Problem 2 with their partner. Provide access to geometry toolkits for the duration of the lesson.

(2) Monitor

Help students get started by modeling how to draw the triangles and measure the distances between corresponding points.

Look for points of confusion:

- Noticing the distances between the corresponding dotted line segments and the line of reflection are the same, but not noticing they are perpendicular. Have students use a protractor to measure the angle formed by the line of reflection and each dotted line segment.

3 Connect

Have students share how the line of reflection is related to the dotted line segments they drew.

Define new vocabulary words. Say, "A reflection flips each point across a line of reflection to a point on the opposite side of the line. The term image describes the new figure created and the original figure is called the preimage. To tell the figures apart, label the corresponding vertices of the image using a tick mark; this notation is called prime notation." Have students label the vertices of the preimage as A, B, C and the corresponding points in the image $A^{\prime}, B^{\prime}, C^{\prime}$.

Highlight that the line of reflection lies halfway between the preimage and its image, and is perpendicular to the line segments connecting the corresponding points.

Accessibility: Vary Demands to Optimize Challenge

Instead of having students perform the physical actions described in Problem 1, consider providing pre-created copies to pairs and have them either begin with measuring the distances or provide distances labeled and have them complete Problem 2. The goal of this activity is for students to notice the relationships between the line of reflection and the distances marked between corresponding points, not to physically perform the actions themselves.

Math Language Development

MLR2: Collect and Display

Collect and add to the class display the new vocabulary terms reflection, line of reflection, image, preimage, and prime notation. Connect reflection to the previously collected term flip.

English Learners

Use physical manipulatives, such as a mirror, to demonstrate how the mirror acts as a line of reflection. Use the mirrors reflection to discuss the preimage and image.

Activity 2 Flipping Figures

Students identify the characteristics that determine a reflection, building understanding that a reflection changes the orientation of a figure.

3 Name: \qquad
Activity 2 Flipping Figures

Study each pair of figures. For each pair, determine whether one figure is a reflection of the other. Write yes or no. If yes, draw a line of reflection.

(d)

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on completing parts a-c, and only work on parts d-f as time allows.

Extension: Math Enrichment

Have students identify translations or rotations for parts b, d, and e. Ask them to describe the movements using precise mathematical language.

Activity 2 Flipping Figures (continued)

Students identify the characteristics that determine a reflection, building understanding that a reflection changes the orientation of a figure.

Activity 2 Flipping Figures (continued)

3 Connect
Have students share their strategies for knowing which figures show a reflection.
Ask, "How can you differentiate a reflection from a translation or a rotation?" A reflection changes the direction of the figure, or the way it "faces."

Define the term orientation as to how the relative points on a figure are arranged. Have students label the vertices of the preimage in part a as A, B, C, and so on, going clockwise around the figure. Then have them label the image's corresponding vertices using prime notation, $A^{\prime}, B^{\prime}, C^{\prime}$, and so on. Point out that the direction of the corresponding vertices are reversed in the image. This is an example of how the orientation of the figure has been reversed.

Highlight that a rotation and a translation preserve a figure's orientation, while a reflection does not.

Activity 3 Drawing Reflections

Students practice drawing reflections, strengthening their understanding of how the line of reflection relates to the corresponding points in the preimage and image.
(8) Name:

Activity 3 Drawing Reflections

1. Reflect Triangle $A B C$ across line ℓ. Use A^{\prime}, B^{\prime}, and C^{\prime} to indicate vertices in the image that correspond to the points A, B, and C in the preimage.

2. Reflect Polygon $A B C D$ across line ℓ. Use $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime} to indicate vertices in the image that correspond to the points A, B, C, and D in the preimage.

1 Launch

Have students use a ruler to draw the reflection of each figure and only use tracing paper to check their work.

2 Monitor
Help students get started by having them draw a perpendicular line from point A to the line ℓ in Problem 1, and then measure the distance from point A to the line ℓ

Look for points of confusion:

- Drawing a reflected point the same distance from the line as point A, but not perpendicular to line ℓ in Problem 2. Use a protractor, or corner of an index card or paper, to help students create a right angle formed by line ℓ and point A.

Look for productive strategies:

- Using rulers to measure the distance from each point in the preimage to the line of reflection.
- Only using tracing paper to check their reflected image after it is drawn.

3 Connect
Display correct student drawings.
Have students share the strategies they used for drawing each image.

Highlight that an image is determined by the preimage and placement of the line of reflection. The line of reflection may not always be strictly vertical (as in Problem 1) or horizontal. The line of reflection may be slanted (as in Problem 2).

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on completing Problem 1, and only work on Problem 2 as time allows.

Accessibility: Optimize Access to Tools

Provide access to tracing paper, should students wish to use it during the activity.

Extension: Math Enrichment

Have students draw their own reflections and lines of reflections that satisfy the given criteria.

- Draw the reflection of a preimage in which the image overlaps the preimage.
- Draw the reflection of a preimage in which the image touches exactly one of the vertices of the preimage.
- Draw the reflection of a preimage in which the image touches exactly one of the sides of the preimage.

Summary

Review and synthesize the features of reflection and the mathematical language used to describe how figures can be reflected in a plane.

Summary

In today's lesson...

You explored how to precisely reflect a figure over a line. A reflection moves every point on a figure to a point directly on the opposite side of the line of reflection. The new point is the same distance from the line as its corresponding point in the original figure. The orientation of the vertices is reversed

The term image describes the new figure created by moving the original figure. The original figure is called the preimage.
In the diagram, the vertices of the image are labeled using prime notation, A^{\prime}, B^{\prime}, and C^{\prime}. This notation is read " A prime", " B prime", and " C prime". These represent the vertices in the image and correspond to the vertices A, B, and C in the preimage
(Reflect:

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit, that you started in Lesson 1. Ask them to review and reflect on any terms and phrases related to the terms image, line of reflection, orientation, preimage, prime notation, and reflection that were added to the display during the lesson.

Have students share what reflection means, using their own words.

Ask:

- "What do you need to include when describing a reflection?" The line of reflection across which a figure is reflected.
- "How do the corresponding vertices of the preimage and image compare to the line of reflection?" They are located the same distance to the line of reflection.
- "Does a reflection change or preserve the orientation of the preimage?" A reflection changes the orientation of the preimage. The orientation of the image is reversed.

Display the Summary from the Student Edition.

Formalize vocabulary:

- image
- line of reflection
- orientation
- preimage
- primenotation
- reflection

Highlight that a reflection across a line moves each point to a point directly on the opposite side of the line of symmetry. The new point is the same distance from the line of symmetry as the original point of the figure. Prime notation can be used to label the image to clearly see which points in the image correspond to the points in the preimage.

(D) Reflect

After synthesizing the concepts of the lesson, allow a few moments for student reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition To help students engage in meaningful reflection, consider asking:

- "What strategies or tools did you find helpful today when identifying and drawing reflections? How were they helpful?"
- "Were any strategies or tools not helpful? Why?"

Exit Ticket

Students demonstrate their understanding of reflection by critiquing the work of another student and constructing a viable argument.
(2)

冒 Printable

Name: \longrightarrow Date: $X+$ Period

Exit Ticket

GO
1.03

Diego reflects Triangle $A B C$ across line ℓ and draws Triangle $A^{\prime} B^{\prime} C^{\prime}$ Did Diego reflect the triangle correctly? Explain your thinking

No; Sample response: Although the orientation of the reflected image is correct, the distances from corresponding points to the line of reflection are not equal.

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

3 Points to Ponder . .

How did students attend to precision when describing reflections? How are you helping students become self-aware of their progress and growth in this area?

What different ways did students approach drawing reflections? What does that tell you about similarities and differences among your students?

Professional Learning

Success looks like ...

- Language Goal: Describing the movement of figures informally and formally using the terms reflection, line of reflection, image, and preimage. (Speaking and Listening, Reading and Writing)
- Language Goal: Identifying the features that determine a reflection. (Speaking and Listening, Reading and Writing)
» Explaining why the Diego's reflection is incorrect.

Suggested next steps

If students think that Diego's reflection is correct, consider:

- Reviewing Activity 3

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

UNIT 1 | LESSON 4

Grid Moves

Let's transform some figures on grids.

Focus

Goals

1. Language Goal: Describe the moves needed to perform a transformation. (Speaking and Listening)
2. Draw and label the image and corresponding points of figures that have been translated, reflected, or rotated.
3. Language Goal: Draw the image of a figure that results from translations, rotations, and reflections in square grids, and justify that the image is a transformation of the original figure. (Speaking and Listening)

Coherence

- Today

Students perform translations, reflections, and rotations on a square grid. Students may begin to notice how the structure of the grid helps them draw images resulting from certain moves, but may choose to continue to use tracing paper to check their work. Students are introduced to a new term - transformation - to describe the different moves.

< Previously

In Lessons 2 and 3, students learned the names for the single moves of a figure - translation, reflection, and rotation - and learned how to identify and construct them. They also used prime notation to label images, such as labeling the image of a point P as P^{\prime}.

>Coming Soon

In Lesson 5, students will perform a sequence of transformations on a preimage to produce an image.

Rigor

- Students build conceptual understanding of how the structure of a grid helps them perform and identify transformations.
- Students build fluency in using precise mathematical vocabulary to describe transformations.

Activity 1

Activity 2

Summary

Exit Ticket

(J) 5 min	(-) 15 min	(J) 15 min	() 5 min	(J) 5 min
$\stackrel{\bigcirc}{\cap}$ Independent	$\stackrel{\bigcirc}{\cap}$ Independent	$\stackrel{\bigcirc}{\cap}$ Independent	ํำํํ ํํํํํ Whole Class	$\bigcirc \bigcirc \bigcirc$ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Translations, Rotations, and Reflections
- geometry toolkits: rulers, protractors or index cards, tracing paper

Math Language
 Development

New word

- transformation

Review words

- clockwise
- corresponding
- counterclockwise
- preimage
- image
- reflection
- rotation
- translation

Amps Featured Activity

Activity 1

Formative Feedback for Students

Instead of just being told whether they are correct or incorrect, students see the consequences of their response, and can work out for themselves any errors that need corrected.

Building Math Identity and Community Connecting to Mathematical Practices

Students may feel lost as they transition to the coordinate plane, and forget the tools available to them in their geometry toolkits. Encourage them to use any of the available tools to help increase their mathematical understanding, such as tracing paper or rulers.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 1, Problem 1 may be omitted
- Assign Activity 2 to students in groups of three, having each student complete one transformation.

Warm-up True or False

Students examine whether three movements each show a reflection, to strengthen their understanding of the characteristics of reflections.

1 Launch

Set an expectation for the amount of time students will have to work individually on the activity. Provide access to geometry toolkits for the duration of the lesson.

2 Monitor

Help students get started by asking which figures are mirror images of each other.

Look for points of confusion:

- Thinking Movement C illustrates a reflection. Have students use tracing paper or a ruler to determine that while the quadrilaterals are identical, lines drawn between corresponding points are not perpendicular to the line, indicating that a reflection has not taken place.

Look for productive strategies:

- Using tracing paper or a ruler to verify whether a reflection has taken place.

3 Connect

Have students share their strategies for determining which movement shows a reflection. Include incorrect strategies, and encourage student feedback on each other's strategies.
Highlight that reflections maintain the same distance between corresponding points and the line of reflection.

Differentiated Support

Accessibility: Guide Visualization and Processing, Optimize Access to Tools

Consider providing copies of each movement in the Warm-up for students to physically manipulate. For example, they could fold each movement over the line of reflection to determine if the movement is a reflection.

(7) Power-up

To power up students' ability to construct right angles, have students complete:
Recall that a right angle is an angle that measures 90° and that it is formed by two perpendicular lines or rays. Using a protractor or the corner of an index card, connect a line to each segment to form a right angle.
Sample responses shown.
1.

2.

Use: Before Activity 1
Informed by: Performance on Lesson 3, Practice Problem 5

Activity 1 Transformation Information

Students transform figures that are on a grid to see that the properties of a grid can help them draw the transformed images. They are introduced to a new term: transformation.

Amps Featured Activity

Formative Feedback for Students

Activity 1 Transformation Information

1. Translate Triangle $A B C$, so that point B maps onto point B^{\prime}. Label the corresponding points on the image with A^{\prime}, B^{\prime}, and C^{\prime}.

2. Translate Triangle $A B C$, so that point A maps onto point A^{\prime}. Label the corresponding points on the image with A^{\prime}, B^{\prime}, and C^{\prime}.

> 3. Rotate Triangle $A B C 90^{\circ}$ counterclockwise about point O. Label the corresponding points on the image with A^{\prime}, B^{\prime}, and C^{\prime}.

1 Launch

Note: The term transformation has not been introduced yet. Have students complete the activity individually, before sharing their responses with a partner.

2 Monitor

Help students get started by reviewing the terms and characteristics of translations, rotations, and reflections.

Look for points of confusion:

- Not translating all the points the same distance in Problem 2. Ask students to describe their reasoning for Problem 1, and how their answer would change if they were to translate down instead. Say, "In Problem 2, you need to move each point 1 unit down and 6 units to the left." Remind students that they can use tracing paper to check their work.
- Struggling to rotate the triangle in Problem 3. Have students estimate and draw a 90° angle from each vertex of the triangle, using point O as the center of rotation.
- Struggling to reflect the triangle in Problem 4. Have students find the distance from each vertex to the line of symmetry and draw the reflected vertex using the same distance. Students may use a protractor or index card to construct lines perpendicular to the line of reflection.
- Forgetting to label the image coordinates. Remind students that each point in the image corresponds to a point in the preimage, and should be labeled using prime notation.

Look for productive strategies:

- Using the grid units to help decide where to draw the transformed figures.
- Using a ruler or counting units on the grid to measure distance between corresponding points for reflections.

Activity 1 continued >

Accessibility: Vary Demands to Optimize Challenge,

 Activate Prior KnowledgeIf students need more processing time, have them focus on completing Problems 1, 3 and 4, and only work on Problem 2 as time allows. Consider also beginning with a physical demonstration using tracing paper to perform each type of transformation. This will support connections between what students learned in prior lessons and transformations on grids in this lesson.

Math Language Development

MLR8: Discussion Supports

To support student understanding of lines of symmetry, have them demonstrate using folding gestures with their hands as they consider each figure.

English Learners

As you perform the think-aloud and model the mathematical language used, utilize gestures to connect the language to physical movements.

Activity 1 Transformation Information (continued)

Students transform figures that are on a grid to see that the properties of a grid can help them draw the transformed images. They are introduced to a new term: transformation.

Activity 1 Transformation Information (continued)
4. Reflect Triangle $A B C$ across line ℓ. Label the corresponding points on the image with A^{\prime}, B^{\prime}, and C^{\prime}.

At Are you ready for more?

1. Reflect Triangle $A B C$ across line ℓ. Label the corresponding points on the image with A^{\prime}, B^{\prime}, and C^{\prime}.

2. Rotate Triangle $A B C 90^{\circ}$ clockwise about point P. Label the corresponding points on the image with A^{\prime}, B^{\prime}, and C^{\prime}.

3 Connect

Have students share the strategies they used to transform the images. Focus on students who used tracing paper and students who used the grid units to draw the transformations.

Ask:

- "How do the translations in Problems 1 and 2 differ?" In Problem 1, the triangle is translated in one direction (to the right). In Problem 2, the triangle is translated in two directions (down and to the right).
- "When rotating a figure, how does the orientation of the image vertices compare to the orientation of the preimage vertices, relative to the center of rotation?" The orientation is reversed.
- "Can you think of one word that you can use to describe any of these types of movements?"
Sample responses: move, change, transform
Define the term transformation as a rule for moving or changing figures on the plane. Translations, reflections, and rotations are all examples of transformations.

Highlight how the structure of the grid can help students perform each transformation.

Activity 2 Identifying Transformations

Students identify how various transformations for some figures can result in the same image.

Activity 2 Identifying Transformations

Square $A B C D$ is drawn on a grid, and a transformation has been applied.
Kiran, Clare, and Noah each see different transformations. For each student:

- Label the vertices with the correct letters to show why each response is correct.
- Describe how each transformation maps the original figure onto the new figure.
- Be sure to include a line of reflection and a center of rotation, when necessary.

1. Kiran: "I see a translation."

The square is translated 8 units to the right.
2. Clare: "I see a reflection."

The square is reflected across line ℓ.
3. Noah: "I see a rotation."

response: The square

[^8]
1 Launch

Give students 1 minute to discuss strategies with a partner before working individually on the activity.

Monitor

Help students get started by asking what kind of transformation they see in the image.

Look for points of confusion:

- Thinking Kiran's translation moves four units to the right because point A^{\prime} is four units to the right of point D. Ask students to identify the pairs of corresponding points, and then calculate the distance between each pair.
- Struggling to visualize the center of rotation in Problem 3. Model how to find the center of rotation by holding tracing paper down with the point of a pencil and spinning the tracing paper around that point.
- Labeling corresponding points incorrectly in Problems 2 and 3 . Make sure students have labeled vertices on their tracing paper.

Look for productive strategies:

- Finding multiple ways to describe a rotation for Problem 3.
- Using tracing paper to help with labeling the image or understanding the transformation.

3 Connect

Have individual students share their strategies.
Highlight that different transformations can produce similar images. To understand the specific transformation described, it is helpful to label the coordinates of the image compared to the preimage, any line of reflection, or center of rotation.
Ask, "Are there other shapes besides a square for which different transformations can produce a similar image?" Sample responses: yes, a regular octagon, a circle

Differentiated Support

Accessibility: Guide Visualization and Processing,

 Optimize Access to ToolsHave students assign a different color to each of the vertices of the preimage and use colored pencils or highlighters to label the corresponding vertices in the image with the same colors. Provide access to tracing paper, should students wish to use it during the activity.

Extension: Math Enrichment

Challenge students to generate their own examples of an image that could be created by performing more than one transformation of a preimage.

Math Language Development

MLRT: Compare and Connect

Have students share and compare their strategies for transforming the square and connect these strategies for transforming any regular polygon.

English Learners

Encourage students to use tracing paper to assist them as they label each image.

Summary

Review and synthesize how grids can assist with performing or identifying transformations.

Summary

In today's lesson...

You saw that translations, reflections, and rotations are all examples of transformations. When a figure is placed on a grid, you can use the structure of the grid to perform a transformation and describe it.

Quadrilateral $A B C D$ is translated to
Quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

- The grid shows that each point is moved to the right 4 units and down 1 unit.

Hexagon $A B C D E F$ is rotated 90° counterclockwise about center P.

- The grid shows that the distance between the center of rotation and each vertex of the preimage is preserved in the rotated image.
Each of these distances forms a 90° angle, in the counterclockwise direction.

Pentagon $A B C D E$ is reflected across line m.

- The grid shows that the distance from each vertex to the line of reflection in the preimage is maintained in the reflected image.

Reflect:

Synthesize

Display the Anchor Chart PDF, Translations, Rotations, and Reflections for students to reference throughout this unit.

Formalize vocabulary: transformation

Ask:

- "What are some important things to keep in mind when performing a translation, rotation, or reflection?" Sample responses: Translations can occur in more than one direction. Reflections reverse the orientation of a figure, and are always across a line of reflection. Rotations are always about a certain center of rotation.
- "What is something new that you learned today about translations, rotations, or reflections?" Sample response: I learned that these are all types of transformations.

Highlight how the structure of the grid can be used to perform and identify each type of transformation. Because the size of each grid square is the same, students can use the grid to count the number of units a figure is translated or the distance each corresponding point is to a line of reflection. Similarly, students can use the corners of grid squares to verify right angles. While not all distances or angles can be counted or measured using grid units, the grid is still a valuable tool for performing and identifying transformations.

Reflect

After synthesizing the concepts of the lesson, allow a few moments for student reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help students engage in meaningful reflection, consider asking:

- "How do transformations on a grid differ from transformations that are not on a grid? How are they similar?"

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit, that you started in Lesson 1. Ask them to review and reflect on any terms and phrases related to the term transformation that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding by identifying which figures represent only a translation.
(8)冒 Printable

Exit Ticket

Which of these triangles are translations of Triangle A, with no rotation or reflection applied? Shade all that apply, and explain your thinking.

Sample response: Triangles B and D are the only images that share the exact features of Triangle A, and have not been rotated or reflected.

Success looks like ...

- Language Goal: Describing the moves needed to perform a transformation. (Speaking and Listening)
» Explaining which translations of Triangle A are not the result of a rotation or reflection
- Goal: Drawing and labeling the image and corresponding points of figures that have been translated, reflected, or rotated.
- Language Goal: Drawing the image of a figure that results from translations, rotations, and reflections in square grids and justifying that the image is a transformation of the original figure. (Speaking and Listening)

Suggested next steps

If students have trouble identifying

 Triangles B and D as translations, consider:- Having them use tracing paper and point out that the paper does not have to be turned or flipped over to map Triangle A onto Triangle B or D.
- Reviewing Problems 1 and 2 from Activity 1.

Professional Learning

> This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
0^{3} Points to Ponder ...
How did students transition from working with transformations without grids to working with grids in this lesson? Are your students comfortable with using grids? How might you alter your instruction if they are not comfortable?
How are students progressing in their conceptual development of understanding how to describe and perform translations, reflections, and rotations? Is one or more of these more challenging to them? What strategies can you use to help them further develop their understanding?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	2
Spiral	$\mathbf{2}$	Activity 2	2
Formative $\mathbf{0}$	$\mathbf{3}$	Grade 7	Unit 1 Lesson 5

(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additiona Practice.

UNIT 1 LESSON 5

Making the Moves

Let's draw and describe translations, reflections, and rotations.

Focus

Goals

1. Language Goal: Draw a transformation of a figure using information given orally. (Speaking and Listening)
2. Language Goal: Explain the sequence of transformations that maps one figure onto another. (Speaking and Listening)

Rigor

- Students build conceptual understanding that sometimes, a sequence of transformations is necessary to map one figure onto another
- Students build fluency in using precise mathematical vocabulary to describe a sequence of transformations.

Coherence

- Today

Students take turns providing verbal descriptions of transformations that have occurred, and drawing images based on these verbal descriptions. They come to understand that sometimes there is no single translation, rotation, or reflection that will map one figure to another, resulting in the need for a sequence of transformations.

< Previously

In Lesson 4, students were introduced to the term transformation and began to explore transformations on a square grid.

Coming Soon

In Lessons 6-7, students will perform transformations on the coordinate plane, noticing what happens to the coordinates of transformed points. They will be able to describe the effect of transformations on the coordinates of the transformed points

Activity 1

Activity 2

Summary

Exit Ticket

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, Iog in to Amplify Math at learning.amplify.com.

Practice

Materials

- Exit Ticket
- Additional Practice
- Power-up PDF, as needed
- Power-up PDF (answers), as needed
- Activity 1 PDF (teacher directions and demo card)
- Activity 1 PDF (cards), one set of cards per pair
- geometry toolkits: rulers, protractors or index cards, tracing paper

Math Language Development

New word

- sequence of transformations

Review words

- clockwise
- counterclockwise
- image
- preimage
- rotation
- reflection
- transformation
- translation

Amps : Featured Activity

Activity 2
 See Student Thinking

Students are asked to explain their thinking behind mapping a preimage onto an image, and these explanations are available to you digitally, in real time.

Building Math Identity and Community
 Connecting to Mathematical Practices

Students may feel overly challenged as they describe the transformation on their card in Activity 1; they may give up or feel stuck as they use their developing mathematical language to provide precise verbal descriptions. Help them practice taking control of their own impulses by asking them to identify what they know to be true about the figures, and use mathematical language to express their thoughts.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted as students have had prior opportunities to practice drawing the line of reflection.
- Activity 1 may be omitted. In this activity, students come to understand how the coordinate plane can provide more specific information about transformations than a square grid.

Warm-up Finding the Line of Reflection

Students analyze a preimage and image to determine the placement for a line of reflection.

Warm-up Finding the Line of Reflection
Triangle $A B C$ has been reflected to create Triangle $A^{\prime} B^{\prime} C^{\prime}$. Draw the line of reflection.

1 Launch

Set an expectation for the amount of time students will have to work individually on the activity. Provide access to geometry toolkits for the duration of the lesson.

(2) Monitor

Help students get started by asking them "Imagine folding a paper so that Triangle $A B C$ maps onto Triangle $A^{\prime} B^{\prime} C^{\prime}$. Where would that fold line be?"

Look for points of confusion:

- Thinking that lines of reflection must be horizontal or vertical. Have students use tracing paper to trace the image and preimage and then fold the paper so the triangles are mapped onto one another. By unfolding the paper, they should see the line of reflection is slanted.

Look for productive strategies:

- Finding the distance between corresponding points and finding the midpoints of these distances to draw the line of reflection. Once two midpoints are found, students can draw the line of reflection connecting them.

3 Connect

Have individual students share their strategies for finding the line of reflection.

Highlight how the grid allows for distances to be observed without the need for a ruler or other measurement tool.

Ask, "How many points do you need to construct to find the line of reflection?

Accessibility: Guide Visualization and Processing, Optimize Access to Tools

Consider providing copies of Triangle ABC from the Warm-up for students to physically manipulate. For example, they could experiment folding the grid to determine where the line of reflection might be.

Extension: Math Enrichment

Ask students how they know the line of reflection does not intersect any of the vertices or side lengths of Triangle $A B C$. If the line of reflection intersected a vertex (or side) of Triangle $A B C$, then the image and preimage of that vertex (or side) would be in the same location.

Power-up

To power up students' ability to describe transformations:

Provide students with a copy of the Power-up PDF
Use: Before Activity 1
Informed by: Performance on Lesson 4, Practice Problem 4

Activity 1 Make That Move

Students describe and draw transformations to understand limitations of a square grid and to develop a need for the coordinate plane.

3

Activity 1 Make That Move

You will be given a set of cards. You and your partner will take turns describing and drawing transformations. Decide which student will draw first. The other student will describe the transformation on their card

Answers may vary, based on the card chosen from the Activity 1 PDF.

5 Man Mos

1 Launch

Distribute the cards from the Activity 1 PDF (cards). Specific directions and a demonstration card can be found on the Activity 1 PDF (teacher directions and demo card).
Note: The Activity 1 PDF needs to be distributed for both print and digital lessons.

2 Monitor

Help students get started by modeling the routine for this activity using the demo card provided.

Look for points of confusion:

- Struggling to use only words as they describe the transformations. Encourage students to visualize each movement and then choose the words that can describe the movement. It may be helpful to display words students use to describe the movements.

Look for productive strategies:

- Using precise descriptions, such as specific points, lines, or angles.
- Responding to constructive feedback to revise sketches.

3 Connect

Ask:

- "What elements of your partner's description were helpful as you were sketching?"
- "What are some details or ideas that could have helped you describe your transformation?" Listen for student ideas that suggest the need for a coordinate plane, such as specific locations of points.

Highlight how using precise mathematical language can assist when performing certain geometric actions, such as transformations. Say, "In future lessons, you will learn how to make your descriptions more clear."

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, assign them Card Set 1A and 1B.

Accessibility: Clarify Language and Symbols

Remind students that they can refer to the class display or the Anchor Chart PDF, Translations, Rotations, and Reflections, when providing directions to their partner.

Extension: Math Enrichment

Have students describe more than one method for achieving the transformation on their card.

Math Language Development

MLR2: Collect and Display

As students describe the transformation of Triangle $A B C$, listen for and collect vocabulary and phrases they use to describe reflections, rotations, and translations.

English Learners

As you add to the class display, use gestures to highlight the differences between each transformation.

Activity 2 A to B to C

Students practice describing transformations, leading them to see that in some cases, multiple transformations are necessary to map one figure onto another.

Amps Featured Activity See Student Thinking

Activity 2 A to B to C

Refer to Figures A, B, and C. For each problem, describe a transformation that could map each figure onto the other. Draw any points or lines that are used in your transformation.

1. A transformation that maps Figure A onto Figure B.
Sample responses:

- Translate 6 units to the right, or
- Reflect Figure A across line m.

2. A transformation that maps Figure B onto Figure C.
Sample responses:

- Reflect Figure B across line ℓ, or
- Rotate Figure B $\mathbf{1 8 0}{ }^{\circ}$ clockwise or counterclockwise around point R.

3. A transformation that maps Figure A onto Figure C. Sample responses:

- Translate 6 units to the right, and then reflect across line ℓ, or
- Reflect Figure A across line m, and then rotate around point R.
Rotate Figure A 180° clockwise or counterclockwise around point P
- Reflect Figure A across line m, and then reflect across line ℓ.

Compare and Connect: Afte completing Problems $1-3$, create a visual display of your
chosen strategy or strategies. Then compare your strategy with a partner.

1. Launch

Set an expectation for the amount of time students will have to work individually on the activity before sharing their responses with a partner.

2 Monitor

Help students get started by reminding them to describe their transformations precisely.

Look for points of confusion:

- Thinking there is no transformation that will map Figure A onto Figure C. Allow students to think this way at this point, because the concept of multiple transformations has not been discussed yet. Make a note of this thinking, and encourage them to share during the Connect.

Look for productive strategies:

- Thinking strategically about the properties of the shape that indicate which transformation has taken place, such as identifying corresponding segments or angles.
- Identifying and drawing lines of reflection and centers of rotation on the grid.
- Finding multiple ways to map Figure A onto Figure B, and Figure B onto Figure C.

3 Connect

Have students share different strategies for mapping Figure A onto Figure B, Figure B onto Figure C , and Figure A onto Figure C.

Highlight that there are many ways to map Figure A onto Figure C , including a single transformation or several transformations.

Note: The term sequence of transformations will be formally defined in the Summary.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Provide students with specific guidance for Problems 1 and 2. Ask them to describe a translation that can map Figure A onto Figure B in Problem 1.
Then ask them to describe a reflection that can map Figure B onto Figure C in Problem 2

Extension: Math Enrichment

Encourage students to find multiple sequences of transformations for Problem 3.

Math Language Development

MLR7: Compare and Connect

Ask students to prepare a visual display of their chosen strategy or strategies. Then have students compare their strategy with a partner.

English Learners

Provide students time to formulate a response before sharing their strategy with their partner. Display sentence frames to support conversation, such as:

- "To map Figure A onto Figure B, I ___ because . . ."
- "I noticed \qquad sol..
- I agree/disagree because . .

Summary

Review and synthesize how sometimes more than one transformation is needed to map one figure onto another.

Summary

In today's lesson...

You described and performed transformations that map one figure onto another.
some cases, mapping one image onto another requires more than one transformation. To map one bird onto the other bird in the following image, a reflection and a translation are needed.

When more than one transformation is applied to a preimage, that series of moves is called a sequence of transformations. There can be more than one sequence of transformations that maps a preimage to an image.

Synthesize

Display the Summary from the Student Edition.

Ask:

- "Can you imagine a single translation, rotation, or reflection that would map one bird onto the other?" No, a single transformation will not map one bird onto the other. In this case, there needs to be a translation and a reflection.
- "How does this compare with the image from Activity 2?" Each mapping in Activity 2 can be performed with a single transformation, which is not possible with these birds.

Highlight that to map one bird onto the other more than one transformation is needed. Define the term sequence of transformations as two or more transformations performed in a particular order.

Formalize vocabulary: sequence of. transformations

Reflect

After synthesizing the concepts of the lesson, allow a few moments for student reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help students engage in meaningful reflection, consider asking:

- "Can every preimage be mapped onto an image using a single transformation?"

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit, that you started in Lesson 1. Ask them to review and reflect on any terms and phrases related to the term sequence of transformations that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding by describing a sequence of transformations.
(3)冒 Printable

Date:
Exit Ticket 0

Describe a sequence of transformations that maps Quadrilateral $A B C D$ onto Quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

Sample responses:
Rotate Quadrilateral $A B C D 90^{\circ}$ clockwise about point D, and then translate the resulting image 2 units down and 3 units right.
Translate Quadrilateral $A B C D 6$ units right and 3 units up, and then rotate the resulting image 90° clockwise about point A

Self-Assess $\underbrace{2}_{\substack{1 \\ \text { Idon't really } \\ \text { get it }}} \underset{\substack{\text { I'm starting to } \\ \text { get it }}}{2}{ }_{\text {1 got it }}^{3}$
 I can use the terms translation reflection, and rotation to precisely describe transformations.
 123
 b I can explain the sequence of transformations that takes a preimage to its image. 123

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder . . .
How did students grapple with mapping Figure A onto Figure C in Activity 2? Did they see a need for multiple transformations?
How are students progressing in their ability to precisely describe transformations? Are they leaving out important details, such as the line of reflection or angle of rotation? How can you help them see the need for precise and detailed descriptions?

3. Select all the sequences of transformations that would return a
triangle to its original position.
(A. Reflect a triangle across line m, and then reflect the image across
(B) Tine m again.
(B.) Translate a triangle 1 unit to the right, then 4 units to the left, and then
B. units to the righ
C. Reflect a triangle across line ℓ, and then reflect the image across a
different line.
(D.) Rotate a triangle 900 counterclockwise around point C, and then rotate
4. Solve each equation. Show your thinking.
$\begin{array}{ll}\text { a } 12+0.5 x=21.5 & \text { (b) }-5(x-2)=30\end{array}$
$12+0.5 x-12=21.5-12 \quad-5(x-2) \div(-5)=30 \div(-5)$
$\begin{array}{rlrl}0.5 x & =9.5 & x-2 & =-6 \\ 0.5 x \div 0.5 & =9.5 \div 0.5 & x-2+2 & =-6+2\end{array}$

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	2
Spiral	$\mathbf{2}$	Activity 2	2
Formative 0	$\mathbf{5}$	Unit 1 Lesson 4	2

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Coordinate Moves
 (Part 1)

Let's transform some figures and see what happens to the coordinates of the points.

Focus

Goals

1. Language Goal: Generalize the process to translate any point on the coordinate plane. (Speaking and Listening, Reading and Writing)
2. Language Goal: Generalize the process to reflect any point on the coordinate plane. (Speaking and Listening, Reading and Writing)

Rigor

- Students build conceptual understanding by investigating the patterns among coordinates for translations and reflections.
- Students build fluency in describing the effect of translations and reflections using coordinates.

Coherence

- Today

Students continue to investigate the effects of transformations. They use coordinates to describe preimages and their images under translations and reflections on the coordinate plane. Students describe the effect of translations and reflections using coordinates.

< Previously

Students used the structure of a grid to describe transformations and sequences of transformations.

> Coming Soon

In Lesson 7, students will use coordinates to describe preimages and their images under rotations on the coordinate plane. They will describe the effect of rotations using coordinates. In Lesson 8, they will develop coordinate notations to describe the effects of these transformations.

Warm-up

Activity 2

Activity 3

 (optional)

Summary
(-) 5 min
ํํํํํํㅇ
nhole Class

Exit Ticket
() 5 min

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- geometry toolkits: rulers, tracing paper

Math Language
 Development

Review words

- corresponding
- coordinate plane
- image
- preimage
- reflection
- transformation
- translation

Building Math Identity and Community Connecting to Mathematical Practices

Students may feel disengaged when asked to make predictions before performing the transformations in Activities 1 and 2. Encourage them to persist as they look for structure. For example, ask them to examine the coordinates of the preimages and their corresponding images, and look for any patterns that emerge.

Amps ! Featured Activity

Activities 1 and 2 Interactive Graphs

Students can drag points to create transformations of a preimage. You can overlay student answers to provide immediate feedback.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted as it provides additional practice for identifying corresponding points after a reflection.
- In Activity 2, have students complete the task only for two points.
- Optional Activity 3 may be omitted.

Warm-up Getting Coordinated

Students practice identifying corresponding points between a preimage and an image to further see the need for a coordinate plane to help identify specific coordinates.

Unit 1 | Lesson 6

Coordinate Moves (Part 1)

Let's transform some figures and see what happens to the coordinates of the points.

Warm-up Getting Coordinated
Figure $A B C D E$ has been reflected. Label the corresponding points on the image with $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, and E^{\prime}.

(7) Power-up

To power up students' ability to identify coordinates, have students complete:

Recall that in a coordinate pair (x, y), the x-value indicates the horizontal (left/right) direction from the origin while the y-value indicates the vertical (up/down) direction from the origin. Determine which point matches each coordinate pair.

Use: Before Activity 1
Informed by: Performance on Lesson 5, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 3

Activity 1 Translating Points on the Coordinate Plane
Students translate points on the coordinate plane, and look for patterns in how the coordinates of the point change.

Amps Featured Activity Interactive Graphs

Date. Period: Name:

Activity 1 Translating Points on the Coordinate Plane

Refer to the graph showing points A, B, and C.

1. Translate points A, B, and C to the left 4 units and down 1 unit. Draw the image of these points in the graph. Label the points in the image as A^{\prime}, B^{\prime}, and C^{\prime}, respectively.

2. Write the coordinates of each point in the table.

Preimage coordinates		Image coordinates	
A	$(5,3)$	A^{\prime}	$(1,2)$
B	$(-1,1)$	B^{\prime}	$(-5,0)$
C	$(4,0)$	C^{\prime}	$(0,-1)$

3. Compare the coordinates of the original points with the coordinates of their images. What do you notice?
Translating left 4 units resulted in subtracting 4 from each original -coordinate. Translating down 1 unit resulted in subtracting 1 from each original y-coordinate.
A. Are you ready for more?

How would the coordinates change if you translated the points 1 unit up and 4 units to the right instead?
The values of x and y would increase, instead of decrease. I would
need to add 1 to each y-coordinate and 4 to each x-coordinate, instead of subtract.

1 Launch

Activate students' prior knowledge by asking how a coordinate of a point is written. Have students conduct the Think-Pair-Share routine for Problems 1-2, and then discuss Problem 3 as a whole class.

2 Monitor

Help students get started by asking, "How can you use the grid to translate point $A 4$ units to the left?"

Look for points of confusion:

- Confusing the order of the coordinates.

Remind students that coordinate pairs are written in the form (x, y), and they can remember this by remembering that x comes before y, as in the alphabet.

Look for productive strategies:

- Identifying a pattern and using it to predict the coordinates of the image before graphing.

3 Connect
Display correct student work.
Highlight how moving left changes the x-coordinate, and moving down changes the y-coordinate.

Ask:

- "Where would the image of a point be if you translate it 3 units up and 4 units down?" The image would be located one unit down from the preimage.
- "Why do you subtract when moving left or down?" Left is the negative direction along the x-axis, and down is the negative direction along the y-axis.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on translating points A and C. As time permits, and after they have successfully completed Problems 1 and 2 for these two points, have them complete the activity with the remaining point B.

Math Language Development

MLR8: Discussion Supports

Support students in the whole class discussion for Problem 3. Provide time for them to rehearse their responses before sharing. Ask students to annotate their table in Problem 2 with directional phrases that indicate their movement and how the x-coordinates changed or the y-coordinates changed. For example, for point A, have students write move left; x changes and move down; y changes.

English Learners

Highlight, through the use of gestures, what movement along the axes looks like and emphasize how the values change by subtracting when moving left and down.

Activity 2 Reflecting Points on the Coordinate Plane

Students reflect points on the coordinate plane, and look for patterns in how the coordinates of the point change.

Amps Featured Activity Interactive Graphs

Activity 2 Reflecting Points on the Coordinate Plane

Transforming points and figures using coordinates allows you to be very precise. When they studied which shapes of billiard tables resulted in special bouncing patterns for billiard balls, mathematicians Alex Wright and Maryam Mirzakhani first transformed the tables using multiple reflections.

1. Refer to the graph showing Points A, B, C, and D.
a Reflect points A, B, C, and D across the y-axis. Plot and label the resulting points $A^{\prime}, B^{\prime}, C^{\prime}$. and D^{\prime}, respectively.

C Compare the coordinates of the preimage points with the coordinates of mages. What do you notice? Reflecting a point across the y axis changes the sign of the image has the opposite sign as the x-coordinate of the preimage. The y-coordinate stays the same.

Preimage coordinates		Image coordinates	
A	$(-4,4)$	A^{\prime}	$(4,4)$
B	$(-2,0)$	B^{\prime}	$(2,0)$
C	$(0,-3)$	C^{\prime}	$(0,-3)$
D	$(5,-2)$	D^{\prime}	$(-5,-2)$

4 Featured Mathematician

1. Launch

Ask students to decide who will complete Problem 1 and who will complete Problem 2. Set an expectation for the amount of time students will have to work individually on their problem, and then have them compare their responses with their partner.

(2) Monitor

Help students get started by having them measure the distance from each point to the y-axis by counting the number of grid squares, and then counting the same amount on the other side of the y-axis to find the reflected point.

Look for points of confusion:

- Not knowing how to reflect point C in Problem 1 or point B in Problem 2. Ask students, "How far from the y-axis is point C in Problem 1? How far away from the x-axis is point B in Problem 2?"

Look for productive strategies:

- Noticing the pattern of changing the sign of the x-coordinate in Problem 1 and the y-coordinate in Problem 2.

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on reflecting points A, C, and D in Problems 1 and 2.

Math Language Development

MLR7: Compare and Connect

After students present their strategies for reflecting points, ask them to consider what is the same and what is different about the strategies used. Draw their attention to the different ways students reasoned to find the reflected coordinates.

English Learners

Encourage students to use gestures when reasoning about the reflected points.

Featured Mathematician

Maryam Mirzakhani

Have students read about featured mathematician Maryam Mirzakhani, who earned one of the highest honors in mathematics for her study of moduli spaces.

Activity 2 Reflecting Points on the Coordinate Plane (continued)

Students reflect points on the coordinate plane, and look for patterns in how the coordinates of the point change.

Activity 2 Reflecting Points on the Coordinate Plane (continued)
2. Refer to the graph showing points A, B, C, and D.
(a) Reflect points A, B, C, and D across the x-axis. Draw the image of these points in the graph. Label the points in the image as $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime}
respectively.
b
Write the coordinates of each point in the table.

Preimage coordinates		Image coordinates	
A	$(-4,4)$	A^{\prime}	$(-4,-4)$
B	$(-2,0)$	B^{\prime}	$(-2,0)$
C	$(0,-3)$	C^{\prime}	$(0,3)$
D	$(5,-2)$	D^{\prime}	$(5,2)$

c Compare the coordinates of the preimage points with the coordinates of their images. What do you notice?
Reflecting a point across the x-axis changes the sign of the y-coordinate. The y-coordinate of the image has the opposite sign as the y-coordinate of the preimage. The x-coordinate stays the same.

3 Connect

Have pairs of students share different strategies for finding the coordinates of the image. Begin with students who used the structure of the grid without using the axes of the coordinate plane, followed by students who noticed the pattern of changing the sign of a coordinate.

Highlight the similarities between the coordinates of the preimage and the image, and how the line of reflection affects which coordinates are changed, and which coordinates remain the same.

Ask

- "How is reflecting on the coordinate plane similar to reflecting on a grid? How is it different?"
- "Are some points more challenging to reflect than others? Why or why not?"
- "How did changing the line of reflection affect the coordinates of the image?"
- "Why does reflecting across the y-axis change the sign of the x-coordinate?" Reflecting across the y-axis means the point is now on the other side of the vertical y-axis. The x-coordinates on either side of the vertical y-axis have opposite signs.

Activity 3 Partner Problems: Predicting Placement

Students predict the coordinates of points that are translated or reflected to strengthen understanding of the patterns they discovered in earlier activities of this lesson.

Activity 3 Partner Problems: Predicting Placement
and who will complete Column B. You each on the problems in your column; however, you should have the same responses as your partner. If you do not have the same responses, rework your partner's problem and discuss any errors.
For each column, perform the transformation as described. Then write the coordinates of the image

Launch
Conduct the Partner Problems routine.

Help students get started by asking, "What patterns did you notice during Activities 1 and 2?"

Look for points of confusion:

- Thinking they have to complete both problems from each column. Explain that if a student and their partner arrive at the same response for their respective problems, they can move to the next problem. They only have to work on their partner's problem if they have different responses.

Look for productive strategies:

- Referencing patterns from previous activities to make predictions about the coordinates after the translations and reflections.

(3) Connect

Have students share any problems in which they did not have the same response as their partner, and how they came to an agreement of their final response.

Ask:

- "Did anyone learn a new strategy from their partner?"
- "If you know the coordinates of a point and the transformation that occurs, do you need to refer to a graph to know the coordinates of the image?"

Highlight strategies students used to find the coordinates without graphing

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, suggest that they complete Column A if they are more confident with reflections and Column B if they are more comfortable with translations. Consider using intentional grouping to pair students so that one student feels confident about reflections and can help assist their partner

Summary

Review and synthesize how the coordinates of a point changes after a translation or reflection on the coordinate plane.

Summary

In today's lesson...

You performed translations and reflections on the coordinate plane, and observed how the coordinates of the transformed points changed under each of these types of transformations.

You can use coordinates to describe the position of points and find patterns in the coordinates of transformed points.

You can describe a translation by expressing it as a sequence of horizontal and vertical translations.

Translating a point to the left or right \ldots	Translating a point up or down ...
changes the value of the x-coordinate.	changes the value of the y-coordinate.
Example: Preimage: $(3,-5)$ Example: Preimage: $(3,-5)$ - If the point is translated to the left If the point is translated up 2 units, 2 units, the image is $(1,-5)$. the image is $(3,-3)$. - If the point is translated to the right If the point is translated down 2 2 units, the image is $(5,-5)$. units, the image is $(3,-7)$.	

Reflecting a point across an axis changes the sign of one coordinate.

Reflecting a point across the x-axis ...	Reflecting a point across the y-axis ...
Changes the sign of the y-coordinate.	changes the sign of the x-coordinate.
The x-coordinate remains the same.	The y-coordinate remains the same.
Example: Preimage: $(3,-5)$ Example: Preimage: $(3,-5)$ Image: $(3,5)$ Image: $(-3,-5)$	

[^9]
Synthesize

Highlight the patterns that students generated during the course of the lesson.

Ask:

- "What are some advantages to knowing the coordinates of points when you are performing transformations?"
- "How does translating a point to the left or right affect the coordinates of the point? Up or down?"
- "What changes did you see when reflecting points across the x-axis? The y-axis?"
- "If the point $(-8,-5)$ undergoes the following transformations, what would be the coordinates of the image?"
» Translation left a units and down b units (-8-a, -5-b)
» Translation right a units and up b units $(-8+a,-5+b)$
» Reflection across the x-axis $(-8,5)$
» Reflection across the y-axis ($8,-5$)
Reflect
After synthesizing the concepts of the lesson, allow a few moments for student reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help students engage in meaningful reflection, consider asking
- "How can knowing the coordinate of a point help you translate or reflect it?"

Exit Ticket

Students demonstrate their understanding of translations and reflections on the coordinate plane by finding the missing coordinates of an image.

Name: \quad Date

Exit Ticket

1. Triangle $A B C$ is translated 5 units down and 2 units to the right to create Triangle $A^{\prime} B^{\prime} C^{\prime}$. Label the coordinates of the image.

2. Triangle $D E F$ is reflected across the x-axis to create Triangle $D^{\prime} E^{\prime} F^{\prime}$.
Label the coordinates of the image.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder . . .
How well do your students understand the patterns of the coordinates for translations and reflections? Do you need to review integer operations with them to better understand the patterns for translations?

Are they able to explain why the x-coordinates change signs when reflecting across the y-axis, and why the y-coordinates change signs when reflecting across the x-axis? How can you help them see that this makes sense?

3. Pentagon P is reflected across the x-axis. Predict the coordinates of the image by completing the table. Check your predictions by graphing the image.

Preimage coordinates	Image coordinates		${ }^{y}{ }_{5}{ }_{5}$			-
$(-2,0)$	$(-2,0)$			7		
$(-2,2)$	$(-2,-2)$		\bigcirc			
$(-1,3)$	$(-1,-3)$	-5	Q			${ }_{5}$
				,		
$(1,3)$	$(1,-3)$			-		
$(0,1)$	$(0,-1)$					

4. For each statement, explain how you would find the measure of the missing angle
a Two angles are complementary, and you are given the measure of one of these angles. Subtracting the known angle from 90° would give the unknown complementary angle.
b Two angles are supplementary, and you are given the measure of one of these angles. subtracting the known
supplementary angle.
5. Triangle $A B C$ is rotated 90° clockwise about the origin to create Triangle $A^{\prime} B^{\prime} C^{\prime}$. In which quadrant would point C^{\prime} be located?
A. Quadrant I
B. Quadrant II
(C.) Quadrant III
D. Quadrant IV

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additiona Practice.

Coordinate Moves (Part 2)

> Let's transform some more figures and see what happens to the coordinates of the points.

Focus

Goal

1. Language Goal: Generalize the process to rotate any point on the coordinate plane. (Speaking and Listening, Reading and Writing)

Coherence

- Today

Students continue to investigate the effects of transformations. They use coordinates to describe preimages and their images under rotations on the coordinate plane. Students describe the effect of rotations using coordinates.

< Previously

In Lesson 6, students learned how to translate and reflect figures or points on the coordinate plane. In Lesson 4, students learned how to rotate figures or points on a grid.

> Coming Soon

In Lesson 8, students will explore sequences of transformations on the coordinate plane, and develop coordinate notations to describe the effects of these transformations.

Rigor

- Students build conceptual understanding by investigating the patterns among coordinates for rotations.
- Students build fluency in describing the effect of rotations using coordinates.

Activity 1

Activity 2

Summary

Exit Ticket

(J) 5 min	(1) 12 min
ํํํ Pairs	\bigcirc Ondependent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Power-up PDF, as needed
- Power-up PDF (answers), as needed
- Activity 2 PDF (for display)
- geometry toolkits: rulers, tracing paper

Math Language

 Development
Review words

- clockwise
- coordinate plane
- corresponding
- counterclockwise
- image
- preimage
- rotation
- origin
- transformation

Building Math Identity and Community Connecting to Mathematical Practices

At first, students may feel lost if they do not make the connection between the direction of the rotation and the effect on the coordinates in Activity 2. Encourage them to persist as they look for structure. For example, ask them to examine the coordinates of the preimages and their corresponding images, and look for any patterns that emerge.

Amps \vdots Featured Activity

Activity 1

Using Work From Previous Slides
Students make observations about a rotation. In the next slide, students use their observations to construct an image and check their understanding. It's their work, so they get to hold onto it!

powered by desmos

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted as it provides additional practice identifying corresponding points after a rotation.
- In Activity 2, students may work in groups of three and complete one part each from Problem 1.
- In the Exit Ticket, omit Problem 1.

Warm-up Rotating Coordinates

Students will make observations about a square that has been rotated to strengthen their conceptual understanding of rotation.

Unit 1 | Lesson 7

Coordinate Moves (Part 2)

Let's transform some more figures and see what happens to the coordinates of the points.

Warm-up Rotating Coordinates
Square $A B C D$ has been rotated in such a way that the image coincided with the preimage.

What could the angle of rotation be? Find as many possible answers as you can. Sample responses: $90^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ}$

1 Launch

Conduct the Think-Pair-Share routine as students work. Provide access to geometry toolkits for the duration of the lesson.
(2) Monitor

Help students get started by asking them to identify a possible center of rotation.

Look for points of confusion:

- Struggling to visualize a possible rotation. Encourage students to use tracing paper to create an image.
- Suggesting only one correct answer. Challenge students to look for multiple angles of rotation.

Look for productive strategies:

- Finding multiple possible angles of rotation.
- Describing measurements of possible angles using the formula $90 k$.

3 Connect

Have students share their strategies for finding the center of rotation and possible angle of rotation.

Highlight that when determining an angle of rotation, many correct responses are possible, but all of them are multiples of 90°.

Differentiated Support

Power-up

Accessibility: Guide Processing and Visualization

Have students rotate their Student Edition until the preimage is in the same orientation as the image, keeping track of the movements of the vertices of the preimage. Consider demonstrating for one angle of rotation, such as 90°, to help students visualize the rotation. Ask them if there are any other rotations. Note: At this point, students are not expected to know the angles of rotations.

To power up students' ability to make sense of rotations:
Provide students with a copy of the Power-up PDF.
Use: Before the Warm-up
Informed by: Performance on Lesson 6, Practice Problem 5

Activity 1 Rotations of a Point

Students will make observations about points that have been rotated, and use their observations to predict a pattern in how the coordinates of the points are changed.

Activity 1 Rotations of a Point

2. Use the pattern you noticed to predict the coordinates of Triangle $A^{\prime} B^{\prime} C^{\prime}$ after rotating Triangle $A B C 90^{\circ}$ counterclockwise about the origin. Record your predictions in the table. Then check your predictions by plotting your points on the coordinate plane.

Preimage coordinates		Image coordinates	
A	$(1,-2)$	A^{\prime}	$(2,1)$
B	$(-2,-4)$	B^{\prime}	$(4,-2)$
C	$(1,-4)$	C^{\prime}	$(4,1)$

> Critique and Correct: Your teacher will display an incorrect rotation. WIth a partner, determine why it is incorrect and then correct it.

1 Launch

Complete Problem 1 as a whole class, and then have students complete Problem 2 independently.

2 Monitor

Help students get started by asking them to examine the coordinates of each pair of points given at the start of the activity and look for similarities.

Look for points of confusion:

- Rotating first, and then recording the coordinates of points in Problem 2. This problem is designed for students to test whether their observations in Problem 1 hold true for polygons. Have them make their predictions first.
- Graphing the image incorrectly in Problem 2. Have students use their geometry toolkits to check their work. Encourage students to mark the origin to ensure correct alignment when rotating the tracing paper.

Look for productive strategies:

- Checking their work using tracing paper or an index card.
- Noticing that 90° rotations about the origin move a point to a neighboring quadrant.

3 Connect
Highlight the pattern among the coordinates when rotating a point 90° counterclockwise about the origin. The x-coordinate of the image is the opposite of the y-coordinate of the preimage. The y-coordinate of the image is the x-coordinate of the preimage.

Ask students if they think patterns exist for other degrees and directions of rotations about the origin.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on rotating points B and C in Problem 2. As time permits, and after they have successfully
completed the rotation for each, have them rotate the remaining point A.

(i.)

Math Language Development

MLR3: Critique, Correct, Clarify

During the discussion of Problem 2, display an incorrectly performed rotation. For example, provide the image coordinates for point C as $(4,-1)$. Ask these questions:

- Critique: "How do you know that these could not be the coordinates of the reflection of point C ? Is the x-coordinate correct? Is the y-coordinate correct?"
- Correct: "What should be the correct coordinates of the image?"
- Clarify: Describe in your own words how a 90° counterclockwise rotation about the origin affects the coordinates of a point.

Activity 2 Rotations in Different Directions

Students rotate a line segment using different angles of rotation and in different directions to look for patterns and draw conclusions about the coordinates of the images.

Activity 2 Rotations in Different Directions

1. Rotate line segment $J K$ as directed, and record the coordinates of the image in the table.
a 90° counterclockwise about the origin

Preimage coordinates	Image coordinates		
J	$(-2,-4)$	J^{\prime}	$(4,-2)$
K	$(3,1)$	K^{\prime}	$(-1,3)$

(b)

Preimage coordinates	Image coordinates		
J	$(-2,-4)$	J^{\prime}	$(2,4)$
K	$(3,1)$	K^{\prime}	$(-3,-1)$

c

1. Launch

Have each partner choose three rotations each to complete from Problem 1. Then have them share their responses with each other before completing Problem 2 together.

2 Monitor

Help students get started by referring them back to Activity 1 and reminding them of their observations about how the coordinates changed when rotating a point 90° counterclockwise about the origin.

Look for points of confusion:

- Struggling with rotating about the origin. Remind students that they may use their geometry toolkits as needed. They may find tracing paper to be particularly helpful.
- Thinking that the same pattern among the coordinates applies even when the angle of rotation or direction changes. Have them test their predictions by actually rotating each endpoint using tracing paper to see that the direction and angle of rotation affects the resulting coordinates of the image.
- Not noticing when rotated points are in the wrong quadrant. Students may find it helpful to imagine the entire plane rotating to become new quadrants.

Look for productive strategies:

- Predicting the quadrant placement of points before plotting the rotated images.
- Seeing the connection between a 90° rotation in one direction and a 270° rotation in the opposite direction.
- Noticing that rotating a line segment 90° or 270° produces perpendicular line segments, while rotating 180° produces parallel line segments. Highlight this concept in the Connect section.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them complete Problems 1b and le and only work on the others as time allows.

Extension: Math Enrichment

Ask students to explain why rotating a point 180° either clockwise or counterclockwise results in the same image. Sample response: A full circle measures 360° and regardless in which direction a point is rotated, rotating it 180° will result in the image rotating halfway around a full circle.

Math Language Development

MLR7: Compare and Connect

Have students compare different types of rotations. For example, how does rotating 90° clockwise compare to rotating 90° counterclockwise?

Activity 2 Rotations in Different Directions (continued)

Students rotate a line segment using different angles of rotation and in different directions to look for patterns and draw conclusions about the coordinates of the images.

Activity 2 Rotations in Different Directions (continued)
(d)

e 180° clockwise about the origin

f

Preimage coordinates	Image coordinates		
J	$(-2,-4)$	J^{\prime}	$(-4,2)$
K	$(3,1)$	K^{\prime}	$(1,-3)$

Preimage coordinates	Image coordinates		
J	$(-2,-4)$	J^{\prime}	$(2,4)$
K	$(3,1)$	K^{\prime}	$(-3,-1)$

Preimage coordinates	Image coordinates		
J	$(-2,-4)$	J^{\prime}	$(4,-2)$
K	$(3,1)$	K^{\prime}	$(-1,3)$

2. What observations can you make about the images and their coordinates? Sample responses:
The 180° rotations have the same image coordinates, regardless of whether the direction is clockwise or counterclockwise.
The 90° clockwise rotation has the same image as the 270° counterclockwise rotation. The 90° counterclockwise rotation has the same image as the 270° clockwise rotation.
\qquad

3 Connect

Have groups of students share similarities or patterns they discovered among the coordinates of the images for Problem 1.

Sample responses:

- I noticed that in Problems b and e, the image line segments were both parallel to the preimage line segments. The angle of rotation was the same, 180°, even though the directions were different.
- I noticed that each of the following problems produced the same image:

Problems a and f
Problems b and e
Problems c and d
Display the Activity 2 PDF.
Highlight that rotating 180° in either direction produces parallel line segments. This will be helpful to students as they study parallel lines in future lessons. Rotating 90° or 270° in either direction produces perpendicular line segments. Students may notice that rotating 90° in one direction results in the same image as rotating 270° in the opposite direction. This will be discussed further during the Summary.

Summary

Review and synthesize how the coordinates of points change after a rotation on the coordinate plane.

Summary

In today's lesson.

You performed rotations on the coordinate plane, and observed the effects of these transformations on the coordinates of the transformed points.

You can use coordinates to describe points and find patterns in the coordinates of transformed points. Rotating a point about the origin results in an image whose coordinates are related to the coordinates of the preimage, as follows.
$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\mathbf{9 0} 0^{\circ} \text { counterclockwise } \\ \text { or } 270^{\circ} \text { clockwise }\end{array} & \begin{array}{l}90^{\circ} \text { clockwise or } \\ \mathbf{2 7 0} 0^{\circ} \text { counterclockwise }\end{array} & \begin{array}{l}\mathbf{1 8 0 ^ { \circ } \text { in either }} \\ \text { direction }\end{array} \\ \hline \begin{array}{l}\text { The } x \text {-and } y \text {-coordinates } \\ \text { switch places. }\end{array} & \begin{array}{l}\text { The } x \text { - and } y \text {-coordinates } \\ \text { The } x \text {-coordinate of the } \\ \text { image has the opposite } \\ \text { sign of the } y \text {-coordinate } \\ \text { of the preimage. }\end{array} & \begin{array}{l}\text { The order of the } x \text { - and } \\ \text { The } y \text {-coordinate of the } \\ \text { image has the opposite } \\ \text { sign of the } x \text {-coordinate } \\ \text { of the preimage. }\end{array}\end{array} \begin{array}{l}y \text {-coordinates of the } \\ \text { image stay in the same } \\ \text { place as the preimage, } \\ \text { but have opposite signs. }\end{array}\right\}$

Synthesize

Highlight the patterns that students generated during the course of the lesson.

Ask:

- "What are some advantages to knowing the coordinates of points when performing transformations?'
- "When rotating 180°, does it matter whether the rotation is clockwise or counterclockwise?" No, the resulting image is the same no matter in which direction the rotation occurred.
- "What similarities did you see when rotating 90° in one direction versus rotating 270° in the opposite direction?" They have the same effect on the preimage and produce the same image.
- "If the point $(-8,-5)$ undergoes the following transformations, what would be the coordinates of the image?" Note: You may find it helpful to display a coordinate plane with the point $(-8,-5)$ plotted for students to reference.
» Rotation 90° clockwise ($-5,8$)
» Rotation 270° counterclockwise $(-5,8)$
» Rotation 90° counterclockwise ($5,-8$)
» Rotation 270° clockwise ($5,-8$)
» Rotation 180° clockwise $(8,5)$
» Rotation 180° counterclockwise $(8,5)$

(1) Reflect

After synthesizing the concepts of the lesson, allow a few moments for student reflection Encourage them to record any notes in the Reflect space provided in the Student Edition. To help students engage in meaningful reflection, consider asking:

- "How can knowing the coordinates of points help you rotate a point or figure?"

Exit Ticket

Students demonstrate their understanding of rotations on the coordinate plane by describing the degree and direction of rotations that have occurred.

亘 Printable

Name: \longrightarrow Date:
Exit Ticket

The following triangles have been rotated about the origin. Indicate the degree and direction of each rotation, and label the coordinates of the image.

a I can apply rotations to points on a grid if I know their coordinates. 123

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...

> How well do your students understand the patterns of the coordinates for rotations? Are they able to explain why a 90° rotation in one direction results in the same image as a 270° rotation in the opposite direction? How can you help reinforce this understanding?
> Are students able to explain why a 180° rotation results in the same image, regardless of the direction of the rotation?

(a) A

A translation that maps point B onto point D
b A reflection across line segment $B C$.
5. Write five expressions that have a value of $\frac{3}{5}$, according to the following criteria. Sample responses shown.
(a) One expression must be a sum. $\frac{1}{5}+\frac{2}{5}$
(b) One expression must be a difference. $1 \frac{2}{5}-\frac{4}{5}$

C One expression must be a product. $3 \cdot \frac{1}{5}$
d One expression must be a quotient. $6 \div 10$
(e) One expression must involve at least two operations. $2\left(\frac{1}{10}+\frac{2}{10}\right)$
6. Mai says that Quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of Quadrilateral $A B C D$ after a reflection across the x-axis. Do you agree with Mai? Explain your thinking.
Sample response: No. The corresponding points do not tit a rellon across the x-axis. The
mage is a translation.

Practice Problem Analysis			
Type	Problem	Refer to	DOK
	1	Activity 2	2
On-lesson	2	Activity 2	2
	3	Activity 2	2
Spiral	4	Unit 1 Lesson 2	2
	5	Grade 7	2
Formative 0	6	Unit 1 Lesson 8	2

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.
(6) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

UNIT 1 | LESSON 8

Describing Transformations

Let's transform polygons on the coordinate plane.

Focus

Goals

1. Language Goal: Create a drawing on a coordinate plane of a transformed object using verbal descriptions. (Speaking and Listening, Reading and Writing)
2. Language Goal: Identify what information is needed to transform a polygon and ask questions to elicit that information. (Speaking and Listening)

Coherence

- Today

Students apply a sequence of transformations to a polygon on the coordinate plane. They use the Info Gap routine to request information from their partner, and explain why they need each piece of information. Students also explore patterns and discover rules for these transformations.

< Previously

In Lessons 6 and 7, students practiced applying individual transformations and sequences of transformations to figures on the coordinate plane.

> Coming Soon

In Lesson 9, students will begin to see that translations, rotations and reflections preserve lengths and angle measures, and lay the groundwork for identifying congruent figures.

Rigor

- Students build fluency in using precise mathematical vocabulary to describe a sequence of transformations.

Warm-up

Activity 1

Activity 2

Summary

Exit Ticket

(-) 5 min	() 15 min	(1) 10 min	(J) 7 min	(J) 5 min
$\bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc$	\bigcirc ○ Independent	กํํํํำ Whole Class	\bigcirc ○ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- Power-up PDF, as needed
- Power-up PDF (answers), as needed
- Activity 1 PDF, pre-cut cards
- Activity 1 PDF (answers)
- Info Gap Routine PDF (for display)
- geometry toolkits: rulers, tracing paper
- graph paper (optional)

Math Language

Development

Review words

- translation
- rotation
- reflection
- transformation
- sequence of transformations
- corresponding points

Building Math Identity and Community

Connecting to Mathematical Practices
Students may feel frustrated as they ask questions and receive limited information in response; they may be unsure of how to plan a solution pathway that helps them phrase their questions to receive the information they need. Encourage them to reflect on what information would be necessary to perform the entire sequence of transformations, and organize their thinking by recording their questions and the answers they receive.

Amps : Featured Activity

Activity 1
 Interactive Graphs

Students can drag points to create transformations of a preimage. You can overlay student answers to provide immediate feedback.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted, as it provides additional practice understanding rotations and the center of rotation.
- In Activity 1, have students complete only the first Problem and Data card.

Warm-up Center of Rotation

Students examine a rotation on the coordinate plane, identifying the center of rotation and understanding its importance in describing a rotation.

1 Launch

Have students work individually to complete the Warm-up, and then have them share responses with a partner. Provide access to geometry toolkits for the duration of the lesson.

(2) Monitor

Help students get started by demonstrating a rotation using a center of rotation that is not the origin.

Look for points of confusion:

- Thinking that the center of rotation can only be at the origin. Have students rotate the polygon in the Warm-up using the origin as the center to realize that the image is not the same as the image shown.

Look for productive strategies:

- Using tracing paper to perform the rotation and test possible locations where the center of rotation would need to be for the preimage to be mapped onto the image.
- Drawing a line segment that connects two corresponding points, and constructing a perpendicular line through its center to locate the center of rotation.

(3) Connect

Have students share their strategies for locating the center of rotation.

Ask, "Why is it important that you know the precise center of rotation?"

Highlight how moving the center of rotation shifts the location of the image.

(7) Power-up

To power up students' ability to identifying corresponding vertices:
Provide students with a copy of the Power-up PDF.
Use: Before Activity 1
Informed by: Performance on Lesson 7, Practice Problem 6

Activity 1 Info Gap: Transformation Information

Students use the Info Gap routine to apply a sequence of transformations to a polygon.

Amps Featured Activity
Interactive Graphs

Activity 1 Info Gap: Transformation Information

You will be given either a problem card or a data card.
Do not show or read your card to your partner.

If you are given the problem card:

1. Silently read your card, and think about what information you need to be able to solve the problem.
2. Ask your partner for the specific information that you need.
3. Explain how you will use the information to solve the problem.
Continue to ask questions until you have enough information to solve the problem.
4. Share the problem card with your partner, and solve the problem independently.
5. Read the data card your partner shares with you. Discusss the reasoning each of
you used to solve the problem.

If you are given the data card:

1. Silently read your card.
2. Ask your partner, "What specific information do you need?" and wait for them to ask for information
3. Before sharing the information, ask, "Why do you need that information?" Listen to your partner's reasoning, and ask clarifying questions.
4. Read the problem card your partner shares with you, and solve the problem independently.
5. Share the data card with your partner. Discusss the e easaning each of you used to
solve the problem.

1. Launch

Model the Info Gap routine and display the Info Gap Routine PDF. Distribute pre-cut cards from the Activity 1 PDF to each pair of students. Start by distributing the first set and distribute the second set after you have checked student work.

(2) Monitor

Help students get started by explaining that they may need several rounds of discussion to determine the information they need.

Look for points of confusion:

- Asking questions that are not sufficiently precise. Encourage them to find out which transformations they need to perform, and then find out the information they need for each transformation.

Look for productive strategies:

- Successfully determining or remembering to ask which transformations were applied, the order in which the transformations were applied, and what information is needed to describe a translation, rotation, or reflection.

3 Connect

Have pairs of students share the images they produced for each problem card.

Ask:

- "Was the order in which the transformations were applied important? Why?"
- "If this same problem was placed on a grid without coordinates, how would you talk about the points?"
- "How did using coordinates help in talking about the problem?"

Highlight that one advantage of the coordinate plane is that it allows students to precisely communicate information about transformations.

Differentiated Support

Accessibility: Guide Processing and Visualization

Display Problem Card 1. Use a think-aloud to model Steps 1 and 2 as if you were the recipient of that card. Consider using the following questions during the think-aloud

- "I wonder what the transformation(s) were. I think I should ask if there was a specific kind of transformation. I will ask if there was a translation. If there was, then I will ask if the figure was moved up, down, left, or right, and how many units in these directions."
- "I wonder if more than one transformation was performed. I think I should ask if there were two transformations, and in what order they were performed."

Math Language Development

MLR4: Information Gap

Display prompts for students who benefit from a starting point, such as:

- "Can you tell me ... (specific piece of information)?"
- "Why do you need to know . . . (that piece of information)?"

English Learners

Consider providing sample questions students could ask, such as:

- Was there a translation? How many units and in what direction?
- Was there a rotation? What was the angle of rotation? What was the direction of rotation? What was the center of rotation?
- Was there a reflection? Across which axis?
- In what order were the transformations performed?

Activity 2 Transformation Rules

Students explore patterns between transformations and the effects on coordinates, and find rules for transformations on the coordinate plane.

1 Launch

Encourage students to look back at their notes and strategies from the previous two lessons, as they will now collect all their findings in one useful table.

Note: In the digital version of this lesson, the table is replaced by a card sort.

2 Monitor

Help students get started by reviewing the first row of the table together.

Look for points of confusion:

- Writing descriptions that are sequences of transformations. While these descriptions may be technically correct, they are not the most efficient. During the Connect, compare these descriptions with single transformations, and ask students to make comparisons.

Look for productive strategies:

- Using notes and strategies from previous lessons as a reference when completing the table. Highlight these notes and strategies during the Connect.
- Using grid paper to verify whether the rule or the example they have written accurately depicts the transformation.

3 Connect

Have students share their table entries.
Highlight that each rule can describe a single transformation that maps the preimage onto the image, and that these rules can be used to find the coordinates of an image without needing to perform the transformation.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Provide the written descriptions and have students focus on providing the remaining rules and examples. Consider having students first only focus on the translation rows. After ensuring they understand, have them complete the reflection rows next and the rotation rows last.

Accessibility: Guide Processing and Visualization

Some students may find it challenging to remember the transformation rules. Remind them that they can always determine or confirm the rule by graphing a point, applying the transformation, and verifying how the coordinates of the image compare to the preimage.

Math Language Development

MLR7: Compare and Connect

To address the point of confusion some students may have in writing out descriptions that are sequences of transformations, use this routine to have students compare their descriptions to the single transformations. Highlight how the descriptions connect to the notation for the transformation rules.

English Learners

Model the transformations being described with visual examples.

Summary
Review and synthesize how coordinate notation can be used to describe the effect of transformations on the coordinate plane.

Summary

In today's lesson. .

You described transformations using coordinates. You also discovered rules to describe the changes to coordinates created by these transformations.

Transformation	Rule
Translation a units right and b units up	$(x, y) \rightarrow(x+a, y+b)$
Translation a units left and b units down	$(x, y) \rightarrow(x-a, y-b)$
Reflection across the x-axis	$(x, y) \rightarrow(x,-y)$
Reflection across the y-axis	$(x, y) \rightarrow(-x, y)$
Rotation 90° clockwise about the origin	$(x, y) \rightarrow(y,-x)$
Rotation 90° counterclockwise about the origin	$(x, y) \rightarrow(-y, x)$
Rotation 180° about the origin	$(x, y) \rightarrow(-x,-y)$

When you perform a sequence of transformations, the order of the transformations can be important. Two translations may be performed in any order, and the image is the same. However, when performing a translation and a reflection, changing the order of the transformations will change the location of the image on the coordinate plane.

Reflect:

Synthesize

Display the table from the Summary of the Student Edition.

Ask:

- "Which of the transformation rules listed in the table do you find most challenging to understand? What can you do to help your understanding?"
- "Think of a moment in today's lesson in which your partner used precise language - what did they say? How did it help you?"
- "Why do you think it might be helpful to use coordinates to describe transformations?"
- "Why is it important to be precise when communicating about transformations?"

Highlight that precise verbal and written descriptions ensure that we are accurately and effectively describing transformations. To describe a transformation, the following information is needed.

- Translation: the direction of the translation and how many units to move in each direction
- Rotation: the center of rotation, the angle of rotation, and the direction of the rotation
- Reflection: the line of reflection

(1. Reflect

After synthesizing the concepts of the lesson, allow a few moments for student reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help students engage in meaningful reflection, consider asking:

- "What strategies or tools did you find helpful when applying and describing transformations of a figure?"

Exit Ticket

Students demonstrate their understanding by providing the information necessary to perform a sequence of transformations.

- Language Goal: Creating a drawing on a coordinate plane of a transformed object using verbal descriptions. (Speaking and Listening, Reading and Writing)
- Language Goal: Identifying what information is needed to transform a polygon. Asking questions to elicit that information.

(Speaking and Listening)

» Providing the information needed by Jada to explain her transformations.

- Suggested next steps

If students do not identify all the necessary information to communicate the transformations used, consider:

- Reviewing Lesson 5.
- Assigning Practice Problem 3

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\sim_{0} Points to Ponder ...
What worked and didn't work today? Where in your students' notes and discussions did you observe evidence of them making sense of problems or persevering in solving problems?
What did students find challenging about Activity 1 ? What helped them work through the challenge? What might you change the next time you teach this lesson?
(12) Math Language Development

Language Goal: Identifying what information is needed to transform a polygon. Asking questions to elicit that information.

Reflect on students' language development toward this goal.

- What are some examples of developing questions and how can you help students be more precise in the questions they ask?

Sample questions for the Exit Ticket problem:

Emerging	Expanding
How far did the polygon move?	What are the horizontal and vertical distances for the translation?
How was it reflected?	What is the line of reflection?

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Rigid Transformations and Congruence

Equipped with their geometry toolkits, students explore what it means for two figures to be the same and are formally introduced to the meaning of the term congruence.

Narrative Connections

Read the narrative aloud as a class or have students read it individually. Students will continue to explore whether two different pieces of art or graphical designs are "the same" in the following places:

- Lesson 9, Warm-up: Can You Spot the Fake?
- Lesson 10, Activity 1: Are They the Same?
- Lesson 12, Activity 3:

Astonished Faces

UNIT 1 | LESSON 9

No Bending or Stretching

Let's compare measurements before and after translations, rotations, and reflections.

Goals

1. Language Goal: Comprehend that the term rigid transformation refers to a transformation in which all pairs of corresponding distances and angle measures in the preimage and the image are the same. (Speaking and Listening)
2. Draw and label a diagram of the image of a polygon under a rigid transformation, including calculating the side lengths and angle measures.
3. Language Goal: Identify a sequence of rigid transformations given a preimage and its image. (Speaking and Listening, Writing)

Coherence

- Today

Students begin to see that translations, rotations, and reflections preserve lengths and angle measures, and for the first time, they call them rigid transformations. As students experiment with measuring corresponding sides and angles in a polygon and its image, they use the structure of the grid as well as appropriate geometric tools, including protractors, rulers, and tracing paper.

< Previously

In earlier lessons, students talked about corresponding points of a preimage and its image after a transformation.

Coming Soon

In Lesson 10, students will understand that they can call two figures congruent if the figures can be obtained by a sequence of rigid transformations.

Rigor

- Students build conceptual understanding of rigid transformations and their effects on side lengths and angle measures.
©
Warm-up

Activity 1

Activity 2

Summary

Exit Ticket
$\bigodot 5 \mathrm{~min}$
\bigcirc Independent
(1) 20 min

ㅇํㅇ Pairs

(J) 5 min	(J) 5 min
คํํํํํำ Whole Class	\bigcirc ○ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- geometry toolkits: rulers, protractors, tracing paper, index cards

Math Language

Development

New word

- rigid transformation

Review words

- corresponding
- reflection
- rotation
- translation

Building Math Identity and Community
 Connecting to Mathematical Practices

In Activity 1, students may feel a range of confidence levels using the grid and selecting mathematical tools. Ask students to seek out other students who are more comfortable working with these tools and who can help them gain more confidence.

Amps : Featured Activity

Activity 1

Interactive Transformations

Students manipulate polygons and measure angles with interactive tools.

- Modifications to Pacing

You may want to consider this additional modification if you are short on time.

- Activity 2 may be omitted and used as practice at a later time.

Warm-up Can You Spot the Fake?

Students analyze the cracking patterns in the paint of two images to explain why one image is a fake. This prepares them for thinking about how they can verify whether two figures are the same.

Unit 1 | Lesson 9

No Bending or Stretching

Let's compare measurements before and after translations, rotations, and reflections.

Warm-up Can You Spot the Fake?
Art experts and historians are always on the hunt for counterfeit art. One technique used to detect counterfeits is to study the craquelure, the natural patterns created by paint cracking over time. It is very difficult to fake craquelure!

Consider the two images of the famous Mona Lisa painting. The first image is real, the second, a counterfeit. Focus your attention on the highlighted polygons formed by the cracking of the paint. How can you tell the second image is a counterfeit? Use any appropriate tool to support your claim.

Public Domain

Sample response: I can see that one of the polygons in the second image has different side lengths and different angle measures, which means it must not be the same.

1 Launch

Activate students' background knowledge by asking, "What can be faked? In art, it is particularly difficult to spot a fake. Why might someone want to determine whether artwork is a fake? Today, you will learn about one technique used to identify fake art." Provide access to geometry toolkits for the duration of the lesson.

2 Monitor

Help students get started by pointing out a pair of congruent polygons in the artwork and asking, "How can you check to see if these are the same?"

Look for points of confusion:

- Writing a justification that is not sufficient. Challenge students to use their geometry tools, such as a ruler or protractor, to be more precise in their explanations.

Look for productive strategies:

- Students making use of rulers and protractors to support their claims.

3 Connect
Display student work making use of strategically-selected mathematical tools to support their claim.

Have students share how they were able to confirm that the image is a fake using their geometry tools.

Highlight that precise measurements can help confirm whether two shapes are the same or different.

Extension: Interdisciplinary Connections

Preview the online resource "Math Professor Helps Uncover Art Fakes" from NPR Morning Edition that highlights how a college math professor has used mathematics and computer programming to help determine art forgeries. The computer program analyzes pen strokes and compares them to known pen strokes of the Flemish artist Pieter Bruegel. Decide if you would like to read the article together with your students or provide a summary. Facilitate a class discussion on how Daniel Rockmore's personal interest in art merged with his mathematical interests. Ask students if they think that math can be related to any of their interests, such as sports, music, nature, etc. (Art)

Power-up

To power up students' ability to measure with a protractor and a ruler, have students complete:

Recall that acute angles measure less than 90° while obtuse angles measure greater than 90°. For each angle, determine whether it is acute or obtuse, then use a protractor to determine its angle measure.

1. Angle A
a. Acute or obtuse? Obtuse b. Angle measure? 105°
2. Angle B
a. Acute or obtuse? Acute b. Angle measure? 30°

Use: Before Activity 1
Informed by: Performance on Lesson 8, Practice Problem 5, and Pre-Unit Readiness Assessment, Problem 8

Activity 1 Sides and Angles

Students perform a translation, a rotation, and a reflection to discover how each transformation affects the side lengths and angle measures of the transformed image.

Amps Featured Activity
Interactive Transformations
Name:
Activity 1 Sides and Angles

1. Translate Polygon A so that point H maps onto point H^{\prime}. In the image, label each side with its length, in grid units.

2. Rotate Triangle B 90° clockwise using point R as the center of rotation. In the image, label each angle with its measure, in degrees. Verify the angle measures using your protractor.

Reflect: How did using tools
Reflect: How did using tools
from your geometry toolkit help deepen your understanding of transformations?

1 Launch

Say, "You will investigate how each transformation - translation, rotation, or reflection - affects the side lengths and angle measures of a figure. You will select your own tools to use from your geometry toolkits."

Monitor

Help students get started by demonstrating how to use a ruler to begin to translate Polygon A to Polygon A^{\prime} in Problem 1. Show students how to use tracing paper to rotate the figure in Problem 2.

Look for points of confusion:

- Counting grid squares to find diagonal lengths in Problem 3. Ask them if they think the length of one diagonal of one grid square is the same length as one side of the grid square. Demonstrate for students how to use their ruler to find accurate diagonal lengths.
- Thinking the polygons in Problem 3 do not have the same side lengths or angle measures due to rounding errors or measuring inaccuracies. Have students use tracing paper to trace one polygon and map it onto the other to verify the side lengths and angle measures are the same.

Look for productive strategies:

- Selecting appropriate tools from their geometry toolkits strategically.
- Mentioning corresponding side lengths and angle measures in their explanations for Problem 4.

Activity 1 continued >

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can manipulate the polygons and measure angles using interactive tools. This will alleviate any risks of measurement errors and allow students to notice the side lengths and angle measures of the transformed images, without having to physically measure them using rulers or protractors.

Extension: Math Enrichment, Interdisciplinary Connections

Mention that rigid transformations are also called isometries. An isometry is a transformation that preserves distance. The prefix iso- means same and metry means distance. Ask students how they could use the meaning of this prefix iso- to help remember what the properties of an isosceles triangle. An isosceles triangle has two sides that are the same length. (Language Arts)

Math Language Development

MLR8: Discussion Supports

As students describe their approaches, connect the terms corresponding sides and corresponding angles to students' explanations by using different types of sensory inputs, such as demonstrating the transformation or inviting students to do so, using the images and using hand gestures.

Activity 1 Sides and Angles (continued)

Students perform a translation, a rotation, and a reflection to discover how each transformation affects the side lengths and angle measures of the transformed image.

Activity 1 Sides and Angles (continued)
3. Reflect Polygon A across line ℓ. In the image, label each side length, in grid units. Then label each angle measure, in degrees.

\$ 4. What did you notice about the side lengths and angle measures of each transformed polygon in Problems 1, 2, and 3? What conclusions can you make about the three types of transformations?
Sample response: The corresponding side lengths and corresponding angle measures were the same after each translation, rotation, and reflection. These three types of transformations keep corresponding side lengths and corresponding angle measures the same.

3 Connect
Display correct student work for Problems 1, 2, and 3.

Have pairs of students share how they performed the given transformations for each problem and what they found for their side lengths and angle measurements. Have the class share whether they agree after each explanation, before discussing what conclusions can be made about the transformations.

Ask, "Based on the measurements you found for the corresponding sides and corresponding angles, what conclusions can you make about these three transformations?"

Highlight that the corresponding side lengths and corresponding angle measures are preserved (kept the same) in each of the three transformations.

Define that a rigid transformation is a move that does not change any of the measurements of a figure. Translations, rotations, and reflections are all examples of rigid transformations, as is any sequence of these.

Activity 2 Rigid Transformations

Students determine whether a sequence of rigid transformations maps one figure onto another to further their understanding about how rigid transformations preserve side lengths and angle measures.
(8) Name: Date: \qquad
Activity 2 Rigid Transformations

1. Is there a sequence of rigid transformations that maps Triangle T onto Triangle T'? Explain your thinking.

Sample response: No, there is no sequence of rigid transformations that maps Triangle T onto Triangle T'. Rigid transformations result in images in which corresponding angles have the same measure, but the corresponding angle measures on these two triangles are not the same.
2. Is there a sequence of rigid transformations that maps Pentagon C onto Pentagon C'? Explain your thinking

Sample response: Yes, this is an example of a sequence of rigid transformations. I can see that Polygon C has been rotated and translated to map onto Polygon C', and these transformations are examples of rigid transformations.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on completing Problem 1, and only work on Problem 2 as they have time available. Consider providing the side and angle measurements for each pair of figures so that students can focus on analyzing the measurements, as opposed to doing the measuring themselves.

1 Launch

Have students conduct the Think-Pair-Share routine by giving 4 minutes of quiet work time and 2 minutes to discuss their responses with a partner.

2 Monitor

Help students get started by asking what they notice about the angle measurements in Triangle T compared to Triangle T'.

Look for points of confusion:

- Using insufficient justification in their explanations. Ask students to be specific in describing either the corresponding sides or corresponding angles to support their thinking

Look for productive strategies:

- Describing the sequence of transformations that takes Pentagon C to Pentagon C' in Problem 2.
- Using measures of corresponding sides and corresponding angles as evidence. Note: This method will be further developed in Lesson 10.

3 Connect

Display examples of student work.
Have students share their thinking.
Ask, "You know that rigid transformations preserve side lengths and angle measures. Can you also say that if two figures have the same side lengths and angle measures, there must be a rigid transformation that maps one figure onto the other?"

Highlight that for Problem 1, it is enough to say that if the shapes are not the same size, there is no rigid transformation that maps one figure onto the other. For Problem 2, because students can recreate the rigid transformations, they can say the figures are the same.

Math Language Development

MLR2: Collect and Display

Have students share their work with a partner. As they discuss with a partner, listen for and collect the language they use to describe each transformation. Record students' words on a visual display and update it throughout the remainder of the lesson.

English Learners

Include annotated drawings of the transformations on the class display so that students can connect the descriptions, words, and phrases to visual depictions of transformations.

Summary

Review and synthesize how a rigid transformation preserves side lengths and angle measures of an image.

Summary

In today's lesson .

You discovered that the translations, rotations, reflections, and sequences of these motions you have learned about so far are all examples of rigid transformations A rigid transformation is a move that does not change measurements - side lengths or angle measures - from the preimage to the image.
Earlier, you learned that a preimage and its image have corresponding points. A preimage and its image also have corresponding sides and corresponding angles When a preimage is transformed using a rigid transformation, corresponding sides have the same lengths and corresponding angles have the same measures,

Reflect:

Synthesize

Ask:

- "By studying two figures, how could you tell that one is not the image of the other under a rigid transformation?" Sample response: If the corresponding side lengths are not the same, or if the corresponding angle measures are not the same, then a rigid transformation has not occurred
- "What are the three types of rigid transformations?" translation, reflection, rotation
- "If a figure has undergone a sequence of rigid transformations to map onto another figure, what can you say about the two figures?" Sample response: The two figures have the same side lengths and the same angle measures.

Formalize vocabulary: rigid transformation

Highlight when a preimage is transformed using a rigid transformation, corresponding sides have the same lengths and corresponding angles have the same measure. Translations, rotations, and reflections are all examples of rigid transformations. Sequences of these transformations are also rigid transformations.

(D) Reflect

After synthesizing the concepts of the lesson, allow a few moments for student reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help students engage in meaningful reflection, consider asking:

- "What strategies or tools did you find helpful today when identifying a rigid transformation?"

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit, that you started in Lesson 1. Ask them to review and reflect on any terms and phrases related to the term rigid transformation that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding by determining the side lengths and angle measures of a polygon after a rigid transformation has been performed.

Name: \longrightarrow Date:

Exit Ticket

๔
1.09

Trapezoid $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of Trapezoid $A B C D$ after a rigid transformation has been performed

1. Label all the vertices on Trapezoid $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.
2. On both figures, label all known side lengths and angle measures.

```
Self-Assess
a I can describe the effects of a rigid transformation I can describe the effects of a rigid transformation
on the side lengths and angle measures of a polygon 123
```


Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Point to Ponder ...

> How well do your students understand rigid transformations? How well can they describe the effects of rigid transformations on the side lengths and angle measures of transformed figures?
> What might you change for the next time you teach this lesson?

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

UNIT 1 | LESSON 10

What Is the Same?

Let's decide whether shapes are the same.

Focus

Goals

1. Language Goal: Use the term congruent to describe two figures that can be mapped onto each other by using a sequence of rigid transformations. (Speaking and Listening, Reading and Writing)
2. Language Goal: Comprehend that congruent figures have corresponding side lengths, corresponding angle measures, and areas that are equal. (Speaking and Listening, Reading and Writing)
3. Language Goal: Comprehend that figures with the same area and perimeter may or may not be congruent. (Speaking and Listening, Reading and Writing)

Coherence

- Today

Students explore what it means for shapes to be the "same" and learn that the term congruent is a mathematical way to talk about figures being the "same." They understand that two figures are congruent if there is a sequence of rigid transformations that maps one onto the other. They realize that figures that are congruent can have different orientations, but corresponding side lengths and corresponding angle measures are equal.

< Previously

In Lesson 9, students learned that translations, rotations, and reflections are examples of rigid transformations. They saw that rigid transformations preserve side lengths and angle measures. In elementary grades, deciding whether two shapes are the "same" usually involves making sure that they are the same general shape and same size. As shapes become more complex and students use new ways to measure their attributes, such as side lengths and angle measures, this surfaces the need for a more precise way to talk about shapes being the "same."

Coming Soon

In Lesson 11, students will build on their understanding of congruent figures by testing whether two figures are congruent.

Rigor

- Students build conceptual understanding of what it means for two figures to be congruent.

Activity 1

Activity 2

Summary

Exit Ticket

() 15 min
(J) 5 min
ㅇํํํํํㅇ Whole Class
(J) 5 min

○ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- colored pencils
- geometry toolkits: rulers, protractors, tracing paper

Math Language
 Development

New word

- congruent

Review words

- corresponding
- orientation
- reflection
- rigid transformation
- rotation
- translation

Building Math Identity and Community Connecting to Mathematical Practices

In Activity 1, students may act as though their explanation is the only correct explanation and may not listen as actively to their peers' arguments. Provide students a thinking question before they share, such as, "As your classmates share, consider what your argument has in common and listen for arguments that reach the same conclusion from a different perspective."

Amps Featured Activity

Activity 1

See Student Thinking

Students manipulate and compare figures to determine if they are congruent and explain their thinking. These explanations are available to you digitally, in real time.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted. It serves to get students thinking about the orientation of figures.
- Activity 1 may be shortened to have students analyze parts a and b.
- In Activity 2, Problem 5 may be omitted and addressed later in Lesson 11.

Warm-up Find the Right Hands

Students find all the matching right hands to reinforce the concept of orientation and mirror images.

1) Launch

Activate background knowledge by asking students what they notice about their left and right hands.

Monitor

Help students get started by holding up both of your hands and pointing out that a person's hands are mirror images of each other.

Look for points of confusion:

- Thinking they should only see reflections. Point out that the hands have also been rotated.
- Shading some of the left hands because they think the palms can face up or down. Ask students if the palms of the hands are facing up or down by having them reread the directions.

3 Connect

Display student work.
Have students share the ways in which the left and right hands are the same, and the ways in which they are different.

Ask, "Is the image of a left hand the same as the image of a right hand? Are figures that are mirror images of each other the same or different?"

Highlight that the side lengths and angles for the left and right hands match up, but that a left hand will only perfectly match a right hand if it is flipped, or reflected. Connect this to what students learned in Lesson 9 - that rigid transformations, such as reflections, preserve side lengths and angle measures, even if the orientation is reversed. Announce that in today's lesson, students will build on this idea of what makes two figures "the same" and give mathematical meaning to the word "same."

(7) Power-up

To power up students' ability to determine the perimeter and the area of a

 rectangle, have students complete:Recall that the perimeter of a rectangle is the total length of the edges, while its area is the number of square units that cover it.

Determine the perimeter and the area of the rectangle.
Perimeter: 14 units
Area: 12 square units

Use: Before Activity 2
Informed by: Performance on Lesson 9, Practice Problem 4, and Pre-Unit Readiness Assessment, Problem 6

Activity 1 Are They the Same?

Students decide whether pairs of figures are "the same," leading them to see the need for a precise meaning of what makes two figures "the same." The term congruent is introduced.

Amps Featured Activity
See Student Thinking

Activity 1 Are They the Same?

For each pair of figures, decide whether they are the same.
Explain your thinking.

Pair	Are they the same?	Explain your thinking.
The figures are the same;		
the figure on the right is the		
image of the left figure after a		
reflection and translation.		

b
 match.
c
 reflection.
(d)

1 Launch

Provide access to geometry toolkits for the duration of the lesson.

Help students get started by showing how to use tracing paper to determine whether the pair of figures in part a are the same.

Look for productive strategies:

- Performing rigid transformations on the figures in parts a and c to determine they are the same.
- Noting the figures in part d are different sizes and, therefore, not "the same."

3 Connect

Display a student's table showing the correct responses for each pair of figures.

Have students share how they can explain why the figures in parts a and c are the same and why the figures in parts b and d are not the same.

Ask, "What do you mean by 'the same'? Are there any pairs of figures for which you found it challenging to determine if they are 'the same'?" Answers may vary as students may not always agree on what makes two figures "the same.'
Define that two figures are congruent if one figure can be mapped onto the other by a sequence of rigid transformations. Let students know that instead of using the phrase "the same," they will use the term "congruent" moving forward. Introduce the congruent symbol (\cong) along with an example of how it is used.

Highlight that one way to prove that two figures are congruent is to describe the sequence of rigid transformations that maps one figure onto the other. Have students determine the rigid transformations that produce the congruent figures in parts a and c.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on parts a and b and only work on parts c and d as time allows.

Extension: Math Enrichment

Explain to students that co- and con- in the term congruent is a Latin root which means together. Have students come up with other words that have this same root. The words do not have to be mathematical words. Sample responses: converse, coordinate, corresponding, costar, coworker, connect

Activity 2 Area, Perimeter, and Congruence

Students investigate the areas and perimeters of a group of rectangles to discover that figures of the same overall shape (e.g., rectangles) are not necessarily congruent.

Activity 2 Area, Perimeter, and Congruence

Study the rectangles shown. You will need access to your geometry toolkit.

1. Which of these rectangles have the same area as Rectangle R, but different perimeters? Explain your thinking.
Rectangle R has an area of 6 square units and a perimeter of 10 units. Rectangles B and C have the same area, 6 square units, but different perimeters. Rectangles B and C both have perimeters of 14 units.
2. Which rectangles have the same perimeter as Rectangle R, but different areas? Explain your thinking.
Rectangle R has an area of 6 square units and a perimeter of 10 units. Rectangle R has an area of 6 square units and a perimeter of 10 units.
Rectangles D and F have the same perimeter, 10 units, but different areas. Rectangles D and F both have areas of 4 square units.
3. Which have the same area and the same perimeter as Rectangle R ? Explain your thinking.
Rectangle R has an area of 6 square units and a perimeter of 10 units.
Rectangles A and E have the same perimeter and area.
4. Using your geometry tools, decide which rectangles are congruent. Shade congruent rectangles with the same color.
Students should shade Rectangles A, R, and E the same color. They should shade Rectangles B and C the same color. They should shade Rectangles D and F the same color:

1 Launch

Let students know that they will investigate the perimeters and areas of a group of rectangles in which there may or may not be congruent figures. Distribute colored pencils.

2 Monitor

Help students get started by asking them to explain how to find the perimeter and area of Rectangle R.

Look for points of confusion:

- In Problem 4, thinking that because all rectangles have the same overall shape, they are all congruent. Remind students of the definition of congruent from Activity 1.
- In Problem 5, thinking that if rectangles with the same area and same perimeter are congruent, then any two polygons with the same area and same perimeter are congruent. Ask students to see if they can produce a sequence of rigid transformations that maps one of the figures in Problem 5 onto the other.

Look for productive strategies:

- Organizing their work by finding and recording the area and perimeter for each rectangle in Problems 1-3.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Provide the areas and perimeters already calculated so that students can focus on comparing the rectangles. Consider also chunking this task into smaller, more manageable parts. For example provide students with a subset of the rectangles with which to begin and introduce the remaining rectangles once they have completed their initial set.

Math Language Development

MLR1: Stronger and Clearer Each Time

Provide students time to meet with 2-3 students to share and receive feedback on their responses. Display prompts for feedback that will help them strengthen their ideas and clarify their language. For example:

- "How was a sequence of transformations used to . . .?
- "What properties do the shapes share?"
- "What was different and what was the same about each pair?"

English Learners

Strategically pair students with partners who speak the same primary language. Allow students to share and receive feedback in their primary language

Activity 2 Area, Perimeter, and Congruence (continued)

Students investigate the areas and perimeters of a group of rectangles to discover that figures of the same overall shape (e.g., rectangles) are not necessarily congruent.

Activity 2 Area, Perimeter, and Congruence (continued)
5. These polygons have the same perimeter and the same area.

Are they congruent? Explain your thinking.

No, they are not congruent. One polygon cannot be mapped onto the other polygon using rigid transformations, which means they are not congruent.

48 Are you reasy yor mores

Figure $B D F H$ is a square. Points A, C, E, and G are selected and marked so that the lengths of the bold line segments are the same. Is Figure $A C E G$ also a square? Explain your thinking.
Sample response: Yes. Rotate Triangle $A B C$ 90° clockwise using the center of
Square $B D F H$ as the center of rotation. Segment $A C$ will map onto segment $C E$. As the rotation continues about the center segment $E G$ and then onto segment $G A$ proving that all four segments have the same length and all four angles are 90°.

Summary

Review and synthesize what it means for two figures to be congruent and how congruence is related to rigid transformations.

4

Name. Date \qquad

Summary

In today's lesson...

You explored what it means for two figures to be congruent. This is a new term for an idea you already know about and have been using. Two figures are congruent if one figure maps onto the other figure exactly by using a sequence of rigid transformations. The congruence symbol \cong can be used to show two figures are congruent. For example, $\triangle A B C \cong \triangle D E F$ means that the two triangles are congruent. The statement is read "Triangle $A B C$ is congruent to Triangle $D E F$ ".

Here are some other facts about congruent figures

- You do not need to check all the measurements to prove two figures are congruent. Instead, you can find a sequence of rigid transformations that maps one figure onto the other. If you can find such a sequence, then the figures are congruent.
Two figures that are exact mirror images of each other are congruent. This means there must be a reflection in the sequence of transformations that maps one figure onto the other.
Because two congruent polygons have the same area and the same perimeter, one way to show that two polygons are not congruent is to show that they have different perimeters or different areas

Reflect:

Synthesize

Have students share their best definition of the term congruent.

Ask

- "Are a figure and its mirror image congruent? Why or why not?" Yes, the mirror image is a reflection (rigid transformation) of the figure.
- "How can you determine whether two figures are congruent?" Recreate a sequence of rigid transformations, measure corresponding side lengths, measure corresponding angles
- "What are some ways to know that two figures are not congruent?" If a sequence of rigid transformations cannot map one figure onto the other, if corresponding side lengths are not the same, if corresponding angle measures are not the same, if the figures have different areas or perimeters
- "What are some characteristics that are shared by congruent figures?" Corresponding side lengths are the same and corresponding angle measures are the same.

Highlight that the term congruent does not precisely mean "same shape, same size," but that figures are congruent when there is a sequence of translations, rotations, and reflections (rigid transformations) that map one figure onto the other. Discuss the symbols used to represent triangle and congruence.

Formalize vocabulary: congruent

I. Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What does it mean for two figures to be 'the same'?"

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit, that you started in Lesson 1. Ask them to review and reflect on any terms and phrases related to the term congruent that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding by determining whether two figures are congruent.

亘 Printable

Name: \longrightarrow Date: \quad Per

Exit Ticket

 2GAre these figures congruent? Explain your thinking.
You may want to use your geometry toolkit.
You may want to use your geometry toolkit.

Yes, these figures are congruent
Sample response:

- A reflection across line ℓ maps one figure onto the other, so the figures are congruent.
The corresponding side lengths and corresponding angle measures are the same, which means the figures are congruent.

Lesson 10 What Is the Same?

Success looks like ...

- Language Goal: Using the term congruent to describe two figures that can be mapped onto each other by using a sequence of rigid transformations. (Speaking and Listening, Reading and Writing)
- Language Goal: Comprehending that congruent figures have corresponding side lengths, corresponding angle measures, and areas that are equal. (Speaking and Listening, Reading and Writing)
» Verifying whether the two figures are congruent.
- Language Goal: Comprehending that figures with the same area and perimeter may or may not be congruent. (Speaking and Listening, Reading and Writing)

Suggested next steps

If students do not describe rigid transformations, side lengths, or angle measures to determine congruence, consider:

- Reviewing strategies to determine congruence from Activity 1.
- Assigning Practice Problem 3.
- Asking, "How can you determine whether two figures are congruent?"

If students think the figures are not congruent because the orientation is reversed, consider:

- Reviewing the Warm-up and reminding students that a reflection is a type of rigid transformation.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\sim_{0} Points to Ponder ...
How did your students transition from thinking about what it means for two figures to be the "same" and congruent figures? Are they comfortable in using the term congruent moving forward?

What are the go-to strategies your students are using to determine whether two figures are congruent? Are they thinking about rigid transformations?

Math Language Development
Language Goal: Comprehending that congruent figures have corresponding side lengths, corresponding angle measures, and areas that are equal.
Reflect on students' language development toward this goal.

- Do students' responses to the Exit Ticket problem include mathematical language, such as:
» Identifying a reflection which is a rigid transformation?
» Indicating that corresponding side lengths and angle measures are equal?
- How can you help students be more precise in their justifications as to whether two given figures are congruent?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	2
	2	Activity 2	2
Spiral	$\mathbf{3}$	Activity 1	2
Formative 0	$\mathbf{4}$	Unit 1 Lesson 3	1

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Congruent Polygons

Let's decide whether two figures are congruent.

Focus

Goals

1. Language Goal: Compare and contrast side lengths, angle measures, and areas using rigid transformations to explain why two figures are, or are not, congruent. (Speaking and Listening, Reading and Writing)
2. Language Goal: Critique arguments about whether two figures with the same corresponding sides lengths may be non-congruent figures. (Speaking and Listening)
3. Language Goal: Justify that two polygons on a grid are congruent by describing a sequence of rigid transformations that maps one polygon onto the other. (Speaking and Listening, Writing)

Coherence

- Today

Students use rigid transformations that show two figures are congruent and construct arguments for why two figures are not congruent. They come to understand that, for many shapes, simply having corresponding side lengths that are equal will not guarantee the figures are congruent.

< Previously

In Lesson 10, students defined what it means for two figures to be congruent and began to apply this meaning to determine if two figures are congruent.

Coming Soon

In Lesson 12, students will apply their understanding of congruence to different types of figures, such as ovals.

Rigor

- Students continue to build conceptual understanding of what it means for two polygons to be congruent.

(c) 5
5 min
$\bigcirc \bigcirc$ Pairs
(
15 min

(1) 15 min
ㅇํ Pairs
© -5 min
ํํํ Whole Class
(1) 5 min
\bigcirc Independent

Amps powered by desmos \vdots Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- geometry toolkits: rulers, protractors, tracing paper

Math Language
 Development

Review words

- congruent
- corresponding
- orientation
- reflection
- rigid transformation
- rotation
- translation

Building Math Identity and Community Connecting to Mathematical Practices

In Activity 1, students may feel defeated if they struggle to precisely describe their thinking. Have them use their geometry tools and consider assigning strategic partners so that students feel more supported in accurately describing the rigid movements of congruent figures.

Amps ! Featured Activity

Activity 1
 Digital Geometry Tools

Students use digital geometry tools to determine whether two polygons are congruent.

desmos

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted. It provides an opportunity for students to think about figures that have undergone more than one rigid transformation.
- In Activity 1, you may omit parts c and d as they are additional examples of figures that may or may not be congruent.
- In Activity 2, you may omit Problem 2

Warm-up Translated Images

Students examine a set of congruent triangles to determine the type of transformation performed for each triangle.

Unit 1 | Lesson 11

Congruent Polygons

Let's decide whether two figure are congruent.

Warm-up Translated Images
Study the triangles shown. All of these triangles are congruent to Triangle $A B C$, and all of the triangles were translated. Some of the triangles were also rotated and/or reflected.

1. Label triangles that were also rotated as "Roo."
2. Label triangles that were also reflected as "Re."

1. Launch

Provide access to geometry toolkits for the duration of the lesson.

(2) Monitor

Help students get started by selecting a triangle and demonstrating how it was transformed using tracing paper.

Look for points of confusion:

- Thinking the triangles that were reflected were actually rotated. Ask students if they can demonstrate the reflection using tracing paper, and when they are not able to, ask what transformation is needed to achieve the resulting triangle.

Look for productive strategies:

- Using tracing paper to note each transformation.
- Labeling corresponding vertices to determine whether a reflection has occurred that reverses the orientation of the triangle.

3 Connect

Display student work showing correct responses.

Have students share their strategies for determining the types) of transformations performed for each triangle.

Ask, "Which transformation did you recognize first? Which was the most challenging? Why?"

Highlight that if an image is translated, it will have the same direction. Rotations usually change the direction of an image and reflections usually change the orientation of the image. Being able to quickly recognize these three types of transformations will be useful when planning out a sequence of transformations to prove congruence.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge,

 Optimize Access to ToolsUse a think-aloud to model and demonstrate to students how you would determine which triangles were only translations of Triangle $A B C$ first Have students cross those triangles out so that they can focus on the remaining ones. Then model how you would use tracing paper to determine one triangle that is an example of a rotation and one that is an example of a reflection. Have students determine the remaining ones.

Activity 1 Congruent Pairs

Students determine whether pairs of polygons on a coordinate plane are congruent to understand that both side lengths and angle measures must be preserved for figures to be congruent.

1 Launch

Ask, "What are the ways you can determine whether two figures are congruent?"
(2) Monitor

Help students get started by asking if they can perform a transformation to map one figure onto the other in part a.

Look for points of confusion:

- Visually determining congruence or using tracing paper and saying informally "they look the same." Have students explain congruence in terms of rigid transformations. Alternatively, have students measure side lengths and angles to check congruence.

Look for productive strategies:

- Using both ways of checking congruence: rigid transformations and measuring side lengths and angle measures.

3 Connect
Display all four pairs of figures and use the Poll the Class routine to see which students thought which pairs of figures were congruent.
Have students share how they can check whether each pair of figures is congruent by using rigid transformations. Start by having students who measured the side lengths and angle measures share their thinking. Then call on students who used transformations; sequence the transformation strategies by those who used the greatest number of transformations to those who used the least number.
Ask, "What happens if you try to use rigid transformations to map one figure onto the other in part b?"
Highlight that when two figures are congruent, there is a rigid transformation that matches one shape up perfectly with the other.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, allow them to focus on completing two of the four problems in this activity. Consider allowing them to choose which problems they would like to complete. Once students have successfully completed the problems, invite them to share their responses with a partner prior to a whole class discussion.

Extension: Math Enrichment

Have students find a second way to prove the figures are congruent, either by describing transformations or by determining the measures of side lengths and angles.

Math Language Development

MLR8: Discussion Supports—Revoicing

As students present their strategies during the Connect discussion, encourage them to restate and revoice their peers' ideas. Consider having each student describe the previously shared strategy in their own words, before sharing their own strategy.

English Learners

Use hand gestures to illustrate the rigid transformations. Connect the terms used by displaying a visual similar to the following: translation, rotation, reflection $=$ rigid transformations \rightarrow congruent.

Activity 2 Are You Sure They Are Congruent?

Students critique arguments to determine the best reasoning for deciding whether two polygons are congruent.

(1) Launch

Set an expectation for the amount of time students will have to work in pairs.

Monitor

Help students get started by asking them whether they can determine if the two polygons in Problem 1 are congruent by using rigid transformations.

Look for points of confusion:

- Thinking that if both figures have the same area (Problem 1), then they are congruent. Show students an example of two polygons with the same area and same side lengths, and ask whether they are congruent. Display Problem 5 from Lesson 10 , Activity 2 , if needed.
- Thinking that if both figures have the same side length measures (Problem 2), then they are congruent. Have students try to perform a sequence of rigid transformations to map one figure onto the other.

Look for productive strategies:

- Using both rigid transformations and features of the figures, for example, angle and side length measures, to determine whether the figures are congruent.

Activity 2 continued >

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on completing Problem 1 , and only work on Problem 2 as time allows.

Math Language Development

MLR8: Discussion Supports-Restate It!

During the Connect discussion, revoice student ideas to demonstrate mathematical language used by restating a statement as a question in order to clarify, apply appropriate language, and involve more students.

English Learners

Highlight complex phrases, such as "if two figures have different corresponding side lengths, then they are not congruent. However, the converse is not true; just because two figures have the same side lengths, it does not necessarily mean they are congruent." If time allows, address converse statements about congruent angles.

Activity 2 Are You Sure They Are Congruent? (continued)

Students critique arguments to determine the best reasoning for deciding whether two polygons are congruent.

3 Connect

Display each problem, discussing each one before moving on to the next problem.

Have pairs of students share which argument they thought was most convincing for Problem 1 by using the Poll the Class routine.

Ask:

- "Why was the argument in Problem 1, choice B the most convincing argument?" Rigid transformations preserve side lengths and angle measures.
- "Did you use any measurements (length, area, angle measures) to help decide whether the polygons are congruent?" Answers may vary.
- "Why was the argument in Problem 1, choice A not a convincing argument?" A lot of different figures can have 4 sides and an area of 5.5 square units and not be congruent.
- "Would arguments C and D, if used together, in Problem 1 be a convincing way to prove congruence?" Yes, because if the side lengths and angle measures are the same, then I know that the figures are congruent.
- "In general, when proving congruence, what types of arguments are most convincing?" Arguments that demonstrate the specific rigid transformations or arguments that describe both the side lengths and angle measures being equal.
- "In Problem 2, why is it not enough for Andre to claim that the figures are congruent if their side lengths are the same?" Two figures can have the same side lengths without being congruent, as demonstrated by the figures in Problem 2.
Highlight that, as in the previous activity, if two figures have different side lengths, then they are not congruent. However, the converse is not true - just because two figures have the same side lengths, it does not necessarily mean they are congruent. The same is true for angles congruent angle measures alone are not enough to prove congruence.

Summary

Review and synthesize how to determine whether two polygons are congruent.

Summary

In today's lesson.

You applied the definition of congruence to polygons. You learned that:

- Two polygons are congruent when there is a sequence of translations, rotations, and reflections that map one polygon onto the other.
Two polygons are not congruent if they have different side lengths, different angle measures, or different areas

Even if two polygons have the same side lengths, they might not be congruent. With four sides of the same length, for example, you can create many different rhombuses that are not congruent to one another because the angles may be different.

Reflect

Ask:

- "How do you know whether two polygons are congruent?"
- "How do you know whether two polygons are not congruent?"
- "If you know two polygons have different side lengths, is that enough to determine that the polygons are not congruent?" Yes
- "If you know two polygons have the same side lengths, is that enough to determine that the polygons are congruent?" No
- "If you know two polygons have the same angle measures, is that enough to prove congruence?" It is not enough.
Have students share an example of polygons that have the same side lengths, but are not congruent. Then have students share an example of polygons that have the same angle measures, but are not congruent.

Highlight that even if two figures have the same side lengths, they may not be congruent. With four sides of the same length, for example, students can construct many different rhombuses that are not congruent to one another, because the angle measures are different.

(1. Reflect

After synthesizing the concepts of the lesson allow a few moments for student reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help students engage in meaningful reflection, consider asking:

- "What strategies or tools did you find helpful today when identifying congruent polygons?"

Exit Ticket

Students demonstrate their understanding of congruent polygons by describing a sequence of transformations that proves two polygons are congruent.

Name: \square Date: \quad Period: \square _

56

Describe a sequence of transformations that shows that Quadrilateral $A B C D$ is congruent to Quadrilateral $E F G H$.

Sample response: Rotate Quadrilateral $A B C D 90^{\circ}$ clockwise
about Point A. Reflect the image across segment $A D$
Translate the image $A B C D 6$ units to the right.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Point to Ponder...

> How did your students approach Activity 2? Are they progressing in their understanding of what it means for two figures or polygons to be congruent, beyond informal observations that figures "look like the same size and shape"?
> What might you change for the next time you teach this lesson?

Practice Problem	Analysis		
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	2
Spiral	$\mathbf{2}$	Activity 1	2
Formative 0	$\mathbf{5}$	Unit 1 Lesson 2	2

Additional Practice Available

For students that need additional practice in this lesson, assign the Grade 8 Additional Practice

O Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Congruence

Let's find ways to test congruence of polygons and other interesting figures.

Focus

Goals

1. Determine whether figures are congruent by measuring the distances between corresponding points.
2. Draw and label corresponding points on congruent figures.
3. Language Goal: Justify that in congruent figures, the corresponding distances between pairs of points are equal. (Speaking and Listening, Writing)

Coherence

- Today

Students explore the idea that the distance between any pair of corresponding points of congruent figures must be the same. Because there are too many pairs of points to consider, this is mainly a criterion for showing that two figures are not congruent; that is, if there is a pair of points on one figure where the points are a different distance apart than the corresponding points on another figure, then those figures are not congruent. For congruent figures built out of several different parts (for example, a collection of circles) the distances between all pairs of points must be the same.

< Previously

So far, students have mainly looked at congruence for polygons. The line segments in polygons provide easily-defined distances and angles to measure and compare.

> Coming Soon

In high school, students will build on what they know about determining congruence of polygons and other figures, such as ovals, and focus more specifically on finding ways of determining congruence of triangles.

Rigor

- Students develop conceptual understanding about the distances between corresponding points of congruent figures.
- Students apply their understanding of congruence to determine whether two faces are congruent.

Warm-up

Activity 1

Activity 2

Activity 3

Summary

Exit Ticket

(J) 5 min	(J) 12 min
\bigcirc ○ Independent	$\stackrel{\bigcirc}{\cap}$ Independent

$(\perp) 8 \mathrm{~min}$
ㅇํ Pairs

(1) 5 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- geometry toolkits: rulers, tracing paper, protractor

Math Language Development

Review words

- congruent
- rigid transformation
- translation
- rotation
- reflection
- corresponding
- orientation

Building Math Identity and Community
 Connecting to Mathematical Practices

At first, students may feel lost trying to make conjectures or justify their reasoning about congruence with non-polygons. Ask students to consider what is different about the figures they are studying today and encourage them to explain their thinking by first talking about what they find challenging about determining a justification for congruence. That level of metacognition will help students identify a different approach to the activity.

Amps Featured Activity

Activity 2
 Interactive Geometry

Students use digital geometry tools to explore congruence with non-polygons.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted and used as a formative practice problem in Lesson 11
- Activity 3 may be omitted as it reinforces the concepts learned in Activity 2.

Warm-up Not Just the Vertices

Students locate corresponding points (non-vertices) to better understand a figure's structure, preparing them for testing congruence among curved figures in the upcoming activities.

1 Launch

Set an expectation for the amount of time students will have to work individually on the activity.

Monitor

Help students get started by asking, "Which point corresponds to point A ?"

Look for points of confusion:

- Not realizing that corresponding points don't have to be vertices. Have students describe the transformation that maps point E onto point E^{\prime}, for example, and ask them how that transformation compares to the one that maps point A onto point A^{\prime}.
- Mislabeling the points. Remind students that the order of points matters. Show how point A corresponds to point A^{\prime} and have students relabel any points they have mislabeled.

3 Connect

Display student work showing correct responses.

Have students share how they identified the corresponding points.
Highlight that when two figures are congruent, every point on one figure has a corresponding point on the other figure.

Ask, "How can you use points on the two polygons to determine whether the polygons are congruent?" Sample response: I can find the lengths of line segments between two points and see that all corresponding lengths are the same.

Differentiated Support

Accessibility: Optimize Access to Tools

Provide access to tracing paper to assist students in identifying corresponding points.

Power-up

To power up students' ability to determine congruence, have students complete:

Select all of the true statements about two congruent polygons.
A. Their areas are the same.
B. Their angles are the same measure.
C. Their perimeters are the same.
(D.) One polygon can be mapped onto the other by a series or rotations, reflections, and translations.

Use: Before the Warm-up
Informed by: Performance on Lesson 11, Practice Problem 5 and Exit Ticket

Activity 1 Corresponding Points in Congruent Figures

Students locate corresponding points on figures and connect and measure line segments to deepen their understanding of congruence as they apply the concept to curved shapes.

Activity 1 Corresponding Points in Congruent Figures

Here are two congruent shapes with some corresponding points labeled.

1. Label the points corresponding to B, D, and E with B^{\prime}, D^{\prime}, and E^{\prime}.
2. Draw line segments $A D$ and $A^{\prime} D^{\prime}$ and measure them. Repeat for segments $A E$ and $A^{\prime} E^{\prime}$ and for segments $B C$ and $B^{\prime} C^{\prime}$. What do you notice? Each pair of line segments has the same length.
3. Do you think there could be a pair of corresponding segments with different lengths? Explain your thinking.
Sample response: No. Any pair of corresponding segments will necessarily have the same lengths because if the lengths were different the figures would not be the same.

1. Launch

Have students conduct Think-Pair-Share routine.
(2) Monitor

Help students get started by demonstrating the transformations that map one figure onto the other.

Look for points of confusion:

- Thinking there could be corresponding side lengths of different lengths in Problem 3. Have students draw an example of what they are thinking. Then have them perform rigid transformations to see if the figure they drew is congruent to the preimage in the activity.

3 Connect
Display correct student work.
Have students share how they located the corresponding points, starting with students who identified corresponding parts of each figure to help label points, followed by students who performed rigid transformations. Have students share their thinking behind their responses to Problems 2 and 3.

Ask, "Which strategy would have worked best to locate point C^{\prime} had it not been marked?"

Highlight that performing rigid transformations matches the shapes up perfectly. This method allows students to locate the corresponding point on the image for any point on the preimage. Identifying key features only works for points such as A, B, D, and E, which are vertices and can be identified by the parts of the figures that are "joined" at these points.

Differentiated Support
Accessibility: Vary Demands to Optimize Challenge, Guide Visualization and Processing

If students need more processing time, have them focus on completing Problems 1 and 2, and only work on Problem 3 as time allows. Provide students with the images on grid paper to assist in labeling corresponding parts and measuring line segments.

Extension: Math Enrichment

Have students use tracing paper to create a new figure that is either congruent to the shape in the activity, or slightly different.

Math Language Development

MLR7: Compare and Connect

Call students' attention to the different strategies used to match figures to identify corresponding points. As students respond to the Ask question from the Connect, consider asking these follow-up questions to help them clarify their thinking

- "If you identify corresponding points, how would you locate point C '?"
- "If you use transformations, how would you locate point C^{\prime} ?"

English Learners

Use hand gestures to illustrate how rigid transformations could be used to locate point C^{\prime}.

Activity 2 Congruent Ovals

Students begin to explore the subtleties of congruence for curved shapes.

Name: \quad Date: \quad,
Activity 2 Congruent Ovals

Four ovals are shown. Are any of the ovals shown congruent to one another? Explain your thinking.

Sample response: The top two ovals are congruent to each other and the bottom two ovals are congruent to each other. To best determine if the ovals in each pair
are congruent, I can trace one of the top pair of ovals on tracing paper and check that it can be mapped onto the other oval. I can repeat this for the bottom pair of ovals.

1 Launch

Give students three minutes of quiet work time, and then invite them to share their reasoning with a partner, followed by a whole-class discussion. Provide access to geometry toolkits for the duration of the lesson.

2 Monitor
Help students get started by asking what they notice that is different about these figures than ones they have previously studied.

Look for points of confusion:

- Not knowing how to precisely determine congruence for curved shapes. Let students know that ovals or curved shapes can be more challenging than polygons, yet their geometry tools can help them. Have students use tracing paper to find congruent ovals.

Look for productive strategies:

- Using precise language of transformations as students attempt to move one traced oval to match up perfectly with another.

3 Connect

Display the ovals.
Have students share which ovals are congruent and how they know they are congruent, starting with students who used measurements for length and width, followed by students who described a sequence of rigid transformations.

Ask, "What is different about determining congruence with ovals than with polygons?"

Highlight that using transformations is essential when showing that two of the ovals match up because, unlike polygons, these shapes are not determined by a finite list of vertices and side lengths.

Differentiated Support

Accessibility: Activate Prior Knowledge

Connect this new concept to one with which students have experienced prior success. For example, review the criteria used to determine congruence for polygons so that students can transfer these strategies in determining congruence for curved shapes.

Math Language Development

MLR5: Co-craft Questions

Ask, "What mathematical questions could you ask about this situation?" The purpose of this routine is to allow students to make sense of a context before feeling pressure to produce responses, and to develop students' awareness of the language used in mathematics.

English Learners

Consider using a think-aloud strategy to model how to craft a mathematical question about the situation before having students craft their own.

Activity 3 Astonished Faces

Students determine whether two faces are congruent to understand that while individual parts of two figures may be congruent, the entire figures may not be congruent.

Activity 3 Astonished Faces

Are these faces congruent? Explain your thinking.

Sample response: No. While the individual components of the faces are congruent, for example the eyes and mouth, the faces as a whole are no congruent. For example, the mouths can be mapped to each other using distance between the mouth and the eyes are not the same for each face. For these two figures to be congruent, all corresponding points, and the distance between those points, must be the same.

1 Launch

Set an expectation for the amount of time students will have to work in pairs on the activity.

Monitor

Help students get started by having them find a pair of points on each figure that will help test congruence.

Look for points of confusion:

- Thinking the two faces are congruent if all the individual parts of the face are congruent. Have students draw a segment between a pair of corresponding points on the mouth and eyes of each figure, measure the segments, and ask what they notice.

Look for productive strategies:

- Selecting corresponding points between the figures, noting that different translations are used for each, and using that information to show the faces are not congruent.

3 Connect

Display the two faces and use the Poll the Class routine to see which students think the faces are congruent and which students think the faces are not congruent.

Have pairs of students share what strategies they used to determine whether the faces were congruent.

Ask, "The size and shape of the mouths and eyes are the same, so why are these two figures not congruent?"

Highlight that even though the individual parts of the two faces are congruent, the two faces as a whole are not congruent. For the two figures to be congruent, the same transformation has to apply to all parts of the figure.

Accessibility: Vary Demands to Optimize Challenge, Optimize Access to Tools

Provide access to tracing paper for students to use during the activity. Consider chunking this task into smaller, more manageable parts. For example, present one section of the face at a time and monitor students to ensure they are making progress throughout the activity.

Math Language Development

MLR8: Discussion Supports-Revoicing

As pairs share their results and reasoning, revoice their ideas using terms such as congruent figures. Invite students to use the terms when describing their results and sharing their strategies.

English Learners

Encourage students to refer to the class display of key terms and phrases to assist them in the discussion.

Summary

Review and synthesize how to check whether two non-polygonal figures are congruent.

Summary

In today's lesson.

You explored different ways to show congruence between sets of polygons and other interesting figures

To show that two figures are congruent, you can map one figure onto the other by a sequence of rigid transformations. This is true even for figures with curved sides. Distances between corresponding points on congruent figures are always equivalent, even for curved shapes.

To show two figures are not congruent, you can find parts of the figures that would correspond if the figures were congruent, but in reality have different measurements

Here is an example of two figures that are not congruent.

[^10]
Synthesize

Display the Summary from the Student Edition.
Ask, "How can you best explain why these two figures are not congruent?"

Sample responses:

- The distance from the top to the bottom in one figure is different from the distance from the top to the bottom in the other figure
- By performing rigid transformations, I am not able to map one figure onto the other.

Have students share responses to this question with their partners before sharing with the whole group. Start by calling on students who can explain how to use distances on the figures to determine they are not congruent. Then have students share how rigid transformations would prove these figures are not congruent.

Highlight that for two figures to be congruent, the distance between pairs of corresponding points must be the same.

Reflect

After synthesizing the concepts of the lesson, allow a few moments for student reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help students engage in meaningful reflection, consider asking:

- "How could you use the distance within a figure to help determine whether it is congruent to another figure?"

Exit Ticket

Students demonstrate their understanding by determining whether two figures are congruent.

甾 Printable

Name: \longrightarrow Date: \square Period: \quad _ _ _ _

Exit Ticket
2G

Are Figures A and B congruent? Explain your thinking.

No; Sample response: If you draw a line segment to represent the width of igure A and Figure B, Figure A would have a width of approximately 3 units cannot be congruent.

Success looks like ...

- Goal: Determining whether figures are congruent by measuring the distances between corresponding points.
» Measuring the widths of the two figures to determine whether they are congruent.
- Goal: Drawing and labeling corresponding points on congruent figures.
- Language Goal: Justifying that, in congruent figures, the corresponding distances between pairs of points are equal. (Speaking and Listening, Writing)

Suggested next steps

If students use informal language to state that the two figures "look different and are not the same," consider:

- Asking, "What strategies can you use to check whether these two figures are congruent?"
- Reviewing Activity 1.
- Assigning Practice Problem 2.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

0 Point to Ponder . .

> How did students approach Activity 1? Did any of your students experience frustration when trying to determine whether any of the ovals were congruent? If so, what helped them work through their frustration?
> What might you change for the next time you teach this lesson?

> 4. Refer to the four lines shown.
(a) Name a pair of lines that Lines a and b
b Name a pair of lines that appear to be perpendicular. - Lines a and d

Lesson 12 Congruence 89

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	1	Activities 2 and 3	1
	2	Activities 2 and 3	2
Spiral	3	Unit 1 Lesson 4	1
Formative 0	4	Unit 1 Lesson 13	1

© Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Students consider parallel lines and transversals and study the measures of the alternate interior angles that are formed. These concepts help students build a framework for understanding dilations, similarity, and slope in later units.

Narrative Connections

Read the narrative aloud as a class or have students read it individually. Students will closely inspect lines and angles - just as physicists did to determine the the shape of the Universe - in the following places:

- Lesson 14, Activity 2: Solving for Unknown Angles
- Lesson 16, Activity 2 : Tear It Up
- Lesson 18, Activity 1 : How Is It Made?

UNIT 1 | LESSON 13

Line Moves

Let's transform some lines.

Focus

Goals

1. Draw and label rotations of 180° of a line segment about the midpoint, a point on the segment, and a point not on the segment.
2. Language Goal: Generalize the outcome when rotating a line segment 180°. (Speaking and Listening, Writing)
3. Language Goal: Describe observations of lines and parallel lines under rigid transformations, including lines that are taken to lines and parallel lines that are taken to parallel lines. (Speaking and Listening, Writing)

Coherence

- Today

Students rotate line segments 180° and apply rigid transformations on parallel lines. When students compare their application of a rigid transformation with their peers, they begin to see that lines are taken to lines and parallel lines are taken to parallel lines.

< Previously

In Lesson 12, students explored the idea that the distance between any pair of corresponding points of congruent figures must be the same.

Coming Soon

In Lesson 14, students will investigate how a 180° rotation about a point of two intersecting lines rotates each angle to an angle that is vertical to its preimage.

Rigor

- Students build conceptual understanding about how rigid transformations affect lines, line segments, and parallel lines.

Warm-up

Activity 1

Activity 2

Summary

Exit Ticket
$\bigoplus 5$ min
ㅇํㅇํํ Whole Class
© 6 min
\bigcirc Independent

Amps powered by desmos Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- geometry toolkits: rulers, tracing paper

Math Language
 Development

Review words

- angle of rotation
- center of rotation
- rigid transformation
- rotation

Building Math Identity and Community

Connecting to Mathematical Practices
Students may start to lose focus as they look for structure when rotating line segments. Encourage them to persist as they look for patterns. For example, have them pause and focus on one step at a time. Have them use resources, such as tracing paper, to regain motivation.

Amps Featured Activity

Activity 1
 Interactive Geometry

Students can drag points to create transformations of a preimage. You can overlay student answers to provide immediate feedback.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In the Warm-up, provide the final image and focus on Problem 4.
- In Activity 1 , you may arrange students in groups of three and assign students Problem 1a, 1b, or 1c.

Warm-up Rotating a Triangle

Students examine several rotations of an isosceles triangle to reinforce the idea that applying a rigid transformation on a figure preserves its side length and angle.

Warm-up Rotating a Triangle
Refer to the isosceles right triangle shown.

1. Rotate the isosceles right triangle 90° clockwise about point B. Draw the image.
2. Rotate the original isosceles right triangle 180° about point B. Draw the image
3. Rotate the original isosceles right triangle 270° clockwise about point B. Draw the image.

> 4. What do you notice?
Sample response: The resulting figure that includes the original triangle and its three images is a square.

1 Launch

Activate students' prior knowledge by asking them about the features of an isosceles right triangle. Provide access to geometry toolkits for the duration of the lesson.

(2) Monitor

Help students get started by reminding them that an isosceles right triangle has a right angle and two sides of equal lengths.

Look for productive strategies:

- Using tracing paper to help them rotate the triangle.
- Using the right angle in the triangle to help with each rotation.
- Noticing the resulting image is a square.

3 Connect

Have pairs of students share their conclusions about rotating an isosceles right triangle.
Highlight that rotating the isosceles right triangle 90° interchanges the four copies of the triangle. The lengths and angle measures of the figure are preserved under the rotation.
Ask:

- "What do you notice about the figure?" Sample response: It is a square. I know this because the isosceles right triangle maps onto itself, so all of the sides of the figure are the same. Because one angle of the triangle measures 90°, I know the sum of the other two angles in each triangle measures 90° and therefore each angle in the figure also measures 90°
- "What do you know about the two opposite sides?" The opposite side lengths are equal in length and parallel.

Accessibility: Optimize Access to Tools

Have students use tracing paper to rotate the figure. Consider demonstrating how to use the tracing paper to rotate the figure in Problem 1 Then have students complete Problems 2-4 with their partner.

Activity 1 Rotating a Segment

Students explore special cases of rotating a line segment 180°, seeing that this rotation produces a parallel segment the same length as the original.

1. Launch

Set an expectation for the amount of time students will have to work on the activity.

2 Monitor

Help students get started by telling them to draw a vertical, horizontal, or diagonal line segment with points A, B, and C on the cross section of the grid. Suggest that students draw the line and point toward the center of the grid to ensure the image after the rotation can be drawn on the grid.

Look for points of confusion:

- Not being sure of the midpoint. Remind students that this point is halfway between points A and B. Encourage students to measure the line segment or use the grid to help them locate the midpoint.
- Not being sure of the patterns. Have students compare their line segments with each member in their group to look for and make use of structure.

Look for productive strategies:

- Drawing diagonal segments.
- Noticing the line segment remains the same length.
- Noticing they are performing a rigid transformation.

3 Connect

Display the different line segments created and the image under each rotation in Problem 1.

Ask, "What is the same about your line segment and image and the line segment and image for each person in your group?"

Have groups of students share what they noticed when rotating a line segment 180°.

Highlight that a 180° rotation produces an image that is the same length and is parallel to or on the same line as the preimage.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge,

 Optimize Access to TechnologyHave students draw a horizontal or vertical line segment (not diagonal) to use during the activity. Alternatively, have students use the Amps slides for this activity, in which they see an animated movement of line segments when they are rotated 180° about different centers of rotation.

Extension: Math Enrichment

Have students explore different locations for point C in Problem 1b and describe what they notice.

Math Language Development

MLR8: Discussion Supports

Use this routine to support whole class discussion as students discuss whether it is necessary to specify the direction of a 180° rotation. After each student shares, call on other students to restate what was shared using developing mathematical language, e.g., rotation, line segment, midpoint, etc.

English Learners

Use a Think-Pair-Share strategy to allow students to rehearse with a peer before sharing out with the whole class.

Activity 2 Parallel Lines

Students perform three different transformations on a set of parallel lines to see that parallel lines are taken to parallel lines under a rigid transformation.

Activity 2 Parallel Lines

The diagram shows parallel lines a and b, point K, and line h.

1. Have each member in your group choose one of the following transformations to perform. Perform the transformation on the grid provided here.

- Translate lines a and $b 3$ units up and 2 units to the right. Response shown on graph above.
- Rotate lines a and $b 180^{\circ}$ about point K Response shown on graph below.
- Reflect lines a and b across line h. Response shown on graph below.

2. Discuss each transformation with your group. What do you notice about the image of two parallel lines under a rigid transformation? The lines remain parallel and the distance between them is the same.

1) Launch

Activate students' prior knowledge by asking them what they know about parallel lines.

Monitor

Help students get started by having each student choose a different transformation to perform.

Look for points of confusion:

- Having trouble performing their transformation. Have students trace line a and line b on tracing paper.
- Having trouble determining the distance between the lines. Have students determine the shortest distance by drawing and measuring a perpendicular segment from a point on line a to a point on line b.

Look for productive strategies:

- Noticing the lines remain parallel and the distance between them remains the same. Select these students to share during the Connect.

3 Connect
Display student work showing one example of each transformation

Have groups of students share what they noticed about parallel lines under a rigid transformation.

Highlight that when a rigid transformation is performed on parallel lines, the lines remain parallel and the distance between the lines stays the same. Illustrate this idea using hand gestures.

Differentiated Support

Extension: Math Enrichment, Interdisciplinary Connections

Tell students that the geometry they are learning is called Euclidean geometry. Another type of geometry, spherical geometry, is the geometry of the two-dimensional surface of a sphere. Point out that spherical geometry best describes the geometry of Earth. Consider bringing in an inflatable plastic sphere, or a balloon, and illustrate these principles of spherical geometry. (Science)

- Straight lines are actually great circles that go around the entire sphere. Draw sample lines on the sphere to illustrate this concept.
- There are no parallel lines. Draw sample lines on the sphere to illustrate why the longitude lines of Earth are not actually parallel.

Math Language Development

MLR7: Compare and Connect

Have students compare with their groups what they noticed about parallel lines under rigid transformations. Encourage them to make connections between each others' observations. As students share, emphasize that the lines remain parallel and the distance between the lines remains the same.

English Learners

Use hand gestures to illustrate that the lines remain parallel and the distances remain the same.

Summary

Review and synthesize the outcome of rotating a line segment 180° and performing rigid transformations on two parallel lines.

Summary

In today's lesson...

You applied a 180° rotation to a line segment and discovered the following:
When the center of rotation is

- the midpoint of the line segment, the segment maps onto itself, except the endpoints are switched.
- an endpoint of the line segment, the segment together with its image form a segment twice as long as the original.
- not a point on the line segment, the image is parallel to the original segment.

You also applied different rigid transformations to parallel lines. A rigid transformation of two parallel lines results in two parallel lines that are the same distance apart as the original two lines.
$>$ Reflect:

Synthesize

Have students share what they noticed when they rotated a line segment 180° and applied a rigid transformation on two parallel lines.
Highlight:

- Highlight that a 180° rotation produces an image that is the same length and is parallel to or on the same line as the preimage.
- A rigid transformation of two parallel lines results in two parallel lines that are the same distance apart as the original two parallel lines.

D Reflect

After synthesizing the concepts of the lesson, allow a few moments for student reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help students engage in meaningful reflection, consider asking:

- "What strategies or tools did you find helpful today when rotating lines? How were they helpful?"
- "Were any strategies or tools not helpful? Why?"

Math Language Development

MLR2: Collect and Display
Capture the language discussed during the Synthesize section using the class display. For example, "A 180° rotation produces an image that is the same length and is parallel to or on the same line as the preimage" should be added to the display and students should be encouraged to refer to this during future discussions.

Exit Ticket

Students demonstrate their understanding by locating the center of rotation of a line segment that is rotated 180° and identifying the outcome of the rotation.

Period:

Exit Ticket

5

1.13

Line segment $A B$ is rotated 180° about point $O-$ not shown - to create line segment $C D$.

1. Draw the center of rotation and label it as point O. Show or explain your thinking. Point O is halfway between the corresponding points of the line segment, at a 180° angle.
2. Which statements are true about line segment $A B$ and its image? Select all that apply
A. Line segment $A B$ is parallel to line segment $C D$.
B. Line segment $A B$ has the same length as line segment $C D$
C. Line segment $A B$ is longer than line segment $C D$.
D. Point A corresponds to point D.
E. Point A corresponds to point C.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C. Points to Ponder ...

What resources did students use as they worked on rotating line and line segments 180° ? Which resources were especially helpful?
In earlier lessons, students rotated figures on a grid. How did that support how students rotated lines and line segments 180° ?

The diagram shows
point K, and line h.
, K, and line h.
Elena rotates line a about point K, and then reflectst the image
the final image a.
Jada rotates line b about point K, and then reflects the image across line h. She labels the final image b^{\prime}.
What is true about lines a^{\prime} and b^{\prime} ?
Sample response: The distance
between a^{\prime} and b^{\prime} is the same as
between a^{\prime} and b^{\prime} ' is the same a
the distance between a and b.
Lines a^{\prime} and b^{\prime} are parallel.
4. The graph shows two quadrilaterals. Describe a sequence of transformation that maps Quadrilateral $A B C D$ onto
Quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.
Sample response: Rotate 180° about
point C and then translate the image point C, and then translate the image
four units to the right. four units to the right.

5. The diagram shows intersecting lines.
a List all the pairs of vertical angles. Pair 1: $\angle A B E$ and $\angle C B D$ Pair 2: $\angle A B C$ and $\angle E B D$
b Listall the pairs of supplementary angles. Pair 1: $\angle A B E$ and $\angle A B C$ Pair 2: $\angle A B C$ and $\angle C B D$ Pair 3: $\angle C B D$ and $\angle E B D$ Pair 4: $\angle E B D$ and $\angle A B E$

Lesson 13 Line Moves 97

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

UNIT 1 | LESSON 14

Rotation Patterns

Let's rotate some angles.

Focus

Goals

1. Comprehend that congruent, vertical angles are formed when an angle is rotated 180° about the intersection point of two intersecting lines.
2. Language Goal: Generalize that vertical angles are congruent using informal arguments about 180° rotations of lines, line segments, or angles. (Speaking and Listening)

Coherence

- Today

Students apply a 180° rotation of two intersecting lines to justify that vertical angles are congruent. Students look for and make use of structure when they are presented with intersecting lines and are asked to determine unknown angle measures.

\checkmark Previously

In Lesson 13, students rotated line segments and applied rigid transformations to parallel lines.

> Coming Soon

In Lesson 15, students will investigate parallel lines intersected by a transversal and will justify that alternate interior angles are congruent.

Rigor

- Students build conceptual understanding that vertical angles are congruent by using rigid transformations.

Activity 1

Activity 2

Summary

Exit Ticket

(1) 20 min
(1) 12 min
ㅇํㅇ Pairs
() 5 min
ํํํํํํ Whole Class
(1) 5 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, \log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- geometry toolkits: protractors, rulers, tracing paper

Math Language Development

Review words

- angle of rotation
- center of rotation
- congruent
- rotation
- rigid transformation
- straight angle
- vertical angles

Building Math Identity and Community Connecting to Mathematical Practices

Students may feel lost as they try to look for and make use of structure when determining missing angle measures. Have them engage in metacognitive functions by asking them to think about their own thinking process. For example, have them look at the diagram and list everything they notice before they determine any missing angle measures.

Amps : Featured Activity

Activity 1
 Interactive Geometry

Students can drag points to create transformations of a preimage. You can overlay student answers to provide immediate feedback.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted. It reinforces the idea that multiple transformations can result in the same image.
- In Activity 2, Problem 2 may be omitted.

Warm-up How Many Ways?

Students describe transformations to understand that different transformations can result in the same image.

1 Launch

Set an expectation for the amount of time students will have to work in pairs on the activity. Provide access to geometry toolkits for the Warm-up and Activity 1.

(2) Monitor

Help students get started by reminding them to describe the specific transformation including details about the line of reflection, center of rotation, or direction of translation.

Look for points of confusion:

- Having trouble describing the line of reflection. Have students draw and label the line of reflection before describing it.
- Questioning the angle of rotation for part b. Allow access to a protractor or have students estimate the angle.

Look for productive strategies:

- Noticing that line ℓ^{\prime} is 4 units above line ℓ in part a and describing this as a translation.
- Noticing that line ℓ can be rotated to map onto line ℓ^{\prime} in part b.
- Seeing different types of transformations that result in the same image for parts a and b.

Connect

Have pairs of students share the transformations they wrote for each image. Use the Poll the Class routine to see which students thought of the same transformations.

Ask, "Will a single translation work for the image in part b? Explain your thinking." No, a translation of the line will be parallel to the original line or the same line.

Highlight that sometimes different transformations of a preimage can result in the same image.

Power-up
To power up students' ability to recognize vertical and supplementary angles, have students complete:

1. Identify whether each pair of angles are vertical or supplementary a $\angle A O B$ and $\angle B O C$ supplementary b $\angle A O B$ and $\angle D O C$ vertical c $\angle A O D$ and $\angle B O C$ vertical d $\angle D O C$ and $\angle B O C$ supplementary

2. If $\mathrm{m} \angle A O B=40^{\circ}$, determine each angle measure a $\mathrm{m} \angle B O C=140^{\circ}$
b $\mathrm{m} \angle C O D=40^{\circ}$
c $\mathrm{m} \angle D O A=140^{\circ}$
Use: Before Activity 1
Informed by: Performance on Lesson 13, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 4

Activity 1 Let's Do Some 180s

Students apply their understanding of 180° rotations to informally demonstrate the alternate interior angle theorem and vertical angle theorem.

Activity 1 Let's Do Some 180s

1. The figure shows a line with points A and C on the line and a segment $A D$ where point D is not on the line.

a Rotate the figure 180° about point C. Label the points corresponding to A and D with A^{\prime} and D^{\prime}.
b What do you know about the relationship between $\angle C A D$ and $\angle C A^{\prime} D^{\prime}$? Show or explain your thinking.
Sample responses:

- The angle measures are the same because a rigid transformation does not change angle measures.
I used a protractor to measure the angles and found that both angle measures are 55°.

1 Launch

Set an expectation for the amount of time students will have to work in pairs on the activity.

2 Monitor

Help students get started by reminding them that when rotating a line segment 180° about a point on the segment, the image of the segment will be on the same line.

Look for points of confusion:

- Not understanding that rotating the figure includes both segments $C A$ and $A D$ in Problem 1. Because students have been rotating one segment at a time up to this point, explain that the entire figure includes both segments. Encourage them to use tracing paper to help visualize the rotation.

Look for productive strategies:

- For Problem 1, noticing that the measures of $\angle C A D$ and $\angle C A^{\prime} D^{\prime}$ are the same because they applied a rigid transformation.
- For Problem 1, noticing that segment line $A D$ is parallel to segment line $A^{\prime} D^{\prime}$ because they rotated the figure 180°.
- For Problem 2, noticing line $A A^{\prime}$ is a straight line and line $D D^{\prime}$ is a straight line, so $\angle A O D$ and $\angle A^{\prime} \mathrm{O} D^{\prime}$ are vertical angles.

Differentiated Support
Accessibility: Vary Demands to Optimize Challenge
Instead of having students perform the rotations, provide the rotated figures for Problems $1 a$ and $2 a$ and have students focus on completing Problems 1b and 2b.

Extension: Math Enrichment

While this activity focused on performing rotations of 180° to prepare students for understanding vertical angles, ask students to rotate the figure in Problem 190° clockwise about point C. Ask, "Do the angle measures still stay the same? Why or why not?" Yes, it does not matter what the angle of rotation is. Any rotation is a rigid transformation.

Math Language Development

MLR7: Compare and Connect

Use this routine as students share what they noticed during the Connect discussion. Ask them to consider what changes and what stays the same when 180° rotations are applied to the figures. Consider asking, "Why did the angle measures stay the same?" A rotation is a rigid transformation, which does not change angle measures (or distances).

English Learners

Consider displaying a visual similar to the following: translation, rotation, reflection $=$ rigid transformations \rightarrow angle measures and distances stay the same.

Activity 1 Let's Do Some 180s (continued)

Students apply their understanding of 180° rotations to informally demonstrate the alternate interior angle theorem and vertical angle theorem.
(3) Connect

Activity 1 Let's Do Some 180s (continued)
2. The figure shows two lines ℓ and m that intersect at a point O. Point A is on the line ℓ and point D is on the line m.

(a) Rotate the figure 180° about point O. Label the points corresponding to A and D with A^{\prime} and D.
b What do you know about the relationship between the angles in the figure? Explain or show your thinking. Sample responses:

The angle measures are the same because a rigid transformation does not change the angle measures.

- I used a protractor to measure the angles and found $\mathrm{m} \angle A O D$ and $\mathrm{m} \angle A^{\prime} O D^{\prime}$ both have a measure of 45° and $\mathrm{m} \angle D O A^{\prime}$ and $\mathrm{m} \angle D^{\prime} O A$ both have a measure of 135°

Display correct student work for Problems 1a and $2 a$.

Have pairs of students share the relationships they found between the angle measures of the preimage and image and their reasoning about these relationships. Start by having students share who measured the angles, and then have students share who used rigid transformations.

Ask:

- "How do you know segment line $A D$ is parallel to segment line $A^{\prime} D^{\prime}$ in Problem 1?" A rigid transformation was performed, so the angle measures are preserved. This means that $\angle D A C$ and $\angle D^{\prime} A^{\prime} C$ have equal measures, which means the lines are parallel.
- "How do you know that line $A A^{\prime}$ and line $D D^{\prime}$ are straight lines in Problem 2?" A rigid transformation was performed, so angle measures are preserved. Because there are two pairs of vertical angles and the full circle measures 360°, I know these are straight lines, each measuring 180°.
- "How do you classify angles like $\angle A O D$ and $\angle A^{\prime} O D^{\prime}$ in Problem 2?" Vertical angles
- "How many pairs of vertical angles do you see in the figure for Problem 2?" Two pairs of vertical angles

Highlight that two pairs of congruent angles, called vertical angles, are formed when two lines intersect. Vertical angles have the same measure.

Activity 2 Solving for Unknown Angles
Students examine three intersecting lines that pass through the same intersection point to discover that each pair of vertical angles have the same measure.
(4) Name: Date: _ Period:

Activity 2 Solving for Unknown Angles

Points A, B, and C are located at different distances from point O. The points A, B, and C are each rotated 180° about point O creating the images of points A^{\prime}, B^{\prime}, and C^{\prime}.

1. Name a segment that has the same length as segment $A O$. Explain your thinking. Sample response: Segment $A^{\prime} O$ has the same length as segment $A O$ because a rotation is a rigid transformation.
2. List all the angles that have a measure of 40°. Explain your thinking.

Sample response: $\angle A O C^{\prime}$ and $\angle A^{\prime} O C$; Because $\angle A^{\prime} O C$ has a given measure
of 40°, I know $\angle A O C^{\prime}$ has the same measure because they are vertical angles.
3. List all the angles with a measure of 70°. Explain your thinking. $\angle A O B, \angle A^{\prime} O B^{\prime}, \angle B O C, \angle B^{\prime} O C$

- $\angle A O B$ and $\angle A^{\prime} O B^{\prime}$ are vertical angles.
- The measure of $\angle B O C$ is 70° because $180-70-40=70$. $\angle B^{\prime} O C^{\prime}$ and $\angle B O C$ are vertical angles.

1 Launch

Students should not have access to geometry toolkits, but instead should apply what they know about vertical angles, straight angles, and rigid transformations to complete the activity.

2 Monitor

Help students get started by asking them to identify a pair of vertical angles in the diagram.

Look for points of confusion:

- Only listing $\angle A O B$ and $\angle A^{\prime} O B^{\prime}$ for Problem 3. Ask students to determine the remaining angles in the diagram, and then revisit this problem.
- Not being sure how to determine the measure of $\angle B O C$. Ask students to look for angles that form a straight line. Remind them that a straight angle measures 180°.

Look for productive strategies:

- Noticing that $\mathrm{m} \angle A O A^{\prime}$ is 180° and using this to determine $\mathrm{m} \angle B O C$.
- Noticing that the sum of all the angle measures is 360° and connecting this to the measure of a full circle.

3 Connect

Have pairs of students share their strategies for determining side lengths and angle measures that are the same.

Ask, "What strategies did you use to determine $\mathrm{m} \angle B O C$?" Sample response: I noticed that $\angle A O A^{\prime}$ is a straight angle so its measure is 180°. I subtracted 70° and 40° from 180°, which means $\mathrm{m} \angle B O C$ is 70°.

Highlight that when you know there are intersecting lines and you know at least one angle measure, you can determine the measures of other angles by looking for vertical angles and straight angles.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge, Guide Visualization and Processing, Optimize Access to Tools
If students need more processing time, have them focus on completing Problems 1 and 2 and only work on Problem 3 as time allows. Consider providing colored pencils for students to use to color code the vertical angle pairs

Extension: Math Enrichment

Provide a similar diagram, but change the given angle measures to 65° for $\angle A O B$ and 35° for $\angle A O C$. Have students use what they know about the measures of straight angles and vertical angles to determine all of the angle measures in the diagram.

Math Language Development

MLR8: Discussion Supports

As pairs of students share their strategies for determining side lengths and angle measures, highlight the chain of reasoning involved in determining the missing measures. For example, ask "Building on what you know about intersecting lines and straight angles, how can you determine the missing measures?"

English Learners

Provide sentence frames for students to use to explain how they determined the angle measures, such as:

- I know that __ and __ have the same measure because they are vertical angles,

Summary

Review and synthesize how vertical angles can be proven congruent by reasoning about rigid transformations.

Summary

In today's lesson...

You rotated intersecting lines 180° about their point of intersection. Because a rotation is a rigid transformation that preserves angle measures, the vertical angles are congruent

Reflect:

Ask, "How does a 180° rotation affect the angle measures for a pair of intersecting lines?"

Have students share what they noticed when intersecting lines are rotated 180°.

Highlight that a rotation of two intersecting lines about the point of intersection rotates each angle to an angle that is vertical to its preimage. Since rotation is a rigid transformation that preserves angle measures, the vertical angles must have the same measure.

(I) Reflect

After synthesizing the concepts of the lesson, allow a few moments for student reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help students engage in meaningful reflection, consider asking:

- "How did you apply your understanding of rotations to help you determine an angle measure?"

Exit Ticket

Students demonstrate their understanding by identifying congruent sides and angles when a figure is rotated about 180° about a point.

Professional Learning

Success looks like ...

- Goal: Comprehending that congruent, vertical angles are formed when an angle is rotated 180° about the intersection point of two intersecting lines.
» Explaining that side lengths and angle measures are preserved under a rotation in Problems 1, 2, and 3.
- Language Goal: Generalizing that vertical angles are congruent using informal arguments about 180° rotations of lines, line segments, or angles. (Speaking and Listening)
» Explaining why the vertical angles are congruent in Problem 2.

Suggested next steps

If students do not know that the length of segment $A C^{\prime}$ is the same as the length of segment $A C$ in Problem 1, consider:

- Providing tracing paper to show the 180° rotation.
- Asking them to identify the corresponding line segments in the image.
- Reviewing the fact that rigid transformations preserve side lengths.

If students do not identify a pair of vertical angles and their measures in Problem 2, consider:

- Drawing different diagrams of intersecting lines and having students identify the vertical angles.
- Reviewing the fact that rigid transformations preserve angle measures.
- Reviewing Activity 1.

If students do not identify congruent angles in Problem 3, consider:

- Reviewing the fact that rigid transformations preserve angle measures.
- Reassessing after Lesson 15.

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C. Points to Ponder ...

The instructional goal for this lesson is to comprehend that congruent, vertical angles are formed when an angle is rotated 180° about the intersection point of two intersecting lines. How well did your students comprehend this concept? What did you specifically do to help students comprehend it?

Thinking about the questions you asked students today and what they said or did as a result of your questions, which question was the most effective? The least effective? How might you alter your questioning techniques moving forward?

© Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice

Alternate Interior Angles

Let's explore why some angles are always congruent.

Focus

Goals

1. Determine angle measures using alternate interior, adjacent, vertical, and supplementary angle relationships to solve problems.
2. Language Goal: Justify that alternate interior angles formed by a transversal connecting two parallel lines are congruent using properties of rigid motions. (Speaking and Listening, Writing)

Coherence

- Today

Students look for and make use of structure by exploring the relationship between angles formed when two parallel lines are intersected by a transversal. Students discover that alternate interior angles are congruent using rigid transformations and angle relationships.

< Previously

In Lesson 14, students applied their understanding of rigid transformations when they rotated intersecting lines 180° in order to establish the fact that vertical angles are congruent.

> Coming Soon

In Lesson 16, students will justify that the sum of the interior angle measures of a triangle is 180° using rigid transformations.

Rigor

- Students build conceptual understanding about angle relationships formed when parallel lines are intersected by a transversal.

Warm-up

Activity 2

Activity 3

Summary

(1) 5 min	(1) 8 min	(1) 12 min	(1) 8 min	(1) 5 min	(1) 5 min
\bigcirc ¢ Independent	กำ Pairs	กำ Pairs	ํำ Pairs	กักำกำ Whole Class	$\bigcirc \bigcirc$ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- protractors

Math Language
 Development

New words

- alternate interior angle
- transversal

Review words

- rotation
- supplementary angles
- translation
- vertical angles

Building Math Identity and Community

Connecting to Mathematical Practices
At first, students may not see a clear path to finding the requested angle measurements and might want to quit before really getting started. Encourage students to set a goal of initially analyzing the structure of each figure to mark what they do know about the angle relationships or measures given. Students can repeat until they have solved the problem. By looking only one step ahead, a task can seem much more manageable

Amps \vdots Featured Activity

Activity 2

Angle Countdown
In real time, students are informed how many more angles they should measure.
 desmos

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up can be omitted.
- In Activity 2, have students complete Problem 3.
- Activity 3 may be omitted as students extend their understanding to study a diagram in which there are two transversals intersecting a pair of parallel lines.

Warm-up Notice and Wonder

Students study intersecting lines to prepare them for learning about angle relationships that are formed when parallel lines are intersected by a transversal in upcoming activities.

1 Launch

Conduct the Notice and Wonder routine using the figure.

2 Monitor

Help students get started by asking them what makes this figure similar to and different from the other figures they have seen in this unit.

Look for productive strategies:

- Noticing a line that intersects lines $A C$ and $D F$.
- Noticing that eight angles are formed and that some of those angles appear to be the same size.
- Wondering if lines $A C$ and $D F$ are parallel.

3 Connect

Have students share what they noticed and wondered. Record and display their responses for all to see.

Define a transversal (or transversal line) is a line that intersects two or more lines.

Highlight that a transversal can pass through two or more lines that may or may not be parallel.

Ask, "Does anyone notice anything interesting about the angles in the figure?" Note: Students will investigate these angles in the next activity.

Math Language Development

MLR8: Discussion Supports

As you define the term transversal during the Connect discussion, emphasize that a transversal is a line that intersects two or more lines. The two lines do not have to be parallel. Consider drawing and labeling some examples, such as the following

- 2 parallel lines intersected by 1 transversal.
- 2 parallel lines intersected by 2 different transversals
- 2 intersecting lines (but not parallel) intersected by 1 transversal.
- 2 intersecting lines (but not parallel) intersected by 2 different transversals.

Power-up
To power up students' ability to identifying lines and angles in diagrams, have students complete:

Recall that one way that lines can be named is by identifying two points on the line, and angles can be named using three, where the vertex is the middle point

1. Highlight or shade the line $A B$.
2. Highlight or shade $\angle C D E$.

Use: Before Activity 1
Informed by: Performance on Lesson 14, Practice Problem 5

Activity 1 Alternate Interior Angles

Students explore the relationships between angles formed when two parallel lines are intersected by a transversal line to learn that alternate interior angles are congruent.

Activity 1 Alternate Interior Angles

You will be given a protractor. Refer to the diagram. Lines $A C$ and $D F$ are parallel. They are intersected by transversal JH.

1. Use your protractor to measure the seven missing angle measures. $\mathrm{m} \angle J E F, \mathrm{~m} \angle A B H$, and $\mathrm{m} \angle E B C$ all measure 72°. $\mathrm{m} \angle D E J, \mathrm{~m} \angle B E F, \mathrm{~m} \angle A B E$, and $\mathrm{m} \angle H B C$ all measure 108°
2. What do you notice when a transversal intersects a pair of parallel lines? Sample responses:

- Eight angles are formed.
- Two sets of congruent angles are formed with four congruent angles in each set.
- The congruent angles seem to be in the same position along the parallel lines related to the transversal.
- Some of the angle pairs are supplementary.

1 Launch
Have students complete Problem 1 individually, Then have them share their responses with a partner before completing Problem 2. Provide access to geometry toolkits for this activity only.

2 Monitor

Help students get started by having them label the measure of $\angle F E J$.

Look for points of confusion:

- Not knowing how to determine missing angle measures in the figure. Encourage students to look for supplementary angles. Allow students to check their work using a protractor.

Look for productive strategies:

- Noticing that there are only two different angle measurements.
- Remembering that a 180° rotation about the midpoint of segment $E B$ produces congruent angles.

3 Connect

Have pairs of students share what they noticed about the angle measures. Begin with students who used a protractor to measure the angles, and then have students share who used angle relationships and transformations.

Define alternate interior angles. Say, "Alternate interior angles are created when a pair of parallel lines are intersected by a transversal. These angles lie inside the parallel lines and on opposite (alternate) sides of the transversal."

Highlight that alternate interior angles are congruent.

Ask, "How can you show that alternate interior angles are congruent using rigid transformations?" A 180° rotation about the midpoint of segment $E B$ produces congruent angles.

Differentiated Support

Accessibility: Guide Processing and Visualization

Provide the angle measure for $\angle C B E$ as 108° to assist students as they begin the activity. Provide colored pencils or highlighters for students to use to highlight the angles $\angle D E B, \angle J E F, \angle A B H$, and $\angle E B C$ to emphasize the congruent measures.

Extension: Math Enrichment

Have students draw a pair of nonparallel lines intersected by a transversal and use a protractor to measure the angles to see if the same type of angle relationships are formed.

Math Language Development

MLR8: Discussion Supports

Use this routine to amplify students' mathematical uses of language when describing and demonstrating transformations used for showing that alternate interior angles are congruent.

English Learners

Allow pairs of students to rehearse together before sharing with the whole class.

Activity 2 Three, Five, Seven

Students determine angle measures using angle relationships to understand how angles are related when two parallel lines are intersected by a transversal.

Amps Featured Activity
Angle Countdown

In each diagram, line $A C$ is parallel to line $D F$. The lines are intersected by transversal $H J$. The figures may not be drawn to scale
>1. Determine any three angle measures that are not currently labeled. The diagram shows all seven missing angle measures. Student responses should indicate three of these angle measures.

2. Determine any five angle measures that are not currently labeled.
The diagram shows all seven missing angle measures. Student responses cate five of these
angle measures.

3. Determine all seven angle measures that are not currently labeled.

Lesson 15 Aternatelnterior Angles

1 Launch

Collect geometry toolkits. Set an expectation for the amount of time students will have to work in pairs on the activity.

2 Monitor

Help students get started by asking them to identify any pair of congruent angles.

Look for points of confusion:

- Not knowing how to determine a missing angle measure. Remind students that alternate interior angles are congruent and supplementary angles have a sum of 180°. Ask them what they can do with this information.
- Labeling congruent angle measurements because the angles "look like the same size". Ask students how they can be certain that the angles do not differ in measure by one degree. Encourage them to use rigid transformations and angle relationships to determine the angle measures.

Look for productive strategies:

- Using alternate interior, vertical, and supplementary angles to determine the measure of missing angles.

3 Connect

Display student work showing the angle measures they determined.

Have students share their strategies for determining the missing angle measures.

Ask, "What were some angle relationships you used to find missing measures?" vertical angles, supplementary angles, alternate interior angles

Highlight that although each figure has seven angles, there are only two different angle measures. This happens when a transversal intersects a pair of parallel lines.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge, Guide Processing and Visualization

If students need more processing time, have them focus on Problem 3, and only work on Problems 1 and 2 as time allows. Consider highlighting the three angles congruent to the given angle to assist students in processing the visual information.

Extension: Math Enrichment

Provide a diagram similar to the one in Problem 3, but label the given angle measure x. Have students write expressions that represent the angle measures of the remaining seven angles. Students should write the expressions x and $180-x$ in the correct locations.

Activity 3 Double Transversals

Students apply what they know about angle relationships and extend it to analyze a diagram in which two transversals intersect a pair of parallel lines.

Activity 3 Double Transversals

Refer to the diagram. Lines ℓ and m are parallel. The lines are intersected by two transversals, j and k.

What is the sum of $\mathrm{m} \angle C A B, \mathrm{~m} \angle A B D, \mathrm{~m} \angle B D C$, and $\mathrm{m} \angle D C A$? Show or explain your thinking. $\mathrm{m} \angle C A B+\mathrm{m} \angle A B D+\mathrm{m} \angle B D C+\mathrm{m} \angle D C A=360^{\circ}$. Sample response:

- Iknow $\mathbf{m} \angle C A B=100^{\circ}$ because it forms a vertical angle pair with the angle labeled 100°.
I know $\mathrm{m} \angle A B D=112^{\circ}$ because $\angle A B D$ and the
 I know $\mathrm{m} \angle A B D=112^{\circ}$ because $\angle A B D$ and the
angle labeled 112° are alternate interior angles.
I know $\mathrm{m} \angle B D C=68^{\circ}$ because it is know $\mathrm{m} \angle B D C=68$ because it
I know $\mathrm{m} \angle D C A=80^{\circ}$ because $\angle D C A$ is
congruent to its alternate interior angle, which
is supplementary to the angle labeled 100°

AR Are you ready for more?

Refer to the diagram. Parallel lines ℓ and m are intersected by two transversals that
1 Launch
Set an expectation for the amount of time students will have to work in pairs on the activity.

Help students get started by asking them which angles have a measure of 100°.

Look for points of confusion:

- Thinking that $\mathbf{m} \angle D C A=112^{\circ}$. Remind students that only lines ℓ and m are parallel.
- Struggling to understand the more complex diagram. Show one parallel line and transversal at a time. Use a sheet of paper to cover line j. Have students record the angle measures, and then repeat the process with line k.

Look for productive strategies:

- Using strategies they have learned, such as supplementary angle pairs and alternate interior angles to determine the 14 missing angle measures

Connect

Display student work showing the angle measures they determined.

Have students share their strategies for how they determined the angle measures.

Ask, "Without measuring, why is $\mathrm{m} \angle D C A$ not equal to 112° ?" If $\mathrm{m} \angle D C A=112^{\circ}$, then lines j and k must be parallel.

Highlight that if a pair of parallel lines is intersected by two transversals, students can calculate the missing angles by studying one transversal at a time.

Differentiated Support
Accessibility: Guide Processing and Visualization
Provide the angle measure for $\angle D C A$ as 80° to assist students as they begin the activity.

Extension: Math Enrichment

Have students make a conjecture about the sum of the angle measures in any trapezoid.

Math Language Development

MLR2: Collect and Display

As students discuss with a partner, listen for and collect vocabulary, phrases, and gestures they use to describe the diagrams. Record these onto the class visual display and update it throughout the lesson. Remind students to borrow language from the display as needed in future discussions.

Summary

Review and synthesize the relationship between angles formed when two parallel lines are intersected by a transversal.

Synthesize

Display the Summary from the Student Edition.
Have students share the strategies they used in this lesson to determine angle measures when two parallel lines are intersected by a transversal.

Highlight that vertical angles are always congruent and when parallel lines are intersected by a transversal, alternate interior angles are congruent.

Formalize vocabulary:

- alternate interior angle
- transversal

Ask, "How many angle measures can you determine if you are given a pair of parallel lines, a transversal intersecting those lines, and one angle measure?" All the angle measures can be found using angle relationships.

Note: You may choose to introduce the term corresponding angles. Use the figure from the Warm-up to highlight corresponding angles, such as $\angle H B C$ and $\angle B E F$.

(Reflect

After synthesizing the concepts of the lesson, allow a few moments for student reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help students engage in meaningful reflection, consider asking:

- "What strategies or tools did you find helpful today when determining an angle measure? How were they helpful?"
- "Were any strategies or tools not helpful? Why?"

(12R)
 Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit, that you started in Lesson 1. Ask them to review and reflect on any terms and phrases related to the term congruent that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding by identifying congruent angles formed when two parallel lines are intersected by a transversal.

冒 Printable

Exit Ticket

2G

Lines $A C$ and $D F$ are parallel and are intersected by transversal $H J$.

. List all the angles that are congruent to $\angle A B H$ $\angle E B C, \angle D E B, \angle J E F$
2. List all the angles that are congruent to $\angle A B E$ $\angle H B C, \angle B E F, \angle D E J$

Success looks like...

- Goal: Determining angle measures using alternate interior, adjacent, vertical, and supplementary angle relationships to solve problems.
» Determining angles congruent to a given angle using these relationships in Problems 1 and 2.
- Language Goal: Justifying that alternate interior angles formed by a transversal connecting two parallel lines are congruent using properties of rigid motions. (Speaking and Listening, Writing)

- Suggested next steps

If students do not list all the congruent angles, or list incorrect angles, for Problems 1 and 2, consider:

- Providing one angle measure to students and then reassessing by having them determine the remaining angle measures.
- Reviewing Activity 1.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\sim_{0} Points to Ponder ...
During the discussion for Activity 3, how did you encourage your students to listen to one another's strategies?
How did students self-manage today? How are you helping them become aware of their progress with the mathematical concepts in this unit?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	1	Activity 1	2
	2	Activity 2	2
	3	Activity 2	2
Spiral	4	Unit 1 Lesson 6	1
Formative ©	5	Unit 1 Lesson 16	1

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Adding the Angles in a Triangle

Let's explore the interior angles of triangles.

Focus

Goals

1. Language Goal: Comprehend that a straight angle can be decomposed into three angles to construct a triangle.
(Speaking and Listening, Reading and Writing)
2. Language Goal: Justify that the sum of the interior angle measures of a triangle is 180°. (Speaking and Listening, Writing)

Coherence

- Today

Students examine the relationships among the interior angles of a triangle. They explore different triangle angle sums and observe that if a straight angle is decomposed into three angles, it appears that the three angles can be used to create a triangle.

< Previously

In Lesson 15, students explored the relationship angles formed when two parallel lines are cut by a transversal and found that alternate interior angles are congruent.

Coming Soon

In Lesson 17, students will continue to explore the interior angles of a triangle and conclude that any triangle has an interior angle sum of 180°.

Rigor

- Students begin to build conceptual understanding that the sum of the angle measures in any triangle is 180°.

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 2 PDF, pre-cut cards, one set per group
- Activity 2 PDF, Making a Triangle (for display)
- geometry toolkits: protractors, rulers
- scissors

\section*{Amps | Featured Activity |
| :--- |}

Activity 1
 Interactive Geometry

Students drag points to create different triangles, seeing how the angles and their measures change, but how the sum of the angle measures remains 180°.

Building Math Identity and Community
 Connecting to Mathematical Practices

Students who are more confident with this mathematical concept may be able to lead discussions within their groups. Have these students help their peers in using the structure of a straight angle to help discover the sum of the measures of the interior angles in a triangle. Remind them to add to the conversation in ways that are helpful, but to also "step back" to give other voices a chance to share.

Math Language
 Development

Review words

- interior angle
- transversal

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- Activity 1 may be shortened by having students complete Problems 1 and 2.
- Activity 2 may be shortened by having students complete Problems 1 and 3.

Warm-up Three Triangles

Students visually inspect three triangles to predict the triangle with the greatest interior angle sum and test their predictions in the next activity.

1 Launch

Set an expectation for the amount of time students will have to work independently on the activity.

Monitor

Help students get started by asking them to estimate the angle measures for each triangle and reminding them that interior angles are the angles located inside the triangle.

Look for points of confusion:

- Thinking they have to measure the angles.

Do not provide access to protractors, as students will be given the angle measures in Activity 1. Ask students to do a visual inspection and make a prediction.

Look for productive strategies:

- Noticing the right angle symbol represents an angle measure of 90°.
- Knowing that the sum of the interior angle measures for any triangle is 180°. Ask students to pause on sharing this until it is revealed in Activity 1, as other students are still exploring.

3 Connect

Have students share which triangle they thought had the greatest interior angle sum by using the Poll the Class routine. Record the number of students who chose each triangle.
Ask, "Do you think the side lengths of the triangle affect the sum of its interior angles?"

Power-up

To power up students' ability to determine the measure of an unknown angle in a straight-angle diagram, have students complete:

Recall that when two or more angles form a straight line, their sum is 180°.

1. Which expressions can be used to determine the measure of the unknown angle? Select all that apply.
A. $180-(88+43)$
B. $88+43$
C. $90-43$
D. $180-88-43$

Use: Before Activity 2
Informed by: Performance on Lesson 15, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 5

Activity 1 Find All Three

Students determine the sum of the interior angles of different triangles to generalize that the sum of the interior angles in any triangle is 180°.

Activity 1 Find All Three

Refer to the same triangles from the Warm-up, now with their interior angle measures labeled. The figures may not be drawn to scale.

1. Determine the sum of the interior angle measures for each triangle.
a Triangle 1
Triangle 2
180°
Triangle 3: 180°
2. What do you notice about the sum of the interior angle measures? The three triangles all have an interior angle sum of 180°
3. Draw a different triangle. Make a prediction for the sum of the interior angle measures
Triangles may vary, but students should begin to discover and
predict the sum of the interior angles of any triangle will be 180°.
4. Measure the interior angles. Was your prediction correct?

Sample response: Yes, my prediction was correct.

1. Launch

Activate students' prior knowledge by asking them how they can determine the greatest interior sum of a triangle. Have students work in pairs to complete Problems 1 and 2. If time allows, have students complete Problems 3 and 4 individually. Then have them compare their work with a partner. Provide access to geometry toolkits for Problems 3 and 4 .

2 Monitor

Help students get started by asking them how they can find the sum of the interior angles of the triangles given.

Look for points of confusion:

- Thinking they do not have enough information to determine the sum of the angle measures for Triangle 3. Ask students what the square in the lower left corner represents. a 90° angle
Look for productive strategies:
- Noticing the sum of the interior angle measures in each of the three triangles is 180°.

3 Connect

Have pairs of students share what they noticed about the sum of the interior angle measures for each of the three triangles in Problem 1. Have students share how the triangle they drew in Problem 1 compares to the triangles from Problem 1

Ask students if the side lengths affect the sum of the interior angles. If they think that a triangle with longer sides will have an interior angle sum greater than 180°, ask them to draw a triangle with longer sides and have them use a protractor to measure the angles to check their thinking.
Highlight that the sum of the interior angles of each of these triangles, including the one they drew, is 180°.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on Triangles 1 and 2 , and only complete the activity for Triangle 3 as time allows. Alternatively, consider providing a different triangle already drawn and labeled for students to use in Problems 3 and 4 instead of having them draw the triangles and measure the angles.

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can drag points to create different triangles and see how the angle measures change, yet the sum of the angle measures remains the same.

Activity 2 Tear It Up

Students experiment with angles to discover that three angles with measures that have a sum of 180° can be used to form a triangle.

Activity 2 Tear It Up
You will be given a set of two cards.

1. For Card A , complete the following tasks
a Cut out the angles so that you have three separate angles
b Can you create a triangle by placing the three angles together? Yes
c Were the other members in your group able to make a triangle from the three angles they were given? Yes
2. For Card B, complete the following tasks.
(a) Draw two line segments that each start from the given point so as to divide the straight angle into three angles. The angles do not have to be the same size. Try to create angles so that your partner cannot make a triangle from them.
b Label the interior of each angle with your initials. Then trade cards with your partner
c Were you able to make a triangle using the three angles given to you by your partner?
Yes
d Were the other members in your group able to make a triangle from the three angles they were given?
Yes
3. What do you notice about the relationship between straight angles and the interior angles of a triangle?
Sample response: A triangle can be created from three angles that form a Sample response: A triangle can be created from three angles that form a
straight line. A straight angle has a measure of $\mathbf{1 8 0}^{\circ}$, which is the same as th sum of the angles in the triangles from Activity 1
A. Are you ready for more?
4. Draw a quadrilateral. Cut it out, tear off the angles, and place the angle so that they share a common vertex. What do you notice? The angles form a circle.
5. Repeat this for several more quadrilaterals. Make a conjecture about the angle measures Sample response: All of the angles in the quadrilaterals can be arranged to form a circle. I know a circle measures 360°, so I predict that the sum of the interior angles of a quadrilateral is 360°.

1 Launch

Provide each group with a set of cards from the Activity 2 PDF. Tell students they will start with Card A. Provide access to rulers and scissors.

2 Monitor

Help students get started by displaying the Activity 2 PDF, Making a Triangle. For Problem 1, show students how a triangle is formed using the three angles. Tell students that they may draw extra lines to join the angles and form a triangle. This is indicated by the dotted line. For Problem 2, show students how to create three angles by drawing two line segments from the given point

Look for points of confusion:

- Thinking that the three angles cannot be rearranged to form a triangle. Encourage students to rotate the angles. If students still do not find a way to form a triangle, have them work with a peer helper.

Look for productive strategies:

- Noticing each set of three angles can be rearranged to form a triangle.
- Noticing that a straight angle has a measure of 180° and connecting this to what they discovered about the interior angles of a triangle from Activity 1.

3 Connect

Display the different triangles created from the sets of angles. If time allows, conduct the Gallery Tour routine so students can compare the different angles and triangles they formed from Card B .

Have groups of students share what they notice about straight angles and the interior angles of a triangle.

Highlight that if a straight angle is decomposed into three angles, it appears that the three angles can be used to form a triangle.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Cut out the angles for Card A for students or provide possible divisions of the straight angle for Card B, so that they can focus on creating triangles

Extension: Math Enrichment

Building on the Extension from Lesson 13, ask students if the sum of the angles of any triangle in spherical geometry is also 180°. Using the sphere you used earlier, draw lines to form a triangle in which each angle measures 90°. Ask students what they notice. Draw other triangles to illustrate the following principle of spherical geometry: The sum of the angle measures of a triangle is always greater than 180°.

Math Language Development

MLR7: Compare and Connect

As students prepare their work for discussion, look for those who successfully construct and create triangles. Encourage students to explain how they arranged the angles. Emphasize the language used to make sense of each set of angles and the language used to determine that the sum of the interior angle measures of a triangle is 180°.

English Learners

Provide sentence frames to support student conversation, such as:

- "To arrange the triangles, first I___ because"
- "I noticed that ___ so l . . ."
\qquad

Summary

Review and synthesize the connection between the measure of a straight angle and the sum of the interior angle measures of a triangle.

Name:
Date: \qquad

Summary

In today's lesson ..

You investigated the interior angles of a triangle. You found that the sum of the angles inside the triangles you investigated in this lesson is 180°. You may wonder if this relationship is true for all triangles and so, you will continue to explore this in the next lesson. You also found that any three angles that have a sum of 180° can be used to form a triangle.

$>$ Reflect:

Synthesize

Have students share what they observed about the sum of the interior angle measures of a triangle and the measure of a straight line.

Display the Summary from the Student Edition.
Highlight that the sum of the interior angle measures in any triangle is 180°. Students will prove why this is true in Lesson 17.

Ask:

- "When you know the measures of two angles inside a triangle, how can you find the measure of the third angle?" Subtract the sum of the two known angle measures from 180°.
- "Are there three angle measures that cannot be used to form a triangle?" Yes, if the sum of the three angle measures is less than or greater than 180°, a triangle cannot be formed.

(I) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "Do the measures of the interior angles of a triangle really add up to 180° ?"

Math Language Development

MLR2: Collect and Display

Capture the language discussed during the Synthesize section using the class display. For example, "The sum of the interior angle measures in any triangle is 180° " should be added to the display and students should be encouraged to refer to this during future discussions.

Exit Ticket

Students demonstrate their understanding by selecting three angle measures that could be the interior angle measures of a triangle.

晑 Printable

Exit Ticket

©

Select three of the following measures that could be angles in the same triangle
(A. 40°
B. 180°
C. 35°
D. 90°
(E.) 20°
(ㄷ) ${ }^{120}$
Explain your thinking.
Sample response: I know these could be the angles in a triangle
because $40^{\circ}, 20^{\circ}$, and 120°, add up to 180°

Success looks like ...

- Language Goal: Comprehending that a straight angle can be decomposed into three angles to construct a triangle. (Speaking and Listening, Reading and Writing)
» Selecting three angle measures that make up a straight angle.
- Language Goal: Justifying that the sum of the interior angle measures of a triangle is 180°. (Speaking and Listening, Writing)

Suggested next steps

If students do not select three measures that have a sum of $\mathbf{1 8 0}^{\circ}$, consider:

- Providing a calculator.
- Reviewing Activity 1.
- Reassessing after Lesson 17.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O_{0} Points to Ponder ...
How did students approach Activity 2? Did any of your students experience frustration when trying to form triangles from the sets of three angles? If so, what helped them work through their frustration?

In this lesson, students found the sum of the three interior angle measures of triangles. How will this understanding support their learning of alternate interior angles in future lessons?

4. For each pair of polygons, describe the transformation that maps Polygon A onto Polygon B.

©

Sample response: Reflect Polygon A
across a vertical line that lies half across a vertical line that lies halfway
between the two polygons. between the two polygons.

5. Refer to the figure, which shows two parallel lines intersected by a transversal. Determine the two missing angle measures indicated.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

UNIT 1 | LESSON 17

Parallel Lines and the Angles in a Triangle

Let's investigate why the angles in a triangle add up to 180°.

Focus

Goal

1. Language Goal: Generalize the Triangle Sum Theorem using the congruence of alternate interior angles when parallel lines are cut by a transversal. (Speaking and Listening, Reading and Writing)

Rigor

- Students develop conceptual understanding that the sum of the angle measures in any triangle is 180°.
- Students apply their understanding to solve angle puzzles.

Coherence

- Today

Students continue exploring the interior angles of a triangle. Using their knowledge of angle relationships, students construct an argument for why the sum of the angle measures in any triangle is 180°, and then apply their understanding to solve challenging angle puzzles.

< Previously

In Lesson 16, students found that a straight angle can be decomposed into three angles to form a triangle, reasoning about the sum of the measures of the three angles.

> Coming Soon

In Lesson 18, students will apply what they have learned about rigid transformations to create unique border patterns.

Amps powered by desmos : Activity and Presentation Slides
For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- colored pencils
- geometry toolkits: protractors, rulers

Math Language
 Development

New words

- exterior angle
- Triangle Sum Theorem

Review words

- alternate interior angles
- straight angle
- tessellation
- transversal

Amps \vdots Featured Activity

Activity 1
 Interactive Geometry

Students drag points on a pair of parallel lines to create different triangles. Given the seven angle measures, students can look for patterns using different triangles.

Building Math Identity and Community
 Connecting to Mathematical Practices

Students may resist thinking deeply about why the angles of any triangle has a sum of 180°. Ask them to resist accepting this rule without persevering in their attempts to make sense of why it is true. Ask them to engage in metacognitive functions, i.e., thinking about their own thinking process. For example, have them conduct their own Notice and Wonder routine for Activity 1, which will help them record their thought processes.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted It serves to reinforce student understanding of congruent angles.
- Activity 2 may be shortened by having students complete Puzzles 1 and 2.

Warm-up Matching Angles

Students apply rigid transformations to identify congruent angles, preparing them for reasoning about angles formed when parallel lines are cut by a transversal.

Unit 1 | Lesson 17

Parallel Lines and the Angles in a Triangle

Let's investigate why the angles in a triangle add up to 180°.

Warm-up Matching Angles
You will need colored pencils for this Warm-up.
The figure shows two congruent triangles $A B C$ and $C K L$ placed between two parallel lines.

Shade all the congruent angles using different colors for each pair of congruent angles

Angles labeled with the number 1 are congruent.
Angles labeled with the number 2 are congruent.
Angles labeled with the number 3 are congruent.

1 Launch

Provide students with colored pencils.

(2) Monitor

Help students get started by asking them how they can apply their knowledge of rigid transformations and angle relationships to identify congruent angles in the figure.

Look for points of confusion:

- Only coloring the angles inside the shaded triangles. Ask students to look for angles outside of the shaded triangles.
- Not recognizing the sides of the triangle as transversals. Have students extend the sides of the triangles to make this connection.

Look for productive strategies:

- Using their knowledge of rigid transformations to identify congruent angles.
- Identifying alternate interior angles.
- Noticing the triangle in the center is congruent to the two shaded triangles.
(3) Connect

Have pairs of students share which angles they identified as congruent and why they thought they were congruent.

Highlight that the figure shows two parallel lines and that the triangles each have two sides that can be thought of as transversals.

Ask students what they notice about the triangle in the center. Remind students that in Lesson 1, they created a tessellation using a triangle. Then ask students why any triangle can be used for a tessellation. Students will test their theories in the next activity.

Power-up
To power up students' ability to determine unknown angles using relationships among alternate interior angles, have students complete:

Recall that when two parallel lines are intersect by a transversal, alternate interior angles are congruent

1. In two different colors, mark the two pairs of alternate interior angles in the diagram.
2. Determine the two missing angle measurements indicated.

Use: Before Activity 1
Informed by: Performance on Lesson 16, Practice Problem 5

Activity 1 Triangles and Parallel Lines
Students create their own triangle using points from two parallel lines to generalize the Triangle Sum Theorem.

\qquad
Activity 1 Triangles and Parallel Lines

You will need a protractor. The figure shows two parallel lines, ℓ and m.

1. Draw two points on line m and one point on line ℓ. Connect the points to create a triangle. Measure and label the seven angles that are formed.

2. Compare your drawing with a partner. What patterns do you notice? List as many patterns as you can.
Sample responses:
There are three straight angles formed that each have a sum of their measures of 180°. (The angle formed by the angles $110^{\circ}, 40^{\circ}$, and 30°; the angle formed by the angles 110° and 70°; the angle formed by the angles 30° and 150°).

- The interior angle measures in the triangle have a sum of $\mathbf{1 8 0}$.

All of the alternate interior angles have the same measure (the two angles labeled 110° and the two angles labeled 30°)
3. Explain how the figure demonstrates why the sum of the angle measures in any triangle is 180°.
Sample response: No matter how the angles are drawn to create different triangles, alternate interior angles are always congruent and straight angles always have a measure of 180° The three angles that form the straight angle at the top hav is drawn.

Discussion Support: As your classmates share
their observations refer to the class display. Restate your classmates' ideas using the math language you are learning.

4

Are you ready for more?
Using a ruler, create at least three different quadrilaterals. Use a protractor to
measure the four interior angles of each quadrilateral.

1. What is the sum of these four angle measures?
360°
2. How can you use your knowledge about triangles to verify the sum of the angles in any quadrilateral?
Sample response: Because a quadrilateral can be partitioned into two triangles, the sum of the interior angle measures of the quadrilateral is the same as the sum of the angle measures in the two triangles, which is $180^{\circ}+180^{\circ}=360$

1 Launch

Provide access to geometry toolkits.

2 Monitor

Help students get started by modeling how to form a triangle by plotting three points on the parallel lines.
Look for points of confusion:

- Not understanding why the triangle has a sum of 180°. Write a list of vocabulary words, such as rotation, transversal, and alternate interior angles, to help their thinking. Ask them to record angle measurements.

Look for productive strategies:

- Noticing alternate interior angles are congruent.
- Noticing the interior angles in the triangle have a sum of 180°.
- Noticing the three angles formed on line ℓ have a sum of 180°.

3 Connect

Display different triangles students created with their labeled angle measures.

Have pairs of students share the patterns they noticed in their figures.
Ask, "How does your figure show why the sum of the angles in any triangle is 180° ?" The three angles formed on the top line, which is a straight angle, have the same measure as the three angles of the triangle.
Highlight that line ℓ is parallel to the side of the triangle on line m even if the vertices of the triangle shift. Using knowledge of alternate interior angles, the three angles on line ℓ are congruent to the angles in the triangle. This demonstrates that the sum of the angles in any triangle is 180°.
Say that a theorem is a mathematical statement that has been shown to be true. Then define the Triangle Sum Theorem as a theorem that states the sum of of the interior angles of any triangle is 180°.

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can drag points along the parallel lines to create different triangles to note patterns among the angle measurements.

Accessibility: Vary Demands to Optimize Challenge

Provide 2-3 triangles already drawn for students to use, including labeling the angle measurements. Have students use the triangles to complete Problems 2 and 3. This will allow students to focus on the goals of the activity without having to do the drawing and measuring themselves.

Math Language Development

MLR8: Discussion Supports—Revoicing

Use this routine to support whole class discussion. For each observation that is shared, ask students to restate and/or revoice what they heard using mathematical language.

English Learners

Provide sentence frames to support student conversation, such as:

- "Using angle relationships, I know that \qquad , so that must mean \qquad

Activity 2 Angle Puzzles

Students apply their understanding of the Triangle Sum Theorem and angle relationships to solve challenging angle puzzles.

Activity 2 Angle Puzzles

Determine the missing angle measures for each angle puzzle.
The figures may not be drawn to scale.
Angle Puzzle 1:
Line ℓ is parallel to line m.

Angle Puzzle 2:

1. Launch

Collect geometry toolkits. Allow students to complete each angle puzzle at their own pace.

2 Monitor

Help students get started by telling them to visually inspect Puzzle 1, looking for angle relationships before they calculate any missing angles.

Look for points of confusion:

- Having trouble completing a puzzle. Tell students that they may need to determine one angle measure to help them determine another angle measure. Using Angle Puzzle 1, model how to determine the missing angle measures. Voice your thought process aloud so that students can model this process of thinking as they complete each puzzle.
- Thinking they do not have enough information to find the missing angle measure that lies outside the triangle in Puzzle 2. Ask them how they can find the unknown angle measure inside the triangle and whether that will help them find the missing angle measure outside the triangle.

Look for productive strategies:

- Looking for structure among the angle relationships in each angle puzzle.
- Using alternate interior angles, straight angles, and Triangle Sum Theorem to help them determine missing angle measures.
- Rechecking their calculations by adding the angle measures in a triangle, or by adding the angle measures that form a straight angle.

Accessibility: Vary Demands to Optimize Challenge, Guide Visualization and Processing

If students need more processing time, have them focus on Puzzles 1 and 2, and only complete Puzzles 3 and 4 as time allows.

Accessibility: Clarify Vocabulary and Symbols

Maintain a display of important terms and information, including diagrams, such as:

- A straight angle measures 180°.
- Alternate interior angles are congruent.
- The sum of the angle measures in a triangle is 180°.
-

Extension: Math Enrichment

Have students create their own angle puzzle, and then trade puzzles with a partner. Each student should complete their partner's puzzle.

Activity 2 Angle Puzzles (continued)

Students apply their understanding of the Triangle Sum Theorem and angle relationships to solve challenging angle puzzles.

Activity 2 Angle Puzzles (continued)

Angle Puzzle 3:
Line ℓ is parallel to line m and line j is parallel to line k.

Angle Puzzle 4:

3 Connect
Display correct student work for each puzzle.
Have students share their strategies for determining the missing angle measures.

Ask:

- "Is there only one way to solve each puzzle? Explain your thinking." No; answers may vary.
- "What strategies did you use to determine the missing angle measures in Puzzle 3?" Answers may vary.
- "What do you notice about the figure in Puzzle 4?" Sample response: The measure of each exterior angle equals the sum of the measures of the remote interior angles.

Define an exterior angle as an angle between a side of a polygon and an extended adjacent side. Say that the missing angle in Puzzle 2 is an exterior angle to the triangle.

Highlight that when parallel lines are cut by transversals, angle relationships and the Triangle Sum Theorem can help students determine missing angle measures.

Summary

Review and synthesize how the Triangle Sum Theorem can be demonstrated using parallel lines and transversals.

Summary

In today's lesson...

You applied what you learned about angle relationships, rigid transformations, and parallel lines to informally establish the Triangle Sum Theorem. This theorem tells you that the sum of the three interior angles in any triangle is always 180°.

Refer to parallel lines $D E$ and $A C$. You know that $\mathrm{m} \angle A B D=\mathrm{m} \angle B A C$ and $\mathrm{m} \angle A C B=\mathrm{m} \angle C B E$ because the angles in each angle pair are alternate interior angles. You also know that angles $\angle A B D, \angle A B C$, and $\angle C B E$ form a straight angle, so their measures add up to 180°. Therefore, the sum of the interior angles of any triangle is 180°

Reflect:

122 Unit 1 Rigid Transformations and Congruence -2023Amp1

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit, that you started in Lesson 1. Ask them to review and reflect on any terms and phrases related to the term Triangle Sum Theorem that were added to the display during the lesson.

Synthesize

Ask, "In your own words and using the triangle shown in the Summary, explain how you know that the sum of the angles in any triangle is 180°." See students' responses. Look for evidence of correct reasoning, understanding of angle relationships, and mathematical terminology, such as parallel lines, straight angle, alternate interior angles, congruent, etc.

Display the Summary from the Student Edition.
Highlight that by applying understanding of alternate interior angles and straight angles, students are able to generalize that any triangle has an interior angle sum of 180°.

Formalize vocabulary:

- exterior angle
- Triangle Sum Theorem

(-) Reflect

After synthesizing the concepts of the lesson, allow a few moments for student reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help students engage in meaningful reflection, consider asking:

- "How can the relationship between the interior angles of a triangle and a straight angle help you to determine an unknown angle measure?"

Exit Ticket

Students demonstrate their understanding by determining a missing angle measure.

亘 Printable

Name: - _ Date:

Exit Ticket

Line $A B$ is parallel to line $C D$. What is the measure of $\angle C A B$?
Show or explain your thinking.

Sample response: $\mathrm{m} \angle C A B=100^{\circ}$; I know that $\angle B C D$ and $\angle A B C$ are alternate interior angles, so they have the same measure. I know
$\mathrm{m} \angle A C B+\mathrm{m} \angle C B A+\mathrm{m} \angle B A C=180^{\circ}$, because $\angle A C B, \angle C B A$, and $\angle C A B$ are interior angles of a triangle. Because $37+43+\mathrm{m} \angle C A B=180$ I know that $\mathrm{m} \angle C A B=100^{\circ}$

Success looks like ...

- Language Goal: Generalizing the Triangle Sum Theorem using the congruence of alternate interior angles when parallel lines are cut by a transversal. (Speaking and Listening, Reading and Writing)
» Applying the Triangle Sum Theorem to determine the measure of $\angle C A B$.

Suggested next steps

If students do not calculate the angle correctly, consider:

- Highlighting $\angle D C B$ and $\angle C B A$ to emphasize alternate interior angles.
- Reviewing the terms straight angles, alternate interior angles, and the Triangle Sum Theorem.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.Points to Ponder . . .

- During the discussion in Activity 1, how did you encourage each student to share their understandings?
- What challenges did students encounter as they worked on the angle puzzles? How did they work through them?

(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Creating a Border Pattern Using Transformations

Let's create borders using transformations.

Focus

Goals

1. Create a border pattern using rigid transformations.
2. Language Goal: Explain the rigid transformations needed to map a design onto itself. (Speaking and Listening, Writing)

Coherence

- Today

Students use the language of transformations to create, describe, and investigate patterns on a plane by creating their own border pattern. Students model with mathematics as they apply transformations to design their own border patterns.

$<$ Previously

Throughout this unit, students applied reflections, rotations, and translations of figures on a plane, square grid, and coordinate plane.

> Coming Soon

In Unit 2, students will investigate dilations and understand the similarity of figures in terms of rigid transformations and dilations.

Rigor

- Students apply their understanding of rigid transformations to study Islamic art and create their own border pattern.

Activity 1

Activity 2

Summary

Exit Ticket
$\oplus 5 \mathrm{~min}$

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 2 PDF (for display)
- colored pencils
- geometry toolkits: protractors, rulers, tracing paper
- plain sheets of paper

Math Language
 Development

Review words

- reflection
- rotation
- translation
- transformation

Building Math Identity and Community

Connecting to Mathematical Practices
Students may feel uncomfortable with their artistic ability as they draw their preimage in Activity 2. Help them build their confidence by having them include their own personal interests in their design. As students create their border patterns, find positive examples to encourage all students. Students may be more comfortable describing the transformations that model pre-created border patterns. Consider having them research border patterns in art or architecture and describe the mathematics that model them.

Amps : Featured Activity

Activity 2
 Interactive Geometry

Students experiment with creating border patterns by sketching a preimage and selecting different buttons to apply rigid transformations.

ronereo desmos

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted as students will analyze the same image in Activity 1.
- In Activity 1, have students look for examples of one type of transformation, instead of all three.

Warm-up Notice and Wonder

Students study an image with a complex pattern to see how transformations are applied in Islamic art.

1 Launch

Conduct the Notice and Wonder routine using the image.

2 Monitor

Help students get started by asking how this image relates to the math they have been studying in this unit.

Look for productive strategies:

- Noticing reflection, rotation, and translation symmetry.

3 Connect
Have students share what they noticed and wondered about the image. Record student observations.

Ask students how transformations of figures can be seen in this image, if students have not already mentioned this idea.

Highlight that the patterns in the image are created using transformations. This pattern is on a wall in the Sultan Qaboos Grand Mosque in Muscat, Oman. These patterns are frequently seen in Islamic art where geometric designs are used to create complex patterns.

(4) Differentiated Support

Extension: Interdisciplinary Connections

Have students explore the beautiful interior and exterior of the Sultan Qaboos Grand Mosque in Muscat, Oman by exploring the official website of the mosque. Students can virtually move from room to room, zoom in and out, and rotate to see a full 360° view of each room. As they explore, ask them to point out the rigid transformations they see. (Art, Architecture)

Power-up

To power up students' ability to describe a transformation of multiple figures, have students complete:

1. Identify a repeating shape in the pattern by circling it
2. Which of the following describes how you can map the pattern onto itself.
A. 180° rotation about a point located in the center.
B. Reflections about a horizontal line through the center of all four figures.
C. Reflection about a vertical line between the second and third triangles.

Use: Before Activity 1
Informed by: Performance on Lesson 16, Practice Problem 5

Activity 1 How Is It Made?

Students analyze the image from the Warm-up to look for examples of transformations.

Activity 1 How Is It Made?

The pattern you saw in the
Warm-up is from a wall in th Warm-up is from a wall in the in Muscat, Oman.

Find a single pattern or multiple patterns within the image that have rotation, translation, or reflection symmetry. Show or describe how each transformation is produced.
(a) rotation

Sample response:
45° rotation about its center
translation
Sample response:
The top circular image
is translated down.

miln

1) Launch

Activate students' background knowledge by asking them where they might see patterns and designs that apply transformations.
Note: Provide access to geometry toolkits for the duration of the lesson.

(2) Monitor

Help students get started by having them choose one specific pattern within the image and describing the type of transformation seen in the pattern.

Look for productive strategies:

- Determining all three transformations in one pattern.
- Drawing multiple lines of symmetry for a pattern.
- Noticing the border pattern created by transformations.

3 Connect
Have students share which patterns they chose and the transformations that were applied in their chosen pattern.

Highlight that the image is created from different patterns that apply rigid transformations.
reflection
Sample response:
reflection across a vertical line

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, allow them to focus on completing two of the three transformations in this activity. Consider allowing them to choose which problems they would like to complete. Alternatively, preselect the patterns that demonstrate each type of transformation and display them. Have students show or describe how each transformation is applied.

Math Language Development

MLR8: Discussion Supports-Restate It!

Use this routine to support whole class discussion. For each pattern and transformation that is shared, ask students to restate what they heard using developing mathematical language. Call their attention to any words or phrases that helped to clarify the original statement. This provides more students with an opportunity to produce language as they interpret the reasoning of others.

Activity 2 Designing a Border Pattern

Students design a border pattern to apply their knowledge of transformations.

Amps Featured Activity Interactive Geometry
Name: \quad Date: \quad Period:
Activity 2 Designing a Border Pattern

In this activity, you will design your own border pattern. Border patterns have been studied by mathematicians, such as John Conway. You will be given a plain sheet of paper to use, starting with Problem 2.

1. Design a preimage for your border in this box Sample response shown

2. Trace your preimage on the sheet of paper.
(a) Apply a series of rigid transformations to create your border pattern. Draw a sketch of your border pattern here. Sample response shown.

b Trade borders with a partner. Describe a transformation of your partner's border pattern that maps the pattern onto itself. Write as many specific transformations as you can.
Sample responses:

- The pattern can be mapped onto itself by a translation to the right.
- The pattern can be mapped onto itself by a reflection across a horizontal line.
c If there is time remaining in the activity, color your border pattern.

4 Featured Mathematician

Differentiated Support

Extension: Math Around the World

Have students explore the online site "19th Century Navajo Weaving at ASM" from the Arizona State Museum. They should examine the transformations of different Navajo woven blankets found on this site, such as Chief's-style Blankets, Sarapes, Transitional Period blankets, Moqui Stripe Patterns, and Eye Dazzlers. Have students choose a woven blanket and describe the transformations used. Consider printing copies of these blankets they can use to annotate the transformations as they describe them.

1 Launch

Display the Activity 2 PDF. For each border, point out how each pattern is made using transformations. Keep this PDF displayed as a reference for students while they design their border patterns. Provide access to colored pencils and blank sheets of paper.

(2)

Monitor

Help students get started by challenging them to design a preimage that has geometric patterns or has meaningful images.

Look for points of confusion:

- Having trouble designing a preimage. Provide specific directions. For example say, "First, in the middle of the square, draw an icon or image that represents you. This may be your favorite hobby, food, sport, or animal. Next, in each of the four corners, write your first initial facing in any direction. Last, add a design in the remaining space."
- Having trouble drawing their border. Students may find it helpful to retrace their preimage on tracing paper and use it to draw their border.

Look for productive strategies:

- Turning the paper to produce rotations, flipping the paper to produce reflections, and sliding the paper to produce translations.
- Creating border patterns that intersect each other.
- Creating a circular border.

3 Connect

Display the different border patterns created by students. If time allows, use the Gallery Tour routine by setting up areas around the classroom to display student work and have students look for transformations in each border.
Have pairs of students share the types of transformations that are applied in the border patterns of other students.
Highlight that transformations can be applied to create complex patterns in art or architecture.

Featured Mathematician

John Horton Conway

Have students read about mathematician John H. Conway, who used footprint patterns to describe all two-dimensional designs that are repetitive in one direction.

Unit Summary

Review and synthesize how rigid transformations can be applied to create designs.

Narrative Connections

Read the narrative aloud as a class or have students read it individually.

Synthesize

Display the Summary from the Student Edition. Have students read the Summary or have a student volunteer read it aloud.

Have students share how border patterns are produced using rigid transformations.

Ask, "Where have you seen border patterns?"
Highlight that rigid transformations have been used over thousands of years to create complex patterns. These patterns can be seen in architecture, embroidery, pottery, and in many other places.

(I) Reflect

After synthesizing the concepts of this unit, allow students a few moments for reflection around the concepts of the unit. To help them engage in meaningful reflection, consider asking:

- "Did anything surprise you while reading the narratives of this unit?"
- "Is there anything you would like to learn more about these topics? What are some steps you can take to learn more?"

Exit Ticket

Students demonstrate their understanding by connecting applications of rigid transformations to their everyday lives.

Success looks like ...

- Goal: Creating a border pattern using rigid transformations.
- Language Goal: Explaining the rigid transformations needed to map a design onto itself. (Speaking and Listening, Writing)
» Describing transformations they have seen in their everyday lives.

Suggested next steps

If students are not sure where they have seen an application of transformations, consider:

- Having them look around the classroom to see if they recognize any transformations. Encourage them to look at floor or ceiling tiles, patterns on clothing, or artwork.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C. Points to Ponder ...

In this lesson, students designed border patterns. How did that build on the earlier work students did with drawing transformations of a figure?
What surprised you as your students worked on their border patterns?

Name: \square
3. Polygon A is congruent to Polygon B. Describe a transformation or sequence of transformations that maps Polygon A onto Polygon B.
Sample response: Reflect Polygon A Sample response: Reflect Polygon A
across the x-axis, and then reflect its
image across the y-axis.

4. Write all of the possible combinations of three angle measures, from the following list, that can be the interior angle measures of a triangle. $\begin{array}{lllllll}60^{\circ} & 20^{\circ} & 100^{\circ} & 40^{\circ} & 110^{\circ} & 50^{\circ} & 30^{\circ}\end{array}$
$20^{\circ}, 60^{\circ}, 100^{\circ}$
$20^{\circ} 50^{\circ}, 110^{\circ}$
$20^{\circ}, 50^{\circ}, 110^{\circ}$
$30^{\circ}, 50^{\circ}, 100^{\circ}$
$30^{\circ}, 40^{\circ}, 110^{\circ}$
5. On the grid, draw a scaled copy of Quadrilateral $A B C D$, using a scale factor of $\frac{1}{2}$.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

UNIT 2

Dilations and Similarity

Students explore a new type of transformation - dilations - and practice using dilations to create and recognize similar figures. Students' understanding of the characteristics of these similar figures, of similar triangles specifically, will serve as the foundation for their study of the slope of a line.

Essential Questions

-What does it mean to dilate a figure?

- How can you identify whether two figures are similar?
- How can similar triangles be used to find the slope of a line?
- (By the way, can you create an optical illusion that will trick your teacher's eyes?)

Key Shifts in Mathematics

Focus

- In this unit . . .

Students move beyond rigid transformations to discover the properties of dilations in the first sub-unit. Students practice identifying dilations using rulers or grids to precisely identify the scale factor that takes one image to the other. Students explore the characteristics of figures after they have been dilated by looking at the angle and side measures. This leads students to a formal definition of the word similar in Lesson 6, kicking off the second sub-unit. In this sub-unit, students apply concepts of proportional reasoning to similar figures - in particular similar triangles. Their work with similar triangles will lead them to their first introduction to slope in Lesson 11.

Coherence

© Previously...

In Unit 1, students studied rigid transformations. Students gained experience identifying and creating a sequence of rigid transformations using mathematical tools and the structure of a grid. Students deconstructed a straight angle to create a triangle, confirming that the interior angles of a triangle measure to a sum of 180°.

Coming soon ...

In this unit, students meet slope. In Unit 3, students really get to know slope. Using what they have learned about proportional relationships in Grade 7, students will learn that the constant of proportionality is the same as the rate of change or the slope of a line. Before long, they will see that not all lines represent proportional relationships. They will study these nonproportional linear relationships for the rest of the unit, exploring representations of linear relationships and using equations to describe lines and real-world context. This prepares students to examine systems of linear relationships in Unit 4.

Rigor

In this unit, students engage in rich tasks that address one or more of these aspects of rigor. The following are examples of how each pillar is addressed. See each Lesson Brief to learn more about how rigor is balanced throughout the unit.

Conceptual
 Understanding

Students review the concept of scaled copies (Lesson 1), before being formally introduced to dilations (Lesson 2). With an understanding of dilations, students later examine the relationship between scaled copies and similar figures (Lesson 7).

Procedural Fluency

Students build key skills dilating polygons on a grid (Lesson 5). Students use proportional side lengths of similar triangles to find unknown side lengths (Lesson 10).

Application

Students apply their knowledge of dilations to find missing information, such as the center of dilation, scale factor, or images of dilation (Lesson 3).

More Than Meets the Eye

SUB-UNIT

Lessons 2-5

Dilations

Students explore another type of transformation

- dilations - and connect dilations to the rigid transformations they previously studied. They discover how artists use dilations to create perspective drawings and the illusion of 3D imagery.

Narrative: The pupils of your eyes dilate in response to light. But there is more to dilation than meets the eye.

SUB-UNIT

Lessons 6-11

Similarity

By investigating the properties of dilated figures, students discover that dilated figures are similar. They formalize the special properties of dilated figures and learn that similar right triangles can be used to find slope. which will be of further importance in upcoming units.

Narrative: Understanding similarity and proportional reasoning can help you combat shrinkflation.

Projecting and Scaling

Students look at standard paper sizes as scaled copies of each other to discover that the relationship of each paper size can be represented by a proportional pattern.

(5) Capstone

Optical Illusions

Students apply concepts they learned about transformations and dilations to create optical illusions on a grid.

Unit at a Glance

Spoiler Alert: Pairs of triangles with at least two congruent angle measures must be similar to each other.

A Pre-Unit Readiness Assessment

Sub-Unit 1: Dilations

2 Circular Grids

Grids do not have to be square to be useful. First learn to dilate a figure by using a circular grid.

Sub-Unit 2: Similarity

6 Similarity

Find similar figures by creating a sequence of transformations with dilations.

7 Similar Polygons

Explore what it means for two polygons to be similar by looking at their side length and angle measures.

8 Similar Triangles
Uncover special properties of similar triangles.

Capstone Lesson

12 Optical Illusions
Identify and create patterns with optical illusions.

A End-of-Unit Assessment

Lesson 4: The scale factor between an image and its preimage depends on the center of dilation.
Lesson 6: A dilation with a scale factor greater than or less than 1 creates a scaled copy that is similar to its preimage.
Lesson 9: Proportional reasoning can be used to determine missing side lengths of similar triangles.

Pacing

12 Lessons: 45 min each Full Unit: 14 days 2 Assessments: 45 min each - Modified Unit: 12 days

Assumes 45-minute class periods per day. For block scheduling or other durations, adjust the number of days accordingly.

3 Dilations on a Plane -
Apply dilations to points on a plane without the structure of a grid.

4 Dilations on a Square Grid -
Apply dilations to polygons on a grid without coordinates.

5 Dilations With Coordinates
Apply dilations to polygons, this time on a coordinate plane.

9 Ratios of Side Lengths in Similar Triangles ${ }^{-}$

Develop strategies for determining missing lengths of similar triangles.

10 The Shadow Knows •
Don't have a tall enough ruler? Use the shadow of a lamppost to measure its height.

11 Meet Slope
Use similar right triangles to find the slope of a line.

Modifications to Pacing

Lessons 3-4: Lessons 3 and 4 both work with dilations on a square grid. They can be combined if necessary.

Lessons 9-10: Students can learn to use known side lengths of similar triangles to determine missing side lengths by engaging in a combination of activities from Lessons 9 and 10 .

Unit Supports

Math Language Development

Lesson	New Vocabulary
2	center of dilation dilation
6	similar
11	slope
slope triangles	

Mathematical Language Routines (MLRs) support students' language development in the context of mathematical sense-making.

Lesson(s)	Mathematical Language Routines
6	MLR1: Stronger and Clearer Each Time
$1,2,5-9.11,12$	MLR2: Collect and Display
$3,7,8$	MLR3: Critique, Correct, Clarify
5	MLR4: Information Gap
3, 5, 6, 9, 10, 12	MLR7: Compare and Connect
$2,4,7-11$	MLR8: Discussion Supports

Materials

Every lesson includes:

Exit Ticket
Additional Practice
Additional required materials include:

Lesson(s)	Materials
1	A4 Paper and US Letter Paper
12	black markers
12	black pens
$1,9,10$	calculators
4	colored pencils
$2-8,12$	graph paper
12	glue 7 each lesson's overview to see which activities require PDFs.
$3,5-8,10-12$	plain sheets of paper
7	rulers
1,11	scissors
1	

Instructional Routines

Activities throughout this unit include the following instructional routines:

Lesson(s)	Instructional Routines
$1,2,3,10,11$	Notice and Wonder
$2,6,7,9,10,12$	Think-Pair-Share
2	Partner Problems
5	Info Gap
$6,7,9,12$	Poll the Class
8	Card Sort
6,9	Which One Doesn't Belong?
12	Gallery Tour

Unit Assessments

Each unit includes diagnostic, formative, and summative assessment opportunities to gauge student understanding of the concepts and skills taught in the unit. All assessments are available in print and digital formats.

Assessments

Pre-Unit Readiness Assessment

This diagnostic assessment evaluates students' proficiency with prerequisite concepts and skills they need to feel successful in this unit.

Exit Tickets

Each lesson includes formative assessments to evaluate students' proficiency with the concepts and skills they learned.

End-of-Unit Assessment

This summative assessment allows students to demonstrate their mastery of the concepts and skills they learned in the lessons preceding this assessment. Additionally, this unit's Performance Task is available in the Assessment Guide.

When to Administer

Prior to Lesson 1

End of each lesson

After Lesson 12
powered by deSmOS

Featured Activity

Are Three Angles Enough?

Put on your student hat and work through Lesson 8, Activity 1:

0 Points to Ponder..

- What was it like to engage in this activity as a learner?
- How might you pace your students through this activity?
- What best practices might you employ for integrating technology in your classroom?

Other Featured Activities:

- Dilations on a Grid (Lesson 4)
- Info Gap: Make My Dilation (Lesson 5)
- Are They Similar? (Lesson 6)
- Four Challenges (Lesson 10)

Social \& Collaborative Digital Moments

Unit Study
 Professional Learning

This unit study is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can engage in a meaningful professional learning experience to deepen your own understanding of this unit and employ effective pedagogical practices to support your students.

Anticipating the Student Experience With Fawn Nguyen

Unit 2 introduces dilations with coordinates. This work begins with the idea of scaling and ratios. Students work on dilations of polygons on circular grids, square grids, and coordinate planes. Eventually this understanding equips them for work with similar figures and slope. Prepare yourself to support your students with this concept by engaging in a brief problem-solving exercise to deepen your own learning.

Do the Math

Put on your student hat and tackle these problems from Lesson 5, Activity 2:

Put your teacher hat back on to share your work with one or more colleagues and discuss your approaches.

Points to Ponder . . .

-What was it like to engage in this problem as a learner?

- A key understanding with dilation is knowing the relationship between the center of dilation and the scale factor. What strategies might help students grasp these concepts?
- In Problem 1, the coordinates of the image can be found by multiplying the coordinates of the preimage by the scale factor. Why does this strategy not work in Problem 2?
- What implications might this have for your teaching in this unit?

Focus on Instructional Routines

Think-Pair-Share

Rehearse...

How you'll facilitate the Think-Pair-Share instructional routine in Lesson 2, Activity 2:

Points to Ponder . . .

- How can you use the partner sharing portion of this routine to help you facilitate full-class discussion?
- What mathematical thinking can you be listening for when students speak with their partners?

This routine..

- Provides students independent time to think about the task and prepare a plan before sharing with a partner.
- Gives students a low-stakes opportunity to share their ideas with a partner before sharing with the whole class.
- Allows teachers to eavesdrop on student thinking as they share with their partners, enabling teachers to pre-select students to share during whole-class discussion.
- Creates ample opportunity for collaboration.

Anticipate...

- How can you ensure the "think" time and the "pair" time are each used effectively?
- How will you encourage and support students who either do not want to work independently or do not want to work with a partner?
- If you have not used this routine before, what classroom management strategies might you need to put in place to help it run smoothly?
- If you have used this routine before, what went well? What would you want to refine?

Strengthening Your Effective Teaching Practices

Implement tasks that promote reasoning and problem solving.

This effective teaching practice . . .

- Provides opportunities for students to engage in low floor, high ceiling tasks that allow for multiple entry points and a variety of solution strategies.
- Requires the use of reasoning and problem solving strategies as opposed to merely requiring the use of established procedures or skills.

Math Language Development

MLR2: Collect and Display

MLR2 appears in Lessons 1, 2, 5-9, 11, and 12.

- In Lesson 2, as students share their responses, you can highlight and collect terms and phrases they use to describe dilations, such as scale factor, center of dilation, and scaled copy.
- Throughout the unit, as students formalize the new vocabulary they are learning, have them refer to the class display to continually review and reflect on new terms that are added.
- English Learners: Add diagrams or illustrations to the class display so that students can visualize the terms or phrases. Consider also using hand gestures to illustrate some terms, such as vertical, horizontal, parallel, or slope.

O. Point to Ponder . . .

- How will you encourage or guide students toward using their developing math language to describe dilations and similar figures?

Unit Assessments

Use the results of the Pre-Unit Readiness Assessment to understand your students' prior knowledge and determine their prerequisite skills.

Look Ahead .

- Review and unpack the End-of-Unit Assessment, noting the concepts and skills assessed in it.
- With your student hat on, complete each problem.

O. Points to Ponder . . .

- What concepts or skills in this unit might need more emphasis?
- Where might your students need additional scaffolding and support?
- How might you support your students with solving one-step equations with a variable throughout the unit? Do you think your students will generally:
» struggle to find the scale factor or center of dilation?
» have difficulty using grids and mathematical tools precisely?
» be unsure about how to identify if two figures are similar?

Points to Ponder . . .

- Where do you see opportunities to highlight different strategies that students used to approach the tasks in this unit?
- How can you encourage students to consider the alternative approaches that other students may have used?

Differentiated Support

Accessibility: Guide Processing and Visualization, Optimize Access to Tools, Optimize Access to Technology

Opportunities to provide visual support, physical manipulatives, or the use of technology appear in Lessons 2-5, 8-11.

- Throughout the unit, students will select tools from their geometry toolkits to perform dilations or draw and measure figures. Options are provided to assist students in selecting certain tools.
- In Lesson 9, students can use the Amps slides for Activity 1, in which they can modify the side lengths of a triangle using different scale factors. Animations appear to help them visualize the effects.
- Use color coding and annotation to illustrate student thinking, such as color coding corresponding side lengths or angles of similar figures.

0 Point to Ponder ..

- As you preview or teach the unit, how will you decide when to use technology or when to suggest students use color coding or certain tools to help them make sense of dilations and similar figures?

Building Math Identity and Community

Throughout this unit, each lesson includes opportunities to support your students' capacity to build strong mathematical habits of mind.

In this unit, pay particular attention to supporting students in building their self-awareness and self-management skills.

Points to Ponder . .

- What are their strengths and what do they know about transforming figures that they can build upon and use to begin reasoning algebraically?
- Are students able to exercise patience and persist in order to recreate a sequence of transformations that confirms two figures are similar?

UNIT 2 | LESSON 1 - LAUNCH

Projecting and Scaling

Let's explore scaling.

Focus

Rigor

Goals

1. Language Goal: Describe the features of scaled copies of a rectangle. (Speaking and Listening)
2. Identify rectangles that are scaled copies of one another.

Coherence

- Today

Students cut and arrange rectangles from two different paper sizes - US Letter and A4 - to model the properties of scaled copies. Students reason abstractly as they rearrange the two sets of rectangles so that each set shares an angle, observing that when the rectangles are scaled copies of one another, the opposite vertices all lie on the same line. They connect the meaning of the aligned vertices when they calculate the ratio of the side lengths for all the rectangles, seeing that the rectangles created from the A4 paper produce scaled copies.

< Previously

In Grade 7, students examined scaled copies. For polygons, they identified that the side lengths of scaled copies are proportional, and the constant of proportionality relating the original lengths to the corresponding lengths in the scaled copy is the scale factor.

> Coming Soon

In Lesson 2, students will come to understand and use the term dilation. They will recognize that a dilation is determined by a point called the center of dilation and a number called the scale factor. In Lesson 9, students will revisit ratios and scale factors as they study the side lengths of similar triangles.

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice

Materials

- Exit Ticket
- Additional Practice
- calculators
- rulers marked with millimeters
- scissors
- US Letter paper, one sheet per pair
- A4 paper, one sheet per pair

Note: As an alternative option to A4 paper, cut a sheet with the same dimensions as A5 (148 mm by 210 mm). If this option is chosen, provide half of the US Letter instead of the full sheet.

Math Language
 Development

Review words

- proportional
relationship
- ratio
- scaled copy
- scale factor

Building Math Identity and Community
 Connecting to Mathematical Practices

Students may resist thinking quantitatively or abstractly when they relate the set of rectangles to the ratio of the side lengths in Activity 1. Have them engage in metacognitive functions by asking them to think about their own thinking process. For example, have them conduct their own Notice and Wonder routine, which will help them record their thought processes.

Amps \quad Featured Activity

Activity 1
 Using Work From Previous Slides

Ratios students enter are shown to them on a later slides to assist with comparisons.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted. Its purpose is to get students thinking about the different sizes of paper that are commonly used.
- In Activity 1, pre-cut the rectangles and offer the calculations for the side lengths of all the rectangles. This will allow students to focus on the relationships observed.

Warm-up Notice and Wonder

Students compare two sheets of standard paper to notice their difference in size and to prepare them for analyzing their dimensions more closely in Activity 1.

1 Launch

Distribute one sheet of US Letter paper and one sheet of A4 paper to each pair of students. Tell them that both papers are a standard size, but for different countries. The US Letter is commonly used in North and South America, while A4 paper is commonly used in Europe and Asia. Then conduct the Notice and Wonder routine.

(2) Monitor

Help students get started by asking them to visually compare the size of each paper.

Look for points of confusion:

- Trying to measure the paper. Have students visually compare the papers by placing one on top of the other.

Look for productive strategies:

- Noticing that the A4 paper is taller.
- Noticing that the A4 paper is narrower.
- Wondering why the papers are different sizes.

3 Connect

Have students share what they noticed and wondered. Record and display their responses for all to see.
Display the measurements of each paper. US Letter paper measures 216 mm by 280 mm and A4 paper measures 210 mm by 297 mm .
Ask, "What do you think the 4 in A4 represents? When someone decides on the dimensions of standard items, such as paper, what do they need to consider?"
Note: The A4 paper is part of the A series paper sizes, where each paper is half the size of the previous. For example, the A4 paper is half the size of the A3 paper, the A5 paper is half the size of the A4 paper, and so on. The A4 paper represents 4 half cuts of the AO paper. The American National Standards Institute and International Organization for Standardization are two organizations that develop different standards.

Activity 1 Sorting Rectangles

Students create different sets of rectangles to explore the properties of scaled copies.

1 Launch

Provide access to rulers, scissors, and calculators.

Monitor

Help students get started by modeling how to cut the paper. Hold the paper in a portrait orientation and cut it horizontally in half. Folding and creasing the paper may help provide a straight line for cutting. Remind students to label each rectangle immediately after cutting.

Look for points of confusion:

- Not noticing any patterns for Problem 2. Have students draw a line from the bottom left corner to the top right corner of the largest rectangle to help them see which corners align.
- Writing different measurements and calculations than their partner or writing the ratios in a reverse order. Have students compare their measurements and calculations with their peers and check for correctness after students complete Problem 5 to help them complete Problem 6.
- Thinking that the ratio of the sides is the same as the scale factor. Revisit this during the Connect. Additionally, this concept will be further explored throughout the unit.
- Thinking that the scale factor of the successive rectangle is 2 . Because the paper is rotated each time, the scale factor of the rectangles compared in portrait orientation is not 2 .

Look for productive strategies:

- Noticing the same ratios for the rectangles where the top right corners create a straight line.
- Noticing "one type of rectangle" from the A4 paper, and "two types of rectangles" from the US Letter paper.
- Noticing that the rectangles created from the A4 paper are scaled copies of each other.

Activity 1 continued >

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Have students complete the activity first using only the A4 paper and omit Problem 3. It is more important for them to notice that the rectangles created from the A4 paper are scaled copies.

Extension: Math Enrichment

Show students other sizes of paper, such as Legal or Tabloid. Have them experiment to see whether rectangles created from these sizes of paper are also scaled copies.

Size	Dimensions (mm)	Dimensions (in.)
Legal	216×356	8.5×14
Tabloid	432×279	11×17

(1) Math Language Development

MLR2: Collect and Display

During the Connect, as students share, collect the language they use Ask them if there are more mathematically precise ways to say the same idea. For example, "the rectangles are the same, but smaller" can be restated as "the ratios of the corresponding side lengths are equivalent." Add mathematical words and phrases to a class display and encourage students to refer to the display during future discussions in this unit.

English Learners

Have students perform the visual test described in the Connect section to make sense of the rectangles as scaled copies.

Activity 1 Sorting Rectangles (continued)

Students create different sets of rectangles to explore the properties of scaled copies.

3 Connect

Have students share what they noticed about the ratios and rectangles.

Highlight

- For the US Letter paper, there are two groups of rectangles: one where the sides have a ratio of 1.5 and the other where the sides have a ratio of 1.3. When aligned at one corner, the rectangles with a ratio of 1.5 have opposite vertices that lie on the same line, and the rectangles with a ratio of 1.3 have opposite vertices that lie on the same line.
- When the A4 rectangles are aligned at one corner, the opposite vertices of all the rectangles lie on the same line, and all the ratios between the sides are equivalent.
- The types of rectangles created from the A4 paper are called scaled copies.
- A visual test may help students decide whether or not two cut-out figures are scaled copies of one another. The visual test involves holding each figure at a different distance from the eye and checking if it is possible to make the two figures match up exactly.

Ask:

- "How can you show that any two rectangles from the A4 sheet are scaled copies?" Sample response: The side lengths of one rectangle can be multiplied by the same number, called the scale factor, to get the corresponding sides of the second rectangle.
- "What scale factor takes A8 to the full A4 sheet?" 4 Emphasize that the scale factor is different than the ratio of the dimensions within the same rectangle.

Summary More Than Meets the Eye

Review and synthesize the properties of a scaled copy.

Narrative Connections

Read the narrative aloud as a class or have students read it individually.

Synthesize
Display the Summary from the Student Edition. Have students read the Summary or have a student volunteer read it aloud.
Have students share how they can identify a scaled copy in their own words.
Highlight that a scaled copy is a copy of a figure where every length in the original figure is multiplied by the same number. This number is known as the scale factor.

Ask, "How can you use the scale factor to draw a scaled copy of a rectangle?" Sample response: Multiply the side lengths of the original rectangle by the scale factor to draw the new rectangle.

(I) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. To help them engage in meaningful reflection, consider asking:

- "What strategies or tools can help you identify scaled copies?"

Exit Ticket

Students demonstrate their understanding of scaled copies by making observations and using those observations to draw a scaled copy of a rectangle.

Success looks like ...

- Language Goal: Describing features of scaled copies of a rectangle. (Speaking and Listening)
» Explaining why the rectangles are scaled copies of each other in Problem 1.
- Goal: Identifying rectangles that are scaled copies of one another.

- Suggested next steps

If students do not know why the rectangles are scaled copies of one another or cannot draw a rectangle that is a scaled copy, consider:

- Reviewing scaled copies and scale factor.
- Having them find the ratio of the dimensions.

If students think the scale factor is 2 , consider:

- Reassessing after Lesson 9, where this topic will be further explored.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\sim_{0}. Points to Ponder ...

- What was especially satisfying about using rectangles from paper to look for scaled copies?
Which groups of students did and did not have their ideas seen and heard today?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	1
	2	Activity 1	2
Spiral	$\mathbf{3}$	Activity 1	2
Formative 0	$\mathbf{4}$	Unit 1 Lesson 16	2

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

In this Sub-Unit, students study dilations and make connections to the rigid transformations they studied in Unit 1, before uncovering how artists used dilations to create perspective drawing and the illusion of 3D imagery.

Narrative Connections

Read the narrative aloud as a class or have students read it individually. Students will explore the connections between dilations, the human eye, and what we can see in the following places:

- Lesson 2, Activity 1: A Droplet on the Surface
- Lesson 3, Activity 3: Perspective Drawing
- Lesson 4, Warm-up: Estimating a Scale Factor

Circular Grids

Let's dilate figures on circular grids.

Focus

Rigor

Goals

1. Language Goal: Comprehend the term dilation as a transformation of a figure that produces scaled copies of that figure. (Speaking and Listening)
2. Create dilations of polygons using a circular grid, given a scale factor and the center of dilation.
3. Language Goal: Explain how a dilation affects the size, side lengths, and angles of polygons. (Speaking and Listening)
4. Language Goal: Explain the effect of the scale factor and its distance from the center of dilation. (Speaking and Listening)

Coherence

- Today

Students are formally introduced to dilations and a method for producing dilations using a circular grid. Students notice that a dilation produces a scaled copy and describes how a scale factor affects the size, side lengths, and angles of a polygon.

< Previously

In Lesson 1, students were introduced to the general idea of a dilation as a method for producing scaled copies of geometric figures.

> Coming Soon

In this Sub-unit, students will apply dilations to points without a grid, and then move to applications on a square grid, solidifying their understanding of the relationship between a polygon and its dilated image.

Activity 1

Activity 2

Summary

Exit Ticket
(J) 5 min

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- geometry toolkits: rulers, protractors

Math Language

Development

New words

- center of dilation
- dilation

Review words

- scaled copy
- scale factor
- optical illusion

Amps Featured Activity

Activity 2
 Overlay Graphs

You can overlay all student-created dilations and provide immediate feedback.

Building Math Identity and Community
 Connecting to Mathematical Practices

Students who are more confident with the work in Activity 2 may be able to lead discussions within their groups about the structure of scaled copies after a dilation of the vertices of the original polygon. Remind students to "step up" if they have something to add to the conversation, but also to "step back" to give other voices a chance to share.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 1, have students only complete the dilations using two points.

Warm-up Notice and Wonder

Students analyze an optical illusion as an introduction to circular grids.

1 Launch

Conduct the Notice and Wonder routine.

(2) Monitor

Help students get started by asking what shapes they notice in the image.

Look for productive strategies:

- Noticing that all the circles have the same center.
- Noticing that the distances between the circles are the same.
- Noticing that the radii of the circles are increasing.

3 Connect

Have students share what they noticed and wondered. Record and display their responses for all to see.

Ask, "How can you check whether the figure is a square?" Sample response: Use a ruler and protractor to check for straight, equal sides and right angles.

Highlight that optical illusions trick people's brains into thinking that the distance and size of the objects are different from what they actually are. Tell students that at the end of the unit they will create their own optical illusions, but in order to do so, they will need to learn how to make sense of the "tricks" used to create them.

Power-up

To power up students' ability to identify a scale factor, have students complete:

Recall that the scale factor between two figures is the value that the original figure's side lengths are multiplied by to produce the scaled copy.

Figure B is a scaled copy of Figure A.

1. What is the length across the top of Figure A. 4 units
2. What is the length across the top of Figure B? 3 units
3. Is the scale factor used to map Figure A onto

Figure B greater than or less than 1 ? Less than 1
4. What is the scale factor used to map Figure A onto Figure B? $\frac{3}{4}$

Use: Before Activity 2

Informed by: Performance on Lesson 1, Practice Problem 6 and Pre-Unit Readiness Assessment, Problem 1

Activity 1 A Droplet on the Surface

Students examine the ratios of the distance of points on a circle that maps to another circle to gain an understanding of the terms dilation and center of dilation.
In the circular grid, the distance from one circle to the next is the same. The radius of the innermost circle is 1 unit. The radius of each successive circle is 1 unit more than the radius of the previous circle. All the circles share the same center, point P. Circle C, Circle D, and point E are marked on the grid.

1. Plot two more points on Circle C . Label them F and G.
1-3. Sample response shown on grid.
2. Draw rays from point P through the three points on Circle C . Extend the rays past Circle D.
3. Plot points where the ray intersects Circle D. Label the corresponding points E^{\prime}, F^{\prime}, and G^{\prime}.
4. In the table, write the distance, in units, from point P to each point you drew.
>5. Find the ratio of the distances from the image of each point to the preimage point What do you notice?
The ratios are all equivalent to 3 Sample responses shown in table.

Distance from point P			
Point E	2	Point E^{\prime}	6
Point F	2	Point F^{\prime}	6
Point G	2	Point G^{\prime}	6

1 Launch

Ask students to imagine the circles that are formed when a pebble is dropped in a still pond. Provide access to rulers.

Activity 2 Partner Problems: A Quadrilateral on a Circular Grid

Students dilate points on a polygon to see how the scale factor affects the image, coming to an understanding that dilating only the vertices produces the same image.

Amps Featured Activity Overlay Graphs

Activity 2 Partner Problems: A Quadrilateral on a Circular Grid

Consider Polygon $A B C D$. With your partner, decide who will complete Column A and who will complete Column B.

	Column A	Column B
\rangle	1. Plot a point on any side of Polygon $A B C D$. Label the point E.	Plot a point on any side of Polygon $A B C D$. Label the point E.
$>$	2. Dilate points A, B, C, D, and E using point P as the center of dilation and a scale factor of 2 .	Dilate points A, B, C, D, and E using point P as the center of dilation and a scale factor of $\frac{1}{2}$.
>	3. Draw segments between the dilated points to create a new polygon.	Draw segments between the dilated points to create a new polygon.
\rangle	4. Measure the sides and angles of both polygons.	Measure the sides and angles of both polygons.

Column A response:

(1) Launch

Have students explain dilation and center of dilation in their own words to strengthen their understanding. Conduct the Think-Pair-Share routine. With a partner, have students choose either Column A or Column B to complete individually before sharing their responses with their partner. Provide access to geometry toolkits.

Monitor

Help students get started by telling them that the scale factor will help them determine the distance of each corresponding point from the center of dilation.
Look for points of confusion:

- Having trouble dilating any points. Have students draw rays from point P through each point and count the distance.
- Not knowing how to dilate using the scale factor of $\frac{1}{2}$. Have students determine the distance from point P to each point and then calculate half of that distance to plot the dilated points.

Look for productive strategies:

- Noticing that dilating the vertices of the original polygon produces a scaled copy of the figure.

Activity 2 continued >

Accessibility: Vary Demands to Optimize Challenge

Consider one of these alternative approaches to this activity.

- Have pairs complete one column and then meet with another pair who completed the other column to respond to Problem 5.
- Provide copies of pre-dilated polygons and have students respond to Problems 5 and 6.
- Have students use the Amps slides for this activity, in which they can digitally dilate the polygons.

Extension: Math Enrichment

Have students determine the scale factor that takes the polygon in Column A to the polygon in Column B. $\frac{1}{4}$

Math Language Development

MLR2: Collect and Display

During the Connect, as students share their methods and observations, collect and display phrases and images that they use to describe dilations of polygons. For example, scale factor, distance, center of dilation, scaled copy, vertices, etc.

English Learners

To support student understanding, use gestures to show how a dilation changes a figure's size. Be sure to use gestures that illustrate how an image is enlarged and also how an image is reduced.

Activity 2 Partner Problems:

A Quadrilateral on a Circular Grid (continued)

Students dilate points on a polygon to see how the scale factor affects the image, coming to an understanding that dilating only the vertices produces the same image.

3 Connect

Display correct student work.
Have students share their methods of dilations and observations of the dilated figures.
Ask, "How does the scale factor affect a point's distance from the center of dilation? Do the resulting polygons produce scaled copies?"

Highlight that a scaled copy is produced during a dilation. To dilate a polygon, there is no need to dilate points that are not vertices that lie on each side of the polygon. Instead, students can dilate just the vertices and then connect them. The size of the image depends on the size of the scale factor.

Summary

Review and synthesize how dilations are transformations that produce scaled copies and how dilations can be performed on a circular grid.

Summary

In today's lesson...

You performed dilations of a figure. A dilation is a transformation which is defined by a fixed point P, called the center of dilation, and a scale factor k. In the figure shown, the dilation moves each point X into a point X^{\prime} along ray $P X$ such that its distance from a fixed point changes by the scale factor. A scale factor greater than 1 produces a larger scaled copy, and a scale factor less than 1 produces a smaller scaled copy.

- Triangle B is dilated using point P as the center of of 2 to produce Triangle A.
Triangle B is dilatedusing
Triangle B is dilated using dilation and a scale factor to produce Triangle C.

Formalize vocabulary:

- center of dilation
- dilation

(.) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition To help them engage in meaningful reflection, consider asking:

- "What does it mean to dilate a figure?"

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit, that you started in Lesson 1. Ask them to review and reflect on any terms and phrases related to the terms center of dilation and dilation that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding by dilating points with a scale factor greater than 1 and less than 1.

Success looks like ...

- Language Goal: Comprehending the term dilation as a transformation of a figure that produces scaled copies of that figure. (Speaking and Listening)
» Dilating points A and B with different scale factors.
- Goal: Creating dilations of polygons using a circular grid, given a scale factor and the center of dilation.
- Language Goal: Explaining how a dilation affects the size, side lengths, and angles of polygons. (Speaking and Listening)
- Language Goal: Explaining the effect of the scale factor and its distance from the center of dilation. (Speaking and Listening)

- Suggested next steps

If students do not dilate the points correctly, consider:

- Reviewing scale factors using Activity 2.
- Asking students to draw rays, and then asking them to dilate the points.
- Reassessing after Lesson 3.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder...

- How did the circular grid set students up to develop their understanding of dilations?
- During Partner Problems in Activity 2, how did you encourage each student to listen to one another's strategies?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	2
	2	Activity 2	2
	3	Activity 2	2
Spiral	4	Unit 1	Lesson 11
Formative 0	6	Grade 7	Unit 2
	5	Lesson 3	2

© Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Dilations on a Plane

Let's dilate figures without a grid.

Focus

Goals

1. Create a dilation of a figure, given a scale factor and the center of dilation.
2. Identify the center, scale factor, and image of a dilation without a circular grid.

Coherence

- Today

Students apply dilations to points on a plane without the structure of a grid. They practice identifying centers of dilation, scale factors, and images of dilation. Students must think about the dilations in terms of the given information and make decisions about which measurement tools will help them accomplish their goals.

< Previously

In Lesson 2, students were formally introduced to dilations and they explored how to perform a dilation on a circular grid.

Coming Soon

In Lesson 4, students will begin to dilate figures using the structure of a square grid.

Rigor

- Students build conceptual understanding of dilations on a plane.
- Students apply their knowledge of dilations to find missing information, such as the center of dilation, scale factor, or images of dilation.

Warm-up

Activity 1

d. 15 min

คํำ Pairs

Activity 2
(J) 15 min
ㅇํㅇ Pairs

Activity 3
(optional)

Summary
(」) 5 min

กํํ Whole Class

Exit Ticket
(J) 5 min
$\stackrel{\circ}{\cap}$ Independent

Amps powered by desmos : Activity and Presentation Slides
For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 3 PDF (for display)
- Anchor Chart PDF, Dilations
- geometry toolkits: rulers or index cards

Math Language

Development

Review words

- dilation
- center of dilation
- scale factor
- scaled copy

Building Math Identity and Community
 Connecting to Mathematical Practices

Students may feel lost as they attempt dilations without the structure of a grid. Encourage students to look back at their work from Unit 1, and consider the tools they have available (rulers, etc.) to assist in understanding.

Amps ! Featured Activity

Exit Ticket
 Real-Time Exit Ticket

Check in real time if your students can identify the center of dilation, preimage, and image using a digital Exit Ticket.
 desmos

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- Omit Problems 2 and 3 from Activity 1.
- Optional Activity 3 may be omitted.

Warm-up Dilating Along a Ray

Students find the image of a point along a ray to understand how to perform dilations using only measurement tools, without the structure of a grid.

1 Launch

Review the terms center of dilation and scale factor. Provide access to geometry toolkits for the duration of this lesson.

Monitor

Help students get started by asking them to explain what it means to "dilate a point."

Look for points of confusion:

- Estimating the placement of points C and D without the use of a measurement tool. This is acceptable at this point in the lesson. Ask these students to share first during the Connect, and then ask if there is a more precise method to guarantee the exact location of the images.
- Switching the placement of points C and D. Ask, "What does it mean for a point to be twice the distance away? Is it closer or farther away?"

Look for productive strategies:

- Using a ruler to measure distances.

3 Connect

Have students share their methods for plotting points C and D. Begin with students who approximated the locations without any measurement tool, followed by students who used a ruler. Finally, ask (or show) how students can find point D by marking the length of the ray on an index card or slip of paper and then folding it in half

Highlight the similarities and differences of performing dilations on a circular grid.

Ask, "How do rays help you dilate points on a plane?"

(7) Power-up

To power up students' ability to identify scaled figures, have students complete:

Recall that a scaled copy is a copy of a figure where every length in the original figure is multiplied by the same value to determine the corresponding lengths in the copy.

Compare the lengths in Figure A with the lengths in Figure B to determine if they are scaled copies. Be prepared to explain your thinking.
No, they are not scaled copies; Sample response: To go from the left side of Figure A to Figure B you multiply by 1.5 but to go from the top of Figure A to Flgure B you multiply by 1.
Use: Before Activity 2
Informed by: Performance on Lesson 3, Practice Problem 6 and Pre-Unit Readiness Assessment, Problem 7

Activity 1 Dilation Obstacle Course

Students identify missing information to reinforce the idea that the preimage, image, and center of dilation of a point are along the same line.

Activity 1 Dilation Obstacle Course

Refer to the points A through J shown.
${ }^{-}$C

- ${ }^{A}$
${ }^{B}$
${ }^{\circ}$
${ }^{E} \quad{ }^{F} \quad{ }^{G} \quad{ }^{G}$
${ }^{J}$
>1. Dilate point B using point A as the center of dilation and a scale factor of 5 . Which point is its image? The image is point I.

2. Dilate point G using point H as the center of dilation, so that its image is point E. What scale factor did you use? 1 used a scale factor of 3 .
3. Dilate point E using point H as the center of dilation, so that its image is point G. What scale factor did you use? l used a scale factor of $\frac{1}{3}$.
4. Using point B as the center of dilation, dilate point H so that its image is itself. What scale factor did you use? The scale factor must equal 1 for a preimage to map onto itself.
A. Are you ready for more?

Tyler and Diego want to find a center of dilation in order to dilate point F so that its image is point B. Tyler thinks the center is point J, while Diego thinks it is point C. Who is correct? Explain your thinking.
They are both correct; Sample response: The center of dilation can be point J if the scale factor is greater than 1 , or point C if the scale factor is less than 1 .

1 Launch

Set an expectation for the amount of time students will have to work in pairs on the activity.

2 Monitor

Help students get started by revisiting the Warm-up, and ask students to describe the process for dilating a point. Help students make the connection that drawing rays would be beneficial in this activity.

Look for points of confusion:

- Switching the scale factors in Problems 2 and 3. Ask students to locate the center of dilation and the preimage, place a finger on the preimage, and then move it to the image. Ask, "Did your finger get closer to the center of dilation, or farther away? What does that imply about the scale factor?"

Look for productive strategies:

- Identifying the center of dilation first and using it to draw a ray through the preimage.
- Using an index card to mark units of distance.

3 Connect

Ask:

- "What do you notice about your responses for Problems 2 and 3?" It is acceptable at this point if students do not recognize the reciprocals as this idea will be revisited in Activity 2.
- "Why must the scale factor be 1 in Problem 4?" Any number times 1 is itself.
Highlight that the preimage, image, and center of dilation always fall on a ray, with the center of dilation as the endpoint.

Accessibility: Guide Processing and Visualization

Some students may be distracted by all of the points. The goal of this activity is for students to realize that the preimage, image, and center of dilation of a point all lie on the same line. Display or provide copies of the image with only the relevant points for each problem.

Accessibility: Optimize Access to Tools

Suggest that students use a ruler or index card to help measure distances

Extension: Math Enrichment

Have students draw and label a point P on a separate sheet of paper. Ask them to draw and label a point Q so that Q is 1 in . away from point P. Have them perform the following dilations.

- Dilate point Q using point P as the center of dilation and a scale factor of 3 . Label the image point Y. How far is point Y from point P ? 3 in. From point Q ? 2 in.
- Dilate point P using point Q as the center of dilation and a scale factor of 3 . Label the image point Z. How far is point Z from point P ? 2 in. From point Q ? 3 in. From point Y ? 5 in.

Activity 2 Dilating a Line Segment

Students examine the dilation of a line segment to find the center of dilation and explore the effects of the size of the scale factor on a figure.

(9)

 Name: Date: \qquadActivity 2 Dilating a Line Segment

Mai dilated line segment $A B$ to create the image, segment $D E$, but erased her center of dilation.

1. Use a ruler to find and draw Mai's center of dilation. Label it point C.
2. What is the scale factor of the dilation? Explain or show your thinking. The scale factor is $\frac{1}{3}$; Sample response: To find the scale factor, I divided the length of segment $C D$ by the length of segment $C A$.
3. Choose a point on segment $A B$ and label it point F. Find the precise location of point F^{\prime}, the image of the dilation of point F. Explain or show your thinking.
locations for point F may vary. Sample response: I drew a ray beginning at point C that passes through point F and intersects segment $D E$. The point where the ray and segment $D E$ intersect is point F^{\prime}
4. How would the scale factor change if segment $D E$ is the preimage and segment $A B$ is the result of the dilation?
The scale factor would be 3; Sample response: Because segment $A B$ is longer than segment $D E$, the scale factor must be greater than 1 . To find the scale factor, segment $C D$.

1 Launch

Set an expectation for the amount of time students will have to work in pairs on the activity.

2 Monitor

Help students get started by asking them to discuss which point is the image of point A and which is the image of point B with their partner.

Look for points of confusion:

- Not knowing how to find the center of dilation. Have students draw a ray that starts from point B and passes through point E
- Thinking the scale factor is $\mathbf{3}$ in Problem 2. Ask whether the preimage is larger or smaller than the image, and what effect they expect this to have on the scale factor.

Look for productive strategies:

- Finding the scale factor by dividing the length of line segment $D E$ by the length of line segment $A B$ or by dividing the length of line segment $C D$ (or line segment $C E$) by the length of line segment $C A$ (or line segment $C B$).
- Measuring the distance from point F to an endpoint, and multiplying this distance by the scale factor to find the location of point F^{\prime}
- Recognizing that the scale factor in Problem 4 is a reciprocal of the scale factor in Problem 2.

3 Connect
Have pairs of students share their strategies for finding the center of dilation and the scale factor. Select students who measured the lengths of the line segments and students who measured the distances from the center of dilation.
Ask, "How did you decide where to place point F^{\prime} on line segment $D E$?" Mention that finding a point of intersection on a ray and using a scale factor are both valid methods.
Highlight that the scale factor is the ratio of the image to the preimage. If the preimage and image are switched, the new scale factor is the reciprocal of the original scale factor.

Differentiated Support

Accessibility: Guide Processing and Visualization

Demonstrate how to draw rays to find the center of dilation in Problem 1. Show how the rays intersect in only one point and that this point is the center of dilation.

Extension: Math Enrichment

Ask students to dilate line segment $A B$ using the same scale factor and a different center of dilation, and compare their resulting image with line segment $D E$. Student responses may vary.

Math Language Development

MLR7: Compare and Connect

During the Connect, as students share their strategies, have them compare the different solution pathways for finding the scale factor. Connect these strategies to the ratio of the image to the preimage, and what the reciprocal of that ratio means. Amplify the language students use to describe how the scale factor affects the size of the image and its distance from the center of dilation.

English Learners

Encourage students to borrow from the class display as they use their developing mathematical language.

Activity 3 Perspective Drawing

Students use dilations to create the illusion of three dimensions on a two-dimensional plane.

1 Launch

Ask, "How could you use dilations to create artwork?" Display the Activity 3 PDF featuring examples of artwork with and without perspective. Ask students to compare the two examples and conduct the Notice and Wonder routine.
or drawn on two-dimensional paper to have a three-dimensional look. You will use dilations to create a perspective drawing.
>1. In the space provided at the bottom of this page, draw a polygon.
2. Choose a point outside the polygon to use as the center of dilation. Label it point C.
>3. Using your center as point C and a scale factor of your choosing, dilate the polygon. Record the scale factor you use.
4. Draw a segment that connects each of the original vertices with its image. This will allow your diagram to look like a three-dimensional drawing! If time allows, you can shade the sides to make it look more realistic.
5. Compare your drawing with the drawings of other students.

Talk about these questions.

- What is the same, and what is different?
- How do the choices you made affect the final drawing?
- Was your dilated polygon closer to point C than to the original polygon, or farther away? How do you decide this?

Answers may vary.
Sample response using a scale factor of 2 :

Reflect: What good choices did you make about your
personal behavior today?

Monitor

Help students get started by demonstrating how to create a perspective drawing.

Look for points of confusion:

- Thinking their center of dilation must be in a specific location. Any point is fine as a center of dilation, but the effect on what the image looks like may vary. Encourage students to try different locations for the center of dilation and observe the effect on their drawing.

Look for productive strategies:

- Creating rays through the center of dilation and each vertex of their polygon.
- Multiplying the distance from the center to each vertex by the scale factor.

3 Connect

Display several student drawings with the same scale factor, but a different location for the center of dilation to demonstrate that the point of view or perspective on them is different.

Ask:

- "What is the effect on the image when the scale factor is greater than 1 ?" The image is larger than the preimage and farther away from the center of dilation.
- "What is the effect on the image when the scale factor is less than 1 ?" The image is smaller than the preimage and closer to the center of dilation.
- "What is the effect on the image when the scale factor is equal to 1?" The image maps onto itself.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Provide a polygon for students to use, such as a quadrilateral or pentagon.

Extension: Interdisciplinary Connections

Consider showing students examples of 1-point perspective drawing and illustrating where the vanishing point is located. Tell them the vanishing point is where the parallel lines seem to converge (meet at a point). Ask them to describe how vanishing points relate to dilations. (Art) Sample response: The vanishing point is the center of dilation. Rays can extend from the vanishing point to create images of dilations of objects, where the preimage is closer to the vanishing point.

Math Language Development

MLR3: Critique, Correct, Clarify

During the Connect, display the following three incorrect statements:

- When the scale factor is greater than 1 , the image maps onto itself.
- When the scale factor equals 1 , the image is larger than the preimage and farther away from the center of dilation.
- When the scale factor is less than 1 , the image is smaller than the preimage and farther away from the center of dilation.
Have pairs of students critique these statements, write corrected statements, and clarify their reasoning as to how they corrected them.

Summary

Review and synthesize dilations on a plane without a grid.

Synthesize

Display Part 1 of the Anchor Chart, Dilations. Tell students that over the course of this unit, they will return to this anchor chart to update it with their new understandings.

Ask:

- "How would you explain the steps for dilating a point on a plane without the structure of a grid?"
- "What must be true about the preimage, center of dilation, and image?" They must be along the same line, and the center of dilation cannot be between the preimage and the image.
- "What is the relationship between the scale factor that maps the preimage onto the image, and the scale factor that maps the image onto the preimage? The scale factors are reciprocals.

Highlight:

- The scale factor is the ratio that determines the size of an image, including whether the original figure is enlarged or reduced.
- The placement of the center of dilation affects the placement of the image.

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What strategies or tools did you find helpful today when dilating a point? How were they helpful?"
- "Were any strategies or tools not helpful? Why?"

Exit Ticket

Students demonstrate their understanding of dilations on a plane by identifying the center of dilation, preimage, and image.

Amps Featured Activity

亘 Printable

Name:
Exit Ticket
Date:
Period: ©

Lin drew a triangle and a dilation of the triangle with a scale factor of $\frac{1}{2}$

1. Which point is the center of dilation? Explain your thinking.

Point A is the center of dilation; Sample response: There are two triangles: Triangle $A E D$ and Triangle $A B C$. Point D lies on line segment $A C$ and point E lies on line segment $A B$. Point A is the point of intersection of line segment $A C$ and line segment $A B$.
2. Which triangle is the preimage, and which triangle is the dilated image? Explain your thinking.
Triangle $A B C$ is the preimage, and Triangle $A E D$ is the dilation; Sample response: I know the image must be smaller than the preimage because the scale factor is less than 1 .

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...
What worked and didn't work today? In what ways did Activity 2 go as planned?
During the discussion about Activity 1, how did you encourage each student to share their understandings? What might you change for the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	1
Spiral	$\mathbf{2}$	Activity 1	2
Formative $\mathbf{0}$	$\mathbf{5}$	Activity 2	Unit 1 Lesson 15 Unit 2 Lesson 4

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.
4. Consider parallel lines $A B$ and $D E$ and transversal $B C$. Calculate the measure of each of the indicated angles.
Explain your thinking.
(a) $\mathrm{m} \angle B C D=38^{\circ}$ Sample response: $\angle B C D$ and $\angle A B C$ are alternate interior ${ }_{\text {angles. }}$

(c) $\mathrm{m} \angle D C F=142^{\circ}$

Sample response: $\angle D C F$ and $\angle E C F$ are supplementary angles.
5. Consider segments $A B, A D$, and $A C$.
a Plot the point in the middle of segment $A B$ Plot the point in the
and label it point J.
b Plot the point in the middle of segment $A C$ and label it point K.
c Plot the point in the middle of segment $A D$ and label it point L.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Dilations on a Square Grid

Let's dilate figures on a square grid.

Focus

Goals

1. Create a dilation of a polygon on a square grid, given a scale factor and center of dilation.
2. Language Goal: Identify the image of a figure on a square grid, given a scale factor and the center of dilation. (Speaking and Listening)

Coherence

- Today

Students apply dilations to polygons on a grid without coordinates. The grid offers a way of measuring distances between points, especially points that lie at the intersection of grid lines.

< Previously

In Lesson 3, students studied dilations on a plane without the structure of a grid.

>Coming Soon

In Lesson 5, students use coordinates to more precisely describe dilations on a grid.

Rigor

- Students develop conceptual understanding for how the structure of a grid can be used to make dilations.

Warm-up

Activity 1

Activity 2

Summary

Exit Ticket
$(J) 5$ min
\bigcirc Independent
() 15 min

กํำ Pairs

(J) 5 min
กํํํํํํ Whole Class

() 5 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- colored pencils
- geometry toolkits: rulers, index cards

Math Language

Development
Review words

- dilation
- center of dilation
- scale factor
- scaled copy

Amps ! Featured Activity

Activity 1
 Interactive Geometry

Students drag vertices to represent dilations of polygons on a grid.

Building Math Identity and Community
 Connecting to Mathematical Practices

Students may want to stick with the methods they learned in Lesson 3 rather than investing in the new tools presented in this one. Validate students' feelings and methods, and encourage them to practice using the structure of the square grid today so that they can have more strategies from which to choose for future problems. Pair these students with partners who can support a better understanding of how to use the structure of the square grid.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 1, Problem 2 may be omitted.
- In Activity 2, Problems 3 and 4 may be omitted.

Warm-up Estimating a Scale Factor

Students estimate a scale factor without a grid to better see the usefulness of a grid in the upcoming activities.

Unit 2 | Lesson 4

Dilations on a Square Grid

Let's dilate figures on a square grid.

Warm-up Estimating a Scale Factor
Point C is the dilation of point B, with point A as the center of dilation. Estimate the scale factor. Explain your thinking.
$\stackrel{\bullet}{C}$
$\stackrel{\oplus}{A}$

Sample response: The scale factor should be little more than 2
and a little less than 2.5 , so I'm estimating about 2.3 .

1 Launch

Tell students they will estimate the scale factor for a dilation without the use of a ruler.

(2) Monitor

Help students get started by reminding them of the definition of scale factor and having them consider the distance from point A to point B.

Look for points of confusion:

- Guessing a scale factor. Clarify that estimating is not the same as guessing and ask, "Between which two numbers do you think the scale factor is? Can you be more precise?".
- Struggling to find an estimate without a grid. Ask students how they can estimate a scale when there is not one provided, and encourage them to develop a strategy for estimation.

Look for productive strategies:

- Using marks or informal grid lines to make an estimate.

3 Connect

Display the Warm-up from the Student Edition
Ask:

- "Is the scale factor greater than 1? 2? 3? Explain your thinking."
- "What made this Warm-up challenging? Without the use of a ruler, what might be helpful in finding the scale factor going forward?"

Highlight that students will continue to explore dilations and identify scale factors, but this time using the structure of a square grid.

Power-up

Accessibility: Optimize Access to Tools

Provide access to students' geometry toolkits and suggest that students use rulers or index cards to informally estimate the scale factor.

Extension: Math Enrichment

Tell students that point D is the dilation of point B with point A as the center of dilation and a scale factor of $\frac{1}{2}$. Point E is the dilation of point D with point A as the center of dilation and a scale factor of $\frac{1}{2}$. Ask students to describe the location of points D and E, without plotting the dilations. Point D is halfway between points A and B. Point E is $\frac{1}{4}$ the distance between points A and B.

To power up students' ability to determine the point in the middle of a line segment on a grid, have students complete:

Recall that in order to determine the point in the middle of a line segment on a grid, you can use tools such as counting boxes on the grid, a ruler, or an index card.

1. Plot point Q in the middle of segment $A B$
2. Plot point R in the middle of segment $B C$
3. Plot point S in the middle of segment $A C$. Use: Before Activity 1
Informed by: Performance on Lesson 3,

Activity 1 Dilations on a Grid

Students perform dilations on a square grid to see how the structure of the grid can be particularly helpful.

1 Launch

Say, "You should use any tool you find useful, but I challenge you to see if you can be precise without the use of a ruler." Provide access to geometry toolkits for the duration of the lesson.

2 Monitor

Help students get started by saying,
"Use your ruler to find a point that is twice as far from point P as point A is from point P."

Look for points of confusion:

- Struggling to make precise measurements. Ask, "Do you need to know the precise measurements to draw a segment that is twice as long?" Encourage students to use an index card.
- Dilating a point in only a vertical or horizontal direction. Ask, "How far is this point from the center? Make sure you dilate in the vertical and horizontal direction."
- Questioning where to place a point that does not lie on the corners of the gridlines in Problem 2. Ask, "How could you use your ruler to find a distance that is $\frac{1}{2}$ of the distance between the center and the point Q ? How could you use the grid to confirm this location?"

Look for productive strategies:

- Using the grid or a ruler to create dilations.
- Using the grid to create dilations.

Activity 1 continued >

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can use a digital geometry toolkit to perform dilations on a grid.

Extension: Math Enrichment

Ask students how the image of Rectangle $A B C D$ would be similar to and different from the image in Problem 1 if the center of dilation was point D instead of point P. Have them experiment with different centers of dilation, providing them with graph paper as needed. The locations of the images vary, but the sizes of the images are the same

Math Language Development

MLR8: Discussion Supports

During the Connect, as students respond to the first Ask question, highlight the language they use, such as "draw a ray from the center of dilation through each preimage point" or "use an index card to measure the distance from the center of dilation through each preimage point." Encourage the use of developing math language, such as preimage, image, distance, and center of dilation.

English Learners

During the discussion, point to or annotate terms as you say them: image, preimage, distance, center of dilation.

Activity 1 Dilations on a Grid (continued)

Students perform dilations on a square grid to see how the structure of the grid can be particularly helpful.

Activity 1 Dilations on a Grid (continued)
2. Dilate Triangle $Q R S$ by a scale factor of $\frac{1}{2}$ with point T as the center of dilation.

(3) Connect

Display student work showing correct responses to Problems 1 and 2.

Have students share the methods they used to create the dilations in Problem 1 and Problem 2.
Sequence responses by first asking students who used a ruler to share, and then asking students who used the grid to share.

Ask:

- "How can you use the structure of the grid to create a dilation?"
- "In Problem 1, Is Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ a scaled copy of Rectangle $A B C D$? What do you know about the sides and angles of the image and preimage?"

Highlight that descriptive measurements such as "two up and one over" can be multiplied by the scale factor to create a dilation.

Activity 2 Dilation Obstacle Course . . . on a Grid!

Students apply their new understanding of how to use a grid to create and identify dilations.

(3)

Name:
Date: Period:

Activity 2 Dilation Obstacle Course ... on a Grid!

Refer to points A through L shown.

1. Using point I as the center of dilation, dilate point G so that its image is point H. What scale factor did you use?
${ }^{3}$
2. Suppose point F is an image of point N after a dilation. Compare the scale factors with point B and point C as the centers of dilation. Sample response: For the position of the given image, the closer the dilated point is to the center of dilation, the greater the scale facto The scale factor with point B factor witer is 2.5 .
3. To dilate point K so that its image is point A, what point could be the center of dilation, and what would be the scale factor? Point L could be the center, with a scale factor of 3 .
4. Points D, E, and J can be used to form Triangle $D E J$. Points D, I, and G can be used to form Triangle DIG. Identify the center of dilation and the scale factor that map Triangle DEJ onto Triangle DIG. Point D is the center of dilation, with a scale factor of $\frac{1}{2}$.

1. Launch

Set an expectation for the amount of time students will have to work in pairs on the activity. Distribute colored pencils.

2 Monitor
Help students get started by asking, "How can you describe the distance of point G to point I, the center?"

Look for points of confusion:

- Finding a scale factor of 2 for Problem 1. Have students find the distance from point G to point I, and ask them to find how many times that length would need to scale to reach point H.
- Struggling to find a scale factor that is not a whole number in Problem 2. Make sure students use the correct distances from the center for each point, and ask students how they can use division to find the scale factor between distances.

3 Connect

Display the points on the grid.
Have students share how they found their solutions to Problems 1-4.

Highlight how the scale factor between two fixed points changes based on the point used as the center of dilation in Problem 2.

Ask:

- "In Problem 2, what happens if you move point C closer to points N and F in your image? Will the scale factor be less than or greater than 4?" The scale factor will be greater. Note: If the point and its image are fixed, then the distance between the center and the point and the scale factor are inversely proportional.
- "Could point M be the center of dilation in Problem 3? Why or why not?" No; Sample response: The point and its image should be on the same side of the center.

Differentiated Support

Accessibility: Guide Processing and Visualization

Have students use colored pencils to color code the points that are relevant to each problem, to help reduce distractor points. Alternatively, display or provide copies of points that are only relevant to each problem at a time.

Extension: Math Enrichment

As a follow-up to Problem 4, ask students to identify any other pairs of polygons that can be formed by the points on the grid such that one polygon is a dilation of the other. Have them justify their thinking.

Math Language Development

MLR8: Discussion Supports—Revoicing

During the Connect, as students share their solutions to Problem 4, revoice their ideas by restating a statement as a question. This will help clarify, demonstrate mathematical language, and involve more students. For example, if a student says "The two triangles share point D and the smaller one is half the larger one," consider asking:

- "What do you mean by 'half'? Are you comparing the areas of the triangles or the side lengths?"
- "In terms of dilations, what do you mean by 'the two triangles share point D '?"

Summary

Review and synthesize how the structure of the grid can be helpful in creating and identifying dilations.

Summary

In today's lesson

You explored how square grids can be useful for showing dilations. The grid is helpful, especially when the center of dilation and the point(s) being dilated are marked at the intersections of grid squares. Rather than using a ruler to measure the distance between the points, you can count grid squares.
For example, suppose you want to dilate point Q with a scale factor of $\frac{3}{2}$ and point P as the center of dilation.
Because point Q is 4 grid squares to the left and 2 grid squares down from point P, the dilated image will be 6 grid squares to the left and 3 grid squares down from point P. Can you see why?

The dilated image is marked as point Q^{\prime} in the grid shown

Reflect:

Synthesize

Have students share what was different about their methods for working with dilations today than the previous lesson, without the structure of a grid.

Ask:

- "How can you perform dilations on a square grid?"
- "What else might help you be more precise when working with dilations on a grid?" Sample responses: Using coordinates or using a ruler or index card to verify measurements.

Highlight that in the next lesson, students will learn to be even more precise and descriptive as they work with dilations on the coordinate plane.

(Reflect

After synthesizing the concepts of the lesson allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "In what ways was the grid helpful in making dilations? "

Exit Ticket

Students demonstrate their understanding by dilating a rectangle on a square grid given a point of center and a scale factor.

Success looks like...

- Goal: Creating a dilation of a polygon on a square grid, given a scale factor and center of dilation.
- Language Goal: Identifying the image of a figure on a square grid, given a scale factor and center of dilation. (Speaking and Listening)
» Drawing the image of Rectangle WXYZ on a square grid

- Suggested next steps

If students cannot create an accurate dilation, consider:

- Reviewing strategies from Activity 1, Problem 1.
- Assigning Practice Problem 1.

If students appear to not be comfortable using the structure of the grid to find dilations, consider:

- Letting them know that multiple methods are valid and encouraging them to try using the structure of the grid so they are comfortable with this approach.
- Assigning Practice Problem 1.

If students have the correct image, but the name is incorrect, consider:

- Asking students to be precise, and explain why it is important to name images correctly.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C. Points to Ponder ...

- Thinking about the questions you asked students today and what the students said or did as a result of the questions, which question was the most effective?
- The instructional goal for this lesson was to create dilations and identify scaled images on a grid without the use of coordinates.
How well did students accomplish this? What did you specifically do to help students accomplish it?

Practice Problem	Analysis		
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	2
Spiral	$\mathbf{2}$	Activity 2	1
Formative 0	$\mathbf{3}$	Unit 1 Lesson 15	1
	$\mathbf{4}$	Unit 1 Lesson 5	1

O Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Dilations With Coordinates

Let's look at dilations on the coordinate plane.

Focus

Goal

1. Language Goal: Describe and apply dilations to polygons on the coordinate plane, given the coordinates of the vertices and the center of dilation. (Speaking and Listening, Reading and Writing)

Rigor

- Students build conceptual understanding of dilations on the coordinate plane.
- Students create dilated images of polygons to build procedural fluency.

Coherence

- Today

Students apply dilations to polygons on a coordinate plane. The coordinates allow for more precise descriptions of dilations.

< Previously

Students performed dilations on polygons using a plane in Lesson 3, and using a grid without coordinates in Lesson 4.

Coming Soon

In Lesson 6, students will define similarity using sequences of transformations.

Activity 1

Activity 2

Summary

Exit Ticket

(J) 5 min	(J) 20 min	(10 min
$\stackrel{\bigcirc}{\cap}$ Independent	$\bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc$

(J) 5 min
\bigcirc Independent

Amps powered by desmos ! Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Info Gap Routine PDF
- Power-up PDF, as needed
- Power-up PDF (answers), as needed
- Activity 1 PDF, one per pair
- Activity 1 PDF, (answers)
- Anchor Chart PDF, Translations, Rotations, and Reflections (optional, from Unit 1)
- Anchor Chart PDF, Dilations (optional)
- geometry toolkit: rulers, protractors

Building Math Identity and Community
 Connecting to Mathematical Practices

Students may get stuck thinking they need to use the precise terms for the dilations in their descriptions during Activity 2. Encourage these students to describe their dilations in a way that makes sense to them and to look for things they know about the specific points, lines, or angles on their card to help them.

Amps : Featured Activity

Exit Ticket
 Real-time Exit Ticket

Check in real time if your students can describe dilated figures on the coordinate plane using a digital Exit Ticket.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 2, Problems 2 and 4 may be omitted.

Warm-up Different Dilations

Students will compare the same dilation on a square grid and on a coordinate plane to determine which structure allows for more precise descriptions.

1. Launch

Set an expectation for the amount of time students will have to work individually on the activity.

Math Language Development

MLR7: Compare and Connect

During the Connect discussion, have students compare the square grid to the coordinate plane. Ask, "What is the same about the two grids? What is different?" Look for and amplify language students use, such as coordinates, ordered pairs, axes labels/scales, etc. Encourage students to justify their preference for which grid they would use.

English Learners

Annotate the coordinate plane with the mathematical language students use to describe how it is different from the square grid.

Power-up
To power up students' ability to determine the coordinates of an image after a series of transformation:

Provide students with a copy of the Power-up PDF.
Use: Before the Warm-up
Informed by: Performance on Lesson 4, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 2

Activity 1 Info Gap: Make My Dilation

Students take turns describing and drawing dilations in order to practice precise communication.

Activity 1 Info Gap: Make My Dilation $\quad \begin{aligned} & \text { Plan ahead: How will you } \\ & \text { show that you are listening }\end{aligned}$	
You will be given either a problem card or a data card. Do not show or read your card to your partner.	
If you are given a problem card:	If you are given a data card:
1. Silently read your card, and think about what information you need to be able to solve the problem.	1. Silently read your card.
2. Ask your partner for the specific information that you need.	2. Ask your partner, "What specific information do you need?" and wait for them to ask for information.
3. Explain how you are using the information to solve the problem. Continue to ask questions until you have enough information to solve the problem.	3. Before sharing the information, ask, "Why do you need that information?" Listen to your partner's reasoning, and ask clarifying questions.
4. Share the problem card and solve the problem independently.	4. Read the problem card, and solve the problem independently.
5. Read the data card and discuss your thinking.	5. Share the data card and discuss your thinking.

Pause here so your teacher can review your work. You will be given a new set of cards. Repeat the activity, trading roles with your partner.

1 Launch

Model the Info Gap routine and display the Info Gap Routine PDF. Distribute pre-cut cards from the Activity 1 PDF to each pair of students. Start by distributing the first set and distribute the second set after you have checked student work. Provide access to geometry toolkits for the duration of the lesson.

(2) Monitor

Help students get started by explaining that they may need several rounds of discussion to determine the information they need.

Look for points of confusion:

- Not knowing how to find information about dilations. Say, "Define a dilation in your own words. What information do you have? What information do you need?"
- Forgetting to ask for the preimage coordinates from the data card. Remind students that a dilation is performed on a preimage to create an image, and that they will need the vertices of the preimage or image from their partner.

Look for productive strategies:

- Using precise descriptions in terms of specific points.
- Responding to constructive feedback to revise sketches.

3 Connect

Ask:

- "Which elements of your partner's descriptions were helpful when you were sketching?"
- "If there had been no coordinate grid at all, would you still have been able to request or provide the needed information to perform the transformation?"
Highlight how using precise mathematical language allows for greater accuracy and clarity when performing certain geometric actions, such as dilations.

Accessibility: Guide Processing and Visualization

Display Problem Card 1. Use a think-aloud to model Steps 1 and 2 as if you were the recipient of that card. Consider using the following questions during the think-aloud.

- "Polygon $A B C D$ is the preimage, but I don't know where the polygon is located on the coordinate plane. I think I should ask for the coordinates of the vertices of the preimage."
- "I wonder which polygon is larger, or whether they are the same size. I think | should ask for the scale factor."
- "I don't know where to draw the rays that show the dilation. I think I should ask for the center of dilation."

Math Language Development

MLR4: Information Gap

Display prompts for students who benefit from a starting point, such as:

- "Can you tell me ... (specific piece of information)?"
- "Why do you need to know . . . (that piece of information)?"

English Learners

Consider providing sample questions students could ask, such as the following:

- What is the center of dilation?
- What is the scale factor?
- What are the coordinates of point A ? Point B ?, etc.

Activity 2 Dilate It!

Students draw dilations in the coordinate plane, including those not centered at the origin or that involve preimages that are not polygons, to compare the strategies used.

1 Launch

Set an expectation for the amount of time students will have to work in pairs on the activity.

Monitor

Help students get started by dilating vertex A from Problem 1 together.

Look for points of confusion:

- Multiplying the coordinates by the scale factor. This strategy works for Problems 1-3, so direct students to look closely at Problem 4. Ask students to locate the center identified in the problem, and compare the distances from the center to a vertex on the preimage, and then from the center to the corresponding vertex on the image.
- Dividing the distance by the scale factor in Problem 3. Ask students if the image should be larger or smaller than the preimage, based on the given scale factor.

Look for productive strategies:

- Using the scale factor to determine the length of the sides for the image.
- Dilating only one point and using it to complete the image in Problem 2.

Activity 2 continued >

Differentiated Support

Accessibility: Guide Processing and Visualization

If students need more processing time, consider having them focus on Problems 1 and 3 . Have students use colored pencils or highlighters to color code the information in the text of each problem that indicates the center of dilation in one color and the scale factor in another color.

Extension: Math Enrichment

Ask students to explain why multiplying the coordinates of the preimage by the scale factor only works when the center of dilation is the origin. When the center of dilation is the origin, the rays that connect the preimage points to the image create a proportional relationship.

Math Language Development

MLR2: Collect and Display

During the Connect, display Part 1 of the Unit 2 Anchor Chart, Dilations. Draw students' attention to the Anchor Chart and to the class display you started in Lesson 1. As students discuss their strategies for Problem 2, collect the language they use to describe how they dilated the circle - such as radius or diameter and add this to the class display.

English Learners

As you add terms, such as a radius and diameter to the class display, draw visuals to help distinguish the terms.

Activity 2 Dilate It! (continued)

Students draw dilations in the coordinate plane, including those not centered at the origin or that involve preimages that are not polygons, to compare the strategies used.

Activity 2 Dilate It! (continued)
3. Triangle $A B C$ has vertices located at $A(0,1), B(2,1)$, and $C(2,3)$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the result of dilating Triangle $A B C$ using the origin as the center of dilation and a scale factor of 2 .
(a) Predict the coordinates of Triangle $A^{\prime} B^{\prime} C^{\prime}$ and record them in the table.
b Draw Triangle $A B C$ and its image on the coordinate plane. Use the images to verify whether your predictions were correct. Explain your thinking. Sample response: My predictions were correct. I multiplied the coordinates of the preimage by the scale factor, and the resulting coordinates are the vertices of Triangle $A^{\prime} B^{\prime} C^{\prime}$.

Preimage	Image		
Point A	$(0,1)$	Point A^{\prime}	$(0,2)$
Point B	$(2,1)$	Point B^{\prime}	$(4,2)$
Point C	$(2,3)$	Point C^{\prime}	$(4,6)$

Connect

Have pairs of students share their strategies for creating the dilated images.

Ask, "Did you need or use a different strategy when attempting Problem 2?"

Note: Problem 2 is important to highlight because students are asked to dilate a circle, and circles do not contain straight lines. This makes it challenging to verify that the image is the correct size. Students may use the radius or diameter - instead of side lengths - to check their work.

Highlight:

- When dilating a point using the origin as the center of dilation, multiply the coordinates by the scale factor.
- When dilating a point using a center of dilation that is not the origin, the structure of the coordinate plane helps to find the distance from the center of dilation to a point on the preimage and a corresponding point on the image.
- To draw the image, dilate each vertex and connect the points, or dilate one point and use the scale factor to determine the side lengths and the placement of the other vertices.

Summary

Review and synthesize how dilations can be performed on a coordinate plane and the essential information needed to describe a dilation: coordinates, center, and scale factor.

Name:

In today's lesson ...

You dilated polygons on a coordinate plane.
Performing a dilation of a polygon requires three essential pieces of information:

1. The coordinates of the vertices
2. The coordinates of the center of dilation
3. The scale factor of the dilation

With this information, you can precisely describe any dilation of a figure.

Reflect:

Synthesize

Ask:

- "How are coordinates useful when describing and drawing dilations?" Sample response: The use of coordinates precisely communicates information about the location of the center, preimage, and image.
- "How do dilations compare to the transformations you saw in Unit 1?" Sample response: Translations rotations, and reflections create images that are congruent to the preimage. Images of dilations may be larger or smaller than the preimage.

Highlight that the coordinate plane allows students to communicate geometric information precisely, pointing out the following:

- Students can specify the exact location of the preimage and the center of dilation using coordinates.
- Students can also use the grid to locate the corresponding points on the image

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How does your strategy for dilating on a coordinate plane differ from dilating on a square grid?"

Exit Ticket

Students demonstrate their understanding by describing a dilation that has taken place on a coordinate plane.

Amps Featured Activity
皃 Printable

Period:
Exit Ticket
Date:

56

The smaller triangle is dilated to create the larger triangle. Describe this dilation. Be sure to include all the information another person would need to perform the dilation.

Sample response: The preimage has vertices located at the points $(2,0)$,
$(5,1)$, and $(4,-2)$. The triangle was dilated using the point $(3,0)$ as the cente of dilation and a scale factor of 3 , which results in the larger triangle with vertices located at points $(0,0),(9,3)$, and $(6,-6)$, respectively.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O_{0} Points to Ponder ...

- What worked and didn't work today? What was especially satisfying about the Info Gap routine from Activity 1 ?
Thinking about the questions you asked students today and what the students said or did as a result of the questions, which question was the most effective? What might you change for the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	2
Spiral	$\mathbf{2}$	Activity 2	2
Formative 0	$\mathbf{4}$	Unit 1 Lesson 16	Unit 2 Lesson 6

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

In this Sub-Unit, students discover that dilated figures are similar to each other and that these similar figures have special, sometimes even eye-popping, characteristics.

A

Narrative Connections

Read the narrative aloud as a class or have students read it individually. Students will closely inspect whether two or more figures are similar in the following places:

- Lesson 6, Activity 2: Are They Similar?
- Lesson 7, Activity 1: Different Dilations
- Lesson 8, Activity 3:

Card Sort: Similar or Not?

UNIT 2 | LESSON 6

Similarity

Let's explore similar figures.

Focus

Goals

1. Language Goal: Comprehend that the phrase similar figures means there is a sequence of translations, rotations, reflections or dilations that maps one figure onto the other. (Speaking and Listening, Writing)
2. Language Goal: Justify the similarity of two figures using a sequence of transformations that maps one figure onto the other. (Speaking and Listening)

Coherence

- Today

Students learn that two figures are similar if there is a sequence of translations, rotations, reflections, or dilations that maps one figure onto another. They draw sketches of similar figures under different transformations and come to understand that there can be multiple sequences of transformations that demonstrate the similarity of figures.

< Previously

In Unit 1, students learned that two figures are congruent when there is a sequence of rigid transformations that maps one figure onto another. So far in this unit, students have explored the term dilation as a transformation in which each point on a figure moves along a line and changes its distance from a fixed point.

Coming Soon

In Lesson 7, students will identify similar figures as scaled copies and investigate the properties of similar figures.

Rigor

- Students build conceptual understanding of the relationship between similar figures and the sequence of translations, rotations, reflections, or dilations that map one figure onto another.

Amps powered by desmos Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- Power-up PDF, as needed
- Power-up PDF (answers), as needed
- Anchor Chart PDF, Dilations
- geometry toolkits: rulers, protractor, tracing paper

Math Language
 Development

New words

- similar*

Review words

- center of dilation
- dilation
- reflection
- rotation
- translation
- sequence of transformations
*Students may be familiar with the everyday use of the term similar resembling without being identical. Let them know that this everyday use will be a good starting point as they explore mathematical similarity.

Amps : Featured Activity

Activity 2

See Student Thinking
After students read their peer responses, give them a chance to reflect and notice that more than one correct sequence of transformations can be applied to an image to show that two figures are similar.

Building Math Identity and Community
 Connecting to Mathematical Practices

Students may recognize that different sequences of transformations may be applied in Activity 2. As students share their work with partners, highlight positive examples of student discussions where they use mathematically precise language to communicate their different sequences of transformations. Emphasize the importance of listening to others' perspectives, especially when the sequences were different, but the end results were the same.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- Activity 1 may be omitted. It serves as an opportunity for students to sketch similar figures using scale factors greater than 1 or less than 1.
- In Activity 2, Problems 5 and 6 may be omitted.

Warm-up Which One Doesn't Belong?

Students compare four images to reason that two figures are similar when there is a sequence of translations, reflections, rotations, or dilations that maps one figure onto the other.

1 Launch

Conduct the Which One Doesn't Belong? routine. Encourage students to look for at least one reason why each image might not belong with the others.
(2) Monitor

Help students get started by asking them to choose one image and identify what makes it different from the others.

Look for productive strategies:

- Noticing that all of the choices apply a dilation.
- Thinking of transformations as they generate reasons why each image might not belong with the others.

Connect

Have students share what all the choices have in common. They all apply a dilation.

Define the term similar. Say, "Two figures are similar if one figure can be mapped onto the other by a sequence of translations, rotations, reflections, or dilations. One aspect that all of the choices have in common is that they all show sets of similar figures." Revisit Choices A, B, and C, and ask students to identify the transformations that were applied to show similarity.
Highlight Choice D. Tell students that each successive image is slightly reduced in size. Some companies use this method, known as shrinkflation, to shrink the size of a product, but keep the price the same.

Ask, "How are similarity and transformations related to shrinkflation?"

Differentiated Support

Extension: Math Around the World, Interdisciplinary Connections

Mention that the images in Choice A are Russian nesting dolls, called matryoshka. The first matryoshka was created in 1892, however nesting dolls actually originated in China. Chinese artisans created nesting boxes between 794 and 1185 CE, which were used for storage and decoration. Nesting dolls next made their way to Japan in the form of Shichifukujin dolls and other wooden products around the 15th century. The Russian matryoshka dolls were inspired by the Shichifukujin dolls. Consider showing images of Chinese nesting boxes, Japanese nesting dolls, and Russian nesting dolls and ask students to describe the mathematics they see. (History)

(7) Power-up

To power up students' ability to describe the rigid transformations that result in two congruent figures:
Provide students with a copy of the Power-up PDF.
Use: Before Activity 1
Informed by: Performance on Lesson 5, Practice Problem 4 and Pre-Unit Readiness Assessment, Problem 3

Activity 1 Creating Similar Figures

Students create rough sketches of similar figures to help them understand how different transformations affect a figure's image and learn that any two congruent figures are similar.

(9)

\square

Activity 1 Creating Similar Figures

Complete the following problems using Figure A and the space provided on this page.

1. Sketch the image of Figure A using a reflection and a dilation with a scale factor greater than 1. Label your sketch Figure B.
2. Sketch the image of Figure A using a dilation with a scale factor less than 1. Label your sketch Figure C.
3. Sketch the image of Figure A using a translation and rotation, but no dilation. Label your sketch Figure D. Sample response shown.

1 Launch

Tell students they do not need to draw precise measurements. However, they need to indicate clearly whether the image is larger or smaller than the original figure. Provide access to geometry toolkits for the duration of this lesson.

2 Monitor

Help students get started by reminding them how to sketch a reflection, rotation, and translation.

Look for points of confusion:

- Thinking that they have to choose an exact scale factor or measure exact angles. Explain that precise measurements are not needed, only rough sketches of the images.
Look for productive strategies:
- Using hand gestures to help students visualize and draw each transformation.
- Selecting and using tools, including using their fingers or other objects, to measure side lengths and distances.

3 Connect
Display some student sketches that are not exact, but capture the main features of the figure. Ask other students to identify the transformations used.

Ask:

- "Are all the figures similar?"
- "Does a dilation need to occur for a pair of figures to be similar?"

Highlight that the images of all the problems are similar to Figure A. A single transformation or multiple transformations can be applied to produce similar images, including ones that do not apply a dilation. Emphasize that Figures A and D are congruent and they are also similar. The scale factor that maps Figure A onto Figure D is 1.

Differentiated Support

Accessibility: Activate Prior Knowledge

Review rigid transformations. Demonstrate how to sketch an example of each type of rigid transformation of Figure A and leave them displayed for students to reference during the activity. Label your examples with the type of transformation: translation, rotation, or reflection.

Accessibility: Vary Demands to Optimize Challenge

Chunk this task into smaller, more manageable parts by asking students to first reflect Figure A in Problem 1. Then ask them to dilate the result using a scale factor greater than 1. In Problem 3, first ask students to translate the figure. Then ask them to rotate the result.

Math Language Development

MLR7: Compare and Connect

During the Connect, as students respond to the Ask questions, draw connections between the terms translation, rotation, reflection, and dilation and whether these transformations result in congruent and/or similar figures.

English Learners

Annotate Figures B, C, and D as either congruent and similar, or only similar. Use hand gestures to illustrate that Figures B and C are only similar (not congruent).

Activity 2 Are They Similar?

Students determine whether a sequence of transformations maps one figure onto the other to discover similar figures.

Amps Featured Activity
See Student Thinking

Activity 2 Are They Similar?
For Problems 1-6, determine whether each pair of figures is similar. Write similar or not similar. If a pair of figures is similar, write a sequence of transformations (translations, rotations, reflections, dilations) that maps one figure onto the other.

Triangle $B D E$ is similar to Triangle $B A C$; Triangle $B D E$ is similar to Triangle $B A C$
Sample response: Dilate Triangle $B D E$ using point B as the center of dilation and a scale factor of 4 .

Polygon $A B C D E F$ is similar to Polygon HGLKJI; Sample response: Reflect Polygon $A B C D E F$ across line segment $A F$. Translate the image so that point F maps onto point I. Then dilate that image using point I as the cente

Triangle $H E G$ is similar to Triangle $E L M$ Triangle $H E G$ is similar to Triangle $E L M$
Sample response: Dilate Triangle $E L M$ Sample response: Dilate Triangle $E L M$ with a scale factor of 2 , and then translate the image 3 units up and 2 units to the left.

1 Launch

Have students use the Think-Pair-Share routine as they complete each problem. Students should use their geometry toolkits or a grid to verify the sequence of transformations using precise measurements. Remind students to use a ruler when they need to find the scale factor of figures not on a grid.

2 Monitor

Help students get started by having them match corresponding sides of the triangles, measure them, and find the ratio to determine the scale factor for Problem 1.

Look for points of confusion:

- Having trouble determining the sequence of transformations. Have students refer to the Unit 1 and Unit 2 anchor charts showing the characteristics of each transformation. Allow access to tracing paper for struggling students.
- Thinking that Problem 1 is not similar because only a dilation is applied. Tell students if any transformation is applied, the figures are similar.
- Thinking that the figures in Problems 3 and 5 are similar. Have students calculate the side lengths of the figures, and then compare the ratios of the corresponding sides.
- Thinking Problem 6 is not similar because the figures are congruent. Remind students that an enlargement or reduction is not necessary in order for the figures to be similar. If any transformation is applied, the figures are similar.

Look for productive strategies:

- Noticing that there are multiple sequences of transformations that can map one figure onto another.

Activity 2 continued >

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge,

 Activate Prior KnowledgeFor students who need more processing time, have them focus on Problems 1, 3, and 4. Display the following for students to use as a guide:

- Congruent and similar: Translations, Rotations, Reflections
- Similar: Dilations

Accessibility: Optimize Access to Tools

Provide copies of the figures so that students can cut them out and manipulate them to help them visualize the transformations. Suggest that students use a ruler to measure distances when not on a grid.

Math Language Development

MLR1: Stronger and Clearer

During the Connect, as students share their responses for Problem 2, have them individually write an initial draft of their sequence of transformations. Have them share their responses with $2-3$ partners. Partners should provide feedback by asking clarifying questions, such as, "How did you know to reflect the figure?", "What is the line of reflection?", and "How did you know the scale factor is 3?" After receiving feedback, provide students time to write improved responses.

English Learners

Allow pairs of students who speak the same primary language to provide feedback to each other.

Activity 2 Are They Similar? (continued)

Students determine whether a sequence of transformations maps one figure onto the other to discover similar figures.

Name:
Date:
Activity 2 Are They Similar? (continued)
>5.

Not similar
>6

Triangle $A B C$ is similar to Triangle $E F G$; Sample response: Rotate Triangle $A B C$ 180° about point P.
Δ Are you ready for more?

The same sequence of transformations that maps Triangle A onto Triangle B is used to map Triangle B onto Triangle C, and so on. Describe a sequence of transformations that could be this sequence.

Dilate each triangle using point P as the center of dilation and a scale factor of 2 , and then rotate the result clockwise 75° about point P.

3 Connect

Have pairs of students share their responses. Conduct the Poll the Class routine to see which pairs they identified as similar figures. Focusing on Problem 2, select students who wrote different transformations to share their sequence of transformations.

Ask:

- "After hearing your classmates' sequences of transformations for Problem 2, what conclusions can you make about proving two figures are similar?" There can be different sequences of transformations to show that two figures are similar.
- "How do you know that the polygons in Problem 3 are not similar?" Note: Consider demonstrating a possible sequence of transformations, such as translating Polygon $A B C D E F$ so that point B maps onto point M, and then dilating by the scale factor 2 using point M as the center of dilation. All of the points, except A and F, map onto Polygon $L M N O P Q$, so the figures are not similar.

Highlight that there can be many correct sequences of transformations that show that two figures are similar. In order to show that two figures are similar, it is enough to show a sequence of transformations that maps one figure onto the other.

Summary

Review and synthesize how two figures are similar if a sequence of translations, rotations, reflections, or dilations can be applied to map one figure onto another.

Summary

In today's lesson.

You saw that two figures are similar if one figure can be mapped onto the other by a sequence of transformations. There may be many correct sequences of transformations, but you only need to describe one to show that two figures are similar.
The symbol ~ indicates that two figures are similar. In the diagram, Polygon $A B C D \sim$ Polygon $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Here is one sequence of transformations that maps Polygon $A B C D$ onto Polygon $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.
Step 1 Dilate Polygon $A B C D$ using point D as the center of dilation and a scale factor of 2 .

Step 2 Translate the image so that point D maps onto point D^{\prime}

Step 3 Rotate the new image 90° clockwise about point D^{\prime}.
Step 4 Reflect the new image across a horizontal line that contains points D^{\prime} and B^{\prime}.

Reflect:

(

176 Unit 2 Dilations and Similarity
©2023 amplly

Synthesize

Have students share how they can identify whether two figures are similar, using their own words.

Highlight that two figures are similar if there is a sequence of translations, rotations, reflections, or dilations that maps one figure onto the other. Introduce the similarity symbol (\sim) and display the congruent symbol (\cong) for comparison. Highlight that corresponding points in the image are labeled using prime notation. For example, point A^{\prime} is the image of point A. Display and reference Part 2 of the Anchor Chart PDF, Dilations.

Formalize vocabulary: similar

Display Part 2 of the Anchor Chart PDF, Dilations. Introduce the similarity symbol and show students how to use the symbol.

Ask, "What is the same and different about two figures that are similar versus two figures that are congruent?" Sample response: Two figures that are congruent are also similar, by using a scale factor of 1 . Figures that are congruent use a sequence of rigid transformations (translations, rotations, or reflections) to map one figure onto the other. Figures that are similar - but not congruent - include dilations where the scale factor is not equal to 1 .

(1) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What does it mean to say two figures are similar?"

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit, that you started in Lesson 1. Ask them to review and reflect on any terms and phrases related to the term similar that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding by analyzing a student's incorrect description of a sequence of transformations and explaining how to correct it.

Success looks like ...

- Language Goal: Comprehending that the phrase similar figures means there is a sequence of translations, rotations, reflections, or dilations that maps one figure onto the other. (Speaking and Listening, Writing)
- Language Goal: Justifying the similarity of two figures using a sequence of transformations that maps one figure onto the other. (Speaking and Listening)
» Explaining whether Noah's sequence of transformations produces a similar image.

- Suggested next steps

If students think Noah's method is correct, consider:

- Highlighting line segment GH.
- Asking students to write the sequence of transformations that maps one figure onto the other.
- Reviewing Activity 2

Professional Learning

Math Language Development

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C. Points to Ponder...

- What resources did students use as they worked on selecting pairs of similar figures in Activity 2? Which resources were especially helpful?
- The instructional goal for this lesson was to comprehend that the phrase similar figures means there is a sequence of translations, rotations, reflections, and dilations that maps one figure onto the other. How well did students accomplish this? What did you specifically do to help students accomplish it?

Language Goal: Comprehending that the phrase similar figures means there is a sequence of translations, rotations, reflections, or dilations that maps one figure onto the other.

Reflect on students' language development toward this goal.

- How have students initially described the similarity of figures? Have they progressed in their descriptions of similar figures in this lesson to begin to describe them as they relate to transformations?
- How have the language routines used in this lesson helped students develop their mathematical language related to similar figures?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	1
Spiral	$\mathbf{2}$	Activity 2	Activity 1
Formative 0	$\mathbf{4}$	Grade 7 Unit 2 Lesson 7	2

name $A B C$ so that point A
maps onto point C. Dilate the
image using point C as the
center of dilation and a scal factor of 4 .
(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Name: \square Date: __ Period:
3. The Rhomboid Snack Group produces granola bars. They want to start producing granola bars in different sizes, but can only do so if they are similar to the original bar. Figure A shows the size of the original granola bar. Which granola bar design should they choose? List all that apply. Explain your thinking.

Figures B and C : Sample response: They are the only figures that are similar produced using a dilation and rotation.
4. Each table represents a proportional relationship. Complete each table to show the missing values.

| a | b | b | x | y |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3.5 | 7 | | 2 | 0.31 |
| $\frac{1}{2}$ | 1 | | 6 | 0.93 |
| 4.2 | 8.4 | | 18 | 2.79 |

5. Polygon $A B C D$ is a scaled copy of Polygon $E B F G$ with a scale factor of $\frac{1}{2}$. Which of the following is not true?
A. Angle $B C D$ is congruent to angle $B F G$.
B. Segment $A D$ is half as long as segment $E G$.
C. The measure of angle $E G F$ is twice as great as the measure of angle $A D C$
D. Segment $E G$ is twice as long as segment $A D$.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Similar Polygons

Let's study the sides and angles of similar polygons.

Focus

Goals

1. Language Goal: Comprehend the phrase similar polygons to mean polygons that have corresponding proportional side lengths and corresponding congruent angles. (Speaking and Listening, Writing)
2. Language Goal: Critique arguments that claim two polygons are similar. (Speaking and Listening)
3. Language Goal: Justify the similarity of two polygons given their angle measures and side lengths. (Speaking and Listening)

Coherence

- Today

Today students make the explicit connection that scaled copies can be obtained by a sequence of transformations and are therefore similar figures. Students understand that in order to determine whether two figures are similar, they can check whether they are scaled copies. They also critique the reasoning of others to determine which properties are necessary to determine similarity.

< Previously

In Lesson 6, students defined similar figures as those that can be achieved by a sequence of transformations that may include dilation.

> Coming Soon

In Lesson 8, students will come to understand that two triangles are similar if they have two congruent corresponding angles.

Rigor

- Students build conceptual understanding of the relationship between scaled copies and similar figures.
*

Activity 1

Activity 2
(1)

Summary

Exit Ticket

(1) 15 min
ㅇํㅇ Pairs
(1)
5 min
คำํํ
Whole Class

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Power-up PDF, as needed
- Power-up PDF (answers), as needed
- Activity 1 PDF, pre-cut cards, two per student
- plain sheets of paper, one per student

Math Language
 Development

Review words

- dilation
- proportional
- scaled copies
- sequence of transformations
- similar
- congruent
- glue
- geometry toolkits: tracing paper, rulers, protractors

Building Math Identity and Community Connecting to Mathematical Practices

As students share their responses with a partner, they may forget to actively listen, and thus might not be able to critique the reasoning used. Remind students that by listening well, they can help improve their own understanding of another person's reasoning, which will help them think more deeply about the mathematics. Review what it means to actively listen and encourage students to practice active listening habits.

Amps \vdots Featured Activity

Activity 2

See Student Thinking

Students are asked to explain their thinking when they determine whether two figures are similar, and these explanations are available to you digitally, in real time.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted and addressed at a later time.
- In Activity 1, have students work together to find a sequence of transformations for only one partner's pair of figures.

Warm-up Sometimes, Always, Never

Students compare congruence and similarity to determine that two congruent figures are always similar, but two similar figures are not necessarily congruent.

1 Launch

Have students use the Think-Pair-Share routine as they complete the Warm-up. Pause for discussion after each problem.

2 Monitor

Help students get started by asking them to explain the process for creating congruent and similar figures.

Look for points of confusion:

- Thinking Statements 1 and 2 are never true. Display two congruent figures. Ask, "Is there a scale factor you can use that would produce a figure that does not change in size?
- Thinking Statement 4 is sometimes true. Ask students to draw a pair of non-similar figures that are congruent.

Look for productive strategies:

- Drawing examples to support their reasoning.

3 Connect

Display a nested Venn diagram with a section labeled congruent inside of the section labeled similar. Throughout the lesson, have students suggest properties that are true for both congruence and similarity, true for only one, or true for neither.

Have students share their responses by using the Poll the Class routine. If there is disagreement on a response, ask students with opposing answers to explain their thinking to come to an agreement on a response.

Highlight that all congruent figures are similar, but not all similar figures are congruent. If there appears to be some confusion about this, encourage students to think about the scale factor that would be applied to one figure to map to a congruent figure.

Math Language Development

MLR2: Collect and Display
Consider displaying a nested Venn diagram, labeled Congruent inside of the section labeled Similar throughout this lesson, or add it to the class display. This will serve as a visual reminder that all congruent figures are also similar. Throughout this lesson, consider asking students to suggest properties that could be added to the nested Venn diagram.

English Learners

Include a visual of two congruent figures and two similar (but not congruent) figures on the nested Venn diagram.

(7)
 Power-up

To power up students' ability to identify properties of scaled copies:
Provide students with a copy of the Power-up PDF.
Use: Before the Warm-up
Informed by: Performance on Lesson 6, Practice Problem 5

Activity 1 Different Dilations

Students apply a sequence of transformations to scaled copies of a polygon to discover that any two scaled copies are similar.

Activity 1 Different Dilations

Although it doesn't always seem that way, humans often behave in predictable ways. Dr. Hannah Fry, a research mathematician, has been fascinated with the idea of predicting human behavior such as how humans perceive similar but slightly different objects.

You and your partner will be given a set of cards with scaled copies of parallelograms and a plain sheet of paper.

1. Choose two of the cards and verify that they are scaled copies of each other. Explain your thinking here
Answers may vary. Students should make measurements using
rulers and protractors, and conclude that the two figures have equal
corresponding angle measures and that corresponding side lengths are
scaled by the same scale factor (proportional).
2. Glue your cards anywhere on the separate sheet of paper.
3. Switch papers with your partner, and ask them to show that your two parallelograms are similar.
Answers may vary, but should mention a sequence of transformations that include a dilation using the scale factor chosen to create the scaled copy

Hannah Fry
Have you ever wondered how streaming services know what shows to recommend? Many aspects of our lives are now influenced by algorithms designed to interpret and predict human behavior. Like so many of us, English mathematician Hannah Fry wants to understand why people do the things they do. She has worked with physicists, mathematicians, computer scientists, architects, and geographers to understand human behavior through pattern recognition. Her work studying the patterns of human behavior through mathematics has touched on many aspects of society, from shopping and dating to crime and terrorism.

80 Unit 2 Dilations and Similarity

1 Launch

Distribute one plain sheet of paper and two cards from the Activity 1 PDF to each student. Provide access to geometry toolkits and glue.

2 Monitor

Help students get started by asking, "What are the properties of scaled copies?" The corresponding side lengths are proportional and the corresponding angles are congruent.

Look for points of confusion:

- Not knowing how to show that the figures are similar. Remind students that they can use a sequence of transformations.
- Not knowing how to describe the sequence of transformations. Encourage students to use the tracing paper from their geometry toolkits to match a pair of corresponding vertices, and describe how one point would map onto the other.

Look for productive strategies:

- Selecting and using tracing paper to map the sequence of transformations.

3
 Connect

Display selected student work with labeled congruent angles, proportional side lengths, and a written sequence of transformations.

Ask:

- "Is there a way to place the cards on the paper so that there is no sequence of transformations for the scaled figures?" No. Note: If a student says yes, ask them to demonstrate, and invite the class to try and find a sequence
- "What does this imply about scaled copies and similarity?" Two figures are similar if they are scaled copies of each other.

Highlight that students do not need to perform a sequence of transformations to prove that two figures are similar if they can prove that they are scaled copies.

Math Language Development

MLR8: Discussion Supports—Press for Details

During the Connect, as students respond to the second Ask question, press for details to solidify the connection between scaled copies and similar figures. For example, if a student says, "Scaled copies are similar," ask these follow-up questions to drive home the point:

- "What do you know about the corresponding angle measures of scaled copies? What does this tell you about the corresponding angle measures of similar figures?" The corresponding angle measures of scaled copies, and thus similar figures, are congruent.
- "What do you know about the corresponding side lengths of scaled copies? What does this tell you about the corresponding side lengths of similar figures?" The corresponding side lengths of scaled copies, and thus similar figures, are proportional.

Featured Mathematician

Hannah Fry

Have students read about featured mathematician Hannah Fry, a researcher who uses mathematics to analyze and predict human behavior. Her research draws from and influences many different fields, including computer science and geography.

Activity 2 Are You Sure They Are Similar?

Students critique the reasoning of others to test which properties must be present to determine similarity.

1 Launch

Set an expectation for the amount of time students will have to work in pairs on the activity.

2 Monitor

Help students get started by asking, "Using the results from the previous activity, how can you determine whether two figures are similar?"

Look for points of confusion:

- Choosing argument D in Problem 1. Ask students if it is sufficient to describe the mapping as a rotation.
- Thinking that Jada is correct in Problem 2. Have students think about the relationship of the corresponding side lengths in similar figures, and ask if there is a scale factor that would map Rectangle $A B C D$ onto Rectangle $E F G H$.

3 Connect

Display both pairs of figures.
Have pairs of students share their thinking Select students who disagreed with each statement to convince the students who agreed using mathematical reasoning

Ask:

- "If you know two polygons have corresponding congruent angles, can you say the two polygons are similar?"
- "If you know two polygons have corresponding proportional side lengths, can you say the two polygons are similar?"

Highlight that similar polygons have corresponding congruent angles and corresponding proportional side lengths.

Differentiated Support

Accessibility: Clarify Vocabulary and Symbols

Before students complete Problem 1, display and discuss important vocabulary that they will need to access in the problem, such as corresponding, proportional, scaled copies, and rotated.

Extension: Math Enrichment

Have students show and describe two different ways they could alter the figures in Problem 2 so that they would be similar. Sample responses:

- Alter the side lengths of Rectangle EFGH so that the longer sides each measure 8 units.
- Alter the side lengths of Rectangle $E F G H$ so that the shorter sides each measure 3 units

Math Language Development

MLR3: Critique, Correct, Clarify

Consider introducing Problem 2 using this routine and tell students that Jada claims this information is enough to show the figures are similar. Let them know her statement is incorrect. Ask these questions:

- Critique: "How do you know that this information is not enough to claim the figures are similar?"
- Correct: "How would you correct Jada's claim? Are the figures similar?"
- Clarify: "Write a corrected claim that Jada could use to determine whether any two figures are similar. How do you know your claim is correct?"

Summary

Review and synthesize the properties of similar figures and how to show whether two figures are similar.
(2)

Summary

In today's lesson .

You explored the properties of figures to determine similarity.
When two polygons are similar:
Every angle and side in one polygon has a corresponding part in the other polygon
All pairs of corresponding angles have the same measure.
Corresponding sides are related by a single scale factor. Each side length in one polygon is multiplied by the scale factor to get the corresponding side length in the other polygon.
A sequence of transformations can be applied to one polygon to map onto another polygon.
To show two polygons are similar, you can show they are scaled copies of each other.
For example, you can examine the angle measures of these rapezoids aid cos congruent.

- Then you can determine that side Then you can determine that side each side length of the smaller trapezoid can be multiplied by 2 to get the corresponding side length of the larger trapezoid.
Because these trapezoids meet the criteria for being scaled copies,
 they must be similar
$>$ Reflect:

Synthesize

Display the cards from Activity 1.

Ask:

- "How can you determine whether two figures are similar? What arguments will be the most convincing?" By describing a sequence of transformations that maps one figure to the other, or by checking whether corresponding side lengths are proportional and corresponding angles are congruent.
- "How can you determine whether two figures are not similar?"
- "For which figures is it enough to know that the lengths of corresponding sides are proportional to show that the figures are similar?" Rectangles
- "For which figures is it enough to know that the corresponding angles are congruent to show that the figures are similar?" Rhombuses

Note: Mention to students that they will explore this idea further in the next lesson.

Highlight that students can use these strategies to verify whether two figures are similar:

- Describing a sequence of transformations that maps one figure onto the other
- Determining whether the figures are scaled copies of one another by checking whether side lengths are proportional and corresponding angles are congruent.

(1) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How can you identify whether two figures are similar?"

Math Language Development

MLR2: Collect and Display

If you chose to display a nested Venn diagram as suggested in the Warm-up, provide students time to refer back to this diagram during the Summary. Encourage students to add to the display any words, phrases, and images about congruence and similarity that have not yet been added.

Exit Ticket

Students demonstrate their understanding by explaining how they know two figures are similar.

Name: \quad Date: \quad Period:

Exit Ticket

56
2.07

Is Quadrilateral $A B C D \sim$ Quadrilateral EFGH? Explain your thinking. Note: The figures may not be drawn to scale.

Sample response: I know these figures are similar because all corresponding by a scale factor of $\frac{3}{4}$ to equal the side lengths of Quadrilateral $E F G H$.

Success looks like . . .

- Language Goal: Comprehending the phrase similar polygons to mean polygons that have corresponding proportional side lengths and corresponding congruent angles. (Speaking and Listening, Writing)
- Language Goal: Critiquing arguments that claim two polygons are similar. (Speaking and Listening)
- Language Goal: Justifying the similarity of two polygons given their angle measures and side lengths. (Speaking and Listening)
» Explaining whether the two quadrilaterals are similar.

Suggested next steps

If students are not able to show the similarity between the figures, consider:

- Reviewing Activity 2 for arguments that do not verify similarity of figures.
- Assigning Practice Problem 3

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\sim_{0} Points to Ponder ..

- Have you changed any ideas you used to have about similarity as a result of today's lesson?
- What did students find frustrating about creating a sequence of transformations in Activity 1? What helped them work through this frustration? What might you change for the next time you teach this lesson?

Math Language Development
Language Goal: Comprehending the phrase similar polygons to mean polygons that have corresponding proportional side lengths and corresponding congruent angles.

Reflect on students' language development toward this goal.

- Have students progressed in their descriptions of similar figures and justifications of whether two polygons are similar? Are they using mathematical language such as:
» Corresponding side lengths are proportional?
" The ratios of corresponding side lengths are equal?
» Corresponding angles are congruent?
Use: Before the Warm-up
Informed by: Performance on Lesson 6, Practice Problem 5.

Name: \longrightarrow Date: \quad Period:
4. Triangle $A B C$ is a scaled copy of Triangle $D E F$ with a scale factor of $\frac{2}{5}$. Find the missing lengths of riangle $A B C$
5. The line shown has been partitioned into three angles. Is there a triangle with into three angles. Is there a triangle wit
these three angle measures? Explain your thinking.
your thinking
Sample response: Yes, the sum of the
180°, which is the same as the sum of the

interior angles in a triangle.

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	2
Spiral	$\mathbf{2}$	Activity 1	2
Formative 0	$\mathbf{5}$	Activity 2	Grade 7

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.
(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Similar Triangles

Let's explore similar triangles.

Focus

Goals

1. Language Goal: Generalize a process for identifying similar triangles and justify that finding two pairs of congruent corresponding angles is sufficient to show similarity. (Speaking and Listening)
2. Language Goal: Justify that two triangles are similar by verifying that two pairs of corresponding angles are congruent.
(Speaking and Listening, Writing)

Coherence

- Today

Students focus their study on triangles and determine whether or not they are similar by looking only at the corresponding angle measures. They understand that if two triangles share three corresponding angle measures, then they are similar, reasoning that because the sum of the angle measures in a triangle is 180°, knowing two angle measures determines the third angle measurement. Students conclude that for triangles, all that is needed to deduce similarity is having two congruent corresponding angle pairs.

< Previously

In Lesson 7, students found that, in order to check whether two polygons are similar, it is important, in general, to check that corresponding angle measures are congruent and that corresponding side lengths are proportional.

Coming Soon

In Lesson 9, students will find missing side lengths of similar triangles. In Unit 3, they use the similarity criterion to understand the concept of the slope of a line. Later on in high school, they will learn that three proportional side lengths (but not two) is also enough to deduce that two triangles are similar.

Rigor

- Students build conceptual understanding by discovering how many corresponding congruent angle pairs are needed to definitively say that two triangles are congruent.

Pacing Guide

Warm-up
Activity 1

Activity 2

Activity 3

Summary

Exit Ticket
(J) 5 min

$\oplus 10$ min
ㅇํㅇ Pairs

(1) 8 min	$\cap 12$ min
\circ Independent	$\cap \circ \cap$ Pairs

ํํํํํํํ Whole Class5 min

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice

Materials

- Exit Ticket
- Additional Practice
- Activity 3 PDF, pre-cut cards, one set per pair
- geometry toolkits: tracing paper, protractors, rulers

Math Language
 Development

Review words

- scale factor
- congruent
- corresponding
- similar
- dilation
- sequence of transformations

Amps : Featured Activity

Activity 1
 Digital Triangles

Students compare triangles they draw with those drawn by their peers to see. They will see how having three corresponding angle pairs that are congruent is sufficient evidence to prove two triangles similar.

Building Math Identity and Community
 Connecting to Mathematical Practices

Students may be quick to accept informal or incomplete arguments about similar triangles in Activity 2. Encourage students to spend more time with the problem, draw a visual model, and discuss possible exceptions or counterarguments with a partner before coming to a conclusion.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted
- Activity 2 may be omitted.

Warm-up Imagine a Triangle .

Students activate prior knowledge about the angles of a triangle to prepare for the reasoning needed about angle measures of triangles later in the lesson.

1) Launch

Activate students' prior knowledge by asking them to describe the features of acute, isosceles, and obtuse triangles.

2 Monitor

Help students get started by having them sketch a triangle and asking, "What is the sum of the interior angle measures of a triangle?"

Look for points of confusion:

- Thinking the angle measures must be $\mathbf{2 0}^{\circ}$ and 60°. Tell students those could be the angle measures, and ask, "Can you think of another pair of angle measures that would also work for this triangle?"
- Not recognizing that both missing angles must be acute. Remind them of the definition of acute angle and ask, "What is the sum of the missing angle measures? What is the maximum measure for one of those angles?"

Look for productive strategies:

- Drawing a visual model to test examples and counterexamples

3 Connect

Have students share with a partner their examples and counterexamples before sharing with the class.

Highlight student strategies that used visual models and detailed counterexamples to prove the false statements incorrect.

Ask, "Could this triangle have a right angle? Why or why not?" No; Sample response: The remaining angle measures must have a sum equal to 80°, so none of the angles in this triangle can measure 90°.

Math Language Development

MLR3: Critique, Correct, Clarify
During the Connect, display the incorrect statements, A and C. Use the following routine.

- Critique: Have students critique these statements as to why they are incorrect Encourage the use of visual examples or counterexamples.
- Correct and Clarify: Have students write corrected statements. Ask them to clarify how they know their revised statement is correct.

English Learners

The idea of a counterexample might be unfamiliar. Draw a triangle with angle measures of $100^{\circ}, 30^{\circ}$, and 50°. Write the term counterexample next to this triangle to illustrate how this shows Choice C is not a true statement, because not all triangles with one angle measure of 100° has to have the other two angles measure 60° and 80°.

(7) Power-up

To power up students' ability to determine whether three angles can form a triangle, have students complete:

Recall that the sum of the measures of the angles in any triangle is 180°. Complete the table so that each set of three angles can form a triangle.

	$\mathbf{m} \angle A$	$\mathbf{m} \angle B$	$\mathbf{m} \angle C$
Triangle E	100°	70°	10°
Triangle F	83°	25°	72°

Use: Before the Warm-up
Informed by: Performance on Lesson 7, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 5

Activity 1 Are Three Angles Enough?

Students create and compare triangles with congruent angles to see that the triangles are not necessarily congruent, but similar.

Activity 1 Are Three Angles Enough?

1. Construct a triangle with angle measures of $40^{\circ}, 55^{\circ}$, and 85°.

Sample responses shown.

2. Compare your triangle to a partner's triangle.
a Are your triangles congruent?
Sample responses.

- No. While the angle measures are the same, the corresponding side lengths are not.
- (Unlikely) Yes. All angle measures and side lengths are the same.
b Are your triangles similar? Explain your thinking. Sample responses:
- Yes, because they have three congruent angles and all the corresponding sides are proportional.
- Yes, because I can map one onto the other by applying a sequence of rigid transformations and a dilation.

1) Launch

Provide access to geometry toolkits for Activities 1, 2, and 3. Collect the toolkits prior to the Exit Ticket.

(2) Monitor

Help students get started by having them draw a 40° angle and helping them draw a side length and second angle.

Look for points of confusion:

- Thinking that their triangle is the "same" as their partner's because the angle measures are the same. Have students measure the side lengths and compare them.
- Informally describing that their triangles are similar with a dilation. Have them use tracing paper to map one angle to the other and then ask students to use their ruler to find side lengths and a scale factor that proves the dilation works.

3 Connect

Display the animation from the Activity 1 Amps slides showing triangles mapped onto each other.

Have students share what they noticed about the relationships between their triangle and their partner's triangle.

Highlight that if triangles share three corresponding congruent angles, then they are similar.

Accessibility: Vary Demands to Optimize Challenge

Provide students with two pre-cut triangles that have the three congruent angle measures and different side lengths labeled. This will allow them to access the mathematical goal of the activity, without having to actually construct the triangles themselves.

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can interact with a digital animation that illustrates the mathematical goal of this activity.

Math Language Development

MLR2: Collect and Display

While students work, circulate and listen to the language they use to describe whether their triangles are congruent or similar, such as corresponding angle measures, congruent, corresponding side lengths, proportional, rigid transformations, dilation, etc. Record these words and phrases and add them to the class display. Encourage students to use these words and phrases during the Connect discussion.

English Learners

Add visual examples of these words and phrases to the class display

Activity 2 Is One Angle Enough?

Students consider two triangles with one corresponding congruent angle to determine if knowing this is enough to determine whether the triangles are similar.

Activity 2 Is One Angle Enough?

Andre drew a triangle with one angle that measured 65°. Bard drew a triangle with one angle that measured 65°. Can Andre and Bard guarantee they drew similar triangles? If yes, explain why. If not, show an example.
Sample response: No, there could be two triangles that each have an angle measuring 65° but one could have remaining angle measures of 80° and 35 and the other could have remaining angle measures of 100° and 15°.

esson 8 Similar Triangles 187

1 Launch

Ask, "How many corresponding congruent angle pairs, would you guess, are needed, at minimum, to prove similarity: 1,2 , or 3 ?"

2 Monitor

Help students get started by asking, "What must be true about the other two angles of the triangle?"

Look for points of confusion:

- Thinking the two triangles will be similar. Have students draw two 65° angles. Ask, "Can you come up with two different combinations for the remaining two angles?"

Look for productive strategies:

- Drawing an accurate example of two triangles with one corresponding congruent angle - that are not similar.

3 Connect

Display the animation from the Activity 2 Amps slides that shows the two triangles mapped onto each other.

Ask, "Is knowing that two triangles share one congruent corresponding angle enough to determine they must be similar?"

Have pairs of students share the different ways they can show the triangles are not similar, either by describing dilations and scale factor or by finding side lengths and looking for proportional relationships.

Highlight that knowing one congruent corresponding angle is not enough to determine whether two triangles are similar, because knowing only one angle means the other two angle measures may not be congruent. When two triangles have different angle measures, they are not similar.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Alter the activity by displaying different triangles that each have one angle measure of 65°. Include some triangles that are similar, and others that are not. Ask students to determine whether the triangles are similar

Extension: Math Enrichment

Have students complete the following problem:
Andre and Bard each drew a right triangle with one angle measuring 65°. Is this enough information to guarantee similar triangles? Explain your thinking. Yes, because they are right triangles, I can determine that all three corresponding angle pairs are congruent.

Math Language Development

MLR8: Discussion Supports

During the Connect, as students respond to the Ask question, display the triangles from the sample response. Alternatively, display two triangles that fit the given criteria, but are not similar. Ask students to explain what information would need to change in order for the triangles to be similar. Emphasize that the sample response is considered a counterexample that shows why one congruent angle is not sufficient information to determine whether two triangles are similar.

English Learners

Annotate the two triangles by indicating the one pair of congruent angles, yet the triangles are not similar.

Activity $\mathbf{3}$ Card Sort: Similar or Not?

Students sort pairs of triangles into categories to realize that knowing two pairs of corresponding angles are congruent is sufficient to determine whether the triangles are similar.

Activity 3 Card Sort: Similar or Not?

You will be provided with a set of cards. Each card contains two triangles.
>1. Sort the cards into three groups:

- Triangles that are similar.
- Triangles that are not similar.
- Triangles for which you do not have enough information to determine whether they are similar.| Similar | Not similar | Not enough information |
| :--- | :--- | :--- |

Card 2, Card 3, Card 5
Card 6
Card 1, Card 4
2. Select a card for which you decided did not have enough information to determine whether the triangles are similar. Explain what other information would be needed
Sample response: Cards 1 and 4 show only one angle measure in each triangle. I would need to know if there are at least two pairs of angles that are congruent for me to determine whether the triangles are similar.

At Are you ready for more?
Tyler and Elena wanted to determine in which category to place the following pair of triangles. Tyler said there was whether they are similar. Elena says there is enough information and she knows the triangles are not similar.
 Do you agree with Tyler or Elena? Explain your thinking.
Sample response: Elena is correct. Because one triangle has an angle measuring Sample response: Elena is correct. Because one triangle has an angle measuring
$10 \mathbf{0}^{\circ}$, the other two angle measures must each be less than $8 \mathbf{8 0}^{\circ}$, which means it 100°, the other two angle measures must each be less than 80°, which means it
cannot also have a 90° angle. The two triangles can only have at most one angle that has the same measure, and, therefore, are not similar.

1 Launch

Say, "You already know that if you have one pair of corresponding angles that are congruent between two triangles, it is not sufficient to say the triangles are similar. If you know that all three corresponding angle pairs are congruent, then it is sufficient to say the triangles are similar. What about knowing two corresponding angle pairs? Let's find out." Distribute the cards from the Activity 3 PDF to each pair of students.

2 Monitor

Help students get started by having them begin with Card 2 and determining the third angle measure.

Look for points of confusion:

- Thinking the triangles on Card 1 are similar. Say, "Think back to Activity 2. Why is knowing one pair of angles not enough to determine they are similar?"
- Thinking the triangles on Card 5 are not similar. Ask, "Have you confirmed what the missing angle measure is? What does that measure tell you?"

3 Connect

Ask, "How many pairs of corresponding congruent angles are sufficient to determine two triangles are similar? Why?"

Highlight that two pairs of corresponding congruent angles are sufficient to determine that two triangles are similar. When triangles share two pairs of corresponding congruent angles, they actually share three pairs of corresponding congruent angles because the measure of the unknown third angle must be the same value for both triangles.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Consider one of these alternative approaches to this activity.

- If students need more processing time, have them focus on only sorting Cards $1,2,4$, and 5 . Then omit Problem 2.
- Have students work with all of the cards, but first ask them to sort the cards by the number of corresponding angle pairs they know are congruent.

Summary

Review and synthesize how determining two congruent corresponding angle pairs is sufficient evidence for showing that two triangles are similar.

Synthesize

Display the Summary from the Student Edition.
Ask:

- "How can you show two triangles are similar using transformations?"
- "How can you show two triangles are similar using side lengths and angles?"
- "How can you show two triangles are similar using only angles?"
- "Does what you learned today apply to other types of polygons? Are two corresponding congruent angle pairs sufficient to determine similarity with a quadrilateral? Why or why not?" Two angles are not sufficient to determine similarity with quadrilaterals. The two angle criteria is specific to triangles because if you know that two corresponding angle pairs are congruent, then the third angle pair of the triangles will also have the same measure. Quadrilaterals have four angles, so knowing only two pairs is not sufficient.

Have students share the ways students can determine whether two triangles are similar.

Highlight that today students learned a special feature specific to triangles - that knowing two corresponding angle pairs are congruent is sufficient information to know the two triangles are similar.

(I) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking

- "Which ways of determining whether two triangles are similar are you most comfortable with? Which ones, if any, are you least comfortable with?"

Exit Ticket

Students demonstrate their understanding by determining whether two triangles are similar.

甾 Printable

Exit Ticket
GS

Is $\triangle A B C \sim \triangle D E F ?$ Explain your thinking.

Yes, they are similar; Sample response:

- They have two angles with the same measure.

One triangle can be translated so that its right angle is mapped onto the right angle of the other triangle. The triangle can then be dilated to map onto the other triangle, which proves that they are similar

Self-Assess

a I know how to decide whether two triangles are similar by studying their angle measures
123

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C_{0}. Points to Ponder ...
Which groups of students did and didn't have their ideas seen and heard today?
What different ways did students approach justifying if two triangles were similar? What does that tell you about similarities and differences among your students?

ven

5. Simplify each fraction.
a $\frac{8}{12}=\frac{2}{3}$

- $\frac{25}{10}=\frac{5}{2}$
- $\frac{3}{3}=1$
(d) $-\frac{9}{24}=-\frac{3}{8}$

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	2
	$\mathbf{2}$	Activity 2	2
Spiral	$\mathbf{3}$	Activity 2	2
Formative 0	5	Unit 2 Lesson 3 Unit 2 Lesson 9	1

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

UNIT 2 | LESSON 9

Ratios of Side Lengths in Similar Triangles

Let's use similarity to determine
side lengths in similar triangles.

Focus

Goals

1. Calculate unknown side lengths in similar triangles using two methods: using the ratios of side lengths within the triangles and using the scale factor between similar triangles.
2. Language Goal: Generalize that the ratios of corresponding side lengths in similar triangles are equal. (Speaking and Listening)

Coherence

- Today

Students will discover that the ratio of a pair of side lengths in one triangle will equal the ratio of the corresponding side lengths in a similar triangle. While this fact is not limited to triangles, this lesson focuses on the particular case of triangles before students formally learn about the slope of a line in Lesson 11. Students then apply their understanding by constructing viable solutions using two different methods when solving for an unknown side length given similar triangles.

< Previously

In Lesson 1, students calculated the ratio of lengths of different rectangles to discover properties of scaled copies. In Lesson 7, students learned that similar figures are scaled copies, and that as a result, there is a scale factor that they can use to multiply all of the side lengths in one polygon to find the corresponding side lengths in a similar polygon.

>Coming Soon

In Lesson 10, students will apply their understanding of similar triangles by predicting the height of a tall object given the heights and shadows of proportional figures

Rigor

- Students build conceptual understanding by comparing the ratios of corresponding side lengths of similar triangles.

Activity 1

Activity 2

Summary

Exit Ticket
(1) 5 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- calculators

Math Language

Development
Review words

- corresponding
- dilation
- ratio
- scale factor
- similar

Building Math Identity and Community
 Connecting to Mathematical Practices

In Activity 1, students might feel a sense of frustration if they do not immediately see the structure of the ratios in the table for Problem 2, because they wrote the ratios as decimal numbers. Help them see that by writing numbers in different forms, they can look for the structure to notice mathematical relationships.

Amps : Featured Activity

Activity 1

See Student Thinking
Students explain what they notice about ratios of corresponding sides within similar figures.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 1, have students choose one row to complete in Problem 1.
- In Activity 2, Problem 2 may be omitted.

Warm-up Which One Doesn't Belong?

Students review different ways ratios are written and simplified, in preparation for the upcoming activities in which they will use ratios to study similar figures.

Unit 2 | Lesson 9
 Ratios of Side Lengths in Similar Triangles

Let's use similarity to determine side lengths in similar triangles.

Warm-up Which One Doesn't Belong?
Study these ratios. Which ratio does not belong with the others? Explain your thinking.
A. $2: 10$
B. -10 to -25
C. $\frac{2}{5}$
D. $\frac{4}{10}$ to $\frac{10}{10}$

Sample responses:

- Choice A is the only ratio that is not equivalent to $2: 5$.
- Choice B is the only ratio using negative numbers.
- Choice C is the only ratio that is written as one number, a fraction.
- Choice D is the only ratio that compares two fractions.

1 Launch

Conduct the Which One Doesn't Belong? routine. Encourage students to find at least one reason for why each ratio doesn't belong with the others.

(2) Monitor

Help students get started by asking them to choose any one ratio and identify what makes it different from the other ratios.

Look for points of confusion:

- Not knowing how to write a ratio as a fraction. Demonstrate by writing the number left of the colon as the numerator and the number to the right of the colon as the denominator.
- Not realizing the ratio in choice B is equivalent to 2:5. Tell students that another way to find the ratio is to calculate the quotient. Remind them of the rules of signed numbers.
- Not knowing how to simplify the ratio in choice D. Have students simplify $\frac{4}{10}$, and then $\frac{10}{10}$ before comparing the ratio.

Look for productive strategies:

- Simplifying or dividing the ratios to compare them.
- Noticing that all choices, except A, are equivalent to the ratio 2 to 5 .

3 Connect

Have students share their responses. Use the Poll the Class routine to see which ratio they chose. Select students to explain their thinking.

Ask students to simplify each ratio and share their strategies.

Highlight that one way to compare ratios is to simplify them. By simplifying the ratios, or finding the quotients, it can be more straightforward to see that choice A is the only ratio that is not equivalent to $2: 5$ or 0.4 .

(1)
 Math Language Development

MLR2: Collect and Display

During the Connect, listen for words and phrases that students use to share their reasoning for why certain ratios do not belong with the others. Display these words and phrases, such as equivalent, not equivalent, negative, fraction, etc.

English Learners

If students are not familiar with the term simplify, illustrate what it means to simplify a ratio by providing examples.

Power-up

To power up students' ability to simplify fractions, have students complete:
Recall that in order to completely simplify fractions, you divide the numerator and denominator by their greatest common factor (GCF). For each fraction, first determine the GCF between the numerator and denominator, then rewrite each fraction in simplest form.

Fraction	GCF	Simplest form
$\frac{18}{27}$	9	$\frac{2}{3}$
$-\frac{16}{28}$	4	$-\frac{4}{7}$

Use: Before Activity 1
Informed by: Performance on Lesson 8, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 8

Activity 1 Ratios of Side Lengths Within Similar Triangles

Students explore the ratios of side lengths within the same triangle to see that the same ratio is preserved in similar triangles.

Amps Featured Activity

\qquad Period

Activity 1 Ratios of Side Lengths Within Similar Triangles

Triangle $A B C$ is similar to each of Triangles $D E F, G H I$, and $J K L$. Note that Triangles $D E F, G H I$, and $J K L$ are not shown.

1. The scale factor for the dilation that maps Triangle $A B C$ onto each triangle is shown in the table. Determine the side lengths of Triangles $D E F, G H I$, and $J K L$. Record them in the table.

Triangle	Scale factor	Length of short side	Length of medium side	Length of long side
$A B C$	1	4	5	7
$D E F$	2	8	10	14
$G H I$	3	12	15	21
$J K L$	$\frac{1}{2}$	2	$\frac{5}{2}$ or 2.5	$\frac{7}{2}$ or 3.5

Pause here so your teacher can review your work.

Differentiated Support

Accessibility: Optimize Access to

 TechnologyHave students use the Amps slides for this activity, in which they can enter the side lengths of a triangle using different scale factors. When they do so, an animation appears, allowing them to visualize a triangle's size, based on the scale factor

Math Language Development

MLR8: Discussion Supports—Press for Details

During the Connect, press for details in students' reasoning as to why the ratio of the medium side to the long side for any triangle similar to $\triangle A B C$ will always be $\frac{5}{7}$. Display the table from Problem 1 , and ask these follow-up questions to help solidify this concept:

- "What multiplication expressions can you write to represent the lengths of the medium and long sides of $\triangle D E F$? Of $\triangle G H I$?" $\Delta D E F: 5 \cdot 2 ; 7 \cdot 2 . \Delta G H I: 5 \cdot 3 ; 7 \cdot 3$
- "What do you notice? Use a math term from this unit in your response." The second factor of each expression is the scale factor
- "What expressions would you write to represent the length of the medium side and the length of the long side for any triangle similar to $\triangle A B C$, with a scale factor of s ?" $5 s ; 7 s$

Activity 1 Ratios of Side Lengths Within Similar Triangles (continued)

Students explore the ratios of side lengths within the same triangle to see that the same ratio is preserved in similar triangles.

Activity 1 Ratios of Side Lengths Within Similar Triangles (continued)
2. With your group members, decide who will complete Column A, Column B, and Column C. For all four triangles, find and record the ratio of the indicated side lengths given for each column.

Triangle	Column A	Column B	Column C
	Ratio of long side to short side	Ratio of long side to medium side	Ratio of medium side to short side
$A B C$	$\frac{7}{4}$ or 1.75	$\frac{7}{5}$ or 1.4	$\frac{5}{4}$ or 1.25
$D E F$	$\frac{14}{8}$ or 1.75	$\frac{14}{10}$ or 1.4	$\frac{10}{8}$ or 1.25
$G H I$	$\frac{21}{12}$ or 1.75	$\frac{21}{15}$ or 1.4	$\frac{15}{12}$ or 1.25
$J K L$	$\frac{7}{4}$ or 1.75	$\frac{14}{10}$ or 1.4	$\frac{5}{4}$ or 1.25

3. What do you notice about the ratios?

Sample response: The ratios within each column are the same.
4. Compare your results with your group members and then complete your table with your group's completed ratios.
A. Are you ready for more?
$\Delta A B C \sim \Delta A^{\prime} B^{\prime} C^{\prime}$. Explain why $\frac{A B}{B C}=\frac{A^{\prime} B^{\prime}}{B^{\prime} C^{\prime}}$.
There is a scale factor, s, that is
multiplied by the side lengths
of Triangle $A B C$ to get the
side lengths of Triangle $A^{\prime} B^{\prime} C^{\prime}$
$B^{\prime} A^{\prime} B^{\prime} \quad B C \cdot \stackrel{s}{A} B$
So, $\frac{A B}{B^{\prime} C^{\prime}}=\frac{A B \cdot s}{B C \cdot s}=\frac{A B}{B C}$.

Activity 2 Completing the Missing Steps

Students calculate an unknown side length to see that they can use the scale factor or internal ratios to solve for a missing length given a pair of similar triangles.

Name: \longrightarrow Date:
Activity 2 Completing the Missing Steps

In the diagram, $\triangle A B C \sim \Delta A^{\prime} B^{\prime} C^{\prime}$. Bard and Elena both started to calculate the unknown side length $A^{\prime} C^{\prime}$. The first two steps for each student's method is shown.

1. Complete the missing Step 3 for each student

Bard			Elena		
Step 1: Create a ratio table.			Step 1: Create a ratio table.		
Long side (AC)	$\frac{4}{7}$?	Long side (AC)	$\frac{4}{7}$	
Short side $(A B)$	$\frac{2}{7}$	4	Short side (AB)	$\frac{2}{7}$	$4 \bigcirc$

stop

Step 2: Calculate the scale factor
$4 \div \frac{2}{7}=14$
Step 3: Multiply $A C$ by the scale factor, 14 , to determine $A^{\prime} C^{\prime}, \frac{4}{7} \cdot 14=8$, Step 3: Because the ratio of $A C$ to $A B$ is 2,
the ratio of the corresponding sides $A^{\prime} C^{\prime}$ to $A^{\prime} B^{\prime}$ is also $2,4 \cdot 2=8$.

Length of $A^{\prime} C^{\prime}: \quad A^{\prime} C^{\prime}=8$
Length of $A^{\prime} C^{\prime}: \quad A^{\prime} C^{\prime}=8$
2. Use either Bard's or Elena's method to determine $B C$.

Medium side $(B C)$	$?$	6	Bard's method: Divide $B^{\prime} C^{\prime}$ by the scale factor $14, \frac{6}{14}=\frac{3}{7}$. So, $B C=\frac{3}{7}$.
Short side $(A B)$	$\frac{2}{7}$	4	Elena's method: $B^{\prime} C^{\prime} \div A^{\prime} B^{\prime}=\frac{3}{2}$, so $B C$ is $\frac{3}{2}$ times the length of $A B, \frac{2}{7} \cdot \frac{3}{2}=\frac{3}{7}$.

Step 2: Determine the ratio of the long side to the short side in Triangle $A B C$ $\frac{4}{7} \div \frac{2}{7}=2$

1 Launch

Have students use the Think-Pair-Share routine. Give them 3 minutes of individual think time, and then complete Bard's steps with their partners. Repeat the routine for Elena's steps.

2 Monitor

Help students get started by reminding them that prime notation can help them identify corresponding sides. Then have them identify the short, medium, and long side for each triangle.

Look for points of confusion:

- Questioning how Bard arrived at the scale factor. Have students study the second column in the table or compare the short sides in each triangle.
- Questioning Elena's ratio. Have students study the second row in the table or compare the long and short sides in Triangle ABC

Look for productive strategies:

- Noticing that using either method results in the same length of side $A^{\prime} C^{\prime}$.

3 Connect

Have groups of students share how they completed the steps for Bard and Elena.

Highlight that there are different methods to calculate an unknown side length of similar triangles. Students can use the scale factor between the triangles or use the ratio of corresponding side lengths within the triangles.

Ask students to explain their methods for Problem 2 and why they selected a certain method.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on completing Bard's steps in Problem 1 and use Bard's method to determine the length of side $B C$ in Problem 2. Alternatively, consider altering the side lengths in $\triangle A B C$ so that they are whole numbers or decimals, such as 1.5 and 3 .

Extension: Math Enrichment

Ask students to critique Han's method.
Han: I compared the two short sides ($A B$ and $A^{\prime} B^{\prime}$). Because $4 \div \frac{2}{7}=14$,
I multiplied the longer side $A C$ by 14 to obtain $A^{\prime} C^{\prime}$, which is $\frac{4}{7} \times 14=8$. Han's method is correct, as it compares side lengths between triangles

Math Language Development

MLR7: Compare and Connect

During the Connect, compare and contrast the different methods Bard and Elena used for calculating an unknown side length of similar triangles. Draw connections to how the scale factor and ratio of long to short side is shown in each ratio table. Emphasize language such as "the scale factor between the triangles" or "the ratio of corresponding side lengths within the triangles."

English Learners

Use hand gestures to distinguish the phrases "between the triangles" and "within the triangles."

Summary

Review and synthesize how to use the ratio of corresponding side lengths of a triangle to determine unknown side lengths in similar triangles.

Summary

In today's lesson...

You discovered that the ratio of a pair of side lengths in one triangle is equal to the ratio of the corresponding side lengths in a similar triangle.

For a pair of similar triangles, you can calculate the missing side length by using the ratios of side lengths within a triangle or by using the scale factor between the triangles.

Suppose you know $\triangle A B C \sim \Delta A^{\prime} B^{\prime} C^{\prime}$. Here are two methods you can use to determine side $B C$.

Method 1: Using the scale factor between the triangles

Because you need to determine the length of side $B C$, find the ratio of the lengths of the corresponding sides $A B$ to $A^{\prime} B^{\prime}$ to determine the scale factor. The ratio is $5: 2$, so the scale factor is 2.5 . Multiply
 the length of side $B^{\prime} C^{\prime}$ by the scale factor to determine the length of side $B C, 4 \cdot 2.5=10$

Method 2: Using ratio of sides within one triangle

In Triangle $A^{\prime} B^{\prime} C^{\prime}$, the ratio of the medium side to the short side is $4: 2$, or 2 . This means that the medium side is twice the length of the short side in both triangles. Therefore, the length of side $B C$ is twice the length of side $A B, 5 \cdot 2=10$

Synthesize

Have students share the advantages or disadvantages for each method. Ask them whether they have a preferred method, and if so, why.

Highlight:

- The ratios of pairs of corresponding side lengths in similar triangles are equal
- To determine an unknown side of similar triangles, students can either use the ratios of side lengths within the triangles or the scale factor between the similar triangles.

Display the two triangles from the Summary in the Student Edition.

Ask:

- "How can you find the scale factor using sides $A B$ and $A^{\prime} B^{\prime}$? How can you determine the length of side $B C$ using the scale factor?"
- "How many times longer is side $B^{\prime} C^{\prime}$ than side $A^{\prime} B^{\prime}$? How can you use this to determine the length of side $B C$?'

(I) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition To help them engage in meaningful reflection, consider asking:

- "What strategies did you find helpful today when calculating a side length given similar triangles?"

Exit Ticket

Students demonstrate their understanding by calculating the ratio of side lengths of similar triangles.

亘 Printable

Name: \longrightarrow Date:

Exit Ticket
$\Delta A B C \sim \Delta A^{\prime} B^{\prime} C^{\prime}$. Determine the ratio of $A^{\prime} C^{\prime}$ to $B^{\prime} C^{\prime}$
Show or explain your thinking.

Sample response: Because the triangles are similar, I know that $\frac{A C}{B C}=\frac{A^{\prime} C^{\prime}}{B^{\prime} C^{\prime}}$
$\frac{A C}{B C}=\frac{2.1}{1.4}$, so $\frac{A^{\prime} C^{\prime}}{B^{\prime} C^{\prime}}$, is $\mathbf{1 . 5}$.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C_{0} Points to Ponder ...

- During the discussion about completing Bard and Elena's method in Activity 2, how did you encourage each student to share their understandings?

In this lesson, students explored the ratios of side lengths within the same triangle to see that the same ratio is preserved in similar triangles. How will that support their understanding of slope in Lesson 11?

Success looks like ...

- Goal: Calculating unknown side lengths in similar triangles using the ratios of side lengths within the triangles and the scale factor between similar triangles.
- Language Goal: Generalizing that the ratios of corresponding side lengths in similar triangles are equal. (Speaking and Listening)
» Determining the ratio of sides for two similar triangles.

- Suggested next steps

If students cannot determine the ratio of $A^{\prime} C^{\prime}$ to $B^{\prime} C^{\prime}$, consider:

- Reviewing Activity 1.
- Having them use a scale factor to determine side lengths, and then compare the ratios.
- Reassessing after Lesson 10.

Math Language Development

Language Goal: Generalizing that the ratios of corresponding side lengths in similar triangles are equal.
Reflect on students' language development toward this goal.

- In what ways did students use their developing math language to justify their response to the Exit Ticket problem?
- What support do they still need in order to be more precise in their justifications?
Sample justifications:

Emerging	Expanding
The ratios are the same.	The ratios of corresponding side lengths in similar triangles are equal.

Practice Problem			Analysis
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	2
Spiral	$\mathbf{2}$	Activity 1	2
Formative $\mathbf{0}$	$\mathbf{5}$	Unit 2 Lesson 5 Unit 2 Lesson 3	Unit 2 Lesson 10

(6) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Name: Date: \quad Period
 using point A as the center of dilation and a scale factor of $\frac{3}{2}$?
GJ
c Which segment is not a dilation of segment $B C$? Explain your thinking.
Segment $D E$ is not a dilation of segment $B C$. Sample response

- Point E is not on the same ray as points A and B. Segment $D E$ is not parallel to segment $B C$.

5. Triangle $A B C$ is similar to Triangle $X Y Z$. What is the scale factor that maps Triangle $A B C$ onto Triangle XYZ? Explain your thinking.

Sample response: The scale factor is 1.4. I found the ratio of two corresponding sides, $\frac{12.6}{9}=1.4$.

198 Unit2 Dilations and Similarit
Unit2 Dilations and Similarity

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

The Shadow Knows

Let's use shadows to determine the height of a figure.

Focus

Goals

1. Language Goal: Calculate the unknown heights of figures by using proportional reasoning and explain the solution method. (Speaking and Listening)
2. Language Goal: Justify why the relationship between the height of figures and the length of their shadows cast by the Sun is approximately proportional. (Speaking and Listening)
3. Calculate the unknown side lengths of similar triangles using proportional reasoning.

Coherence

- Today

Students examine the length of shadows of different figures. They apply their understanding of similar triangles and proportional relationships to estimate the height of a tall figure.

< Previously

In Lesson 9, students used the ratios of side lengths in similar triangles to find missing side lengths.

Coming Soon

In Lesson 11, students will learn how similar triangles can be used to determine the slope of a line.

Rigor

- Students strengthen their fluency in calculating unknown side lengths using proportional reasoning.
- Students apply their understanding of similar triangles and proportional relationships.

Amps powered by desmos : Activity and Presentation Slides
For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Dilations
- calculators

Math Language

Development

Review words

- similar

Amps ! Featured Activity

Exit Ticket
 Real-Time Exit Ticket

Check in real-time whether your students can calculate side lengths of similar figures.

Building Math Identity and Community
 Connecting to Mathematical Practices

At first, students may feel lost if they do not notice any relationships between the figure's height and the length of its shadow as they think about how to use mathematics to model the problem in Activity 1. Help them practice taking control of their own learning by suggesting they seek out support from 2-3 sources as a general guideline when they feel lost.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 2, have students only complete the first three challenges.

Warm-up Notice and Wonder

Students analyze images to see how a figure's shadow changes when the Sun's rays strike at different angles.

1. Launch

To pique student interest, start by telling students the following riddle: "Everyone has it, but no one can lose it. What is it?" Your shadow. Then conduct the Notice and Wonder routine using the images from the Warm-up.

2 Monitor

Help students get started by observing how the shadows change in each image.

Look for productive strategies:

- Noticing the different shadow lengths depending on the figure's height.
- Noticing the shadows appear to become longer proportionally in the second and third image.
- Wondering about the relationship between the shadow length and the Sun.

3 Connect
Display the images from the Warm-up and ask students to share what they noticed and wonder.

Highlight that the shadow length depends on the figure's height and time of day.

Ask:

- "What causes shadows?" The Sun's rays move in a straight line and when an object or person blocks the path of light, a shadow appears. Using the third image, draw three straight lines so that it touches the top of each figure and the ground. Tell students that because the Sun is very far away, the rays that reach the Earth are approximately parallel. Keep this image for display for students to reference as they complete Activity 1.

Math Language Development
MLR8: Discussion Supports - Annotate It!
During the Connect discussion, as students respond to the Ask question, illustrate how the Sun's rays move in a straight line and how shadows are formed by drawing or annotating on the displays in the Warm-up.

English Learners

Allow students to record what they noticed and wondered in their primary language, before participating in the class discussion. To support student understanding, invite them to use gestures when describing what they noticed and wondered.

Power-up

To power up students' ability to determine the scale factor given two similar

 triangles, have students complete:Recall that a scaled copy is a copy of a figure where every length in the original figure is multiplied by the same value to determine the corresponding lengths in the copy.
Triangle A is similar to Triangle B.

1. What is the scale factor that maps Triangle A onto Triangle B? 1.5
2. What is the scale factor that maps Triangle B onto Triangle A? $\frac{2}{3}$

Use: Before Activity 1
Informed by: Performance on Lesson 9, Practice Problem 5 and

Pre-Unit Readiness Assessment, Problem 6

Activity 1 Figures and Shadows

Students apply what they know about proportional relationships and the length of a shadow to find the height of a figure that is difficult to measure directly.

Activity 1 Figures and Shadows

Study the image. The table lists the height of each person, dog, and lamppost, and their shadow.

1. What relationships do you notice between each person's or object's height and the length of its shadow?
Each person's or object's height is approximately 1.5 times longer than their shadow. The shadow lengths are approximately two-thirds the height of each person or object.
2. Explain why the ratios of the height of each person or object to the length of their shadow are approximately the same. The triangles formed by the shadows, heights, and the sun's rays are similar.
3. Determine the height of the lamppost. Explain your thinking. Because 114•1.5=171, the height of the lamppost is about 171 in . (or 14 ft 3 in .).

Historical Moment

Over 2,000 years ago, the ancient Greek mathematician Eratosthenes also studied shadows closely (in a slightly different way). He used his study of shadows to estimate the circumference of Earth with an error of less than 2% !

1 Launch

Tell students that when an object is too tall to measure directly, they can determine its height by using the length of its shadow. Provide access to calculators.

Monitor
Help students get started by having them find the ratio of each figure's height to its shadow length.

Look for points of confusion:

- Not knowing how to find the height of the lamppost. Tell students to use the ratio of the height and shadow for the three given figures to calculate the height of the lamppost.
- Not knowing why the relationship between the height of each figure and length of their shadows is approximately proportional. Have students draw right triangles using the figure, the ground, and the Sun's rays and label any given measurements to help emphasize the connection of similar triangles.

Connect

Display an image where students drew a right triangle using a person or the lamppost, the ground, and the Sun's rays. If no student drew a triangle, draw the triangle to emphasize similarity.

Have pairs of students share what they noticed about the relationship between each figure's height and length of its shadow. Draw an arrow between the columns in the table to show this relationship. Then have them share their strategies for finding the height and why it works.

Highlight that because the four figures and their shadows create similar triangles, students can use proportional reasoning to calculate the height of the lamppost.

Differentiated Support
Accessibility: Guide Processing and Visualization

Consider demonstrating how to annotate or label Mocha's height and shadow length to provide a visual reference before students begin the activity. Suggest that students add another column to their table that shows the ratio of each height to shadow length to assist them with Problem 2.

Math Language Development

MLR7: Compare and Connect

During the Connect, as students share what they noticed, connect their strategies for determining the height of the lamppost to the idea of proportional relationships. Illustrate why the triangles formed by the height of each person or object and their shadow length are similar triangles.

Historical Moment

Studying Shadows

Have students read about how Eratosthenes used shadows to estimate the circumference of Earth with incredible accuracy.

Activity 2 Four Challenges

Students use proportional reasoning to calculate unknown side lengths to develop procedural fluency.
(4) Name: Date: \square Perio

Plan ahead: What will you do to Pran ahead: What will you do to
stay focused on the challenges? How will you control your impulses?
For each challenge, determine the missing side length and explain your thinking. The figures may not be drawn to scale.

Challenge 1:
$\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$

Sample respons

- I used the corresponding sides to find the scale factor that maps $\triangle A B C$ on to $\triangle A^{\prime} B^{\prime} C^{\prime}, \frac{10}{30}=\frac{1}{3}$. Then I used the scale factor to determine the missing side length
$24 \cdot \frac{1}{3}=8$. $4 \cdot \frac{1}{3}=8$.
lused the ratio of $A B$ and $A C$ $\frac{24}{30}=\frac{4}{5}$. Then I used the ratio to find the missing side length, $10 \cdot \frac{4}{5}=8$.
- I used the corresponding sides to find the scale factor that maps $\triangle A^{\prime} B^{\prime} C^{\prime}$ onto $\triangle A B C:{ }^{34}=1.7$ Then I used the scale factor to find the missing side length $25 \cdot 1.7=42.5$.
I used the ratio of $A^{\prime} B^{\prime}$ and $A^{\prime} C^{\prime}$: I used the ratio of $A^{\prime} B^{\prime}$ and $A^{\prime} C^{\prime}$
25
25
50
. Then I used the ratio to $\frac{25}{20}=\frac{5}{4}$. Then I used the ratio to
find the missing side length, $34 \cdot \frac{5}{4}=42.5$.

1 Launch

Have students use the Think-Pair-Share routine as they complete each challenge. Have students discuss and resolve any discrepancies or disagreements. Provide access to calculators

Monitor

Help students get started by having them identify a pair of corresponding sides in Challenge 1.

Look for points of confusion:

- Not knowing how to calculate the missing side length for Challenges 1 and 2 . Use Challenge 1 to demonstrate to students two different strategies: creating a ratio table and using the scale factor. Then have students choose one of these strategies to solve Challenge 2.
- Thinking the length of segment $Y C$ is 24 or the length of line segment $X B$ is 19.2 in Challenge 4. Have students redraw the figures as two separate triangles to help them understand that 24 is the length of line segment $A C$ and 19.2 is the length of line segment $A B$.
- Not knowing why the triangles are similar in Challenge 4. Remind students about the relationship between angles formed when parallel lines are intersected by a transversal from Unit 1.

Look for productive strategies:

- Using different methods to solve each challenge.
- Using a different method than their partner to solve a problem, but arriving at the same solution.

Activity 2 continued >

Q2023 Ampluty Euvation. Inc. Al raght resesered.

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity. After they submit their response digitally, an animated illustration appears, allowing them to see their numbers "come to life."

Accessibility: Vary Demands to Optimize Challenge, Guide Visualization and Processing

If students need more processing time, have them focus on Challenges 1 and 2. Provide colored pencils or highlighters and suggest students color code corresponding sides or angles the same color.

Math Language Development

MLR7: Compare and Connect

During the Connect, as students share the strategies they used, annotate or display these two strategies:

- Use ratios within triangles.
- Use ratios between triangles

Ask students to determine which strategy they used by using the language "ratios within triangles" or "ratios between triangles." Highlight that using ratios between triangles utilizes the scale factor.

Activity 2 Four Challenges (continued)

Students use proportional reasoning to calculate unknown side lengths to develop procedural fluency.

Activity 2 Four Challenges (continued)

Challenge 3:
$\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$

Sample response: Corresponding side lengths of similar triangles are proportional. I used the corresponding sides to find the scale factor that maps $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}: \frac{4}{3}$. Then I used the scale factor to find the missing sides: $6.75 \cdot \frac{4}{3}=9$ and $7 \div \frac{4}{3}=5.25$.

Challenge 4:

Segment $X Y$ is parallel to segment $B C$.

Sample response: $\triangle A B C \sim \triangle A X Y$ becaus two corresponding angles are congruent. used the corresponding sides to find the scale factor that maps $\triangle A X Y$ onto $\triangle A B C: \frac{14.4}{6}=2.4$.
To find segment $X B$, I multiplied segment $A X$ by the scale factor and calculated the length of side $A B: 8 \cdot 2.4=19.2$. Then I subtracted segment $A X$ from side $A B$ to determine segment $X B$: $19.2-8=11.2$. To find segment $Y C$, I multiplied segment $A Y$ by the scale factor and calculated the length of side $A C: 10 \cdot 2.4=24$. Then I subtracted segment $A Y$ from side $A C$ to determine segment YC: 24-10=14.

Summary

Review and synthesize how proportional relationships can be used to find the height of a figure that is difficult to measure directly.

Synthesize

Display the Summary from the Student Edition.
Ask:

- "How can you use your height and shadow length to find the height of a tall tree?" Sample response: I can compare the ratio of the height and shadow of each object and then use proportional reasoning. Share with students that in the 6th century BC, Thales of Miletus measured the height of the great pyramid at Giza by comparing its shadows!
- "If the position of the Sun changed, would you still be able to use shadows to find the height of the lamppost? Explain your thinking." Yes; Sample response: The triangles formed by the height of the object, ground, and the Sun's rays would still be similar. I can use ratios to calculate the height of the lamppost.

Have students share their strategies for finding an unknown side length when they are given two similar triangles.

Highlight that students can use proportional reasoning to make predictions about quantities that are difficult or impossible to measure directly. Use Part 3 of the Anchor Chart PDF, Dilations to review how to calculate unknown side lengths in similar triangles using ratios.

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How can you use similar triangles to determine the height of a tall object?"

Exit Ticket

Students demonstrate their understanding by using proportional reasoning to determine missing side lengths.

Success looks like ...

- Language Goal: Calculating the unknown heights of figures by using proportional reasoning and explaining the solution method. (Speaking and Listening)
- Language Goal: Justifying why the relationship between the height of a figure and the length of its shadows cast by the Sun is approximately proportional. (Speaking and Listening)
- Goal: Calculating the unknown side lengths of similar triangles using proportional reasoning.
» Using proportional reasoning to determine the length of segment $A C$ and segment $B^{\prime} C^{\prime}$.

Suggested next steps

If students calculate both side lengths

 incorrectly, consider:- Changing the scale factor to a whole number and reassessing.
- Providing the scale factor to students and reassessing.
- Reviewing the ratios of side lengths in similar triangles.

If students calculated only one side length

 correctly, consider:- Asking students if they would multiply or divide by the scale factor to determine the second side length.
- Having them check their solutions informally by comparing the corresponding side lengths.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Co. Points to Ponder . .
Did students find Activity 1 or Activity 2 more engaging today? Why do you think that is?
What challenges did students encounter as they worked on Activity 2? How did they work through them?

> 4. The graph shows the amount Tyler earns based on the number of lawns he mows. Label the point $(1, k)$ on the graph, find the value of k, and explain its meaning. $k=25$; This means that Tyler will earn $\$ 25$ when he mows one lawn.

5. A rectangle has a length of 6 units and a width of 4 units. Which of the following statements tells you that Quadrilateral $A B C D$ is not
similar to this rectangle? Select all that apply.
(A.) $A B=B C$
D. $B C=8$
(B.) $\mathrm{m} \angle A B C=105^{\circ}$
(E.) $B C=2 \cdot A B$
C. $A B=8$
F. $2 \cdot A B=3 \cdot B C$
6. Segments $A C$ and $K L$ are parallel.

Segments $C B$ and $L N$ are parallel. Show that $\triangle A B C \sim \triangle K N L$.
Sample response: Both triangles are right triangles, angle C is congruent to angle L.
t. Line segment $A N$ is a transversal for segments $A C$ and $K L$, which makes $\angle A$ congruent to $\angle K$. If I know at least two
pairs of angles are congruent, then I know that both triangles are similar

\qquad

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Meet Slope

Let's explore the slope of a line.

Focus

Goals

1. Language Goal: Comprehend the term slope to mean the numerical value that represents the ratio of the vertical distance and the horizontal distance between any two points on a line. (Speaking and Listening)
2. Language Goal: Draw a line on a coordinate plane given its slope and describe observations about lines with the same slope. (Speaking and Listening, Writing)
3. Language Goal: Justify that all "slope triangles" that lie on one line are similar by using transformations or by using the idea that if two pairs of corresponding angles are congruent, then the triangles are similar. (Speaking and Listening, Writing)

Coherence

- Today

Students learn about the slope of the line and how it is connected to what they have learned about similar triangles.

< Previously

In Lesson 10, students used proportional relationships between similar triangles to find missing side lengths.

> Coming Soon

In Lesson 12, students will use concepts from Units 1 and 2 to identify and create patterns with optical illusions. In Unit 3, students will use slope to write equations for lines.

Rigor

- Students build conceptual understanding of the slope of a line.

Activity 1

Activity 2

Summary

Exit Ticket

\bigcirc Independent
(®) 15 min
คํำ Pairs

○ Independent
(1) 5 min

กํำำ Whole Class
() 5 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice

Materials

- Exit Ticket
- Additional Practice
- Power-up PDF, as needed
- Power-up PDF (answers), as needed
- Anchor Chart PDF, Slope
- rulers or index cards

Math Language
 Development

New words

- slope
- slope triangles

Review words

- similar

Building Math Identity and Community
 Connecting to Mathematical Practices

Students may struggle in actively listening to their classmates' strategies and arguments for describing similar triangles and how they relate to the definition of slope. Have students be explicit about responding to and building off their classmates' responses, and highlight students who are revoicing or incorporating others' opinions in their own responses. Emphasize the need to think critically before incorporating another person's idea. Students should critique the reasoning used before determining whether they agree with it.

Amps : Featured Activity

Activity 1
 Digital Card Sort

Students match slopes to their lines and receive real-time feedback as they work.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 1, have students complete 4 of the 6 graphs.
- In Activity 2, Problem 2 may be omitted.

Warm-up Notice and Wonder

Students examine a set of similar triangles where one side of each triangle lies on the same line, to build understanding about the slope of a line.

Unit 2 | Lesson 11

Meet Slope
Let's explore the slope of a line.

Warm-up Notice and Wonder
Study the image. What do you notice? What do you wonder?
> 1. I notice
Sample responses:

- There are 3 triangles.
- The largest triangle has side lengths that are twice as long as the side lengths of the smallest triangle.
- All of the triangles appear to be scaled copies of each other
- The longest sides of each triangle lie on the same line.

2. I wonder

Sample responses:

- What are the values of a and b ?
- Can I draw other triangles where the longest side lies on this line and have those triangles also be scaled copies of these triangles?

your questions with a partner ogether, come up with 1-2年estions that you think you might be able to answer.
(1) Launch

Conduct the Notice and Wonder routine.

Monitor

Help students get started by asking them what they notice about corresponding angles.

Look for productive strategies:

- Noticing the triangles are all similar by describing a sequence of transformations or by using what they know about angles formed when parallel lines are cut by a transversal.

(3) Connect

Display the triangles.
Have students share their responses.
Ask:

- "How do you know that all three triangles are similar?" Sample response: All three triangles can be verified they are similar by analyzing the congruent angles formed when two parallel lines (line segments) are cut by the transversal.
- "What is the exact value of $\frac{b}{a}$? How do you know this?" $\frac{b}{a}$ is $\frac{3}{2}$ because all three triangles are similar.
Define the term slope. Explain that right triangles, like the ones shown, can be constructed when there is a slanted line to serve as the side opposite the right angle. These triangles are called slope triangles, where one side length is horizontal and one side length is vertical, and the quotient of the length of the vertical side and the horizontal side for the triangles are always the same. This numerical value that represents the ratio is called the slope of the line. Note: In later units, students will come to understand how slope can be defined as the quotient of the vertical distance divided by the horizontal distance as one moves along the line from left to right and therefore could be negative.

Math Language Development

MLR5: Co-craft Questions

After students individually record what they noticed and wondered, ask them to share their responses with a partner. Ask them to work together to co-craft 1-2 mathematical questions that they think they might be able to answer, or that they would like to answer, by the end of this lesson.

English Learners

Model crafting 1-2 mathematical questions that could be asked about the triangles before having pairs of students co-craft their own questions.

Power-up
To power up students' ability to determine that two triangles are scaled copies using angle relationships related to parallel lines and a transversal:
Provide students with a copy of the Power-up PDF.
Use: Before the Warm-up
Informed by: Performance on Lesson 10, Practice Problem 6 and Pre-Unit Readiness Assessment, Problem 4

Activity 1 Different Slopes, Different Lines

Students match various lines with different slopes to strengthen their understanding of the slope of a line.

1 Launch

Display the Anchor Chart PDF, Slope.

2 Monitor

Help students get started by asking, "What does the slope of a line mean? How can you find it?"

Look for points of confusion:

- Thinking there is not a matching slope for Graphs 2 or 3 because the ratio is not yet simplified. Ask students to look for equivalent ratios.
- Reversing the ratio, for example thinking the slope of the line in Graph 1 is $\frac{2}{3}$. Remind students that slope describes the steepness of the line. Ask, "Do you think that $\frac{2}{3}$ or $\frac{3}{2}$ would describe a steeper slope? Why do you think so?" Highlight that the slope ratio is vertical side length to horizontal side length.
- Struggling to draw a triangle for Graphs 4 or 5. Have students examine two places on the line where the line crosses an intersection of grid lines.
- Struggling to draw a line for Graph 6. Have students draw a triangle with sides that have a ratio of $\frac{1}{5}$ and ask them about the slope.

3 Connect

Display student work showing correct matches.
Have students share how they can use slope triangles to find the slopes of lines.

Ask, "Why is the slope of the line on Graph 4 $\frac{1}{2}$ and not 2?"

Highlight that given a slope, students can draw a right triangle using vertical and horizontal lengths that correspond to the slope ratio, and then extend the longest side of the right triangle to create a line with that slope. Show that for Graph 6, two different scaled triangles will result in the same slope, because their sides have the same ratio.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on Graphs 1, 2, and 3 . Tell them to match these graphs with the slopes $\frac{1}{3}, 1$, and $\frac{3}{2}$ from the table.

Extension: Math Enrichment

Challenge students to draw a line with a slope of 1.25 for Graph 6 . Students should draw a line with a slope of $\frac{5}{4}$, which is equivalent to 1.25

Math Language Development

MLR2: Collect and Display

During the Connect, as students share how they found the slopes of the lines, listen for the mathematical language they use, such as ratio, vertical, horizontal, distance, steeper, less steep, or side length. Display the language they use or add it to the class display. Include visuals, such as comparing a steeper line to a less steep line.

English Learners

As students use these terms, use hand gestures to illustrate several of them, such as vertical, horizontal, steeper, or less steep.

Activity 2 Multiple Lines With the Same Slope

Students draw lines with given slopes to come to understand that lines with the same slope are parallel.

Activity 2 Multiple Lines with the Same Slope

1. Draw two lines that each have a slope of 3 . Sample response shown.

2. Draw two lines that each have a slope of $\frac{1}{2}$. Sample response shown.

3. What do you notice about the lines you drew in Problems 1 and 2? Sample response: I notice that when two lines have the same slope, they are parallel.

1 Launch

Provide access to rulers or index cards.

Monitor
Help students get started by having them restate the definition of slope in their own words.

Look for points of confusion:

- Not knowing how to draw a line with the slope of 3 . Have students draw a triangle with sides that have a vertical to horizontal length ratio of 3 .
- Drawing a negative slope. Display these alongside positive slopes and ask students to compare and contrast. Activate background knowledge by using terms such as "uphill" and "downhill." Note: Positive and negative slopes will be further discussed in Unit 3.

Look for productive strategies:

Using slope triangles to verify the lines drawn have the correct slope.

- Counting horizontal and vertical grid unit distances to find slope.
- Drawing lines that are parallel and making the connection to the fact that the lines have the same slope.

3 Connect

Display student work for Problems 1 and 2.
Have students share how they can use slope triangles or horizontal and vertical distances to draw the slope of a line. Then ask them to share their responses to Problem 3.

Highlight that lines with the same slope are parallel.

Ask, "How does the slope of the line relate to its steepness?"

Differentiated Support

Accessibility: Guide Processing and Visualization

Provide pre-drawn lines for students to use for Problems 1 and 2, and have them focus on analyzing them to respond to Problem 3

Extension: Math Enrichment

Ask students these questions and have them explain their thinking

- "What is the slope of a horizontal line?" 0; If I draw a triangle between two points on the line, the vertical distance is 0 .
- "What is the slope of a vertical line?" It doesn't exist; If I draw a triangle between two points on the line, the vertical distance always varies, but the horizontal distance is 0

Math Language Development

MLR8: Discussion Supports

During the Connect, as students share their responses to Problem 3, provide sentence frames to help them formulate their thoughts, such as:

- "Two lines with the same slope are _ because...."
- "The lines with slopes of 3 are ___ than the lines with slopes of $\frac{1}{2}$, because..."
Listen for and amplify language used to complete these sentence frames, such as "the ratios of the slope triangles are equivalent, so the lines are always the same steepness" for the first sentence frame. Connect "equivalent ratios of slope triangles" with "same steepness."

Summary

Review and synthesize what the slope of a line means, and how slope triangles can be used to find the slope of a line.
(2) Name. Date. \qquad
\qquad

Summary

In today's lesson.

You used similar triangles to discover the slope of a line.
The four triangles shown are all examples of slope triangles. One side of a slope triangle lies on the line ℓ, one side is a vertical line segment, and one side is a horizontal line segment

The slope of the line ℓ is the numerical value that represents the ratio of the length of the vertical side and the length of the horizontal side of any of these slope triangles. The slope of the line ℓ can be written as $\frac{4}{6}, \frac{2}{3}$, or any equivalent value.

Reflect:

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit, that you started in Lesson 1 Ask them to review and reflect on any terms and phrases related to the terms slope and slope triangles that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding of slope and slope triangles by finding the slope of a line.

Name: \longrightarrow D
Date:
Period:
Exit Ticket
\{6\}
2.11

Refer to lines ℓ and k on the grid shown.

1. Which line has a slope of 1 ?

Line ℓ has a slope of 1 .
2. Which line has a slope of 2 ?

Line k has a slope of 2 .
3. Graph a line whose slope is $\frac{1}{3}$. Label this line a.

Sample response shown

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...
What challenges did students encounter as they worked on finding the slope of a line? How did they work through them?
In this lesson, students were introduced to the slope of a line. Thinking about where students need to be by the end of Unit 3, how did this introduction support their learning?

Name
4. Triangle A has side lengths 3,4 , and 5 . Triangle B has side lengths 6,7 , and 8 .
a Explain how you know that Triangle B is not similar to Triangle A. Sample response: The shortest side in Triangle B is twice as long as he shortest side in Triangle A, but the longest side is only 1.6 time
(b) Give possible sides lengths of a triangle that would be similar to Triangle A. Sample response: 6, 8, and 10
5. In the diagram, $\Delta E F G \sim \Delta E^{\prime} F^{\prime} G^{\prime}$. Determine the missing values.

Explain your thinking.

Sample response: I know that the corresponding side lengths of similar triangles are multiplied by the same scale factor. I Iused the
corresponding sides to find the scale factor that takes $\Delta E^{\prime} F^{\prime} G^{\prime}$ to corresponding sides to find the scale factor that takes $\Delta E^{\prime} F^{\prime} G^{\prime}$ t
$\Delta E F G$, which is $10=2.5$. Then I used the scale factor to find the $\triangle E F G$, which is $\frac{-1}{4}=2.5$. Then I used the scale factor to find the
missing side lengths, $9 \cdot 2.5=22.5$ and $15 \div 2.5=6$.
> 6. The illustration shown is often referred to as an "impossible trident." What do you notice? What do you wonder?
(a) Inotice

Sample response: The trident appears to have three tines at one end. At the other end, there appears the base.
b I wonder.
Sample response: How is this
illusion created?

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Optical Illusions

Let's create drawings that trick the eye.

Focus

Goals

1. Language Goal: Identify patterns in optical illusions. (Speaking and Listening, Writing)
2. Create optical illusions using the structure of a grid.

Rigor

- Students strengthen their conceptual understanding of transformations as they explore the patterns shown in optical illusions
- Students apply concepts learned from Units 1 and 2 to create optical illusions.

Coherence

- Today

Students identify patterns in optical illusions and draw connections to concepts studied in Units 1 and 2. Students will create their own optical illusions as they generalize informal ideas about what makes an illusion effective.

$<$ Previously

Throughout Unit 2, students explored ideas about similar triangles and dilations. In Unit 1, students studied rigid motions and worked with patterns using tessellations.

> Coming Soon

In Unit 3, students will connect what they have learned about similar triangles to develop an understanding of slope.

-

Activity 1

Activity 2
(J) 20 min

Summary
$\left(\begin{array}{l}\text { min } \\ \text { ํํํํํํ } \\ \text { Whole Class }\end{array}\right.$

Exit Ticket

5 min

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- Power-up PDF, as needed
- Power-up PDF (answers), as needed
- Activity 2 PDF, one page per student (as needed)
- graph paper
- geometry toolkits: rulers, protractors, index cards
- black markers
- black pens

Amps Featured Activity

Activity 2
 Digital Collaboration

Students create optical illusions and digitally share and collaborate with a peer.

Building Math Identity and Community
 Connecting to Mathematical Practices

Self-awareness: Students may feel discouraged or inadequate if they are unable to see or create an optical illusion. Remind students that there is no one correct way to view an artwork or an illusion and validate all observations and interpretations. Encourage students to study the images looking for mathematical structure, even if they are unable to see the actual illusion. Provide more structure for students who would benefit from assistance in creating their artwork.

Math Language Development

Review words

- dilation
- transversal
- optical illusion

Warm-up The Cafe Wall Illusion

Students study a geometric pattern to find an optical illusion and draw connections to math studied in Units 1 and 2.

Unit 2 | Lesson 12 - Capstone

Optical Illusions
Let's create drawings that trick the eye.

Warm-up The Cafe Wall Illusion
Are the horizontal lines parallel or sloped? Explain your thinking and construct an argument to prove your response.

Sample response: The lines appear sloped but when I used my ruler, I saw that the lines were straight. If I draw a vertical line through the parallel lines, I can see it forms right angles at each point of intersection, meaning it must be a perpendicular transversal intersecting parallel lines.

212 \qquad

Activity 1 Is That a Hole in the Paper?

Students study an optical illusion to gain insight into how illusions work and how they could be created.

Activity 1 Is That a Hole in the Paper?

Consider this illustration.

1. Do you see an illusion? If so, describe the illusion and why you think it happens If not, describe what you see.
Sample response: Yes, I see an illusion that makes it look as though
there is a hole in the paper. This is an example of a perspective drawing, reating an optical illusion that makes an image printed on paper have a three-dimensional look.
2. A grid was used to create the illusion. Study the grid. What math do you see?
Sample response: I see squares of different scale factors leading to the smallest square in the bottom corner.
3. How could a grid be useful in designing a pattern such as this?

rid line was shaded black. The dimensions of each square increase by one each time as the length and width each increase by one.

1 Launch

Conduct the Think-Pair-Share routine.

Monitor

Help students get started by activating their prior knowledge. Ask them to describe what they see using mathematical vocabulary they have learned in this unit, or in prior units or grades.

Look for points of confusion:

- Not recognizing the illusion. Have students view the image from a different angle. Point out that it is okay and normal to not see an illusion, even if others do see it. Have them describe what they do see.

Look for productive strategies:

- Making connections to dilations, scale factors, or other topics and concepts in geometry.
(3) Connect

Display the illustration of the optical illusion from the Student Edition.

Have pairs of students share what they notice and what connections they can make to the mathematical concepts they studied in Units 1 and 2.

Ask, "If you were to ask someone to recreate this illusion, what might the directions sound like?"

Highlight that the black and white pattern and the gray shading work together to help create the illusion of a three-dimensional perspective. Identify how a grid could be used to make this illusion.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students do not see the illusion, reinforce that this is okay and normal Not everyone sees an illusion. Students can still describe the math that they see in the image, even if they do not see the illusion itself.

Math Language Development

MLR7: Compare and Connect

During the Connect, as students share the connections they notice between the illusion and the mathematical concepts they have learned in Units 1 and 2, press for details in their reasoning. For example, if a student says, "I see three rays or lines that meet at a point," ask them what math term they have learned in this unit that describes that point. Center of dilation

English Learners

Annotate the illusion with the math terms students use, such as center of dilation.

Activity 2 Optical Illusions

Students use the structure of a grid to design their own optical illusions.

Amps Featured Activity
Digital Collaboration

Activity 2 Optical Illusions
Prominent mathematician and physicist Roger Penrose, along with many others in the fields of math, science, and art, have long tried to create optical illusions. And now you get to join them! Here are some examples of optical illusions to consider.

1. You will be given materials. Create your own optical illusion to see if you can trick your classmates' eyes! Answers may vary.

1
 Launch

Display the illusions from the Student Edition Ask, "What makes these illusions effective? What math do you see?" Highlight how students can use lines and alternating black-and-white patterns to create illusions. Distribute black markers, pens, and graph paper. Give students 10 minutes to create their illusions and then conduct the Gallery Tour routine.

Monitor
Help students get started by suggesting they recreate one of the examples if they do not have an idea of their own they want to create. You may wish to provide other examples of optical illusions.

Look for points of confusion:

- Not being able to create or recreate an illusion. Have students select one illusion from the Activity 2 PDF and follow the instructions.
- Working without precision or neatness. Ask, "What do you notice about lines and precision in the illusions you have seen so far?" Encourage students to use a straightedge and the structure of the grid to help them create neat lines and patterns.

Look for productive strategies:

- Recreating an illusion from an illustration given, using the structure of the grid and other strategies, with precision.
- Creating their own illusion using strategies or concepts from Units 1 and 2.

Activity 2 continued >

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Consider allowing students to choose one of these options.

- Allow students to select an illusion from the Activity 2 PDF. Encourage students to follow the steps provided as a guide to creating their own illusion.
- Provide a partially-completed illusion to students and have them complete it.
- Students can recreate one of the illusions provided in the activity.
- It is not essential that students draw an illusion during this activity. Allow them to choose to analyze one of the given illusions and record the mathematics they see in the image.

Math Language Development

MLR2: Collect and Display

As students engage in the Gallery Tour, record the mathematical language they use to describe the illusions. Consider annotating the illusions with these math terms and phrases, such as parallel, similar, scale factor, dilation, and center of dilation

Activity 2 Optical Illusions (continued)

Students use the structure of a grid to design their own optical illusions.

3 Connect

Date
Activity 2 Optical Illusions (continued)
2. You will now take part in a Gallery Tour of your peers' work.

Record any notes in the table

What patterns can you see in	What makes optical illusions the artwork?
Sample response: I can see alternating black and white squares.	Sample response: Clear, neat lines and patterns can help make the images come to life. Shading helps create the effect of a three-dimensional image.

3. What connections do you see to topics you have learned about in Units 1 and 2? Optical illusions, such as tessellations, use repeated shapes and essellations, optical illusions typically contain at leastect. Unlike that serves to trick the eye into seeing something different.

Have pairs of students share their observations from the Gallery Tour.

Display examples of the illusions students created.

Ask:

- "As you looked at the illusions that others created, did you get any new ideas about how to make an optical illusion?"
- "What are some mathematical questions that others could ask about your artwork?"
- "If someone else wanted to create an illusion, what advice would you have for them?"

Highlight examples of illusions that were created by students who attended to precision by accurately recreating an illusion from an example. Then highlight illusions that were created by students who used mathematical thinking to create their own illusions.

Differentiated Support

Extension: Math Enrichment, Interdisciplinary Connections

Have students use the internet, or another source, to view images of several of the optical illusions listed here. Alternatively, show these images to students. Let students know many artists, including M.C. Escher, have used similar optical illusions or impossible figures in their artwork. (Art)

- Müller-Lyer
- Penrose Stairs
- Impossible Trident
- Impossible triangle
- Four-sided impossible figure

Featured Mathematician

Sir Roger Penrose

Have students read about featured mathematician Sir Roger Penrose, who co-published with his father a paper about the "impossible triangle," just one of his many contributions to the field of math. He is also well known for his work on physics and consciousness.

Unit Summary

Review and synthesize the patterns and mathematics that are found in optical illusions.

Narrative Connections

Read the narrative aloud as a class or have students read it individually.

C Synthesize

Display the Summary from the Student Edition. Have students read the Summary or have a student volunteer read it aloud.

Ask, "How can optical illusions be used in reallife?" Sample responses: the fashion industry, architecture, advertising, company logos, artistic designs, and artwork.

Have students share what they found most interesting in this lesson and how it connects to the first two geometry units.

Highlight that this is the end of Unit 2. Students will next see how geometry can be used to better help them make key connections in Unit 3, their first unit in Grade 8 on algebraic concepts.

(I) Reflect

After synthesizing the concepts of this unit, allow students a few moments for reflection around the concepts of the unit. To help them engage in meaningful reflection, consider asking:

- "Can you think of any other examples of optical illusions, either in art or in the real world?"
- "How are dilations used in perspective drawings to create the illusion of three-dimensional space?"

Exit Ticket

Students demonstrate their understanding of optical illusions by describing the math they see in a famous illustration.

骨 Printable

Name: \longrightarrow Date:
Exit Ticket G 2.12

Consider the illustration shown here

 known as the Hering Illusion.

1. Are the vertical lines parallel or bending? Construct an argument to justify your response.
Sample response: The lines appear to be bending, but when I use a straight edge, I can see they are each straight and parallel to each other.
2. What math do you see?

Sample response: I see lines that appear to all intersect at one point in the center. The illustration looks like a perspective drawing with the center point farther away than the edges.
The two vertical lines appear to bow out at the center and are intersected by all of the lines that connect to the center.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder ...

- What was especially satisfying about seeing students work with optical illusions?
- Which groups of students did and did not have their ideas seen and heard today?

Success looks like ...

- Language Goal: Identifying patterns in optical illusions. (Speaking and Listening, Writing)
" Explaining the structure of the lines in the Hering Illusion.
- Goal: Creating optical illusions using the structure of a grid.

- Suggested next steps

If students are unable to see any mathematics in the illustration, consider:

- Reviewing examples of mathematics that were discussed in Activities 1 and 2.
- Asking, "What do you see?" instead of "What math do you see?" and helping students describe their thinking by providing them with math vocabulary that can be used to describe what they see.

Name: \longrightarrow Date: \longrightarrow Period:

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	2
Spiral	$\mathbf{2}$	Unit 2 Lesson 9	1
	$\mathbf{3}$	Unit 2 Lesson 11	3

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

UNIT 3

Linear Relationships

Students make connections between the rate of change, slope, and the constant of proportionality, drawing on previous knowledge to explore an exciting new relationship: the linear relationship.

Essential Questions

-What does the slope of a line tell you about the line?

- What can proportional relationships teach you about linear relationships?
- What does it mean for an ordered pair to be a solution to a linear equation?
- (By the way, did a 16-year-old really beat Michael Jordan in a game of one-on-one basketball?)

Key Shifts in Mathematics

Focus

- In this unit...

Students begin by revisiting different representations of proportional relationships. Students make connections between the slope and the constant of proportionality, drawing on previous knowledge to explore a new type of relationship: the linear relationship. They discover some lines are not proportional, but linear, and spend time studying the features of linear relationships. The unit concludes with two lessons that involve graphing equations in two unknowns, and then finding and interpreting their solutions.

Coherence

© Previously...

At the end of the previous unit on dilations, students learned the terms slope and slope triangle, used the similarity of slope triangles on the same line to understand that any two distinct points on a line determine the same slope. Students learned about proportional relationships in Grades 6 and 7. In Grade 7, students were formally introduced to the equation $y=k x$ and developed strategies for identifying and creating representations of proportional relationships in graphs, tables, and equations.

> Coming soon...

In Unit 4, students will continue their study of linear relationships. To start, students will solve linear equations in one variable, building key procedural fluency they will apply to later lessons in the unit. After developing an understanding for solving linear equations in one variable, students will explore systems of linear equations.

Rigor

In this unit, students engage in rich tasks that address one or more of these aspects of rigor. The following are examples of how each pillar is addressed. See each Lesson Brief to learn more about how rigor is balanced throughout the unit.

4.
 Conceptual Understanding

Students build a conceptual understanding of the slope (Lesson 7) and the y-intercept (Lesson 9) of a linear relationship in context. Students develop an understanding for what a solution means by considering solutions to equations and lines while weighing appropriate restrictions for a given context (Lesson 16).

Procedural Fluency

Students practice identifying the unit rate for proportional relationships (Lesson 4). After learning about linear relationships, students practice determining whether a relationship is linear or nonlinear (Lesson 8). Finally, students practice finding the slope of line given two points (Lesson 14).

$\because " \pi$
 Application

Students use their knowledge of proportional relationships to create a display for different models of electronic racing toys using different representations (Lesson 6). Later, students use their algebraic understanding to write the equation of a line using two points (Lesson 14).

A Straight Change

SUB-UNIT
 1

Lessons 2-6

Proportional Relationships

Students activate their prior understanding of ratios and proportional relationships to make connections between a proportional relationship and its unit rate. They discover that the slope of the line representing a proportional relationship has the same value as its unit rate and use similar triangles to determine the slope.

Narrative: Running at a constant rate results in a special kind of relationship between distance and time.

SUB-UNIT

2Lessons 7-15

Linear Relationships

Students determine the height of their teacher - you as measured in cups. This begins their exploration of nonproportional linear relationships and how they can be represented in graphs, tables, equations, and verbal descriptions.
Narrative: The thrill of a roller coaster ride is all about the slope between two points.

Visual Patterns

Students explore patterns with shapes and numbers to bridge the geometric thinking they used in Units 1 and 2 with the algebraic thinking they will use in Unit 3 and beyond.

SUB-UNIT

Linear Equations

Students explore what it means for an ordered pair to be a solution to a problem involving a linear relationship. They use graphs, tables, and equations to justify their thinking.

Narrative: Linear equations can help you sink the winning basket.

Rogue Planes

Students discover that the coordinate plane has gone rogue as they match equations with lines on rotated planes.

Capstone

Unit at a Glance

Spoiler Alert: A solution to a linear relationship is an ordered pair, (x, y), that makes the equation true and whose point can also be found on the line of the equation, with coordinates (x, y).

Assessment

Launch Lesson

1 Visual Patterns
Examine visual patterns, and draw conclusions about how the patterns grow.

Sub-Unit 1: Proportional Relationships

2 Proportional Relationships
Make connections about the slope of a line and the constant of proportionality by measuring and representing heart rate data.

3 Understanding Proportional Relationships -
Build fluency skills by graphing proportional relationships from animations and verbal descriptions.

Linear Relationships

8

Comparing

 RelationshipsJustify whether the values in a given table could or could not represent a linear relationship.

10 Representations of Linear Relationships

Create an equation that represents a linear relationship in context.

11 Writing Equations for Lines Using Two Points

Use two points to find the slope and write the equation of a line.

Linear Equations

Solutions to Linear

 EquationsFind solutions to equations that are of the form $A x+B y=C$.

9 More Linear Relationships

Identify and interpret the positive vertical intercept and slope of the graph of a linear relationship

Capstone Lesson

$$
\begin{gathered}
y=A x+B \\
\text { or } \\
C x+D y=E
\end{gathered}
$$

17 More Solutions to Linear Equations

Study of the relationship between a linear equation in two variables, its solution set, and its graph.

18 Coordinating Linear Relationships
Discover that the equations $A x+B y=C$ and $y=m x+b$ can both be used to represent the same situation.

19 Rogue Planes.
Something weird is happening with the coordinate planes in this lesson. Match lines to equations using these rogue planes.

Key Concepts

Lesson 2: The slope of the line of a proportional relationship is the constant of proportionality.
Lesson 7: Linear relationships have a constant rate of change and an initial value.
Lesson 16: A solution to a linear equation is any ordered pair that makes the equation true and whose point lies on the line of the graphed equation.

Pacing

19 Lessons: 45 min each
Full Unit: 21 days
2 Assessments: 45 min each - Modified Unit: 18 days
Assumes 45-minute class periods per day. For block scheduling or other durations, adjust the number of days accordingly.

Sub-Unit 2:

4

Graphs of Proportional

 RelationshipsExamine and compare proportional relationships with and without scaled axes.

5 Representing Proportional Relationships
Create an equation and a graph to represent proportional relationships, including an appropriate scale and axes.

6
Comparing Proportional Relationships

Present a comparison of two proportional relationships using multiple other representations.

7 Introducing Linear

 RelationshipsLearn about linear relationships with stacked cups.

Sub-Unit 3:

12 Translating to
$y=m x+b$
Translate lines and see what happens to the equations of the lines.

13 Slopes Don't Have to Be Positive

Explore lines with a negative slope.
$15(2)=30$
$15(0.2)=3$

14 Writing Equations for Lines Using Any Two Points, Revisited

Write equations, but this time with negative slopes.

15 Equations for All Kinds

 of LinesWrite equations for vertical and horizontal lines.

Assessment

- Modifications to Pacing

Lessons 2-3: These lessons address the same standard and can be combined if students have a strong understanding of proportional relationships from Grade 7

Lesson 6: The final lesson in the sub-unit, Lesson 6 can be omitted if students have demonstrated sufficient mastery of proportional relationships.
Lesson 19: This lesson presents an engaging way for students to practice coordinating lines and equations, but can be omitted, if needed as its mathematical content is not required for students to learn.

Unit Supports

Math Language Development	
Lesson	New vocabulary
7	initial value linear relationship rate of change
vertical intercept	
9	y-intercept

Materials

Every lesson includes:

Exit Ticket	(1) Additional Practice
Lesson(s)	Additional required materials
5, 8, 11, 18	calculators
1,15	colored pencils
19	geometry toolkits
5	graph paper
6	graph paper markers poster paper sticky notes
$\begin{aligned} & 1,2,4-10, \\ & 12-15,17,18 \end{aligned}$	PDFs are required for these lessons. Refer to each lesson to see which activities require PDFs.
2-8, 10-16, 18	rulers
17	plain sheets of paper
7	stackable cups
10	marbles $\quad 100 \mathrm{ml}$ graduated cylinders

Instructional Routines

Activities throughout this unit include these instructional routines:

Lesson(s)	Instructional Routines
$4,8,9,12$	Card Sort
6	Gallery Tour
$5,13,18$	Info Gap
6	Number Talk
10	Poll the Class
$8,14,15$	Think-Pair-Share
$2,3,5,13,15,16,19$	Two Truths and a Lie
14	Which One Doesn't Belong
1,15	Would You Rather?
4,9	

Unit Assessments

Each unit includes diagnostic, formative, and summative assessment opportunities to gauge student understanding of the concepts and skills taught in the unit. All assessments are available in print and digital formats.

Assessments

Pre-Unit Readiness Assessment

This diagnostic assessment evaluates students' proficiency with prerequisite concepts and skills they need to feel successful in this unit.

Exit Tickets

Each lesson includes formative assessments to evaluate students' proficiency with the concepts and skills they learned.

End-of-Unit Assessment

This summative assessment allows students to demonstrate their mastery of the concepts and skills they learned in the lessons preceding this assessment. Additionally, this unit's Performance Task is available in the Assessment Guide.

When to Administer

Prior to Lesson 1

End of each lesson

After Lesson 19
powered by desmos

Featured Activity

Rising Water Levels

Put on your student hat and work through Lesson 10, Activity 1 :

Points to Ponder .. .

- What was it like to engage in this activity as a learner?
- How might you pace your students through this activity?
- What best practices might you employ for integrating technology in your classroom?

Other Featured Activities:

- Rogue Planes (Lesson 19)
- Traveling Bugs (Lesson 3)
- Coin Collector (Lesson 14)
- Card Sort: Slopes, Vertical Intercepts, and Graphs (Lesson 9)

Social \& Collaborative Digital Moments

Unit Study
 Professional Learning

This unit study is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can engage in a meaningful professional learning experience to deepen your own understanding of this unit and employ effective pedagogical practices to support your students.

Anticipating the Student Experience With Fawn Nguyen

Sub-Unit 2, introduces students to representing linear relationships. They begin to explore nonproportional linear relationships where the graphs do not pass through the origin. Students interpret the meaning of the y-intercept and the slope of the line in various real-world contexts. They learn to graph and write equations in slope intercept form, $y=m x+b$, from two given points. Equip yourself to support your students with this concept by engaging in a brief problem-solving exercise to deepen your own learning.

Do the Math

Put on your student hat and tackle these problems from Lesson 14, Activity 2 :

The Coin Collector arcade game at Honest Carl's Funtime World requires a player to control a character that moves along a straight line to collect coins.
The fewer lines a player uses, the more points they earn.
For each graph shown, draw lines to collect coins. Label each line with a number ($1,2,3$, etc.), and then write the equation for each line.

Note: You may not need to use all of the space provided for the equations. Additionally. you may add more equations, as needed.

Round 1:

Equations:
Line 1:
Line 2:
Line 3:
Line 4:

Put your teacher hat back on to share your work with one or more colleagues and discuss your approaches.

Points to Ponder ...

-What was it like to engage in this problem as a learner?

- In this task, students are most likely writing the equations in slope-intercept form, $y=m x+b$. They will learn the standard form of $A x+B y=C$ later in the unit. How do you support students' learning of the different forms?
- What implications might this have for your teaching in this unit?

Focus on Instructional Routines

Which One Doesn't Belong?

Rehearse...

How you'll facilitate the Which One Doesn't Belong? instructional routine in Lesson 15, Warm-up:

Study the four lines shown. Which line does not belong? Explain your thinking.

Points to Ponder .. .

- The discussion works best when students select a variety of answer choices. Which answer choice do you think students will most likely choose? How can you encourage a range of answer choices while you monitor?

This routine . . .

- Fosters a need to define terms carefully and use words precisely.
- Highlights similarities and differences in mathematical concepts.
- Can be done individually or collaboratively.
- Provides a low-floor entry point where all possible answer choices can be validated.

Anticipate...

- How will you sequence student responses in your class discussion?
- How can you frame the routine so that students know this is different from a multiple choice problem with one "correct" answer?
- If you haven't used this routine before, what classroom management strategies might you need to put in place to help it run smoothly?
- If you have used this routine before, what went well? What would you want to refine?

Strengthening Your Effective Teaching Practices

Support productive struggle in learning mathematics.

This effective teaching practice . . .

- Provides students with the opportunity to wrestle with mathematical concepts and relationships before you intervene, which builds student confidence and perseverance.
- Allows you greater opportunities to monitor student progress, probe for student understanding, and offer differentiation support.

Math Language Development

MLR8: Discussion Supports

MLR8 appears in Lessons 4, 6-9, 11, 12, 17.

- Throughout the unit, sentence frames are provided for you to display to your students. Students can use these prompts to help frame their responses and add structure and organization to their thinking.
- In Lesson 11, further probing questions are provided so that you can ask your students for further clarification or to press for details in their reasoning
- English Learners: Provide students the opportunity to rehearse what they will say with a partner before they share with the whole class.

Point to Ponder ...

- During class discussions in this unit, how will you know when to press for details or probe further to assess for understanding? What clues will you look for from your students' responses?
- How will you decide when to display or provide sentence frames to help students by providing a structure for their responses?

Unit Assessments

Use the results of the Pre-Unit Readiness Assessment to understand your students' prior knowledge and determine their prerequisite skills.

Look Ahead . .

- Review and unpack the End-of-Unit Assessment, noting the concepts and skills assessed.
- With your student hat on, complete each problem

O. Points to Ponder ...

-What concepts or skills in this unit might need more emphasis?

- Where might your students need additional scaffolding and support?
- How might you support your students with solving one-step equations with a variable throughout the unit? Do you think your students will generally:
» Have difficulty calculating slope from a line? From two points?
» Struggle to write an equation from a context?
» Find one representation of linear relationships more challenging than the other?
» Have trouble with graphing, labeling axes, and using appropriate scales?

Points to Ponder ...

- How comfortable are you with allowing students the time to wrestle with mathematical ideas, before you intervene?
- When is the right moment to intervene? What can you look for as you monitor student work and student conversations to know when they are engaging in productive struggle or unproductive struggle?

Differentiated Support

Accessibility: Guide Processing and Visualization, Optimize Access to Technology

Opportunities to provide visual support, guide student processing or provide the use of technology appear in Lessons 1-19.

- Throughout the unit, consider providing pre-completed graphs so that students can focus on analyzing the relationships, without having to construct the graphs themselves.
- Display or provide copies of the Anchor Chart PDFs, Representations of Linear Relationships and Slope (from Unit 2) for students to reference throughout the unit.
- Use color coding and annotations to highlight how the slope and vertical intercept appear in a verbal description, graph, table of values, and equation.
- In Lesson 10, use the Amps slides for Activity 1, in which students can see the rising water levels as marbles are added to a virtual cylinder.

Point to Ponder ..

- As you preview or teach the unit, how will you decide when to provide a pre-completed graph or suggest students create a table to help illustrate the relationship between quantities?

Building Math Identity and Community

Throughout this unit, each lesson includes opportunities to support your students' capacity to build strong mathematical habits of mind.

In this unit, pay particular attention to supporting students in building their self-awareness and self-management skills.

Points to Ponder . . .

- What are their strengths and what do they know about numerical reasoning that they can build upon and use to begin reasoning algebraically?
- Are students able to exercise patience and persist in order to understand the underlying conceptual structure of onevariable equations, rather than asking for or jumping to a procedural shortcut?

Visual Patterns

Let's explore patterns in shapes and numbers.

Focus

Goal

1. Language Goal: Write an algebraic expression to describe a visual pattern. (Writing)

Rigor

- Students examine visual patterns to build conceptual understanding of how to write expressions to describe change.

Coherence

- Today

Students examine visual patterns, and draw conclusions about how the patterns grow. Students write expressions that describe patterns, and make conclusions about what each term of an expression represents.

< Previously

In Grade 7, students examined equivalent expressions, proportional and nonproportional linear relationships, and pattern growth.

Coming Soon

Students begin this unit by deepening their knowledge of proportional relationships. In Lesson 2, they will make connections about the constant of proportionality and the slope of a line. In Lesson 7, students will discover a relationship that is not proportional, but linear. In Lessons 8-19, students will continue studying linear relationships, proportional or nonproportional, and explore what it means to be a solution to an equation. By the end of the unit, students will be able to represent real-world linear relationships using equations, tables, and graphs.

Warm-up

Activity 1

Activity 2

Summary

Exit Ticket
\bigcirc Independent

Amps powered by desmos Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 1 PDF (for display)
- Activity 2 PDF, one set per group
- colored pencils (optional)

Math Language Development

Review words

- nonproportional relationship
- proportional relationship

Building Math Identity and Community
 Connecting to Mathematical Practices

At first, students may not immediately be able to identify an expression to model the visual pattern and might want to quit before really getting started in either Activity. Encourage students to set a goal of identifying what they do know about the pattern and build on that goal by using what they know to determine the expression. Students can repeat this process until they have solved the problem. By looking only one step ahead, a task can seem much more manageable.

Amps : Featured Activity

Activity 1
 See Student Thinking

Students are asked to explain their thinking as they describe and extend visual patterns, and these explanations are available to you digitally, in real time.

Amps
desmos

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 1, have students work in pairs on their patterns.

Warm-up Which One Doesn't Belong?

Students analyze patterns to prepare for examining pattern growth in the upcoming activities.

1 Launch

Conduct the Which One Doesn't Belong? routine

Monitor

Help students get started by asking, "What feature do three of the patterns share, but one does not?"

Look for points of confusion:

- Thinking that there can only be one explanation for why a pattern does not belong. During the Connect, have these students record different explanations from classmates to support their choice.

Look for productive strategies:

- Finding multiple pieces of evidence to support their choice
- Finding evidence for more than one choice.
(3) Connect

Have individual students share their evidence for which pattern does not belong. Select students who can provide a different explanation for the same answer choice. Consider finishing the discussion on pattern D , and ask whether students have seen a pattern like this before.
Highlight that each pattern has multiple steps, with the number of blocks increasing in every step. In particular, highlight that pattern D is the only pattern showing the same increase for each step.

Ask, "How can you track the changes from one step to the next in a pattern?"

Math Language Development

MLR2: Collect and Display

During the Connect, collect informal language students to describe which pattern doesn't belong and add this language to a class display. Highlight words, such as change, growth, and rate. Continue adding to the display during Activity 1.

English Learners

Emphasize that patterns can be seen within each representation and they can be seen across representations. For example, students might describe Pattern A's growth from one step to the next, but they can also describe how Patterns B, C, D all begin with 1 square.

Activity 1 What Comes Next?

Students draw subsequent figures in a visual pattern to see how it changes, and then write an equation to describe the nth figure of the pattern.

1 Launch

Display the pattern from the Student Edition. Have students complete Problems 1 and 2 individually. Then have them share their responses with a partner before completing Problems 3-5.

2 Monitor

Help students get started by asking them to locate the shape of Figure 1 in Figure 2, and the shape of Figure 2 in Figure 3.

Look for points of confusion:

- Thinking that they must draw every square for Figure 10. Let students know that a "sketch" is a rough drawing and does not need to be accurate.
- Interpreting the three additional squares in every figure as addition in their expression for Problem 5. Ask, "Which operation describes repeated addition? How can you represent that in the expression?"
- Struggling to write an expression for Problem 5. Remove 2 squares from each figure of the pattern, and ask students to write the expression for this updated pattern. Then ask them to modify their expression to match the original pattern.

Look for productive strategies:

- Completing the table by adding 3 to the number of squares for each successive figure, instead of counting every square in the figure.

Activity 1 continued $>$

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Change Figure 10 to Figure 6 in Problem 2 and omit Figure 26 from the table in Problem 4.

Accessibility: Guide Processing and Visualization

Suggest students analyze each column in each figure and describe how it changes or grows. Consider demonstrating how to highlight or circle each column to help students visualize each column.

Extension: Math Enrichment

Ask students to explain how each term of the expression $3 n+2$ relates to the pattern of figures. Ask:

- "Where do you see 2 in the pattern? $3 n$?" There are 2 squares on the left and right sides of the columns. Figure n has n columns with 3 squares in each column.
- "If the expression $4 n+4$ represents a similar pattern of figures, what might each figure look like? How might the pattern grow?" Sample response Figure n would consist of n columns with 4 squares in each column and with 2 squares on either side of the columns for a total of 4 squares on the sides.

Activity 1 What Comes Next? (continued)

Students draw subsequent figures in a visual pattern to see how it changes, and then write an equation to describe the nth figure of the pattern.

(3) Connect

Have individual students share their sketches for Figures 4 and 10, and their descriptions of how the pattern grows.

Ask, "What is changing as the pattern grows from one figure to the next?" The total number of squares is increasing by 3 every time. Then display the Activity 1 PDF.

Highlight that their expressions from Problem 5 should correctly predict the number of squares in a given figure. Ask students to use their expression to verify the last column in the table.

Activity 2 Sketchy Patterns

Students explore new patterns and make comparisons to identify proportional and nonproportional relationships.

1 Launch

Group students by four, and distribute one pattern from the Activity 2 PDF to each member.

Monitor

Help students get started by having them look back at Activity 1. Ask, "Are there any parts of your pattern that stay the same? Can you describe what changes from one figure to the next?"
Look for points of confusion:

- Thinking that there is only one expression to describe the way the pattern is growing. Encourage students to color-code their expressions and patterns.

Look for productive strategies:

- Recognizing whether a pattern is proportional or nonproportional.
- Rewriting expressions in equivalent forms, and identifying how each term can be seen in the pattern.

3 Connect

Display each pattern and ask students to suggest expressions to represent the pattern, emphasizing equivalent expressions as they are shared. In each case, finish the discussion with the expression that resembles $m x+b$.
Have groups of students share their observations from comparing each pattern.

Ask, "What is the same for these patterns? What is different?" In every pattern, each figure adds the same number, but they have different "starting points." Note: The term initial value will be defined later in this unit.

Highlight that only Pattern B can be written with one term that is the product of a coefficient and a variable. Remind students that this is a proportional relationship.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Instead of giving one pattern from the Activity 2 PDF to each group member, assign each group one pattern. After group members have analyzed their pattern and before the Connect, have them share their patterns with another group and explain how they determined the pattern and wrote the expression.

Extension: Math Enrichment

Have students write an equation in two variables that represents each pattern. Students should define their variables and graph each equation, including labeling and scaling their axes. An example equation for Pattern A is $s=2 n+6$, where s represents the total number of squares and n represents the figure number.

Math Language Development

MLR7: Compare and Connect

During the Connect, as students respond to the Ask question, highlight the language students use to describe the similarities and differences among the four patterns. For example, they may use the term "starting point" or "constant" to describe the initial value in each pattern, which is also the constant in the expression. Draw connections between the starting point and the constant term in the expression as well as between the value that is added each time and the coefficient of n in the expression.

English Learners

Annotate the table and the expression with the starting point and the value that is added each time.

Summary A Straight Change

Review and synthesize how visual patterns grow and change.

Narrative Connections

Read the narrative aloud as a class or have students read it individually.

C. Synthesize

Display the Summary from the Student Edition. Have students read the Summary or have a student volunteer read it aloud.
Ask, "How did you describe patterns in today's lesson?" Sample response: We made tables and wrote expressions.
Highlight that students will continue to examine relationships and explore how patterns change in this unit.

(1) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. To help them engage in meaningful reflection, consider asking:

- "What strategies or tools did you find helpful today when writing expressions to describe how patterns change? How were they helpful?"
- "Were any strategies or tools not helpful? Why?"

Exit Ticket

Students demonstrate their understanding by writing an expression from a pattern.

Success looks like ...

- Language Goal: Writing an algebraic expression to describe a visual pattern. (Writing)
» Writing an algebraic expression for the number of squares in Figure n.

- Suggested next steps

If students struggle to come up with an expression, consider:

- Asking, "What would Figure 4 of this pattern look like? What would Figure n of this pattern look like?"
- Assigning Practice Problem 1.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O_{0} Points to Ponder ...

- What worked and did not work today? Which students' ideas were you able to highlight during Activity 2?
- The instructional goal for this lesson was for students to write expressions to describe visual patterns. How well did students accomplish this? What did you specifically do to help students accomplish it? What might you change for the next time you teach this lesson?

1. Kiran is describing a pattern. He says, "In Figure 1 , there are 8 circles. In Figure 2 , there are 11 circles. In Figure 3, there are 14 circles.
a Draw what Figures 1,2 , and 3 could look like. Sample responses

b Write an expression that represents the number of circles in Figure n. Sample response: $3 n+5$
2. Design your own pattern of objects in which the number of objects in Figure n can be represented by the expression $2 n+4$. Draw Figures 1-3. Sample response:

> 3. For each row, decide whether the expression in Column A is equivalent to the expression in Column B. If they are not equivalent, change the expression in Column B so that it is equivalent to the expression in Column A .

U' Name: \square Date: \square Period:
4. Of the three lines shown, one has a slope of 1 , one has a slope of $\frac{2}{3}$,
and one has a slope of $\frac{3}{2}$. Label each line with its correct slope.

5. Determine the slope of the line shown. Show or explain your thinking

${ }^{1}$; Sample response: I drew a slope triangle on the line. The vertical side length is 1 unit and the horizontal side length is 4 units so the slope is $\frac{1}{4}$

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	2
Spiral	$\mathbf{2}$	Activity 2	2
Formative $\mathbf{0}$	$\mathbf{5}$	Grade 7	2
4nit 2	Lesson 11 Unit 3 Lesson 2	2	

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Proportional Relationships

In this Sub-Unit, students make connections between a proportional relationship and the slope of its line, its unit rate, and similar triangles that can be used to determine the slope.

45

Narrative Connections

Read the narrative aloud as a class or have students read it individually. Students continue to explore real-world applications of proportional relationships in the following places:

- Lesson 2, Activities 1-3:

Graphing Heart Rates, The Equation of a Line, Scale Factor

- Lesson 3, Activities 1-2: Moving Through Representations; Twice as Fast, Twice as Slow
- Lesson 4, Activity 1 :

Calculating the Rate

- Lesson 5, Activities 1-2:

Representations of Proportional Relationships, Info Gap: Proportional Relationship

- Lesson 6, Activity 1: Gallery Tour

Proportional Relationships

Let's explore the connection between points that lie on the line of a proportional relationship and the slope of the line.

Focus

Goals

1. Create an equation relating the quotient of the vertical and horizontal side lengths of a slope triangle to the slope of a line.
2. Comprehend that for the equation of a proportional relationship given by $y=k x, k$ represents the unit rate.
3. Language Goal: Justify whether a point is on the line of a proportional relationship by determining whether the ratio of the vertical distance to the horizontal distance (from the origin to the point) equals the slope of the line. (Speaking and Listening)

Coherence

- Today

Students examine how their heart rate can be represented as a proportional relationship in a table and on a graph. When graphed, students make connections about the slope of the line and the constant of proportionality. They justify whether a point is on the line and what it means in context.

$<$ Previously

In Unit 2, students were introduced to the slope of a line. In Grade 7, students learned about proportional relationships and the constant of proportionality.

> Coming Soon

Students will continue studying proportional relationships through the first part of this unit, before learning about linear relationships in Lesson 7.

Rigor

- Students build conceptual understanding of proportional relationships by exploring how their heart rates can be represented in a table and on a graph.

Warm-up

Activity 3

Summary

Exit Ticket

(1) 5 min	($)^{10} \mathrm{~min}$	(1) 10 min	() 10 min	(1) 5 min	(1) 5 min
\bigcirc ○ Independent	กำ Pairs	กำ Pairs	\bigcirc ○ Independent	กำำก Whole Class	\bigcirc ○ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice

 \bigcirc Independent
Materials

- Exit Ticket
- Additional Practice
- Anchor Chart, Slope (from Unit 2)
- rulers

Math Language Development

Review words

- constant of proportionality
- proportional relationship
- slope
- unit rate

Amps ! Featured Activity

Activity 1
 Interactive Graph

Students plot points and connect them with a line on an interactive graph.

Amps
 desmos

Building Math Identity and Community
 Connecting to Mathematical Practices

When graphing their heart rates in Activity 1, students might find themselves at a roadblock, where the data does not fit the graph, and start to doubt themselves. Ask students how they can change the precision of the graph to accommodate all of the data, still representing it accurately. By solving the problem themselves with skills or knowledge that they already have, students will gain self-confidence.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 1, Problem 2 may be omitted.
- In Activity 2, Problem 1 may be discussed briefly in the launch before focusing on Problems 2-4.
- In Activity 3, consider doing only one problem.

Warm-up Heart Rate

Students find their pulse to explore the relationship between time and heart rate.

Unit 3 | Lesson 2

Proportional Relationships

Let's explore the connection between points that lie on the line of a proportional relationship and the slope of the line.

Warm-up Heart Rate

1. Find your pulse. Count the number of heartbeats in 20 seconds and complete the first row in the table.
Sample response shown.
2. Assume the number of heartbeats per second remains constant. Based on your response to Problem 1, predict the number of heartbeats you will have in 1 minute.
Sample response: The constant of proportionality is $\frac{3}{2}$ because $20 \times \frac{3}{2}=30$. This means that I can multiply 60 by $\frac{3}{2}$ to obtain 90 . So, I predict I will have 90 heartbeats in 1 minute.

 -

-

1 Launch

Activate prior knowledge by asking students what they know about heart rates and if they know how to locate their pulse. Have students share how to find their pulse, assist where needed, and make sure everyone is ready before starting the timer. Ask students how they think their heart rate might change after running a race. Then display a timer for 20 seconds to begin the activity. Note: Provide access to rulers throughout the duration of this lesson.

(2)
 Monitor

Help students get started by showing them multiple ways of finding their pulse.

Look for points of confusion:

- Not being able to find their heart rate in beats per minute. Ask how many seconds are in 1 minute, and prompt students to think about how they can use ratios to find the number of heartbeats.
- Incorrectly counting the number of heartbeats in 20 seconds. Ask students to count aloud for you or a partner, and consider modeling how to count heartbeats. Provide a range for expected heartbeats, anywhere from 10 to 40 . Then run the timer a second time.

3 Connect

Ask, "How did you find your heart rate in beats per minute, as it is typically measured? How could you find your heart rate in beats per second?"
Highlight strategies using ratios or extending the table to find a heart rate out of 60 seconds.

Have students share if they think the heart rate represents a proportional relationship without revealing the answer. Use student answers discussing graphs to transition to Activity 1.

(7)

Power-up

To power up students' ability to determine the slope of a line, have students complete:

Recall that in order to determine the slope of a line you can draw a slope triangle then calculate the ratio of its vertical side length to its horizontal side length.

1. Draw a slope triangle for the line shown. Sample response shown.
2. Use your slope triangle to determine the slope of the line. $\frac{2}{3}$ or equivalent

Use: Before Activity 1
Informed by: Performance on Lesson 1, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 4

Activity 1 Graphing Heart Rates

Students graph their heart rate data to see that the slope of the line is the same as the constant of proportionality and that the slope can be used to describe their heart rate.

Amps Featured Activity
Interactive Graph

Name: \qquad
Activity 1 Graphing Heart Rates

When you are at rest, your heart pumps the least amount of blood you need because you are not moving or exercising. Your resting heart rate is normally between 60 (beats per minute) and $\mathbf{1 0 0}$ (beats per minute). Doctors care about heart rates because they can be indicators of good health.

1. Use your results from the Warm-up to graph the number of heartbeats you counted in 20 seconds and your prediction for the number of heartbeats in 60 seconds. Be sure to create a scale for your graph. Sample response shown.

2. Draw a line connecting your two points. What is the slope of this line? What does it represent within the context of the scenario?
Sample response: I can draw a slope triangle with a vertical distance of 30 and a horizontal distance of 20 . The slope of the line is $\frac{30}{20}=\frac{3}{2}$, or 1.5 . It means my heart beats 1.5 times per second.
3. Plot an additional point on the line and label the coordinates of the point on the graph. What does this point represent within the context of the scenario? Sample response: I plotted the point $(40,60)$. The point $(40,60)$ means that at 40 seconds, I would count 60 heartbeats.

1 Launch

Preview Problem 2, and ask students to recall the definition of slope and strategies for finding the slope of a line.

2 Monitor

Help students get started by helping them create a scale.
Look for points of confusion:

- Creating an inaccurate scale. Explain why the scale does not work and help students find an appropriate scale.
- Not being able to find the slope. Show students how to draw slope triangles, and ask them to restate the definition of slope. Point students to the Unit 2 Anchor Chart PDF, Slope.
- Confusing x and y in Problem 3. Ask students to match the variables with the axes labels. Remind students that coordinates of points are written as (x, y).
Look for productive strategies:
- Drawing slope triangles.

3 Connect

Display student graphs with varying slopes.
Have students share how they found the slope and their responses for Problem 2.

Ask:

- "How is the slope of the line related to the constant of proportionality or unit rate?
- "Looking at the graph, how can you tell this relationship is proportional?"
- "Can you use time in minutes as the label on the x-axis? Would that change the slope?" Yes, the slope would show beats per minute and would have a different value.
Highlight that the slope of the line represents the number of beats per second, which is the same as the constant of proportionality (or unit rate) for proportional relationships.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge,

 Guide Processing and VisualizationProvide a graph with the scale and axes already labeled. Consider previewing Problem 2 with students to review the meaning of the slope of a line and slope triangles. Display the slope formula.

Math Language Development

MLR2: Collect and Display

During the Connect, as students respond to the Ask questions, highlight the mathematical language students use, such as proportional, constant of proportionality, and slope. Add these words and phrases to a class display and encourage students to refer to the display during future discussions in this unit.

English Learners

Add visual examples of each word to the class display.

Activity 2 The Equation of the Line

Students examine a graph showing heartbeats per second to come up with a rule for finding other points on the line.

Activity 2 The Equation of a Line

Kiran is training to swim in the 100-meter freestyle race. He measures his heart rate after he swims one length of the pool. He plots the point B as shown on the graph and draws line j to connect points B and the origin.

1. What are the coordinates of point B ? What do they represent in context? $B(3,5)$; At 3 seconds, Kiran's heart had beat 5 times.
2. Is the point $(9,16)$ on the line? Explain your thinking. No; Sample response: The ratio of the vertical distance to the horizontal distance is not the same as the slope of the line, $\frac{16}{9}$ does not equal $\frac{5}{3}$.
3. Is the point $(15,25)$ on the line? Explain your thinking. Yes; Sample response: The ratio of the vertical distance to the horizontal distance is the same as the slope of the line; $\frac{25}{15}=\frac{5}{3}$
4. Suppose you know the x - and y-coordinates of a point. Write an equation that could be used to confirm the point is on line j. Sample response: $\frac{y}{x}=\frac{5}{3}$

(1) Launch

Conduct the Think-Pair-Share routine.

Help students get started by asking them what they notice about the labels of the axes so they can describe the point in context.

Look for points of confusion:

- Questioning whether a point is on the line in Problems 2 and 3 . Place a point on the line, draw a slope triangle, and ask students if they see a connection between the side lengths and the coordinates of the point.
- Not being able to write an equation in Problem 4. Ask students how they found the slope, and then ask, "What must be true of any two points on this line when dividing the values of y and x ?"

3 Connect
Display the Activity 2 graph.
Have students share their responses to Problems 1-3. Then discuss Problem 4 gradually moving to more abstract thinking:

- Explaining division of the value of y by the value of x.
- Describing a ratio of $y: x$ being equal to $5: 3$ because they represent corresponding side lengths of similar triangles.
- The equation $\frac{y}{x}=\frac{5}{3}$ or $y=\frac{5}{3} x$.

Ask:

- "How does dividing $\frac{y}{x}$ determine the slope?"
- "Why will any point on the line with coordinates (x, y) satisfy the equation $\frac{y}{x}=\frac{5}{3}$?"
- "How can you use the equation to find the number of Kiran's heartbeats in 23 seconds?"
Highlight that the slope is the same as the constant of proportionality (or unit rate) for proportional relationships.

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can build upon their work from Activity 1 by using the heart rate from Activity 1 in this activity.

Math Language Development

MLR1: Stronger and Clearer Each Time

Use this routine to support students in their written explanations for Problems 2 and 3. Provide students time to decide whether each of the two points lie on the line. Have them write $1-2$ sentences explaining their thinking. Have students share their explanations with 2-3 partners to receive feedback. After receiving feedback, give students time to improve their response.

English Learners

Highlight 1-2 ideas that would make a good explanation or justification. This will help support students in building metalinguistic awareness as they make sense of their written work.

Activity 3 Scale Factor

Students study two graphs with different scales to better understand the definition of slope.

1 Launch

Set a time expectation for students to work independently on the activity.

2 Monitor

Help students get started by asking what they notice about the scales on each axis.

Look for points of confusion:

- Counting vertical and horizontal grid units without referencing the scales. Prompt students to identify the horizontal distance and vertical distance of their triangles by looking at the scale.
- Thinking the slopes are the same because the lines look the same. Help ensure students can find the numeric value of each slope, and ask them why the slopes appear the same, even though they can see their values are different.

Look for productive strategies:

- Labeling slope triangles with horizontal and vertical distances, based on the scale of the axes.

3 Connect

Display student work showing slope triangles correctly labeled with horizontal and vertical distances.
Have students share how they found the slope and equation of each line.

Ask:

- "These lines appear to have the same steepness but do they have the same slope?"
- "Which swimmer has a faster heart rate? Explain your thinking."
- "Why might you have different scales on each axis?"

Highlight that students must keep the scale on each axis in mind when finding the slope. The slope is the vertical change divided by the horizontal change, using the distances given by the scales on each axis.

Differentiated Support

Accessibility: Guide Processing and Visualization

Have students annotate the horizontal and vertical axis in each graph to help them pay attention to how the scales on the axes vary. Display the slope formula for students to reference in this activity and the general form of the equation for the line of a proportional relationship, $y=k x$, where k represents the constant of proportionality. Consider displaying the following statement: For a proportional relationship, the slope has the same value as the constant of proportionality.

Extension: Math Enrichment

Ask students to sketch the graph of Jada's heart rate data from Problem 1 on the same coordinate plane as Tyler's heart rate data in Problem 2. Have them explain how they determined how to graph the line representing Jada's heart rate. Then ask them to compare the two graphs. Sample response: I plotted the point $(10,20)$ representing Jada's heart rate data on the graph in Problem 2. Jada's line lies slightly above Tyler's line, which means she had a greater heart rate.

Summary

Review and synthesize the relationship between points that lie on the line of a proportional relationship and the slope of the line.

Summary

In today's lesson.

You found your resting heart rate. You collected your heart rate data in a table, and then represented it on the coordinate plane. The relationship between time and heartbeats was proportional and could be represented by a graph with the equation $y=k x$ where k is the constant of proportionality. For proportiona relationships, the slope of the line that represents the relationship has the same value as the constant of proportionality. This value is also the unit rate.

Consider the line shown

- The slope of the line shown is 2 . For point C, the ratio of the vertical distance, 2, to the horizontal distance, 1 , is equal to $2: 1$, or 2 .
The constant of proportionality is 2 and is represented in the equation $y=2 x$. The equation tells you the y-values are always twice the x-values,
The unit rate is 2 because the point $(1,2)$ lies on the graph of the line.

Reflect:

Synthesize

Display the Summary from the Student Edition.
Have students share one point that is on the line and one point that is not on the line and ask how they know whether each point is on the line.

Highlight that students can use the graph or the equation to determine that a point is on the line.

Ask:

- "How do you know that the equation $y=2 x$ represents a proportional relationship?" Sample response: The equation is in the form $y=k x$, where k is the constant of proportionality. In this case, $k=2$.
-"What does the value 2 represent in the equation?" Sample response: k is the constant of proportionality

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What does the slope of a line tell you about the line?".

Exit Ticket

Students demonstrate their understanding by finding the slope of a line that represents a proportional relationship and writing an equation to represent the line.

Success looks like ...

- Goal: Creating an equation relating the quotient of the vertical and horizontal side lengths of a slope triangle to the slope of a line.
- Goal: Comprehending that for the equation of a proportional relationship given by $y=k x, k$ represents the unit rate.
- Language Goal: Justifying whether a point is on the line of a proportional relationship by determining whether the ratio of the vertical distance to the horizontal distance (from the origin to the point) equals the slope of the line. (Speaking and Listening)

- Suggested next steps

If students are unable to correctly scale or label their graph, consider:

- Reviewing the graph from Activity 2.

If students are unable to find the slope

 of the line, consider:- Reviewing how to use slope triangles to find the slope from Activity 1.
- Assigning Practice Problem 1.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder ...

- Knowing where students need to be by the end of this unit, how did relating slope to the constant of proportionality (or unit rate) influence that future goal?
- Which groups of students did and did not have their ideas seen and heard today?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	2
Spiral	$\mathbf{2}$	Activity 2	2
Formative \mathbf{O}	$\mathbf{5}$	Grade 7	1

(6) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Understanding Proportional Relationships

Let's study some graphs of proportional relationships.

Focus

Goals

1. Language Goal: Create graphs and equations of proportional relationships in context, using an appropriate scale. (Reading and Writing)
2. Language Goal: Interpret diagrams or graphs of proportional relationships in context. (Reading and Writing)

Coherence

- Today

Students match graphs to animations of movement. Then they analyze the constant of proportionality and the slope of a graph in context. Attending to precision in labeling axes, choosing an appropriate scale, and drawing lines are skills exercised in this lesson.

< Previously

In Lesson 2, students reviewed proportional relationships represented in a table and on a graph, and made connections between the slope of the line and the constant of proportionality (or unit rate) for proportional relationships.

Coming Soon

In Lesson 4, students will see the importance of labeling the scale in determining the information that can be interpreted from a graph.

Rigor

- Students build on their conceptual understanding of interpreting proportional relationships.

Warm-up

Activity 1

Activity 2

Summary

Exit Ticket
\bigcirc Independent
$\oplus 10 \mathrm{~min}$

คํำ Pairs
(J) 5 min

Whole Class
(J) 5 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- rulers

Math Language
 Development

Review words

- constant of proportionality
- proportional relationship
- slope
- unit rate

Amps : Featured Activity

Warm-up
 Animated Traveling Bugs

Students view an animation of traveling insects to prepare for comparing features of proportional relationships.
 desmos

Building Math Identity and Community
 Connecting to Mathematical Practices

As students share their responses with a partner, they may forget to actively listen, and thus might not be able to precisely communicate during discussions. Remind students that by listening well, they can help improve their own understanding and their own level of precision as they communicate their thoughts. Review what it means to actively listen and encourage students to practice active listening habits.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted, but students will need to know which line represents the ant and which line represents the ladybug before proceeding to Activity 1.
- In Activity 1, Problem 2 may be omitted.

Warm-up Traveling Bugs

Students view an animation of two traveling insects, and use the information to label corresponding lines on a coordinate plane.

Amps Featured Activity
Animated Traveling Bugs
Name:

Let's study some graphs of proportional relationships.

Warm-up Traveling Bugs lowa State University's Department of Entomology hosts a traveling Insect Olympics with events that include Roach Races, Cockroach Pulls, and the Jumping Stick Jump. Lin decided to create her own race to see which insect travels faster, a ladybug or an ant. The diagrams with tick marks show the positions of the ladybug and the ant at different times. Each tick mark represents 1 cm .
You will watch an animation that illustrates the relationship between distance and time for both insects. This relationship is represented by the following graph. Which line represents which insect? Label each line. Explain your thinking.
Sample response: The ant travels faster sample response. The ant travels faster represent the ant and the bottom line must represent the ladybug.

Understanding Proportional Relationships

Let's study some graphs of

(0)

(7) Power-up

To power up students' ability to write an equation to represent a proportional relationship from a graph, have students complete:

Recall that a proportional relationship can be modeled by the equation $y=k x$ where k is the constant of proportionality.

1. Identify the point $(1, k)$ on the graph, where k represents the constant of proportionality $(1,1.5)$
2. Write the equation of the line in the form $y=k x$. $y=1.5 x$

Use: Before Activity 1
Informed by: Performance on Lesson 2, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 2

Activity 1 Moving Through Representations

Students interpret a graph representing the traveling speed of two insects to create equations that represent each insect's movement.

Activity 1 Moving Through Representations
These diagrams represent the same insects from the Warm-up.

1. Mark and label the point on each line that represents the time and position of each insect after traveling for 1 second.
2. Write the equation for each line. Be sure to define your variables.
Ladybug: $y=2 x$
Ant: $y=3 x$
x represents the time in seconds and y represents the distance traveled, in centimeters.

48 Are you rasay tor mores
Will there ever be a time when the ant is twice as far from the start as the ladybug? Explain or show your thinking.
No, the ant will never be twice as far from the start as the ladybug. The ant will always be 1.5 thes from the start as the ladybug, because the ratios of their distances traveled will always be equivalent to $\frac{3}{2}$, or 1.5

1. Launch

Ask students to label the lines based on the discussion from the Warm-up. Have students work individually to complete the problems, and then have them share their responses with a partner.

2 Monitor

Help students get started by asking, "What do the points on the line represent in this context?"

Look for points of confusion:

- Plotting the points incorrectly in Problem 1. Ask students to look carefully at the scale of the axes when plotting points.
- Defining variables incorrectly in Problem 2. Ask students to identify the x - and y-axes on the graph, and read the corresponding labels. Have students use the points from Problem 1 to verify their variables.

Look for productive strategies:

- Marking points on the line that correspond to information from the diagram in order to find the scale.
(3) Connect

Have pairs of students share their scales and equations.

Ask:

- "What features of the tick-mark diagrams, lines, and equations can you identify that would allow someone to figure out which insect is moving faster?"
- "What do the values 2 and 3 in your equations represent on the graph?"
Highlight that one way to find the slope of a line representing a proportional relationship is to find y for which the point $(1, y)$ is on the line.

Accessibility: Vary Demands to Optimize Challenge,

Guide Processing and Visualization

Provide the graph pre-labeled with the points described in Problem 1. Have students complete Problem 2. Display the slope formula for students to reference and the general form of the equation for the line of a proportional relationship, $y=k x$, where k represents the constant of proportionality.

Extension: Math Enrichment

As a follow-up to the Are you ready for more? problem, have students complete the following problem:
At 1 second, the ant is 1 cm away from the ladybug. When will the ant be twice as far from the ladybug? Three times as far? The ant will be twice as far from the ladybug, 2 cm , at 2 seconds. The ant will be three times as far from the ladybug, 3 cm , at 3 seconds.

Activity 2 Twice as Fast, Twice as Slow

Students consider additional animals in the context of traveling speed, and make connections between different representations of proportional relationships.

1 Launch

Have students use the Think-Pair-Share routine for this activity.

Monitor

Help students get started by asking, "What does it mean to move twice as fast? To move twice as slow?"

Look for points of confusion:

- Graphing lines that do not pass through the origin. Ask, "How far has each snail traveled in one second? In five seconds? In zero seconds?"
- Struggling to compare $y=x$ with the other equations in Problem 3. Remind students that $y=x$ can be rewritten as $y=1 x$.

Look for productive strategies:

- Noticing that both new graphs represent proportional relationships.
- Noticing that the equation $y=x$ looks different than expected because the scales of the axes are not the same.

3 Connect

Have students share their strategies for graphing the lines and writing equations for Problems 1 and 2. Lead with students who use scales and exact values, and follow with those who use proportional reasoning for distances.

Ask:

- "If you add another snail that is faster than Snaily McSnailface, where should its line be? What can you tell about the constant of proportionality in its equation?"
- "What is the meaning of the point $(0,0)$ in this context?"

Highlight that as the constant of proportionality increases, the line becomes steeper because there is a greater vertical change for an equal amount of horizontal change.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Provide a pre-completed and pre-labeled graph showing the lines representing Snaily McSnailface and Sally Snailson. Ask students to determine how each snail's rate compares to the ladybug. Then have them write the equations in Problems 1 and 2 , before proceeding with the rest of the activity.

Extension: Math Enrichment

Have students complete the following problem:
How many times faster is Snaily McSnailface than Sally Snailson? Explain your thinking. Snaily McSnailface is traveling 4 times faster than Sally Snailson because the constant of proportionality is 4 times greater for Snaily McSnailface.

Summary

Review and synthesize how graphs of proportional relationships can be interpreted within context, and how the scale of a graph can affect the interpretation.

Summary

In today's lesson.

You made sense of the proportional relationship between distance and time using graphs.

When creating graphs to represent proportional relationships in context, it is important to label the axes and the scale. Without these, it is difficult to interpret the graphs in a meaningful way.

Consider the graph shown.
Even without the scale, you can determine that the top line has a greater slope because it is steeper
With the scale, you can determine precisely how much faster one insect travels compared to the other insect. Then you can use these values to and length of time that each insect and length of time that each insec traveled

Synthesize

Display the Summary from the Student Edition.

Ask:

- "What would the graph of an insect traveling 3 times faster than the ant look like?" It would be a straight line passing through the points $(0,0),(1,9)$, and (2,18).
- "What equation would represent the traveling speed of this new insect? What is the slope and what does it represent in this context?" $y=9 x$; the slope, 9 , means that the new insect travels 9 cm per second.

Highlight that when two proportional relationships are represented on a graph, students can draw conclusions about the constant of proportionalities (unit rates) by examining the steepness of the lines.

(Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What strategies did you find helpful when determining the equations for the lines?"

Exit Ticket

Students demonstrate their understanding by graphing a proportional relationship, writing an equation to represent the relationship, and interpreting the unit rate.

Success looks like ...

- Language Goal: Creating graphs and equations of proportional relationships in context, using an appropriate scale. (Reading and Writing)
- Language Goal: Interpreting diagrams or graphs of proportional relationships in context. (Reading and Writing)

- Suggested next steps

If students do not correctly draw a line or identify the equation in Problem 1, consider:

- Reviewing strategies from Activity 2.
- Assigning Practice Problem 1.

If students have trouble with their explanation in Problem 2, consider:

- Asking them to demonstrate what it means to "move half as fast."

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
0^{3} Points to Ponder . . .
Knowing where students need to be by the end of this unit, how did Problems 1 and 2 from Activity 2 influence that future goal?

- Thinking about the questions you asked students today and what the students said or did as a result of the questions, which question was the most effective? What might you change for the next time you teach this lesson?

5. Think about what you have learned about graphs and equations of proportional relationships.
a Write an equation that represents (b) Graph the relationship that is represented by the equation $y=2 x$.
 y
9
\qquad
$y=\frac{3}{4} x$
242 Unit3 Linear Relationstips \qquad

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	1	Activity 1	2
	2	Activity 2	2
Spiral	3	Grade 7	2
	4	Grade 7	1
Formative 0	5	Unit 3 Lesson 4	1

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice

Graphs of Proportional Relationships

Let's think about scale.

Focus

Goals

1. Compare graphs that represent the same proportional relationship using differently-scaled axes.
2. Language Goal: Create graphs representing the same proportional relationship using differently-scaled axes. (Reading and Writing)

Coherence

- Today

Students see that there are many successful ways to set up and scale axes in order to graph a proportional relationship. Students examine and compare proportional relationships with and without scaled axes, and sort graphs based on the proportional relationship they represent.

< Previously

In Lesson 3, students represented a real-world context in a graph, and wrote equations from graphs. They examined how the constant of proportionality affects the steepness of a graphed line.

> Coming Soon

In Lessons 5 and 6, students will compare different representations of proportional relationships.

Rigor

- Students strengthen their fluency in identifying the constant of proportionality and writing equations for proportional relationships.

Warm-up

Activity 1

Activity 2

Summary

Exit Ticket
(5 min
\bigcirc Independent
$(15 \mathrm{~min}$
\bigcirc Independent
(J) 15 min
$\left(\begin{array}{l}\text { min } \\ \text { ํํํํํํ } \\ \text { กำ Whole Class }\end{array}\right.$

Amps powered by desmos \quad Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- Power-up PDF (as needed)
- Power-up PDF (answers)
- Activity 2 PDF, pre-cut cards
- rulers

Math Language

 Development
Review words

- constant of proportionality
- proportional relationship
- unit rate

Building Math Identity and Community
 Connecting to Mathematical Practices

In Activity 1, students might become anxious about sharing how their thinking changed because it might be different than someone else's response. Encourage students to celebrate differences. They should all consider the growth others show during the activity and express appreciation for their efforts.

Amps Featured Activity

Activity 2
 Digital Card Sort

Students match equivalent proportional relationships graphed on differently-scaled axes by dragging and connecting them on screen.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 2, you may reduce the number of cards distributed to each group.

Warm-up Would You Rather?

Students examine two graphs with limited information and try to predict who will win a race.

1 Launch

Conduct the Would You Rather? routine as students make their predictions. Provide students with rulers for the duration of the lesson.

(2) Monitor

Help students get started by asking what evidence they could use to support their claim.

Look for productive strategies:

- Recognizing that an accurate prediction cannot be made without knowing the scale of the axes.

3 Connect
Have individual students share their predictions with the class. Ask for evidence from students who think Diego will win, students who think Priya will win, and students who are undecided.

Ask, "What information would help you make your prediction?" Sample responses:

- It would help to know how fast Diego and Priya are running.
- It would help to know the scales for each graph.

Highlight that without knowing the scale of the axes, it is not possible to determine the speed of either runner.

Math Language Development

MLR5: Co-craft Questions

Before revealing the question in the Warm-up, display the introductory text and the two graphs. Ask students to work with a partner to write 1-2 mathematical questions they have about the graph and context. Ask pairs of students to share their questions with the class

English Learners

Display a sample question, such as "Is Diego really running at a faster rate?" or "What are the scales on the axes?"

(7) Power-up

To power up students' ability to graph a proportional relationship from an equation:

Provide students with a copy of the Power-up PDF.
Use: Before Activity 1
Informed by: Performance on Lesson 3, Practice Problem 5

Activity 1 Calculating the Rate

Students re-examine the graphs from the Warm-up, now with additional information, to determine whether their prediction still holds true.

Activity 1 Calculating the Rate

1. Calculate Diego's speed in feet per second, and use it to write an equation for the number of feet y traveled in x seconds. Show or explain your thinking.
5 ft per second; $y=5 x$; Sample response: Using the point (2,10), I can get a speed of 5 ft per second. This is the constant of proportionality (slope) for the proportional relationship
2. Calculate Priya's speed in feet per second, and use it to write an equation for the number of feet y traveled in x seconds. Show or explain your thinking.
7.5 ft per second; $y=7.5 x$; Sample response: Using the point (2, 15), I can get a speed of 7.5 ft per second. This is the constant of proportionality (slope) for the proportional relationship.
3. Does this new information change your thinking about who will win the race? Sample response: Yes, now I know that Diego is not as fast as Priya, so if their speeds remain constant, Priya will win the race.

Pause here while your class shares responses.
4. Choose either Diego or Priya. Graph one runner's line on the other runner's graph, and compare the steepness of the lines. What do you notice?
Sample response: When the lines for both runners are on the same graph, Priya's line is steeper than Diego's line.

Af Are you ready for more?

Han and Clare start out $\mathbf{1 , 0 0 0} \mathrm{ft}$ apart and travel toward each other. Han is traveling at 20 ft per second, and Clare is traveling at 10 ft per second. How long will it take them to meet? It will take them just over 33 seconds to meet.

1 Launch

Activate prior knowledge by asking, "How can you determine the unit rate from the graph of a proportional relationship?"

(2) Monitor

Help students get started by asking, "If the race distance is 60 m , how long would it take each runner to travel this distance?"

Look for points of confusion:

- Not knowing how to calculate speed in Problems 1 and 2. Remind students that they can choose any point on the line and divide the y-coordinate by the x-coordinate to find the unit rate.
- Relying on the appearance of the lines instead of the information about the scale of the axes in Problem 3. Select a point that each line passes through (e.g., $(2,10)$ for Diego and $(2,15)$ for Priya), and ask students what each point means in context.

Look for productive strategies:

- Recognizing that the unit rate corresponds to the value of y of the point $(1, y)$ on each graph.

3 Connect

Have individual students share their equations from Problems 1 and 2, and how their thinking changed from the Warm-up.

Ask:

- "Does the winner of the race depend on the length of the race?"
- "What do you notice about the scales of the axes?"

Display the animation of Diego and Priya running the race. Ask, "If Priya is running faster than Diego, why does the slope of the line representing her speed appear less steep?"
Highlight that the steepness of the line is determined by the scale of the axes. Have students complete Problem 4 so they can make a direct comparison of Diego's and Priya's speed.

Differentiated Support

Accessibility: Guide Processing and Visualization

Consider demonstrating how to calculate Diego's rate and how to use the rate to write an equation for the line. Use a think-aloud approach. Then have students calculate Priya's rate and write an equation for Problem 2. Display the general form of the equation for the line of a proportional relationship, $y=k x$, where k represents the constant of proportionality.

Math Language Development

MLR8: Discussion Supports

During the Connect, focus students' attention on the difference between steepness and rate of change, given the different scales on the axes. Ask, "What do you notice about the steepness of the graph and the scale of the graph?"

English Learners

When referencing the steepness of the graph use gestures to model what is meant by the term steep. When discussing the scales of the graph, annotate the graph to highlight where the scales are found and what they represent.

Activity 2 Card Sort: Proportional Relationships

Students sort cards based on the proportional relationship they represent, and then write an equation representing each relationship to build fluency.

1. Launch

Arrange students in groups of four and distribute one set of cards per group from the Activity 2 PDF.

Monitor

Help students get started by asking, "How can you determine whether two different graphs represent the same proportional relationship?" By finding the constant of proportionality (unit rate).

Look for points of confusion:

- Grouping cards by the steepness of the graphs. Ask students whether a point from the line of one card would lie on the line of another card.
- Writing the reciprocal of the unit rate. Remind students that one way to think about the unit rate is "the change in y for every unit change in x."

Look for productive strategies:

- Identifying a point and verifying that the line from each card in a group passes through that point.

3 Connect

Have groups of students share their strategies for grouping the cards and the matching equations

Highlight that the scale of the axes a graph is drawn on can be misleading about the actual relationship between the two variables if you just look at the steepness of the line, without paying attention to the numbers on the axes.

Ask, "Does the graph from Card A look like what you would expect for the equation $y=\frac{1}{4} x$?" Have students identify another card where the equation does not match their initial expectation from examining the graph, and select a few students to share the graph they chose and explain their thinking.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Provide students with a subset of the cards to sort, such as Cards A, B, E, F, H, and J.

Extension: Math Enrichment

Have students create additional graphs for the following equations:
$y=\frac{1}{4} x \quad y=\frac{5}{2} x \quad y=\frac{4}{3} x$

Math Language Development

MLR8: Discussion Supports

During the Connect, to support students in producing statements about proportional relationships, provide sentence frames for them to use when they describe the reasoning for their matches. For example:

- "Card \qquad and Card \qquad match/don't match because \qquad ."
- "Card \qquad matches with Card \qquad because they have the same slope."
Encourage the use of relevant vocabulary, such as slope and unit rate.

English Learners

As each match is shared, annotate the graphs with their slope and/or corresponding equation.

Summary

Review and synthesize how the scale of the axes can influence the appearance of a graph.

Summary

In today's lesson.

You explored how the scale of the axes can influence the appearance of a graph.
If you want to compare two proportional relationships, using graphs with different scales can be misleading about which proportional relationship has a greater constant of proportionality (or slope).

For example, consider these three graphs.

Graph A

Graph C

Without looking carefully, you might conclude that the slopes of the lines of Graphs A and B are much closer to one another than the slope of the line of Graph C. However, by finding the unit rate using a point from each line, you can determine that the slope of the lines of Graphs B and C are actually equivalent, and less than the slope of the line of Graph A.

Synthesize

Have students share something that surprised them from today's lesson.

Ask, "When do you think it might be reasonable or important to use different scales?" Sample response: Sometimes, we choose specific ranges for the axes in order to see specific information, and those choices can have an impact on how information appears in a graph.

Highlight that the x - and y-axes do not need to share the same scale, and can change depending on what information students want to highlight in the graph.

(I. Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How did manipulating the scale of the axes affect the graphs of proportional relationships?"

Exit Ticket

Students demonstrate their understanding by determining whether three lines graphed using differently-scaled axes represent the same proportional relationship.

Success looks like ...

- Goal: Comparing graphs that represent the same proportional relationship using differently-scaled axes.
- Language Goal: Creating graphs representing the same proportional relationship using differently-scaled axes. (Reading and Writing)

- Suggested next steps

If students think Graph 1 and Graph 2 represent the same proportional relationship, consider:

- Asking, "What coordinate points can you confidently identify from the graphs? How does that help you find the constant of proportionality?"
- Reviewing strategies for finding the constant of proportionality for a line from Activity 2.

If students think Graph 1 and Graph 3 represent different proportional relationships, consider:

- Assigning Practice Problem 2.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder ...

What worked and did not work today? Which routines enabled all students to think mathematically in today's lesson?

- During the discussion about the card sort from Activity 2, how did you encourage each student to share their understandings? What might you change the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	2
Spiral	$\mathbf{2}$	Activity 2	2
Formative $\mathbf{0}$	$\mathbf{5}$	Unit 2 Lesson 5	2
	$\mathbf{4}$	Unit 3 Lesson 2 Unit 3 Lesson 5	2

- Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Name: \square Date: \quad Period:
b Draw the missing lines on the following graphs to show the same proportional relationship as part a.

3. Describe a sequence of rotations, reflections, translations, and/or dilations that show that Quadrilateral $A B C D$ is similar to Quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Be specific, stating the amount and direction of a translation, a line of eflection, the center and angle of a rotation, and the center and scale factor of a dilation. Sample response. Diate Quacriateral $A B C D$ a scale factor of $\frac{1}{2}$. Then rotate the image 180° using the origin as the center of rotation.

4. Given the graph of a line, describe how you can tell whether the line's slope is greater than 1 , equal to 1 , or less than 1 .
Sample response:
When a line's slope is
x-values increase by 1 .
When a line's slope is greater than 1 , the y-values increase by more than 1
every time the x-values increase by 1 .
When a line's slope is less than 1 , the y-values increase by less than every time the x-values increase by 1 .
5. Write an equation that represents a proportional relationship and whose line passes through the point (25, 15). Show or explain your thinking. The constant of proportionality is $\frac{15}{25}=\frac{3}{5}$. So, the equation is $y=\frac{3}{5} x$.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice

Representing Proportional Relationships

Let's look at representations of proportional relationships.

Focus

Goals

1. Create an equation and a graph with appropriate scale and axes labels to represent proportional relationships.
2. Language Goal: Determine what information is needed to create graphs that represent proportional relationships. Ask questions to elicit that information. (Speaking and Listening)

Coherence

- Today

Students create multiple representations of proportional relationships. For each representation, they identify key features, such as the constant of proportionality and relate how they know that each representation describes the same situation.

< Previously

In Lessons 3 and 4, students labeled the scale of each axis, and examined the effect of the scale on the appearance of the graphed line.

> Coming Soon

In Lesson 6, students will create visual displays for different representations of pairs of proportional relationships.

Rigor

- Students create and interpret multiple representations of proportional relationships to build procedural skills.

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 2 PDF, pre-cut cards
- Activity 2 PDF (answers)
- Info Gap Routine PDF (for display)
- Anchor Chart PDF, Representations of Proportional Relationships
- calculators
- graph paper
- rulers

Math Language

 Development
Review words

- constant of proportionality
- proportional
- unit rate

Building Math Identity and Community

Connecting to Mathematical Practices
In Activity 1, students might think that one good argument is enough. Remind students that they can learn from each other. They should listen to others' arguments, as they build their sets of evidence. They also can help each other by looking for errors in the thinking so that a correction can be made. This requires engagement by all students.

Amps \quad Featured Activity

Activity 1
 See Student Thinking

Students are asked to create multiple representations for a proportional relationship, and these representations are available to you digitally, in real time.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In the Warm-up, Problems 1 and 2 may be omitted.
- In Activity 2, have students only complete the first set of cards.

Warm-up Defining Variables

Students examine three situations, define variables, and calculate unit rates to prepare for representing proportional relationships in Activity 1.

1. Launch

Conduct the Think-Pair-Share routine.

2 Monitor

Help students get started by modeling how to complete Problem 1.

Look for points of confusion:

- Thinking there are no variables in a given situation. Have students identify known values in the situation, and whether these can change in relation to each other.
- Interpreting the unit rate as distance over time in Problem 3. Ask, "Where do you see these units in the situation?"

Look for productive strategies:

- Circling or underlining the variables in each situation.
- Finding two possible unit rates for Problems 1 and 3 .

3 Connect

Have pairs of students share their variables and unit rates for each situation. In particular, look for students who have determined different unit rates for the same problem.
Highlight that the variables should be defined by the two quantities in the problem that change in relation to each other, and that the unit rate shows specifically how much one quantity changes when the other increases by one unit. Show that in Problem 1, 1.5 represents the cups of water needed for 1 cup of rice, and $\frac{2}{3}$ represents the cups of rice needed for 1 cup of water.

Ask, "Which situation posed the biggest challenge for defining the variables?"

Math Language Development

MLR7: Compare and Connect

During the Connect, identify pairs of students who determined different ways of writing the unit rates for the same problem. In Problem 1, some students might write the unit rate as "per cup of rice" while others might write the unit rate as "per cup of water." Ask students to compare how these ways of writing the unit rate are different and encourage them to share their strategies for how they defined the variables and used those to determine the unit rate.

English Learners

Use color coding to annotate how the variables are defined and the language used, such as "per cup of rice."

Power-up
To power up students' ability to writing equations for a proportional relationship from a point, have students complete:

Recall that the constant of proportionality k can be calculated using the relationship $k=\frac{y}{x}$.
For each point, determine the constant of proportionality then write the equation of the proportional relationship that passes through it.

1. $(8,12)$
2. $(9,3)$
$k=\frac{3}{2} ;$
$y=\frac{3}{2} x$
$k=\frac{1}{3} ;$
$y=\frac{1}{3} x$

Use: Before Activity 1
nformed by: Performance on Lesson 4, Practice Problem 5

Activity 1 Representations of Proportional Relationships

Students create multiple representations for a proportional relationship to see how the constant of proportionality can be identified in each representation.

Amps Featured Activity
See Student Thinking

Activity 1 Representations of Proportional Relationships
Jada and Noah are practicing for the $\mathbf{1 0 0}-$ meter dash. While each runs at a constant rate, they noticed they each take a different number of steps to travel the same distance. When Noah takes 10 steps, Jada takes 8 steps. When Noah takes 15 steps, Jada takes 12 steps. Solve these problems to describe the relationship between the number of steps Jada takes and the number of steps Noah takes.

1. Define your variables. Sample response shown.

Let x represent the number of steps Jada takes
Let y represent the number of steps Noah takes
2. Create a table, a graph, and an equation to represent this situation.
Tabl

3. Find the constant of proportionality in each representation. Explain your thinking. Table: The constant of proportionality, $\frac{5}{,}$, is the number of Noah's steps divided by the corresponding number of Jada's steps.
Graph: The constant of proportionality, $\frac{5}{4}$, is the value of y when $x=1$ on the graph.
Equation: The constant of proportionality, $\frac{5}{4}$, is the coefficient of x in the equation.
4. What does the constant of proportionality mean in this context?

Sample response: The constant of proportionality in this context represents the number of steps Noah takes each time Jada takes one step.

1 Launch

Discuss Problem 1 as a class, and then arrange students in pairs to complete Problems 2-4.
Note: Provide students with rulers for the duration of the lesson.
(2) Monitor

Help students get started by asking, "Can you predict how many steps Noah will take if you know how many Jada takes?"

Look for points of confusion:

- Reversing the constant of proportionality when creating the table or graph. Ask students whether their table or graph is supported by the variables they defined in Problem 1.

3 Connect

Have pairs of students share their tables, graphs, and equations. Compare students who chose x to represent Jada's steps, to students who chose x to represent Noah's steps, and show how their choice affects the constant of proportionality.
Highlight how the constant of proportionality can be found in each representation, and that this has the same value as the unit rate, if the relationship is proportional.

Ask:

- "Which representation was more challenging to identify or calculate the constant of proportionality? Why?"
- "Is the point $(0,0)$ on the line for this relationship? What does the point $(0,0)$ represent in this context?"
- "How can you tell that the equation, description, graph, and table all represent the same situation?" Sample response: In each representation, we can always find how many steps Noah took, if we know how many steps Jada took.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Instruct different pairs of students to define the variables differently. For example, tell one pair of students to let x represent the number of steps Jada takes. Tell a different pair of students to let x represent the number of steps Noah takes. After completing the activity, have these pairs of students compare their tables, graphs, and equations.

Math Language Development

MLR1: Stronger and Clearer Each Time

After students complete Problem 3, provide them time to meet with 2-3 partners to share their responses and give and receive feedback. Encourage reviewers to ask clarifying questions such as:

- "How did you identify the constant of proportionality?"
- "Did the scales for the axes cause any confusion?"

Have students write a final draft response, based on the feedback they received.

English Learners

Allow pairs of students who speak the same primary language to provide feedback to each other

Activity 2 Info Gap: Proportional Relationships

Students complete the Info Gap routine to identify the information that is necessary to create graphs of a proportional relationship.

1. Launch

Distribute calculators, graph paper, and the cards from the Activity 2 PDF. Display the Info Gap Routine PDF and model the Info Gap routine with students. Have students read the narratives from the Problem Cards together before working on the problems.

2 Monitor

Help students get started by explaining that they may need several rounds of discussion to determine the information they need.

Look for points of confusion:

- Not knowing what information to ask for to create the graph. Ask, "What information is necessary to graph a proportional relationship? What information do you have? What information do you need?"
- Not knowing how to scale the axes before answering the question from the Problem Card. Encourage students to answer the question on their card first, and then think about how to scale their graph.

Look for productive strategies:

- Asking increasingly more precise questions until they get the information they need.

3 Connect

Have pairs of students share their graphs and responses to the Problem Cards.

Ask:

- "Other than the answer, what information would have been nice to have?"
- "How did you decide to label the two axes?"
- "How did you decide to scale the axes?"
- "Where can you see the constant of proportionality on the graphs you created?"
Highlight that the slope of the line will change, depending on which value you place on which axis.

Differentiated Support

Accessibility: Guide Processing and Visualization

Display Problem Card 1. Use a think-aloud to model Steps 1 and 2 as if you were the recipient of that card. Consider using the following during the think-aloud.

- "I need to sketch a graph that shows the distance and time that Jesse Owens ran when he set the world record. I will ask for the distance he ran first. Then I will ask for the time it took him to run this distance."

Math Language Development

MLR4: Information Gap

Display prompts for students who benefit from a starting point, such as:

- "Can you tell me ... (specific piece of information)?"
- "Why do you need to know . . . (that piece of information)?"

English Learners

Consider providing sample questions students could ask for Problem Card 1, such as the following:

- What distance did Jesse Ownes run when set the world record?
- How long did it take Jesse Owens to run this distance?

Summary

Review and synthesize how proportional relationships can be represented in multiple ways, and how the constant of proportionality can be determined from each representation.

Summary

In today's lesson.

You explored how proportional relationships can be represented in multiple ways.
Proportional relationships can be represented with written descriptions, equations, graphs, and tables. Which representation you choose depends on the purpose. The constant of proportionality can be determined in each representation. Remember the constant of proportionality has the same value as the slope of the line and the relationship's unit rate.

[^11]
Synthesize

Display the Summary from the Student Edition.
Highlight that each representation of proportional relationships calls attention to different features of the proportional relationship.

Have students share how they would find the constant of proportionality in each representation, and then display the Anchor Chart PDF, Representations of Proportional Relationships.

Ask:

- "The proportional relationship $y=5.5 x$ includes the point $(18,99)$ on its graph. How could you choose a scale for a pair of axes with a 10 by 10 grid to show this point?" Have each grid line represent 10 or 20 units.
- "What are some things you learned about graphing today that will help you in the future?" Answers may vary.

D. Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "Which representation of proportional relationships do you find the most challenging to create or interpret?"

Exit Ticket

Students demonstrate their understanding by writing an equation and sketching a graph of a proportional relationship, and then using either representation to solve a problem.

Success looks like ...

- Goal: Creating an equation and a graph with appropriate scale and axes labels to represent proportional relationships.
- Language Goal: Determining what information is needed to create graphs that represent proportional relationships. Asking questions to elicit that information. (Speaking and Listening)

Suggested next steps

If students use the values for flour to write their equation, consider:

- Reviewing Activity 2.

If students have trouble creating an appropriate scale for their grid, consider:

- Reviewing strategies for determining the scale from Activities 1 and 2.
- Assigning Practice Problem 2.
- Asking, "Which ordered pairs should you expect to see on the graph?"

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

1 Points to Ponder ...

- "What worked and did not work today? Which students' ideas were you able to highlight during Activity 2?"
- "What did students find frustrating about the Info Gap routine? What helped them work through this frustration? What might you change the next time you teach this lesson?"

Practice	Problem Analysis		
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	2
Spiral	$\mathbf{2}$	Activity 2	2
Formative $\mathbf{0}$	$\mathbf{4}$	Grade 7	Unit 3 Lesson 6

(6) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Comparing Proportional Relationships

Let's compare proportional relationships.

Focus

Goals

1. Compare the constant of proportionality for two proportional relationships, given multiple representations.
2. Language Goal: Interpret multiple representations of a proportional relationship in order to solve problems, and explain the solution method. (Writing, Speaking and Listening)
3. Language Goal: Compare two different proportional relationships using words and other representations. (Speaking and Listening)

Coherence

- Today

Students expand on the work of the previous lesson by comparing two situations that are represented in different ways: a written description, a table of values, a graph, or an equation. Students move flexibly between representations and consider how to find the information they need from each type. They respond to context-related questions that compare the two situations and solve problems with the information they have extracted from each representation. Then they organize this information on a visual display and complete a Gallery Tour to view their classmates' work.

< Previously

In Lesson 5, students learned how to represent a proportional relationship in different ways, and how to find the constant of proportionality in each representation.

> Coming Soon

Starting in Lesson 7, students will begin to apply their knowledge of proportional relationships to explore linear relationships.

Rigor

- Students apply their knowledge of proportional relationships to compare different models of electronic racing toys.

*

Activity 1
©

Warm-up
(D) 10 min
\bigcirc Independent
(D)

Summary
(J) 5 min

ํํํ Whole Class

Exit Ticket
() 5 min
$\stackrel{\circ}{\cap}$ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Power-up PDF (as needed)
- Power-up PDF (answers)
- Activity 1 PDF, one per group
- Activity 1 PDF (answers)
- graph paper
- poster paper
- markers
- sticky notes
- rulers

$$
\pi
$$

Math Language Development

Review words

- constant of proportionality
- proportional relationship
- slope
- unit rate

Building Math Identity and Community
 Connecting to Mathematical Practices

Students may not know where to begin Activity 1 and may consequently feel disengaged. Encourage them to begin by thinking about how they can use mathematics to model which prototype is the fastest. Ask them to make a list of the types of representations they have used and decide how they will define the variables. Tell them that starting a list of items to consider is one way to help alleviate feeling overwhelmed.

Amps ! Featured Activity

Exit Ticket

Real-Time Exit Ticket
Check in real time if your students can compare proportional relationships using a digital Exit Ticket.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 1, the Gallery Tour may be replaced by a representative from each group presenting their poster.

Warm-up Number Talk

Students use mental math to find the values of several multiplication expressions in order to strengthen their number sense and fluency.

1 Launch

Conduct the Number Talk routine.

Monitor

Help students get started by asking, "How can you use the value for the first product to find the value of the second product?"

Look for points of confusion:

- Relying on traditional algorithms, even when attempting to solve problems mentally. Ask students to describe a picture that could represent each product.
- Not recognizing how knowing the values of $\mathbf{1 5 \cdot 0 . 2}$ and $\mathbf{1 5 \cdot 0 . 0 5}$ can be used to find $\mathbf{1 5 \cdot 0 . 2 5}$. Remind students that 0.25 can be rewritten as $0.2+0.05$.

Look for productive strategies:

- Using fraction equivalencies when multiplying decimals.
- Using results from previous computations when evaluating later expressions.

3 Connect

Have individual students share their strategies for finding each product.

Ask:

- "Who can restate \qquad s reasoning in a different way?"
- "Did anyone solve the problem the same way but would explain it differently?"
- "Did anyone solve the problem in a different way?"
- "Does anyone want to add on to \qquad 's strategy?"
- "Do you agree or disagree? Why?"

Math Language Development

MLR8: Discussion Supports

During the Connect, as students share their strategies for mentally finding each product, display these sentence frames to support them.

- "First, I \qquad because.
- "I noticed \qquad sol.
- "Because I knew that \qquad I was able to .
Consider providing an example, such as "Because I knew that $15 \cdot 2=30$, I was able to determine the product of $15 \cdot 0.2$ by moving the decimal point in 30 one place to the left, which is 3 ."

English Learners

Provide students the opportunity to rehearse what they will say with a partner before they share with the whole class.

(7)
 Power-up

To power up students' ability to write equations of proportional relationships in different contexts:

Provide students with a copy of the Power-up PDF.
Use: Before the Warm-up
Informed by: Performance on Lesson 5, Practice Problem 4 and Pre-Unit Readiness Assessment, Problems 2 and 3

Activity 1 Gallery Tour

Students create a visual display to demonstrate their ability to compare two proportional relationships that are represented in different ways.

\author{

Activity 1 Gallery Tour
 A high-tech toy company, E-Racers, is researching remote-controlled electric vehicles and drones. The company's designers have created some exciting prototypes. Each prototype has two models. The designers want to test the models against each other to determine the fastest model, and they need your help!
 You will receive a sheet describing one of the prototypes. You will create a visual display that will be presented to the E-Racers board of directors (your teacher and classmates). The display should clearly demonstrate your thinking about which model is fastest, so be sure to use multiple representations in order to construct a convincing argument.
 You and your classmates will participate in a Gallery Tour to inspect your display's accuracy.
 When creating your visual display, consider the example shown.
 | Given Information | Graph | Questions |
| :---: | :---: | :---: |
| - | ${ }^{y} \uparrow$ | 1. |
| | | 2. |
| | | 3. |

(1) Launch

Arrange students in groups of four and distribute the Activity 1 PDF so that each group receives one handout. After students have completed the problems, distribute materials to create their posters.

2 Monitor

Help students get started by asking, "What information do you need in order to create a visual representation?"

Look for points of confusion:

- Creating visual displays using two different coordinate planes. Remind students that in Lesson 4, they saw how graphing relationships on two different coordinate planes can lead to misinterpretations when comparing those relationships.
- Switching the values for x and y when an equation is given in Prototypes 1 and 3. Ask students to read the scenario again to determine which variable represents each quantity.

Look for productive strategies:

- Using a scale that highlights important information from both relationships.

(3)
 Connect

Use the Gallery Tour routine to display student work.
Have groups of students share their feedback for the visual displays by using sticky notes.
Ask, "How did you decide what scale to use when you made your graph?"

Highlight that in order to compare the prototypes, the variables that are defined must be defined the same way for each prototype. For example, if x represents the number of seconds for the Alpha model, x must represent the number of seconds for the Beta model.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge,

 Guide Processing and VisualizationIf students need more processing time, have them work only with Prototype 1. Consider providing them with a partiallycompleted table and graph with the table headers pre-labeled and the axes pre-labeled on the graph. Display the general form of the equation for the line of a proportional relationship, $y=k x$, where k represents the constant of proportionality.

Math Language Development

MLR7: Compare and Connect

During the Gallery Tour, invite students to discuss the question, "What is the same and what is different?" about the representations on the posters. Look for opportunities to highlight representations that helped students complete the problems and decide which scales to use for the graph.

English Learners

Consider leaving the visual displays from the Gallery Tour displayed so that students can refer to them in future discussions.

Summary

Review and synthesize how to compare proportional relationships represented in different ways.

Synthesize

Have students share something they liked or want to know more about from another group's visual display from Activity 1.

Highlight how different proportiona relationships can be compared, even when represented in different ways, by identifying the constant of proportionality for each relationship.

Ask:

- "How do visual displays help organize information?" Answers may vary
- "When comparing proportional relationships, why is it important that the constant of proportionality represent the same relationship between the variables?" Sample response: There are two constants of proportionality for every proportional relationship. In order to compare two different proportional relationships using each constant of proportionality, it must represent the same relationship between the two quantities.

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What strategies or tools did you find helpfu today when comparing proportional relationships represented in different ways? How were they helpful?"
- "Were any strategies or tools not helpful? Why?"

Exit Ticket

Students demonstrate their understanding by drawing conclusions about two different salt water mixtures, both proportional relationships, yet represented in different ways.

Success looks like ...

- Goal: Comparing the constant of proportionality for two proportional relationships, given multiple representations.
- Language Goal: Interpreting multiple representations of a proportional relationship in order to solve problems, and explaining the solution method. (Writing, Speaking and Listening)
- Language Goal: Comparing two different proportional relationships using words and other representations. (Speaking and Listening)
» Comparing Mixtures A and B in Problem 1 to determine which mixture uses more salt.

Suggested next steps

If students think Mixture B would use more salt in Problem 1, consider:

- Asking, "If you made a table for Mixture B using the same quantities of salt from the table for Mixture A, what would that look like?"
- Reviewing strategies for comparing constants of proportionality from Activity 1.
- Assigning Practice Problem 1.

If students think Mixture A would taste saltier in Problem 2, consider:

- Asking, "Does something taste saltier when you use more salt, or less salt?"

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

0 Points to Ponder . . .
What worked and did not work today? In this lesson, students compared proportional relationships in different representations. How will that support comparing functions?
What did students find frustrating about creating their visual displays? What helped them work through this frustration? What might you change the next time you teach this lesson?

Math Language Development

Language Goal: Comparing two different proportional relationships using words and other representations.
Reflect on students' language development toward this goal.

- How did using the Gallery Tour routine in Activity 1 help students compare different proportional relationships? Would you change anything the next time you use this routine?
- How have students progressed in using the term constant of proportionality to describe proportional relationships that are expressed in different representations?

3. Lin runs twice as fast as Diego. Diego runs twice as fast as Jada. Could the following graph represent the speeds of Jada, Diego, and Lin? Explain your thinking. No; Sample response: In the graph. Lin appears to be running only slightly faster than Diego (not twice as
fast), while Siego apears to be running much faster fast), while Diego appears to be rumning mu
than Jada (much faster than twice as fast)

> 4. The formula for converting temperature in degrees Celsius to degrees
Fahrenheit is $\mathrm{C}=\frac{5}{9}(\mathrm{~F}-32)$. Use this formula to complete the table.

Temperature $\left({ }^{\circ} \mathrm{F}\right)$	Temperature $\left({ }^{\circ} \mathrm{C}\right)$
77	25
32	0
-0.4	-18
-40	-40

5. Shawn deposits some money into a bank account every week. After one week, the total account balance is $\$ 11$. After two weeks, the total account balance is $\$ 21$. After three weeks, the total account balance is $\$ 31$.
a How much money does Shawn deposit each week?
$\$ 10$
b How much money did Shawn have in the account initially, before the first week that money was deposited? \$1

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	1	Activity 1	2
	2	Activity 1	2
Spiral	3	Unit 3 Lesson 2	3
	4	Grade 7	1
Formative 0	5	Unit 3 Lesson 7	2

(6) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Linear Relationships

Students determine how many cups tall you are as they begin their exploration of nonproportional linear relationships represented as graphs, tables, equations, and written contexts.

Narrative Connections

Read the narrative aloud as a class or have students read it individually. Students continue to explore the rate of change (slope) of nonproportional linear relationships in the following places:

- Lesson 9, Activity 3: Matching Equations
- Lesson 10, Activities 1-2: Rising Water Levels, Partner Problems
- Lesson 12, Activity 1: How Much More?
- Lesson 13, Activities 1-3: Noah's Game Card, Payback Plan, Info Gap: Making Designs
- Lesson 15, Activity 2: Han's Game Card

Introducing Linear Relationships

Let's explore some relationships between two variables.

Focus

Goals

1. Language Goal: Compare and contrast proportional and nonproportional linear relationships. (Speaking and Listening, Writing)
2. Language Goal: Interpret the slope of the graph of a nonproportional linear relationship. (Speaking and Listening, Writing)

Coherence

- Today

Students use rate of change to explore linear relationships. They determine whether linear relationships are proportional. The meaning of the vertical intercept of the graph comes up briefly, but will be revisited more fully in Lesson 9.

< Previously

Students used tables, graphs, and equations to describe proportional relationships.

Coming Soon

In Lesson 8, students will continue to learn about linear relationships. They will study what makes linear relationships special and will practice identifying linear and nonlinear relationships presented in tables and in context.

Rigor

- Students build conceptual understanding of linear relationships by studying an example of a nonproportional relationship that has a constant rate of change.

Δ

Activity 1

Activity 2

Summary

Exit Ticket
(J) 5 min
ㅇํㅇ Pairs20 min
\bigcirc Pairs
(J)
15 min
$\stackrel{\circ}{\circ}$ ค Pairs
(J) 5 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Slope (from Unit 2)
- stackable cups (optional)
- rulers

Math Language Development

New words

- initial value
- linear relationship
- rate of change

Review words

- proportional

Amps ! Featured Activity

Activity 2
Using Work From Previous Slides

Students use data from Activity 1 to create a graph that represents a linear relationship.

Building Math Identity and Community

Connecting to Mathematical Practices
In Activity 1, students may not see the pattern as they analyze the table showing the height of the stack of cups and may feel overwhelmed. Consider asking them to write the height of the stack as an expression, such as $9.4+1.2$ for the second row, to help them see the repeated reasoning.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 1, Problem 3 may be omitted.
- In Activity 2, Problems 2 and 3 may be omitted.

Warm-up How Many Cups Tall Is Your Teacher?

Students visualize stacked cups to estimate height, predicting a pattern as the stack grows.

1. Launch

Activate students' background knowledge by asking for examples of when they needed to measure something using unexpected units. Display the image of the cup from the Warm-up and distribute rulers. Provide students with your height, in centimeters, rounded to the nearest ten.
(2) Monitor

Help students get started by asking, "About how tall is the cup?"

Look for points of confusion:

- Dividing your height by $\mathbf{1 0}$ to determine the number of cups that represent your height. Ask them what would happen if you stacked one cup inside of the other, and determine whether the height of the stack would equal two entire cups. Demonstrate if you have cups available.

Look for productive strategies:

- Estimating the height of the cup to be 10 cm .
- Recognizing that the stack grows by the height of the cup's lip, not the height of the entire cup.

Connect

Display the image of the cup from the Warm-up.
Highlight a response that divides your height by the estimated height of a cup, 10 cm .

Have students share why this response underestimates the actual number of cups needed and what problem this response solves instead. This response shows cups being stacked end-over-end, which is not the same as cups being stacked by nesting inside one another.

Ask students what structures or strategies they might want to use to find the number of cups. Look for students who suggest using a table or graph as a way to transition to Activity 1.

(7) Power-up

To power up students' ability to determine the initial value when given a constant rate of change, have students complete:
The table shows Mai's bank account after a few weeks of working at her uncle's bakery. She earned the same
 $100: 1$ amount of money each week, and did not deposit or withdraw any additional money from her account.

1. How much money did she earn each week? $\$ 50$
2. How much money did she have in her account before she began working at the bakery? \$100

Use: Before the Warm-up
Informed by: Performance on Lesson 6, Practice Problem 5

Activity 1 Stacking Cups

Students measure stacked cups and record their findings in a table, to explore a relationship that is linear, but nonproportional.

1. Launch

Tell students that they should consider the height of one whole cup as the starting point and record the height of the stack for each additional cup in the table.

2 Monitor

Help students get started by asking, "How many additional cups are in the taller stack than the shorter stack? How much height do those 6 cups add?"

Look for points of confusion:

- Not knowing how to find other values in the table. Ask students what is happening each time 6 cups are added. Then have them find out what happens if 3 cups are added, and ask if they can work backward from 5 cups to complete the table.
- Thinking 2 cups must be twice as tall as 1 cup. Ask students what is added each time a cup is added. Have students reflect on whether half the height of 2 additional cups makes sense, given what they know about the height of 1 cup from the Warm-up.
- Dividing one variable by the other as if they are proportional. Have students see that doing this does not produce a constant of proportionality between the two variables. Allow them to recognize that this must not be a proportional relationship and must be approached with a different strategy.
- Not knowing how to determine the number of cups that represent your height. Ask, "How would you find the height of 50 cups using the base and lip heights? How could you work backward from the total height to determine the number of cups needed?"

Look for productive strategies:

- Identifying a pattern that represents the height added to each subsequent term.
- Recognizing that the table does not represent a proportional relationship.

Differentiated Support

Accessibility: Guide Visualization and Processing

Have students annotate the image to show that the stack on the left has "one cup with 4 additional cups" and the stack on the right has "one cup with 9 additional cups."

Accessibility: Vary Demands to Optimize Challenge

Consider providing a pre-completed table to students. Have them annotate the table to show how 1.2 cm are added to the height of the stack with each additional cup. Then have students complete Problems 2-4.

Math Language Development

MLR2: Collect and Display

During the Connect, listen for the language students use to describe whether they think the relationship is proportional. Write these words and phrases on a visual display and update it throughout the remainder of the lesson. Encourage students to refer to this display and borrow from it as they use mathematical language during discussions.

English Learners

The phrase additional cup is key in this activity for students to understand. Highlight and define this phrase at the beginning of the activity. Emphasize that each stack starts with a base, or initial, cup and then adds additional cups.

Activity 1 Stacking Cups (continued)

Students measure stacked cups and record their findings in a table, to explore a relationship that is linear, but nonproportional.

3 Connect

Display student work showing the correct table.
Have students share what strategies worked and did not work in completing the table before discussing the number of cups students think are needed to represent your height.

Ask:

- "What patterns did you see in the data?"
- "How many parts of the cup are there? Which part has a greater impact on the height of the stack as more and more cups are added?"
- "Based on the values in the table, do you think this relationship is proportional? Why or why not?"
- "How did you determine the number of cups needed to reach my height, without actually stacking the cups?"

Highlight that this relationship is nonproportional because doubling the number of additional cups from 1 to 2 does not double the height of the stack. Demonstrate that while it is not possible to divide one variable by the other and get a constant of proportionality, there is a constant rate of change, the height of the cup's lip, being added each time.

Define the term rate of change as the amount that y changes when x increases by 1 .

Differentiated Support

Extension: Math Around the World

In the Warm-up and Activity 1, students explored how many cups would be needed in a stack of cups to measure the height of you, their teacher. Tell them that different cultures around the world have used different units of measurement to measure distances. For example, the Inuit measured distance between locations in terms of the number of "sleeps" required to travel from one distance to another. They would measure and communicate about the distance between locations in terms of the number of stops to rest that were necessary. It was understood that this measure of the number of "sleeps" could be affected by weather, terrain, or the age, health, and experience of the travelers.

Facilitate a class discussion by asking these questions:

- "What do you see might be some advantages to measuring distance as the number of "sleeps" or number of stops of rest?" Sample response: It gives everyone an idea of how long the trip will take, more so than just measuring the distance in miles or kilometers.
- "Can you think of other ways to measure distance, other than U.S. customary or metric units of length?" Sample responses: The number of gallons of gas that would be used (if driving), the time it takes to walk/bicycle/drive given an average speed (e.g., a 15-minute walk, a 2 -hour drive, etc).

Activity 2 Graph It

Students graph their data to better understand the difference between linear and proportional relationships.

1. Launch

Remind students that the number of cups and the height of the stack is not a proportional relationship. This means it cannot be represented by the equation $y=k x$. Tell them that in this task, they will examine this relationship more carefully using a graph.

Monitor

Help students get started by showing them how to plot the first point on the graph, having them draw slope triangles between two points, and asking them how they can find the slope.

Look for points of confusion:

- Not being able to see a pattern or only saying that the points fall on a line in Problem 2. Ask students to find how their graph changes as the number of additional cups increases.
- Not being able to describe the slope in context in Problem 4. Point students to the pattern they found in Problem 2, and see if they can make a connection to the slope in context. Ensure students are referencing both variables, on the x - and y-axes, to describe the slope as a rate.
- Not taking into account that the vertical intercept is not the origin. Ask students what they notice about where the line crosses the y-axis and what they think this means. Note: Students will learn the definition of vertical intercept in Lesson 8. In this Activity, they will begin to explore its meaning in context.
- Counting the number of grid squares to find the slope instead of using the scales on the axis. Ask students to read the axes labels, and help them understand that the vertical or horizontal distance of their slope triangle is not the same as the number of grid squares.

Look for productive strategies:

- Being able to describe the pattern using an expression or an equation.
- Drawing slope triangles to find the slope.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge, Guide Processing and Visualization

Consider providing a pre-completed graph, with points labeled, for students to analyze. Have them begin the activity with Problem 2. Display the Anchor Chart PDF, Slope, from Unit 2 for students to reference and suggest they determine the slope of the line graphed

Extension: Math Enrichment

Have students determine their own heights as measured by the number of stacked cups. Ask them to use the graph to estimate the number of stacked cups that represents their height.

Math Language Development

MLR8: Discussion Supports—Press for Details

As students share their responses to Problem 6, invite them to use the following sentence frame.

- "The height of the stack is/is not proportional to the number of cups because..."

As partners share their thinking, press for details and the use of mathematica language by asking questions such as:

- "How does the graph support your thinking?"
- "Where on the graph do you see a constant rate of change?"
- This will help students use the graph to make sense of the data and interpret the slope in context.

Activity 2 Graph It (continued)

Students graph their data to better understand the difference between linear and proportional relationships.

3 Connect

Display student work showing a correct graph.
Have students share what patterns they noticed and how they know the line is nonproportional.

Define the term linear relationship as a relationship between two quantities in which there is a constant rate of change. This means that when one quantity increases by a certain amount, the other quantity increases or decreases by a proportional amount. Ask students why the stack of cups represents a linear relationship.Then ask students, "What is the height of 0 additional cups, and why is it not 0?"

Define the term initial value as the starting amount found in the context.

Ask:

- "What does the slope of the line represent in context?" The slope represents the change in the height of the stack of cups for each additional cup added.
- "How does the graph show that this relationship is linear, but nonproportional?" The graph is a straight line, but it does not pass through the origin.

Highlight that the slope of the line in a linear relationship, such as in a proportional relationship, is represented by the rate of change of the relationship.

Discuss that unlike proportional relationships, the graphs of linear relationships do not necessarily pass through the origin. Even if it is more accurate to represent a linear relationship with discrete points, students can connect these points and represent the relationship with a line. State that while not every point on the line makes sense in context, when drawn, it can help to see a pattern.

Summary

Review and synthesize how proportional relationships are always linear, but not all linear relationships are proportional.

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in Lesson 2. Ask them to review and reflect on any terms and phrases related to the terms linear relationship, initial value, and rate of change that were added to the display during the lesson.

Synthesize

Ask:

- "What does the rate of change of a linear relationship tell you?"
- "How can you tell whether a linear relationship is proportional? From a graph? From a table? From a context?" From a graph, a linear relationship is proportional if it passes through the origin. From a table, a linear relationship is proportional if there is a constant ratio between the pairs of values. From a context, a linear relationship is proportional if the initial value is zero.
- "You saw today a linear relationship that was nonproportional. Can a proportional relationship also be linear?" All proportional relationships are linear because the graph of a proportional relationship is a straight line (that passes through the origin).

Highlight that there are linear relationships that are nonproportional and that all linear relationships, including those that are proportional, have a constant rate of change. Note that the rate of change of the linear relationship is the same value as the slope of a line representing the relationship. Stress that while some linear relationships are nonproportional, all proportional relationships are linear because all proportional relationships have a constant rate of change. In a proportional relationship, that constant rate of change is the constant of proportionality (or unit rate).

Formalize vocabulary:

- linear relationship
- initial value
- rate of change

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What strategies or tools did you find helpful today when finding the height of a stack of cups? How were they helpful?"
- "Were any strategies or tools not helpful? Why?"

Exit Ticket

Students demonstrate their understanding by analyzing the graph of a nonproportional linear relationship and finding the constant rate of change.

Exit Ticket

$\boxed{3}$

Andre charges a one-time fee for traveling to and from his babysitting jobs plus an hourly rate. The graph shows the money he earned, based on the number of hours worked, for a recent all-day babysitting job.

1. Is the relationship a linear relationship? Is the relationship proportional? Explain your thinking.
The relationship is linear, but not proportional, because while it has a constant rate of change, the line does not pass through the origin.
2. What hourly rate does Andre charge? Explain your thinking

Andre charges $\$ 15$ per hour; Sample response: By studying the graph, I can draw
A slope triangle with a vertical distance of 60 and a horizontal distance of $4 ; \frac{60}{4}=15$.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson

0 Points to Ponder . . .
The focus of this lesson was the transition from proportional relationships to linear relationships that are nonproportional. How did this transition go?
Which groups of students did and did not have their ideas seen and heard today?

Success looks like .. .

- Language Goal: Comparing and contrasting proportional and nonproportional linear relationships. (Speaking and Listening, Writing)
- Language Goal: Interpreting the slope of a graph of a nonproportional linear relationship. (Speaking and Listening, Writing)

Suggested next steps

If students are confused about the relationship being linear and nonproportional, consider:

- Reviewing Activity 3 for an example of a relationship that is linear, but nonproportional.
- Asking, "What do you notice about where the graph crosses the y-axis?"

If students are unable to determine the rate of change, consider:

- Asking, "Where can you see Andre's hourly rate represented on the graph?"
- Reviewing strategies for calculating the slope in Activity 2.
- Have students revisit this problem after Lesson 12.

Practice Problem	Analysis		
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	2
Spiral	$\mathbf{2}$	Activity 2	2
Formative $\mathbf{0}$	$\mathbf{3}$	Unit 2 Lesson 11	Unit 3 Lesson 8

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Comparing Relationships

Let's explore how linear relationships are different from other relationships.

Focus

Goals

1. Language Goal: Justify whether the values in a given table represent a linear relationship. (Speaking and Listening)
2. Compare rates of change for values in a table, and determine which table represents a linear relationship.

Coherence

- Today

Students continue their work with linear relationships and determining the rate of change. They build on their understanding of proportional relationships to determine whether a table of values models a linear or nonlinear relationship.

< Previously

In Lesson 7, students discovered relationships that have a constant rate of change and are nonproportional.

Coming Soon

In Lesson 9, students will explore how linear relationships are similar to and different from proportional relationships.

Rigor

- Students develop fluency in determining whether a relationship is linear or nonlinear.

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- Warm-up PDF, Analyzing Two Tables (for display)
- Activity 2 PDF, pre-cut cards, one per pair
- calculators (optional)
- rulers

Math Language Development

Review words

- initial value
- linear relationship
- proportional relationship
- rate of change

Amps : Featured Activity

Activity 2
 Digital Card Sort

Students match situations with graphs by dragging and connecting them on screen.

Building Math Identity and Community

Connecting to Mathematical Practices
In Activity 2, students may feel overwhelmed as they see the cards for the first time. In order to reduce their stress level, have students identify how all of the cards are alike. With this initial mini-task, students will feel like they have their feet under them. Then they can look at one card at a time with precision to distinguish its unique features and determine what type of relationship is modeled.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time

- In the Warm-up, provide the number of diagonals and have students complete Problem 2.
- Consider assigning Activity 2 as additional practice.

Warm-up Diagonals

Students complete a table of values as an introduction to nonlinear relationships.

Unit 3 | Lesson 8

Comparing Relationships

Let's explore how linear relationships are different from other relationships.

Warm-up Diagonals
Consider the following regular polygons.

1. How many diagonals are present in each polygon? Record your responses in the table.
2. Could the relationship between the number of sides of a polygon and the number of diagonals be linear? Explain your thinking.
No, there is not a linear relationship.
As the number of sides
As the number of sides increases by one, the number of diagonals does
not increase by the same value each not increase by the same value each
time. So, there is not a constant rate of change.

Polygon	Number of sides	Number of diagonals
Triangle	3	0
Quadrilateral	4	2
Pentagon	5	5
Hexagon	6	9
Heptagon	7	14

1 Launch

Activate students' prior knowledge by asking them what they know about regular polygons and diagonals. Provide access to rulers.

(2) Monitor

Help students get started by modeling how to draw a diagonal using the quadrilateral.

Look for points of confusion:

- Not being sure of the number of diagonals in a triangle. Have students complete the triangle last. Ask them to examine the number of diagonals in the other polygons and make use of their structure, and remind them that it is possible that there are no diagonals.
- Thinking the pattern represents a linear relationship. Remind students of the definition of a linear relationship. Then ask how the number of diagonals changes as the number of sides increases by 1 .
(3) Connect

Have students share their response for Problem 2.
Highlight that for a linear relationship, there must be a constant rate of change, which means that the change in one quantity divided by the change in the other quantity is constant. Stress that although the table shows a pattern, the rate of change is not constant, and therefore the relationship between the number of sides and the number of diagonals is not linear.
Display the Warm-up PDF, Analyzing Two Tables.
Ask students for values of y, one at a time, that make the tables represent a linear and nonlinear relationship. After each value, ask students if they need to write another value of y to show whether the relationship is linear or nonlinear.

(7) Power-up

To power up students' ability to recognize proportional and nonproportional relationships in tables, have students complete:
Recall that if a table is modeling a proportional relationship, each ratio $y: x$ from the table is the same value, called the constant of proportionality.

1. What is the constant of proportionality from the first two columns of the table? 5
2. If the table is a proportional relationship, what is the value of the missing cell?
3. What is a possible value of the missing cell if the relationship is nonproportional? Answers may vary but may not be 25 .

Use: Before Activity 2

Informed by: Performance on Lesson 7, Practice Problem 4 and Pre-Unit Readiness Assessment, Problem 1

Activity 1 Total Edge Length, Surface Area, and Volume

Students analyze data to see how the rate of change helps them identify a linear relationship.

1 Launch

Activate students' prior knowledge by asking them how to determine the surface area and volume of a rectangular prism.

2 Monitor

Help students get started by providing a method or formula to determine the total edge length, surface area, and volume of a rectangular prism.

Look for points of confusion:

- Having trouble completing the tables. Provide students with a rectangular object, such as a tissue box, and small sticky notes. Have them label the edges of the object with the measurements provided in the problem to help with their thinking.
- Thinking that the tables in Problems 2 and 3 represent a nonlinear relationship, as they talk about area and volume. Remind students that, in a linear relationship, as one quantity increases by a set amount, the other quantity increases or decreases by a constant amount. For each table, have students find the difference between the values and compare the ratios to see that they are equivalent.
- Thinking that the table in Problem 3 is not linear because it is proportional. Remind students that a proportional relationship is also linear, but that not all linear relationships are proportional. Revisit with these students to check for understanding after Lesson 9.

Look for productive strategies:

- Noticing a constant value, in the tables for Problems 1 and 2, that represents the top and bottom faces of the rectangular prism.
- Calculating an additional height, for example a height of 2 , to show that the increase is the same for each next value.

(1) Differentiated Support

Accessibility: Activate Prior Knowledge

Ask students what they know about the surface area and volume of rectangular prisms and what an edge of a prism means. Display the surface area and volume formulas. Consider demonstrating how to determine the sum of the edge lengths for Prism A.

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on completing the tables for Prisms A and B and then for any prism with base 3 units by 4 units.

Math Language Development

MLR8: Discussion Supports

During the Connect, as students share their explanations for Problem 4, display these sentence frames to help support them as they explain which relationship(s) are linear.

- "The relationship between ___ and __ is linear because ..."
- "The relationship between ___ and __ is not linear because ...

English Learners

Annotate the expressions $28+4 x, 24+14 x$, and $12 x$ in each table as linear and highlight the constant rate of change.

Activity 1 Total Edge Length, Surface Area, and Volume (continued)

Students analyze data to see how the rate of change helps them identify a linear relationship.

Activity 1 Total Edge Length, Surface Area, and Volume (continued)
3. What is the volume of each prism? Record your responses in the table.

Prism	Height (units)	Volume (cubic units)
A	1	12
B	3	36
C	$\frac{1}{2}$	6
Any prism with base 3 units by 4 units	x	$12 x$

4. Consider these relationships for a rectangular prism with base dimensions 3 units by 4 units.
The relationship between height and total edge length.

- The relationship between height and surface area
- The relationship between height and volume

Which of the relationships are linear? Explain your thinking
All of the relationships are linear; Sample response: Each relationship is changing at a constant rate.

3 Connect

Have pairs of students share their explanations for Problem 4. Use the Poll the Class routine to determine which students identify each table as linear.

Ask, "What is the rate of change in each relationship?" 4, 14, 12

Highlight:

- The rate of change is constant in each of the tables. This means that each table represents a linear relationship.
- Even if the values in the table are not consecutive, students can still determine whether the rate of change is constant by dividing the change in one quantity by the change in the other quantity. Point out how this is different when analyzing a table that represents a proportional relationship, where the rate of change is determined by $\frac{y}{x}$.
- All proportional relationships are linear, but not all linear relationships are proportional.

Activity 2 Card Sort: Tables of Linear Relationships

Students sort cards to attend to precision and strengthen their fluency in identifying linear and nonlinear relationships from tables of values.

1 Launch

Distribute one set of cards from the Activity 2 PDF to each pair of students. Then conduct the Card Sort routine.

2 Monitor

Help students get started by asking them how to determine a linear relationship from a table. Have students divide the change in one quantity by the change in the other quantity to help them sort the cards.

Look for points of confusion:

- Thinking Card 2 is linear. Remind students to check every row to see if there is a constant rate of change.
- Thinking Cards 1 and 4 are not linear because the difference between the values in the right column are not the same. Remind students that if the values in the table are not consecutive, they can compare the difference in the right column and the difference in the left column to look for an equivalent change.

Look for productive strategies:

- Simplifying the ratios that represent the change in one quantity to the change in the other quantity to look for a constant rate of change.

3 Connect

Have pairs of students share their strategies for determining the rate of change.

Ask, "What can you look for to determine whether a table of values could represent a linear relationship?"

Highlight that from a table, students can calculate the rate of change to identify whether the table represents a possible linear or nonlinear relationship.

4 Differentiated Support

Accessibility: Vary Demands to Optimize Challenge
Omit Cards 5 and 6 from the set. This will still allow students to access the mathematical goal of the activity, which is to strengthen their fluency in identifying linear and nonlinear relationships from tables of values.

Extension: Math Enrichment

Provide students with two blank cards and have them label them Card 7 and Card 8. Ask them to create one table of values on each card, one that represents a linear relationship and one that does not. Have them trade their cards with another student and determine which table represents a linear relationship and why.

Math Language Development

MLR7: Compare and Connect

To begin the Connect, have students compare their strategies for determining whether a relationship is linear or nonlinear. Listen for words and phrases that indicate students were looking for a constant rate of change, such as "the same value was added each time," 'I checked every row," and "I checked both columns not just the right column."

English Learners
Display these sentence frames to support students when they explain which relationships are linear or nonlinear.

- "___ is linear because ..."
. "-_ is nonlinear because

Summary

Review and synthesize how to identify linear and nonlinear relationships based on a table of values.

Synthesize

Display the Summary from the Student Edition.
Have students share their strategies for determining whether a relationship is linear from a table of values.

Ask students to create two tables, one representing a linear relationship and the other representing a nonlinear relationship. Ask them to explain how they created their tables, and how they know which one is linear and which one is nonlinear.

Highlight that students can identify whether a relationship expressed in a table is linear by looking for a constant rate of change.

(I) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What strategies did you find helpful today when identifying a possible linear relationship from a table of values?"

Exit Ticket

Students demonstrate their understanding of linear and nonlinear relationships by determining whether relationships expressed as tables of values are linear or nonlinear.

Success looks like ...

- Language Goal: Justifying whether the values in a given table represent a linear relationship. (Speaking and Listening)
» Writing a clear explanation for why the table in Problem 1 represents a linear relationship and the table in Problem 2 represents a nonlinear relationship.
- Goal: Comparing rates of change for values in a table and determining which table represents a linear relationship.

- Suggested next steps

If students identify Problem 1 as nonlinear or Problem 2 as linear, consider:

- Showing the rates of change for each table and asking them to compare them.
- Having them graph the values and asking them to identify whether the relationship is linear or nonlinear.
- Having students create their own linear and nonlinear tables.
- Reassessing after Lesson 9.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O_{0}. Points to Ponder ...

- Which groups of students did or did not have their ideas seen and heard today?
- Thinking about the questions you asked students today and what the students said or did as a result of the questions, which question was the most effective?

Math Language Development

Language Goal: Justifying whether the values in a given table represent a linear relationship.

Reflect on students' language development toward this goal.

- Do students' responses to the Exit Ticket Problems 1 and 2 provide a clear and accurate justification for why each relationship is linear or nonlinear? What mathematical vocabulary are they using?
- How can you help them be more precise in their justifications?

Practice Problem	Analysis	DOK	
Type	Problem	Refer to	1
On-lesson	$\mathbf{1}$	Activity 2	2
Spiral	$\mathbf{2}$	Activity 1	2
Formative $\mathbf{0}$	5	Unit 3 Lesson 5	1
	$\mathbf{4}$	Unit 3 Lesson 3	Unit 3 Lesson 9

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

More Linear Relationships

Let's explore some more linear relationships and their equations.

Focus

Goals

1. Language Goal: Describe how the slope and vertical intercept influence the graph of a line. (Speaking and Listening, Writing)
2. Identify and interpret the positive vertical intercept and slope of the graph of a linear relationship.
3. Identify and interpret the positive vertical intercept and slope of the equation of a linear relationship of the form $y=m x+b$.

Coherence

- Today

Students continue to explore how linear relationships are similar to and different from proportional relationships. They learn about the term vertical intercept, match different real-world situations to their corresponding graphs, and then interpret the slope and vertical intercept in the situation being modeled. Students learn that the equation $y=m x$ $+b$ can represent a linear relationship, and they make sense of problems by analyzing graphs and equations.

$<$ Previously

In Sub-Unit 1, students explored proportional relationships. In Lesson 8, students identified linear relationships by calculating the rate of change given a table of values.

>Coming Soon

In Lesson 10, students will write an equation to represent a linear relationship given in context, and then interpret the slope and y-intercept.

Rigor

- Students further their conceptual understanding of linear relationships by comparing different representations and interpreting the slope and y-intercept of a graph.

Amps powered by desmos : Activity and Presentation Slides
For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 2 PDF, pre-cut cards, one set per pair
- Activity 2 PDF (answers)
- Anchor Chart PDF, Representations of Linear Relationships

Math Language Development

New words

- vertical intercept
- y-intercept

Review words

- initial value
- linear relationship
- proportional relationship
- rate of change
- slope

Building Math Identity and Community

Connecting to Mathematical Practices
Students may feel lost if they do not know how to interpret the slope and vertical intercept. Encourage them to take control of their learning by suggesting they seek out support from 2-3 other sources as a general guideline when they feel frustrated.

Amps Featured Activity

Activity 2
 Digital Card Sort

Students match real-world situations with graphs by dragging and connecting them on screen.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 2, provide Situation Cards A, B, C and Graph Cards 1, 2, and 6.
- Optional Activity 3 may be omitted.

Warm-up Would You Rather?

Students compare two lines to draw attention to the slope and vertical intercept of each line.

1) Launch

Activate students' background knowledge by asking whether anyone subscribes to a music streaming service. Provide information about how the pricing may work for a subscription plan. For example, some plans charge a monthly fee versus an annual fee. Then conduct the Would You Rather? routine.

(2) Monitor

Help students get started by asking them the cost of each plan after 1 month and 3 months.

Look for productive strategies:

- Noticing that Plan B is more expensive up until 5 months.
- Noticing that Plan A is proportional and Plan B is nonproportional.

3 Connect

Have students share their responses.
Highlight that students can compare the cost of each plan based on the placement of each line.

Ask:

- "Which plan is proportional? Which plan is linear?" Both plans are linear, but Plan A is proportional and Plan B is nonproportional.
- "Do you think Plan A will always be cheaper? Why or why not?" Sample response: It appears that Plan A and Plan B cost the same amount for 5 months. Before 5 months, Plan A is less expensive, but is increasing at a faster rate than Plan B. I think that Plan A will be more expensive than Plan B after 5 months.
Note: In Activity 1, students will explore this scenario further.

(7) Power-up

To power up students' ability to calculate slope from a graph whose

 axes have a scale that is not equal to 1 , have students complete:Recall that to determine the slope of a line, you can draw a slope triangle then calculate the ratio of its vertical side length to its horizontal side length. You must take the scale of each axis into consideration when determining each length.

1. Draw a slope triangle for the line shown.

Sample response shown.
2. Determine the slope of the line. $\frac{5}{4}$ or equivalent

Use: Before the Warm-up
Informed by: Performance on Lesson 8, Practice Problem 5

Activity 1 Let's Compare

Students analyze two plans to determine the vertical intercept, and compare proportional and nonproportional relationships.

Activity 1 Let's Compare

Let's compare the two music subscription plans from the Warm-up.

1. Complete the table showing the total cost for the first five months of each plan from Audio Line.

Plan A: Pay $\$ 8$ every month. Plan B: Pay a one-time fee of $\$ 10$ to sign up, and then pay $\$ 6$ every month.

Number of months, x	Cost (\$), y	Number of months, x	Cost (\$)
1	8	1	16
2	16	2	22
3	24	3	28
4	32	4	34
5	40	5	40

2. Write an equation that represents the cost y, in dollars, after x months of service.

Plan A: $y=8 x$
Plan B: $y=10+6 x$
3. Diego wants to subscribe to one of these plans for 1 year.

Which plan should he choose? Explain your thinking.
Sample response: Diego should choose Plan B. I substituted 12 for x in each equation and found that Plan B will be less expensive after 1 year (12 months).
Plan A: $8(12)=96, \$ 96$
Plan B: $10+6(12)=82, \$ 82$

(1) Launch

Tell students they will investigate the two plans from the Warm-up further using tables and equations.

2 Monitor

Help students get started by completing the cost of 1 month in each table together as a class.

Look for points of confusion:

- Using reasoning to complete the table or equation for Plan B. Remind students that because there is an initial sign-up fee of $\$ 10$, they should include this additional cost. In the equation, this will be represented by +10 .
- Being unsure of how to solve Problem 3. Suggest that students continue the table or substitute 12 for x in each equation.

3 Connect

Display the graph from the Warm-up.
Have pairs of students share how the initial sign-up fee and monthly cost appear in the table, graph, and equation.

Define the term vertical intercept as the point where the graph of a line intersects the vertical axis. Also known as the \boldsymbol{y}-intercept, it is the value of y when the corresponding value of x is 0 .

Ask:

- "What is the vertical intercept for each plan? What does it represent?"
- "When do the plans cost the same?"
- "Is Plan A always cheaper?"

Highlight that the vertical intercept is located on the y-axis on the graph and is the constant in the equation. For a proportional relationship, the vertical intercept is 0 because the graph intersects the y-axis at the origin.

Differentiated Support

Accessibility: Guide Processing and Visualization

Demonstrate and encourage students to use color coding and annotations to highlight how the slope and vertical intercept appear in a verbal description, graph, table of values, and equation. Have them highlight the slope in each representation using one color and the vertical intercept in another color.

Extension: Math Enrichment

Ask students which plan Diego should choose if he only wants to subscribe to one of these plans for 3 months, 5 months, or 8 months. 3 months: Plan A. They cost the same at 5 months. 8 months: Plan B.

Math Language Development

MLR8: Discussion Supports

During the Connect, support students in producing statements about the meaning of a vertical intercept by displaying sentence frames for them to use when they describe the reasoning for their matches. For example:

- "The vertical intercept \qquad represents.
- "The vertical intercept for Plan \qquad is \qquad so this tells me.

English Learners

Annotate the vertical intercept on the graph, verbal description, table of values, and equation. Use hand gestures to illustrate the meaning of "vertical."

Activity 2 Card Sort: Slopes, Vertical Intercepts, and Graphs

Students sort cards to compare nonproportional linear and proportional relationships and to understand how the slope and vertical intercept appear in each.

Amps Featured Activity

Digital Card Sort
Name: \quad Date: \quad Period:
Activity 2 Card Sort: Slopes, Vertical Intercepts, and Graphs

You will be given six cards describing different real-world situations and six cards containing graphs.

1. Match each situation with its corresponding graph.

Situation A: Graph 2 Situation B: Graph $6 \quad$ Situation C: Graph 1
Situation D: Graph 3 Situation E: Graph 5 Situation F: Graph 4
2. Select one proportional relationship and one nonproportional relationship.

For each relationship you select, complete the following problems. Sample response shown
a How can you determine the slope from the graph? Show or explain your thinking.
Proportional: Situation F Because the y-values increase by 40 when the x-values increase by 1 , the slope is 40 .

Nonproportional: Situation A
Because the y-values increase by $\mathbf{1 0}$ when the x-values increase by 1 , the slope is 10 .
b Explain what the slope represents in the situation.

Proportional: Situation F
Nonproportional: Situation A The slope represents the amount Lin's mom pays each month.
c What is the vertical intercept? What does it tell you about the situation?

Proportional: Situation F ($\mathbf{0}, \mathbf{0}$); This tells me that Lin's mom did not pay any money when the contract first started.
d Write an equation that represents the situation.
Proportional: Situation
$y=40 x$

Nonproportional: Situation A $(0,40)$; This tells me that the tablet costs $\$ 40$

F

Nonproportional: Situation A $y=40+10 x$
 Discuss with your partner

1 Launch

Distribute one set of cards from the Activity 2 PDF to each pair of students. Then conduct the Card Sort routine.

(2) Monitor

Help students get started by drawing slope triangles to determine the slope on each graph card.

Look for points of confusion:

- Not being able to match a graph to a situation.

Remind students to look at the scale on both axes when calculating the slope, and then simplify the slope.

- Having trouble interpreting the slope and vertical intercept for Problems $2 b$ and 2c. Have students label the axes with each variable.

Look for productive strategies:

- Looking at the y-axis to identify whether a relationship is proportional or nonproportional.

3 Connect

Display student work showing the correct matches.

Have students share how they matched each situation to its graph.
Define the equation of a linear relationship as $y=m x+b$ where m is the slope and b is the vertical intercept.

Ask, "What equation represents a linear relationship with a vertical intercept of 0?" Sample responses: $y=m x, y=k x, y=m x+0$.

Highlight that for a proportional relationship, the rate of change can be determined by the ratio of y to x, but for a linear relationship, the slope is determined by the ratio of the vertical change to the horizontal change.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, limit the number of cards students need to sort by providing them with Situation Cards A, B, and C , and Graph Cards 1, 2, and 6.

Extension: Math Enrichment

Ask students to select one proportional relationship and one nonproportional relationship. Have them explain how they could alter the situation so that the proportional relationship becomes nonproportional, and vice versa. Then have them explain how their corresponding graphs would change

Math Language Development

MLR7: Compare and Connect

During the Connect, as students share their matches, call attention to the different ways the vertical intercept is represented graphically and within the context of each situation. Ask students to closely examine Graphs 2 and 3 and explain what the value 40 represents in each corresponding situation. Then ask them why the graphs look different. Sample response: The value 40 represents the cost of the tablet in both situations. The graphs look different because the slopes are different.

English Learners

Annotate the vertical intercept on each graph with the phrases initial value and vertical intercept.

Optional

Activity 3 Matching Equations

Students match an equation with its graph to see how the changing the coefficient of x in the equation affects its line.

Activity 3 Matching Equations

The manager at Honest Carl's Funtime World compares two different roller coasters. The table gives the roller coasters' heights and speeds for the hill before the first drop.

Jack Rabbit	Thunderbolt
Starts from a platform with a height of 14 ft and then climbs 4 ft per second.	Starts from a platform with a height of 4 ft , and then climbs 14 ft per second.

1. Match each roller coaster with its equation, where x represents the time in seconds and y represents the height, in feet, of the roller coaster above the ground.

Equation

a Jack Rabbit b $y=4+14 x$
(b) Thunderbolt a $y=4 x+14$
> 2. The manager of Honest Carl's Funtime World wants to know the height of each roller coaster after 3 seconds. How can she use the equation or graph to determine this? Sample response:

- For the equation, substitute 3 for x into each equation. Jack Rabbit $14+4(3)=26 ; 26 \mathrm{ft}$ Thunderbolt $4+14(3)=46 ; 46 \mathrm{ft}$
- For the graph, determine the y-value when the x-value is 3 for each line.
Jack Rabbit (3, 26); 26 ft
Thunderbolt ($\mathbf{3}, 46$); 46 ft

Q Historical Moment

m is for ... slope?
Why do we use the letter " m " to represent slope? Some speculate that it comes from the French word monter, which means to climb, while others speculate that it comes from the tain word montagne. for mountain. Other countries even use different letters to represent lis oug the meanin of slope is the same oss countries the orisin of is used is still uncertain.

Accessibility: Guide Processing and Visualization

Suggest students use color coding and annotations to highlight the slope and vertical intercept of each equation and how they are represented in the corresponding graph and verbal description.

Extension: Math Enrichment

Have students complete the following problem:
Suppose a roller coaster starts from a platform of 10 ft and then climbs an additional 312 ft in 60 seconds, at a constant speed. What equation represents the height y, in feet, of the roller coaster above the ground given the number of seconds x ? $y=10+5.2 x$ (or equivalent)

(1) Launch

Activate students' background knowledge by asking if they have ever been on a roller coaster. Ask students how the rollercoaster's height from the ground changes as the roller coaster climbs the first hill.

(2) Monitor

Help students get started by labeling the vertical intercept of each line on the graph with their ordered pairs, $(0,4)$ and $(0,14)$.

Look for points of confusion:

- Matching the wrong equations and lines. Remind students that in the equations $y=m x+b$ and $y=b+m x, b$ represents the vertical intercept and m represents the slope. Additionally, students may find it helpful to substitute different values for x and match the corresponding values of y on the graph.

Look for productive strategies:

- Using the context or graph to determine the matching equation.

3 Connect

Ask:

- "How do you know each relationship can be represented with a linear equation?"
- "How is the height of the platform represented in the equation and on the graph? What about the speed of the roller coaster?"
- "Which roller coaster travels at a faster rate? How can you tell, based on the graph and equation?"

Highlight that although the order of the slope and y-intercept in the equation do not affect the line, the value of the coefficient of x does affect the slope of the line. For positive slopes, the greater the value of the coefficient, the steeper the line.

Historical Moment

m is for . . . slope?

Have students read the Historical Moment to learn about some theories of why the letter m is commonly used to represent the slope. Be sure students also understand that the variable m can also be used to label lines.

Summary

Review and synthesize how the vertical intercept and slope of a linear relationship appear on a graph and in an equation.

(4) Synthesize

Display the summary from the Student Edition and the Anchor Chart PDF, Representations of Linear Relationships.

Have students share how they can identify the vertical intercept and slope of a linear relationship from a graph and equation.

Formalize vocabulary:

- vertical intercept
- y-intercept

Highlight that the vertical intercept is the b-value in the equation $y=m x+b$ and the point $(0, b)$ on the graph where the line intersects the y-axis.

Ask, "How does a vertical intercept appear in a nonproportional linear relationship? How does it appear in a proportional relationship?" The vertical intercept is located at $(0,0)$ for a proportional relationship. For a nonproportional relationship, the vertical intercept is located at $(0, b)$ for any value of b that is not zero.

(Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What strategies did you find helpful today when identifying the vertical intercept and slope of a linear relationship?"

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in Lesson 2. Ask them to review and reflect on any terms and phrases related to the terms vertical intercept and y-intercept that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding by interpreting the slope and vertical intercept from the graph of a linear relationship.

Success looks like ...

- Language Goal: Describing how the slope and vertical intercept influence the graph of a line. (Speaking and Listening, Writing)
- Goal: Identifying and interpreting the positive vertical intercept and slope of the graph of a linear relationship.
- Goal: Identifying and interpreting the positive vertical intercept and slope of the equation of a linear relationship in the form $y=m x+b$.

Suggested next steps

If students do not identify or interpret the slope correctly, consider:

- Reviewing Activity 2, parts a and b.
- Drawing slope triangles.

If students do not identify or interpret the vertical intercept correctly, consider:

- Reviewing Activity 2, part c.
- Highlighting the y-axis.

If students do not write the correct equation, consider:

- Writing $y=\square x+\square$ and having them fill in the empty boxes with the slope and y-intercept.
- Reassessing after Lesson 10.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...

- In earlier lessons, students learned about proportional relationships. How did that support their understanding of linear relationships?
What challenges did students encounter as they worked on Activity 1 ? How did they work through them?

3. Explain what the slope and y-intercept represent in each real-world situation.
a The amount of money y in a cash box after x tickets are purchased for carnival games. The slope of the line is $\frac{1}{4}$ and the y-intercept is 8 . Sample response: The slope means that each ticket costs $\$ 0.25$.
The y-intercept represents the amount, $\$ 8$, already in the cash box.
(b) Han is graphing the relationship between the cost y in dollars of a flower Han is sraphing the relationship between the cost y in dolars of a flower
delivery and the number of flowers ordered, x. The slope of the line is 2 .
and the y intercent is 3 and the y-intercept is 3 .
The y-intercept represents a flaa delivery fee, tip, or other one-time fee.
4. The table and graph show the amount of almond flour and fresh raspberries that are needed for each of Lin's and Noah's favorite raspberry lemon scone recipes.

a If you have 6 cups of almond flour for each recipe, how many cups of raspberries would you need to make each recipe? Lin's recipe: 12 cups Noah's recipe: 9 cups
b If you have 5 cups of raspberries for each recipe, how many cups of almond flour do you need to make each recipe? Lin's recipe: 2.5 cups Noah's recipe: $3 \frac{1}{3}$ cups
5. Write the equation of a line that has a slope of 2 and a vertical intercept of 8 . $y=2 x+8$

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	1	Activity 2	1
	2	Activity 1	2
	3	Activity 2	2
Spiral	4	Unit 3 Lesson 6	2
Formative 0	5	Unit 3 Lesson 10	1

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Representations of Linear Relationships

Let's write linear equations from context.

Focus

Goals

1. Language Goal: Create an equation that represents a linear relationship in context. (Reading and Writing)
2. Language Goal: Interpret the slope and vertical intercept of the graph of a line in context. (Speaking and Listening)

Rigor

- Students further their conceptual understanding of linear relationships by interpreting the slope and vertical intercept in a context.
- Students write equations given a description or a graph to develop procedural fluency.

Coherence

- Today

Students investigate the relationship between the total volume in a cylinder and the number of marbles added to the cylinder. They interpret the initial water volume as the vertical intercept and the slope as the rate of change, which is the amount by which the volume increases when one object is added. Students apply their understanding of linear relationships in context by writing and comparing equations with a partner.

$<$ Previously

In Lesson 9, students explored the differences in a proportional and nonproportional relationship. They analyzed the vertical intercept and learned that the equation $y=m x+b$ represents a linear relationship.

Coming Soon

In Lessons 11 and 14, students will develop a geometric and an algebraic method for writing the equation of a line given two points on the line.

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Representations of Linear Relationships
- rulers
- one 100 ml graduated cylinder filled with 60 ml of water per group
- 10-20 marbles (or identical objects that fit into the cylinder and do not float such as cubes, dice, etc.) per group

Math Language Development

Review words

- linear relationship
- slope
- vertical intercept
- y-intercept

Amps Featured Activity

Activity 1
 Watch the Water Rise

Use this digital version of the activity to see rising water levels as marbles are added to a cylinder.

Building Math Identity and Community

Connecting to Mathematical Practices
Students who are more confident with this work may be able to lead discussions with their partner. Remind students to 'step up' if they have something to add to the conversation, but also to 'step back' to give other voices a chance to share.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- For Activity 1, begin with a demonstration using the digita version of the task. Record the measurements for all to see. After students have the information for Problem 1, have them complete the remaining problems in small groups.
- Omit Activity 2

Warm-up Can You Guess the Game?

Students watch an animation to pique their interest in a real-world linear relationship.

Unit 3 | Lesson 10

Representations of Linear Relationships

Let's write linear equations from context.

Warm-up Can You Guess the Game?
You will be shown an animation of a game.
How do you think the game is played?
Sample response: Each person adds a marble to a cylinder that contains
some water. The person whose water reaches the top of their cylinder first is the winner.

(7)

Power-up
To power up students' ability to write linear equations of the form $y=m x+b$, have students complete:

Recall that linear equations can be written of the form $y=m x+b$ where m represents the slope and b represents the vertical intercept.
Write the equation of the line with a slope of $\frac{2}{3}$ and vertical intercept of 4 .
$y=\frac{2}{3} x+4$
Use: Before Activity 1
Informed by: Performance on Lesson 9, Practice Problem 5

1 Launch

Activate students' background knowledge by asking them if they have played a game at a carnival and how the games were played. Then display the animation, Guess the Game, from the Warm-up Amps slides.

(2) Monitor

Help students get started by asking them to observe the number of marbles and water level.

Look for productive strategies:

- Noticing that as the number of marbles increases, the water level increases.
- Noticing that the goal of the game is for the water level to reach the top of the cylinder.
(3) Connect

Have students share how they think the game is played.

Ask, "How can you describe the relationship between the water level and the number of marbles?" Answers may vary. Guide students towards realizing that the relationship is linear.

Highlight that each marble added increases the water level in the cylinder by the same amount, so the relationship is linear.

Activity 1 Rising Water Levels

Students analyze a linear relationship for data gathered in context and interpret the slope and vertical intercept of the equation that represents the relationship.

1 Launch

Distribute one graduated cylinder filled with 60 ml of water along with $10-20$ marbles and rulers to each group. For a shorter 25 minute activity, use the Activity 2 Amps slides. Have students label the x-axis using the variable n to represent the number of marbles and the y-axis using the variable v to represent the volume.

2 Monitor

Help students get started by modeling how to add marbles and read the water level on the cylinder.

Look for points of confusion:

- Not knowing how to write the volume for n marbles or how to write the equation for Problem 3. Ask, "What was the initial volume? How much does one marble increase the volume?"
- Not understanding why a line is drawn. Tell students that although the intermediate points do not make sense for the context, it helps to better explore and understand the situation.
- Not knowing how to solve Problem 4. Have students use their equation and substitute the highest mark on the cylinder for v. Then have them solve the equation.

3 Connect

Have groups of students share their methods for writing the equation.

Ask, "How can you determine the slope and vertical intercept from the equation and graph? What do they represent in this context?"
Highlight that in this situation, the slope represents the volume increase in milliliters for each marble added to the cylinder, and the vertical intercept represents the initial amount of water in the cylinder, in milliliters.

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can see the rising water levels as marbles are added to a virtual cylinder. This will allow them to access the mathematical goal of this activity, without having to use the actual physical objects and water.

Extension: Interdisciplinary Connections

Ask students what happens when they add ice to a full glass of water. This is water displacement, which happens when an object is submerged in water, or another liquid. The object takes the place where the water used to be and the water level rises. The volume of the displaced water is equal to the volume of the submerged object. (Science)

Math Language Development

MLR2: Collect and Display

As students collect their data, listen for and record the vocabulary they use to describe what happens to the water level as they add additional marbles. Amplify phrases that relate to volume, rate, slope, and vertical intercept. Continue adding to this display in Activity 2.

English Learners

Use gestures and pointing to connect mathematical terminology to the graph. For example, point to the vertical intercept and say, "The vertical intercept is 60 ." Annotate the graph by labeling the vertical intercept.

Activity 2 Partner Problems

Students write a linear equation that represents a linear relationship in context to develop procedural fluency.

Activity 2 Partner Problems

With your partner, decide who will complete Column A and who will complete Column B After each row, share your response with your partner. Although the problems in each row are different, your responses should be the same. If they are not the same, work together to correct any errors or resolve any disagreements.

Column A	Column B
1. The manager of a carnival fills a dunk tank with water. The graph shows the volume of water in the tank as it is filled. Write an equation that gives the volume of water w in the dunk tank after t minutes. Sample response: $w=10 t+60$	A dunk tank at a carnival has 60 gallons of water in it when the manager begins to fill the tank with a hose. Water fills the tank at a rate of 10 gallons per minute. Write an equation that gives the volume of water w in the dunk tank after t minutes. Sample response: $w=\mathbf{6 0 + 1 0 t}$
2. Han operates the bumper cars at a carnival. On Independence Day, he earned $\$ 8$ per hour, plus a $\$ 20$ bonus for working on a holiday. Write an equation for the amount a Han earned for working h hours on Independence Day. Sample response: $a=8 h+20$	Han operates the bumper cars at a carnival. The graph shows the amount he earned working on Independence Day.

1. Launch

Activate students' background knowledge by asking them about activities at a carnival. Provide information about dunk tanks and bumper cars if needed. Then conduct the Partner Problems routine.

(2) Monitor

Help students get started by reminding them to use the Anchor Chart PDF, Representations of Linear Equations, if they need help.

Look for points of confusion:

- Writing the incorrect equation from a graph. Have students draw a slope triangle and circle the vertical intercept. Then provide the equation $w=\square t+\square$ or $a=\square h+\square$ and have them complete the equation using the slope and vertical intercept.
- Writing the incorrect equation from the description. Consider providing the equation $y=$ rate of change $\cdot x+$ initial value.

Look for productive strategies:

- Simplifying slopes to check whether their equation is equivalent to their partner's equation.

3 Connect

Ask, "How does the slope and vertical intercept appear in a graph? How does the slope and vertical intercept appear in the equation?"

Highlight:

- The values $\frac{20}{10}$ and 2 both correctly define the slope, but the slope is often simplified in the equation.
- Linear equations are typically written in the form $y=m x+b$, but equations written in the form $y=b+m x$ are equivalent.

Differentiated Support

Accessibility: Guide Processing and Visualization

Display or provide copies of the Anchor Chart PDF, Representations of Linear Relationships for students to refer to as they complete this activity. Provide access to colored pencils and suggest students use color coding and annotations to color code the slope in one color and the vertical intercept in another color, across the various representations.

Extension: Math Enrichment

Have students write a story context that can be represented by the equation $y=30 x+100$.

Sample response: Priya opens a savings account and deposits $\$ 100$.
Each month, she deposits $\$ 30$.

Summary

Review and synthesize how to write an equation that represents a linear relationship in context.

Synthesize

Display the Summary from the Student Edition.
Have students share how to write an equation from a context in their own words.

Highlight that the slope represents the rate of change and the vertical intercept represents the initial amount, the value of y, when $x=0$.

Ask:

- "Why can the line given in the Summary be written using a linear equation?" The graph is a straight line, so the relationship is linear.
- "How can writing a linear equation help you to solve a problem?" Sample response: Once I know the equation, I can substitute a known value for one quantity and solve the equation to find the corresponding unknown value for the other quantity.

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What helped you write equations from a context?"

Exit Ticket

Students demonstrate their understanding by writing an equation that represents a linear relationship in context.
(2)

亘 Printable

Exit Ticket

 5Elena pays $\mathbf{\$ 2 0 0}$ for a cell phone and $\mathbf{\$ 5 0}$ each month for service.

1. Write an equation for the cost c after n months of service for his phone $c=50 n+200$
2. Which graph shows the total cost of the phone after n months of service? Explain your thinking.

Graph A; Sample response: The value $\$ 200$ represents the initial cost, which is represented by the vertical intercept, the point located at $(0,200)$. The line has slope of $\frac{200}{4}$, which represents the rate Elena pays, $\$ 50$ per month.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
©. Points to Ponder ...

- In what ways did Activity 1 go as planned?
- In what ways in Activity 1 did unexpected things happen?

Success looks like...

- Language Goal: Creating an equation that represents a linear relationship in context. (Reading and Writing)
- Language Goal: Interpreting the slope and vertical intercept of the graph of a line in context. (Speaking and Listening)

- Suggested next steps

If students do not write the correct equation for Problem 1, consider:

- Having them create a table showing the cost for the first 5 months, and then looking for a pattern.
- Reassessing after Lesson 12.

If students do not choose the correct graph for Problem 2, consider:

- Labeling the cell phone cost as the "initial cost" and highlighting the phrase "\$50 each month."

(2)

4. Tyler and Jada each have a favorite banana bread recipe using slightly different amounts of mashed bananas and honey. The number of cups of mashed bananas is proportional to the number of cups of honey.

yler's recipe:		Jada's recipe:
Honey (cups)	Bananas (cups)	The relationship between the number of cups of mashed bananas y and
$\frac{1}{2}$	$\frac{3}{4}$	the number of cups of honey x is represented by the equation $y=\frac{7}{4} x$.
$2 \frac{1}{2}$	$3 \frac{3}{4}$	
3	$4 \frac{1}{2}$	

a If you have 4 cups of honey, how many cups of mashed bananas would you need
to make each recipe? to make each recipe? Tyler's recipe: 6 cups Jada's recipe: 7 cups
b What is the rate of change for each recipe, and what does it mean within this context? Tyler's recipe:

Jada's recipe:
The rate of change is $\frac{3}{2}$. The rate of change is $\frac{7}{4}$. This means This means there are $\frac{3}{2}$ cups there are ${ }_{3}$ cups of mashed banana
per 1 cup of honey of honey.
5. Refer to the slope triangles shown. What is the unknown vertical side length? Explain your thinking

Sample response: The two triangles are similar.
I determined the scale factor, 4 , by comparing the r of corresponding side lengths. Then used the scale
factor to determine the unknown side length: $28 \div 4=7$,

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Writing Equations for Lines Using Two Points

Let's write an equation for a line that passes through two points.

Focus

Goals

1. Create an equation of a line with a positive slope on a coordinate plane using knowledge of similar triangles.
2. Language Goal: Justify that a point (x, y) is on a line by verifying that the values of x and y satisfy the equation of the line. (Speaking and Listening)

Coherence

- Today

Students extend their work with slope triangles to develop a method for calculating the slope using any two points on a line. They use a geometric method to write an equation of a line given two points on the line. Students then use their equations to justify whether a point is on the line.

< Previously

In Lesson 10, students created an equation that represented a linear relationship in context, and then interpreted the slope and y-intercept.

> Coming Soon

In Lesson 14, students will generate an algebraic method to determine the equation of line given two points on the line.

Rigor

- Students write the equation of a line using two points and similar triangles to strengthen their fluency in writing linear equations.

Amps powered by desmos : Activity and Presentation Slides
For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent
-

Materials

- Exit Ticket
- Additional Practice
- calculators
- rulers

Math Language
 Development

Review words

- linear relationship
- slope
- y-intercept
- similar triangles
- vertical intercept

Amps : Featured Activity

Activity 3

Through the Tunnel
Students enter an equation that will calculate the roller coaster's path, and revise their response as needed.

Building Math Identity and Community

Connecting to Mathematical Practices
Students may feel lost if they do not make the connection between slope, similar triangles, and writing the equation of a line. Ask them to engage in metacognitive functions, i.e., thinking about their own thinking process. For example, have them conduct their own Notice and Wonder routine, which will help them record their thought processes.

Modifications to Pacing

You may want to consider this additional modification if you are short on time.

- Optional Activity 3 may be assigned as additional practice.

Warm-up Coordinates and Lengths in the Coordinate Plane

Students determine unknown coordinates of points using slope triangles to further explore the relationship between vertical and horizontal side lengths of slope triangles.

Unit 3 | Lesson 11

Writing Equations for Lines Using Two Points

Let's write an equation for a line that passes through two points.

Warm-up Coordinates and Lengths in the Coordinate Plane Consider line $A B$ and the two slope triangles shown.

1. Determine the vertical side length x of the larger triangle. Explain your thinking. $x=6$; Sample response: The two triangles are similar, so the ratio of the vertical to horizontal side lengths of the triangles are equivalent: $\frac{3}{4}=\frac{x}{8}, x=6$.
2. What are the coordinates of points A and B ? Explain your thinking.
$A(4,5)$; Sample response: The smaller triangle has a horizontal side length of 4 units. The y-coordinate of point A is 5 because the vertical side length of the triangle is 3 units, and adding the 2 units that represent the distance from the x-axis yields a total distance from x-axis of 5 units.
$B(12,11)$; Sample response: The x-value represents the sum of the horizontal side length f both triangles, $8+4=12$. The y-value represents the sum of the vertical side lengths of both triangles, plus the additional 2 units: $6+3+2=11$.
(1) Launch

Activate students' background knowledge by asking them to identify how slope triangles are used to analyze linear equations on a graph.

(2) Monitor

Help students get started by asking them how to calculate an unknown side length given two similar triangles.

Look for points of confusion:

- Not knowing how to determine the coordinates of points A or B. Ask students to determine the vertical distance between point A and the x-axis.
- Thinking that the coordinates of point A are $(4,3)$. Tell students that the line does not represent a proportional relationship. Then highlight the vertical distance below the smaller triangle to emphasize the additional vertical distance of 2 units to the x-axis.

Look for productive strategies:

- Examining the horizontal lengths of the triangles to determine the x-coordinate.
- Examining the vertical lengths of the triangles to determine the y-coordinate.

Connect

Have pairs of students share their strategies for determining the coordinates of points A and B.

Highlight that even if there are no gridlines on a graph, students can use the coordinates of points or lengths of similar triangles to determine unknown values.

Ask:

- "Which coordinate value is affected by a horizontal change?" x "Which coordinate value is affected by a vertical change?" y
- "How do you think you can write the equation of a line that is on a coordinate plane with no grid lines?"

Power-up

To power up students' ability to determine the unknown length in a slope triangle using reasoning about similar triangles, have students complete:

Recall that the ratio of the vertical length to the horizontal length is constant for any slope triangle on a given line.

1. What is the ratio of the vertical length to the horizontal length in the smaller slope triangle? $\frac{3}{2}$

2. What is the unknown vertical length in the larger slope triangle? Be prepared to explain your thinking. 9; Sample response: The horizontal side of 2 is tripled to make 6 so 3 must be tripled to make a length of 9 .
Use: Before the Warm-up
Informed by: Performance on Lesson 10, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 7

Activity 1 Calculate the Slope

Students develop a method to calculate slope without a grid, seeing that they can use coordinates of any two points to calculate the slope of the line connecting these points.

1 Launch

In groups of three, have each student choose a different pair of coordinates to complete the problems. Provide access to rulers for the duration of the lesson.

2 Monitor

Help students get started by asking them to calculate the difference in the values of x to determine the horizontal length and the difference in the values of y to determine the vertical length for each of their slope triangles.

Look for points of confusion:

- Not observing patterns for Problem 2. Have students simplify and compare any fractions.

Look for productive strategies:

- Noticing that they can use any two points on a line to calculate the slope of a line
- Writing the slope as $\frac{v-t}{u-s}$ or $\frac{t-v}{s-u}$.

Connect

Have groups of students share what they noticed and their methods for calculating the slope between any two points.

Ask, "Does order matter when you subtract the values of x and y ?" No, as long as you follow the same order for subtracting coordinates.
Highlight that students can divide the difference in the values of y by the difference in the values of x using coordinates of any two points to calculate the slope. However, note that it is important to subtract the x-coordinates for the two points in the same order as the y-coordinates.

Note: If you would like to formally introduce the traditional formula invoking subscripts you may do so here, but students are encouraged to use a method that works for them.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Have students use points A and C for Problem 1. Then pause to facilitate a class discussion with Problem 2, using class responses to Problem 1.

Extension: Math Enrichment

Have students use the diagram in Problem 3 to write a different, yet equivalent expression that represents the slope of the given line.
Sample response: $\frac{t-v}{s-u}$

Math Language Development

MLR8: Discussion Supports-Press for Details

During the Connect, as students respond to the Ask question, press for details in their reasoning. For example, if they say "The order does not matter," ask these additional questions, using points A and C :

- "Subtract the y-values in any order. What are the possible differences?" $28-12=16$ and $12-28=-16$
- "Subtract the x-values in any order. What are the possible differences? $5-1=4$ and $1-5=-4$
- "What are the only two ways to determine the ratio of these differences so that the slope is 4?" Either $\frac{16}{4}$ or $\frac{-16}{-4}$.

Activity 2 Writing an Equation From Two Points

Students apply their knowledge of similar triangles to write an equation of a line, and then use the equation to check whether a point is on the line.

Activity 2 Writing an Equation From Two Points

Line m is shown on the coordinate plane. Several points are marked on the line.

1. Label the horizontal and vertical side lengths of each slope triangle so that they have a number or expression representing their lengths.
2. Use what you know about similar triangles to calculate the value of b. Show or explain your thinking.
$b=5$; Sample response: I used the $b=5$; Sample response: A used the
ratio of side lengths of the smaller ratio or side engths of the smalier
triangle, $\frac{3}{4}$, to find the vertical side in the larger triangle: $\frac{14-b}{12}=\frac{3}{4}$, so,
 $14-b=9, b=5$.
3. Identify the slope and y-intercept. Then write an equation for the line. The slope is $\frac{3}{4}$, the y-intercept is 5 . The equation for the line is $y=\frac{3}{4} x+5$.
> 4. Are the following points on the line? Explain your thinking.
(a) $(24,23)$

Yes; Sample response: The equation $23=5+\frac{3}{4}(24)$ is true.
b $(100,80)$ Yes; Sample response: The equation $80=5+\frac{3}{4}(100)$ is true.

C $(60,45)$ No; Sample response: The equation $5+\frac{3}{4}(60)=45$ is not true.

1) Launch

Ask students what they need to know to write the equation of a line in the form $y=m x+b$. The slope and y-intercept. Have students complete Problems 1-3 in pairs, discuss the equation as a whole class, and then complete Problem 4 independently. Provide access to calculators for the duration of the lesson.

(2) Monitor

Help students get started by having them calculate the vertical side length of the smaller slope triangle.

Look for points of confusion:

- Not knowing how to write an expression for an unknown length in Problem 1. Next to each calculated length, ask students how they determined the length. Use the expressions $17-4$, $16-12$, and $12-0$ to have students look for and make use of structure in order to write $14-b$ for the unknown vertical length.
- Having trouble determining the value of b. Have students write an equation using the ratios of the horizontal and vertical side lengths of the similar slope triangles, then solve the equation for b.
- Not being sure how to determine if a point is on a line. Have students use the equation and substitute the value of x, and then compare the value of y with their answer to check for equality.

Connect

Have students share their strategies for writing the equation of the line using similar triangles and coordinates of points.

Highlight that students can use two points and similar triangles to determine the slope and y-intercept of a line and write its equation. They can verify if a point is on the line by substituting the values of x and y in the equation to see if the equation holds true.

Differentiated Support

Accessibility: Guide Processing and Visualization

Demonstrate how to label the vertical and horizontal side lengths of the slope triangles. Consider writing each side length as a subtraction expression before simplifying it, so that students can visualize how to write the expression $14-b$.

Math Language Development

MLR5: Co-craft Questions

Before revealing the problems in this activity, display the introductory text and the graph. Ask students to work with a partner to write 1-2 mathematical questions they have about the graph. Ask pairs of students to share their questions with the class.

English Learners

Display a sample question, such as "What is the value of b ?" or "What is the slope of the line?"

Optional

Activity 3 Through the Tunnel
Students write the equation of a line using two points to develop procedural fluency.

1) Launch

Tell students their goal is to write an equation of a line so that the roller coaster passes through the tunnel.

2 Monitor

Help students get started by having them draw a line that passes through the points and labeling the y-intercept as $(0, b)$.

Look for points of confusion:

- Having trouble calculating the y-intercept. Have students draw two slope triangles using the y-intercept and two points, then label the vertical and horizontal lengths with a value or expression. Remind them to use their knowledge of similar triangles to determine an unknown value.

3 Connect

Display student work showing their responses. Discuss any discrepancies in student work and possible reasons for the discrepancies.
Have students share their strategies for writing the equations.

Ask students how they can calculate the slope of the line and use it to determine the y-intercept.
Note: Students will investigate another method to write the equation of a line using two points in Lesson 14.

Highlight that students can write an equation of a line if they know the coordinates of two points on the line.

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can enter an equation that will calculate the roller coaster's path and revise their equation as needed.

Accessibility: Guide Processing and Visualization

Provide a checklist of steps students can use for this activity. For example:
Step 1: Draw a line through the points.
Step 2: Label the y-intercept $(0, b)$.
Step 3: Draw slope triangles and label the vertical and horizontal side lengths with a value or expression.

Step 4: Use your knowledge of similar triangles to calculate b.
Step 5: Write your equation using the slope and y-intercept.

Summary

Review and synthesize how to write an equation of a line using two points and similar triangles.

Summary

In today's lesson.

You discovered a method for calculating the slope between any two points. You also applied your understanding of similar triangles to write the equation of a line passing through two given points.

For example, because the two triangles shown are similar, the ratios of corresponding side lengths are equivalent, $\frac{3}{4}=\frac{14-b}{12}$. Because $\frac{3}{4}=\frac{9}{12}$, this means that $14-b=9$ and $b=5$. The y-intercept is 5 .
Now you can use the slope, $\frac{3}{4}$, and y-intercept, 5 , to write an equation for the line: $y=\frac{3}{4} x+5$.

Reflect:

Synthesize

Have students share how they can write an equation of a line using two points in their own words.

Highlight that students can draw a line and similar triangles to determine the slope and y-intercept of a line.

Display the Summary from the Student Edition.
Ask, "How do you know if a point is on the line?" Sample response: I can substitute the x and y values in the equation.

(.) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What strategies or tools did you find helpful today when writing an equation of a line?"

Exit Ticket

Students demonstrate their understanding of slope by writing an equation of a line given two points and determining whether an additional point is on that line.

Success looks like ...

- Goal: Creating an equation of a line with positive slope on a coordinate plane using knowledge of similar triangles.
- Language Goal: Justifying that a point (x, y) is on a line by verifying that the values of x and y satisfy the equation of the line. (Speaking and Listening)

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

0 Points to Ponder ..

- During the discussion about calculating slope between two points, how did you encourage each student to share their understanding?
- What did students find frustrating when writing the equation of a line? What helped them work through this frustration?

(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Translating to $y=m x+b$

Let's see what happens to the equations of translated lines.

Focus

Goals

1. Generalize that parallel lines have the same slope.
2. Language Goal: Connect features of the equation $y=b+m x$ to the graph, including lines with a negative y-intercept. (Speaking and Listening)
3. Language Goal: Create and compare graphs that represent linear relationships with the same rate of change, but different initial values. (Speaking and Listening, Writing).

Coherence

- Today

Students make sense of and apply the translations of lines in a new context. They see that any line in the coordinate plane can be considered a vertical translation of a proportional line, and they match lines presented in the form of an equation, graph, description, and table.

< Previously

In Lesson 7, students investigated the similarities and differences between linear and proportional relationships. In Lesson 10-11, students wrote an equation that represented a linear relationship with a positive slope.

>Coming Soon

In Lesson 13, students will be introduced to a negative slope, and they will interpret the slope in a context.

Rigor

- Students apply their understanding of linear equations and graphs given a context.
- Students further their conceptual understanding of slope and y-intercept by analyzing different representations of the same linear relationship.

Amps powered by desmos Activity and Presentation Slides
For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 2 PDF, pre-cut cards
- Anchor Chart PDF, Representations of Linear Relationships
- rulers

Math Language
 Development

Review words

- translation
- proportional relationship
- slope
- vertical intercept
- y-intercept

Amps : Featured Activity

Activity 1
 Overlay Graphs

Each student graphs a line based on a context. You can overlay student work to provide immediate feedback.

Building Math Identity and Community
 Connecting to Mathematical Practices

Students may feel frustrated as they try to match graphs, equations, tables, and descriptions. Encourage them to persist as they look for structure. For example, have them start by identifying the slope, and then the y-intercept of each line before moving on to tables and descriptions.

- Modifications to Pacing

You may want to consider this additional modification if you are short on time.

- In Activity 2, have students only complete the first two rows using Cards 1-6.

Warm-up Translating a Line

Students translate a line, seeing that parallel lines have the same slope.

1 Launch

Have students complete Problems 1 and 2 individually. Then have them share responses with a partner before completing Problem 3. Provide access to rulers for the duration of the lesson.

2 Monitor

Help students get started by asking them to translate the line in any distance and direction.

Look for points of confusion:

- Not knowing how to translate a line. Have students choose two points on line $\boldsymbol{\ell}$ and provide a specific translation to apply. For example, have them translate the line 5 units up.

Look for productive strategies:

- Remembering that a translation of a line will produce a parallel line.
- Noticing that parallel lines have the same slope.

(3) Connect

Display student work showing their completed graphs.
Have pairs of students share what they noticed about the two lines.

Highlight that when a line is translated on the coordinate plane, it produces a parallel line that has the same slope of the preimage.

Ask, "Will a translated line always have the same slope as the preimage? Why or why not?" Yes, a translated line produces a line that is parallel, and parallel lines have the same slope.

(7) Power-up

To power up students' ability to translate a line segment, have students complete:
Recall that a translation slides a figure without changing its size or orientation.

1. Translate segment $A B 2$ units to the left and label the new segment $A^{\prime} B^{\prime}$.
2. Translate the segment $C D$ 3 units down and label the new segment $C^{\prime} D^{\prime}$.
3. Translate the segment $E F 2$ units down and label the new segment $E^{\prime} F^{\prime}$.

Use: Before the Warm-up
Informed by: Performance on Lesson 11, Practice Problem 6 and Pre-Unit Readiness Assessment, Problem 5

Activity 1 How Much More?

Students make sense of and apply the translation of lines to three scenarios of a real-world context to see how the equation changes, based on the scenario.

Amps Featured Activity
Overlay Graphs

Activity 1 How Much More?

1. Noah wants to go to Honest Carl's Funtime World amusement park on Saturday. On weekends, the amusement park charges an admission fee of $\$ 20$ per person and then $\$ 5$ for each ride. Graph the relationship that represents the amount of money y Noah would spend after x rides. Label the line e.

2. On weekdays, Honest Carl's Funtime World offers a special deal where they do not charge an admission fee. On the same coordinate plane, graph the relationship that represents the amount of money y Noah would spend after x rides, if he goes there on a Wednesday. Label the line d.
3. Compare the two lines. How much more money does Noah spend after 2 rides if he goes to Honest Carl's Funtime World on a Saturday instead of a Wednesday? 4 rides? 8 rides? x rides?
$\$ 20$ more
4. Write an equation for each line

Weekend equation: $y=5 x+20$
Weekday equation: $y=5 x$
5. Noah goes to Honest Carl's Funtime World on Wednesday and he has a coupon that can be used for 2 free rides. On the same coordinate plane, graph the relationship that represent the amount of money y Noah would spend after x rides, if he uses the coupon. Label the line c. Then write an equation for the line.
$y=5 x-10$

(1) Launch

Activate students' background knowledge by asking them if they have ever paid admission to an amusement park or purchased ride or attraction tickets at a fair.

2 Monitor

Help students get started by asking them how much Noah would pay after 2 rides, 4 rides, and 6 rides.

Look for points of confusion:

- Having trouble graphing the lines in Problems 1 and 2. Have students create a table for the amount Noah pays for different numbers of rides, and then plot the points on the coordinate plane.
- Having trouble writing the equations in Problem 4. Have students draw a slope triangle and circle the vertical intercept. Then provide the equation $y=\square x+\square$ and have them complete the equation using the slope and vertical intercept.

Connect

Have pairs of students share their methods for graphing each scenario. Start with students who made a table and graphed, then students who plotted points directly, and lastly, students who wrote an equation before graphing.

Ask:

- "How does the price per ride affect the slope for each line?"
- "How does the fact that there is no weekday admission fee affect the line?"
- "How does the coupon for 2 free rides affect the equation?"

Highlight that the vertical intercept -10 represents Noah's coupon for 2 free rides. In the equation, the b-value is negative. On the graph, the vertical intercept is -10 .

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Consider one of these alternative approaches to this activity:

- Have students focus on completing Problems 1, 2, and 4.
- Provide a pre-completed graph for Problems 1 and 2 and launch the activity with a description of what these two lines mean within context. Have students begin the activity with Problem 3

Extension: Math Enrichment

Have students write an equation for a line that is parallel to $y=2 x$ and passes through any vertical intercept, b.
$y=2 x+b$

Unit 3 Linear Relationships

Math Language Development

MLR7: Compare and Connect

During the Connect, emphasize the connections between the equations and graphs. Ask:

- "Where does the term $5 x$ in each equation come from?"
- "How is it represented on the graph?"

Problem 5 provides an opportunity to discuss the limitation of mathematical models. Highlight that the equation for Problem 5 does not work if Noah only goes on one ride as that would mean he gets paid 5 , which is not realistic.

English Learners

Use annotations to show how $5 x$ is the same in each equation and how the slopes of the lines are the same.

Activity 2 Card Sort: Translating a Line

Students sort cards to examine different representations of translated lines and to make connections to how the y-intercept appears in each representation.

1 Launch

Display the Activity 2 Amps slides. Manipulate the point in two different places above the x-axis and two different places below the x-axis. Ask, "What changes and what stays the same?"
Distribute the cards from the Activity 2 PDF to each pair of students. Then conduct the Card Sort routine.

(2) Monitor

Help students get started by graphing the line $y=\frac{1}{2} x$ for all to see, translating it up 1 unit, and asking students how the image of the line is similar to or different from the preimage.
Look for points of confusion:

- Confusing the slope and y-intercept in the equation. Have students refer to the Anchor Chart PDF, Representations of Linear Relationships.
- Having trouble matching the verbal descriptions with the graph. Have students match the equations and graphs first, and then use the equations to help them match the descriptions.

Look for productive strategies:

- Drawing the proportional line on the graph to help identify translations of a line.
- Noticing that the equations $y=m x+b, y=b+m x$, and $m x+b=y$ produce the same line.

(3) Connect

Ask, "What clues did you look for to identify matching cards?"
Have pairs of students share their responses. Ensure that students understand that the equations $y=-1+2 x$ and $y=2 x-1$ are equivalent.
Highlight that translated lines will have the same slope, but different y-intercepts. Use Problem 2 to point out how the y-intercept appears on the graph, equation, and table.

(1) Differentiated Support

Accessibility: Guide Processing and Visualization

Have students use color coding and/or annotations to highlight the slope and y-intercept in each matching representation.

Extension: Math Enrichment

Without graphing, have students make a conjecture as to how the graphs of the equations $y=3 x+8$ and $y=3(x+8)$ compare to the graph of the equation $y=3 x$. The graph of $y=3 x+8$ is translated up 8 units, compared to the graph of $y=3 x$. The graph of $y=3(x+8)$ is translated up 24 units, compared to the graph of $y=3 x$ (due to the Distributive Property).

Math Language Development

MLR8: Discussion Supports

During the Connect, as students share their response to the Ask question, display sentence frames to support their reasoning, such as:

- "The equation on Card \qquad matches the graph on Card \qquad because..
- "This description on Card \qquad matches the graph on Card \qquad because.

English Learners

Provide time for students to formulate their responses using the sentence frames before sharing with others.

Summary

Review and synthesize how the translation of a proportional line representing the equation $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}$ produces a parallel line represented by the equation $y=m x+b$.

Summary

In today's lesson.

You investigated what happens to a line that represents a proportional relationship after a translation. A translation of a line that represents a proportional relationship creates a line that is parallel to the preimage, but changes the location of the vertical intercept.
The equation $y=m x$ represents a line that passes through the origin. The equation $y=m x+b$ represents a vertical translation of line $y=m x$ by b units.

- If $b>0$, the line is translated up

If $b<0$, the line is translated down
For example, the equation of line ℓ is $y=2 x$.

- Line ℓ is translated 6 units up to produce line j So, the equation of line j is $y=2 x+6$
Line ℓ is translated 7 units down to produce line n. So, the equation of line n is $y=2 x-7$.

Reflect:

Exit Ticket

Students demonstrate their understanding of translated lines by comparing the graphs of two linear equations.

- Goal: Generalizing that parallel lines have the same slope.
- Language Goal: Connecting features of the equation $y=b+m x$ to the graph, including lines with a negative y-intercept. (Speaking and Listening)
- Language Goal: Creating and comparing graphs that represent linear relationships with the same rate of change, but different initial values. (Speaking and Listening, Writing)
- Suggested next steps

If students do not know how the graph of $y=2 x$ compares to the graph of $y=2 x-5$, consider:

- Changing the y-intercept to positive 5 .
- Reviewing Activity 2.
- Reassessing after Lesson 14.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
0_{0} Points to Ponder ...

- In what ways have your students become better at writing equations of a line?
- How did the Card Sort routine support students in comparing features of a linear relationship?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	1
	2	Activity 1	1
Spiral	3	Activity 1	2
Formative 0	6	Unit 3 Lesson 10	2
	5	Unit 3 Lesson 9	Unit 3 Lesson 13

(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Slopes Don't Have to Be Positive

Let's find out what a negative slope means.

Focus

Goals

1. Create a graph of a line representing a linear relationship with a negative rate of change.
2. Interpret the slope of a decreasing line in context.
3. Language Goal: Identify and interpret the horizontal intercept of a graph of a linear relationship. (Reading and Writing)

Coherence

- Today

Students get their first glimpse of lines with a negative slope. They interpret a graph and reason that it makes sense for the slope to be negative in terms of the context. During their partner activity, students consider what information is sufficient to define and accurately communicate the position of a line on the coordinate plane.

$<$ Previously

In Lesson 11, students applied their knowledge of similar triangles to write the equation of a line with a positive slope using two coordinates of points.

> Coming Soon

In Lesson 14, students will use an algebraic method to write the equation of a line using two points. In Lesson 15, students will extend their previous work to include equations for horizontal and vertical lines.

Rigor

- Students build their conceptual understanding of a negative slope.
- Students apply their understanding of slope to describe lines.

©
 Warm-up

Activity 1
Activity 2

Activity 3

Summary
(1) 5 min
(1) 10 min
คㅇํ Pairs
(1) 10 min
ㅇํㅇ Pairs15 min5 min

คํำกำ Whole Class
(1) 5 min

ㅇํㅇ Pairs

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice

\bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 3 PDF, pre-cut cards
- Anchor Chart PDF, Representations of Linear Relationships (as needed)
- Activity 3 PDF (answers)
- Info Gap Routine PDF (for display)
- rulers

Math Language Development

New words

- horizontal intercept
- x-intercept

Review words

- linear relationship
- slope
- vertical intercept
- y-intercept

Amps ! Featured Activity

Activity 1
Overlay Graphs
Each student graphs a line based on a context. You can overlay student work to provide immediate feedback.

Amps
 desmos

Building Math Identity and Community

Connecting to Mathematical Practices
In Activity 3, students might forget to pay attention to the details of the graph as they describe it and may feel deflated if they consistently miss the mark in their descriptions. Promote a healthy growth mindset by having students evaluate what did go right each time. Then ask them to work with their partners to determine how they could improve next time.

- Modifications to Pacing

You may want to consider this additional modification if you are short on time.

- Activity 3 may be omitted.

Warm-up Same and Different

Students analyze two lines with opposite slopes as an introduction to lines with a negative slope.

1) Launch

Conduct the Think-Pair-Share routine.

2 Monitor

Help students get started by asking them to visually inspect the lines, and then having them draw slope triangles.

Look for points of confusion:

- Thinking the slope for line b is 2 . Revisit with these students after Activity 3.

Look for productive strategies:

- Noticing the lines "lean" in different directions
- Drawing slope triangles to determine the slope of each line.

3 Connect

Have students share what they noticed about the two lines.

Highlight that the slope triangles are the same for each line. If students did not draw slope triangles on the graphs, have them do so now or demonstrate for them. Emphasize that the slope triangles for each line have the same ratio of the vertical side length to the horizontal side length. Also highlight that when reading the graph from left to right, line a goes up, while line b goes down.

Ask, "What happens to the values of y for each line as the values of x increase?" Sample response: For line a, the y-values increase as the x-values increase. For line b , the y-values decrease as the x-values increase.

Math Language Development

MLR2: Collect and Display

During the Connect, as students share what is the same and what is different about the two lines, collect and display language students use referring to positive/negative slope and x - and y-intercepts. Leave the display up during the lesson and continue adding terms, phrases, and diagrams to support students' sense making about lines with negative slope.

English Learners

Use hand gestures to illustrate how line a increases from left to right and line b decreases from left to right.

To power up students' ability to calculate the slope from two points, have students complete:
Recall that for any pair of points (s, t) and (u, v) the slope can be calculated using the relationship slope $=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{v-t}{u-s}$.
Determine the slope between the points $(3,5)$ and $(6,11)$. Show your thinking. $2 ; \frac{11-5}{6-3}=\frac{6}{3}$
Use: Before Activity 2
Informed by: Performance on Lesson 12, Practice Problem 6

Activity 1 Noah's Game Card

Students investigate changes on a game card to make sense of a negative slope and learn about the x-intercept of a line.

Amps Featured Activity
Overlay Graphs

Activity 1 Noah's Game Card

Noah loads a game card with $\$ 40$ for the arcade at Honest Carl's Funtime World. Every time he plays a game, $\$ 2.50$ is subtracted from the amount available on his card.

1. How much money, in dollars, is available on his card after Noah plays:
a 1 game? $\$ 37.50$
b 2 games? \$35
(C) 5 games? $\$ 27.50$
d x games? $\$(40-2.5 x)$ or equivalent
2. Use your responses from Problem 1 to plot three points on the graph. Then draw a line through the points. What patterns do you notice?
Sample responses:

- The points are on the same line.
- As the number of games played As the number of games played
increases, the value on the game card decreases at a constant rate.

3. How many games can Noah play before the game card runs out of money? Where do you see this number of games on your graph?
16 games; The number of games is the x-coordinate of the point $(\mathbf{1 6}, \mathbf{0})$

(1) Launch

Activate students' background knowledge by asking if they have ever used a game card at an arcade. If students are unfamiliar, provide some quick information about how a game card works. Provide access to rulers.

(2) Monitor

Help students get started by asking them how they can determine the cost for the first 5 games.

Look for points of confusion:

- Struggling to determine how much money is available after x games. Have students create a table using the values in Problems 1a-c. In the introduction to the activity, label \$40 as "starting value" and underline "subtracted."
- Having trouble understanding Problem 4. Ask students to state the remaining value on the card when Noah runs out of money and ask them to relate this value to the graph.

3 Connect

Display student work showing the completed graph.
Have students share how the graph is similar to and different from the graphs they have seen so far in this unit.

Highlight the negative coefficient of x and the decreasing line. Note: Students will further explore negative slope in Activity 2.

Ask, "What does the point on the vertical axis represent? What does the point on the horizontal axis represent?"

Define the term horizontal intercept as the point where the graph intersects the horizontal axis. Also known as the x-intercept, it is the value of x when the value of y is 0 . The horizontal intercept in this problem is $(16,0)$.

Differentiated Support

Accessibility: Activate Background Knowledge

Demonstrate how a game card works at an arcade by showing how $\$ 2.50$ is subtracted from $\$ 40$ each time a game is played. Consider illustrating this in a table.

Extension: Math Enrichment

Have students solve the equation $40-2.5 x=0$ and ask them to explain how the solution relates to the context of the activity and the question in Problem 3. $x=16$; The solution to the equation is the x-coordinate of the horizontal intercept of the graph (when $y=0$).

Math Language Development

MLR8: Discussion Supports

During the Connect, as students share how the graph is similar to and different from the graphs they have seen so far in this unit, display sentence frames to support their thinking. For example:

- "The graphs in this unit have __, while this graph has __ -'
- "This graph is different because .

Amplify language that describes the graph decreasing from left to right. Connect this to the negative coefficient in the expression in Problem 1d.

English Learners

Annotate the negative coefficient of x in the expression in Problem 1d and write negative coefficient.

Activity 2 Payback Plan

Students write the equation of a line to interpret a negative slope and y-intercept in context.

1 Launch

Set an expectation for the amount of time students will have to work in pairs on the activity.

2 Monitor

Help students get started by reminding them how to calculate the slope using the coordinates of two points.

Look for points of confusion:

- Getting a positive value for the slope. Have students identify if the numerator or denominator is positive or negative. Then ask them for the sign of a quotient when dividing numbers with opposite signs.
- Not knowing how to write an equation. Have students refer to the Anchor Chart, Representations of Linear Relationships.

3 Connect

Ask:

- "How do you know the sign of the slope based on the context?" Answers may vary.
- "How do you know the sign of the slope just by looking at the line?" If the line increases from left to right, the slope is positive. If the line decreases from left to right, the slope is negative.

Have pairs of students share why the slopes are equivalent even if they choose different points to calculate the slope. Then have students share how Problem 3 can be solved using the equation and graph.

Highlight

- If a line has a positive/negative slope, it will increase/decrease (from left to right) on a graph. The equation of a line with a positive/negative slope will have a positive/negative coefficient of x.
- If a line has a positive/negative vertical intercept, this point will be above/below the x-axis.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Provide students with two points to use in Problem 1, such as $(4,6)$ and (5, 3). Display the Anchor Chart PDF, Representations of Linear Relationships for students to reference throughout the activity.

Extension: Math Enrichment

Have students use the equation from Problem 2 to find the value of y when $x=7$. Ask them to explain what this means in the context of the problem. $y=-3$; Sample response: At 6 weeks, Elena has paid back all she owed; the equation is not necessarily meaningful past 6 weeks. Or her brother will now owe her 3 at 7 weeks

Math Language Development

MLR5: Co-craft Questions

Before revealing the problems in this activity, display the introductory text and the graph. Preview Problem 3 with students and ask them to work with a partner to write 1-2 additional questions they have about the graph or situation. Ask pairs of students to share their questions with the class.

English Learners

Display a sample question, such as "How much money does Elena pay back her brother every week?"

Activity 3 Info Gap: Making Designs

Students describe features of a line to practice recognizing the location of a line in a coordinate plane, and to distinguish between positive and negative slopes.

Activity 3 Info Gap: Making Designs

You will be given either a design card or a blank graph card. Do not show your card to your partner.

If you are given a design card:	If you are given a blank graph card:
1. Silently study the design and think about	1.Listen carefully as your partner describes each line, and draw each line bow you could communicate what your bartner should draw.
Think about ways that you can describe what a line looks like, such as its slope or the points that it passes through.	
2. Describe each line, one at a time. and give your partner time to draw each one.	2. You are not allowed to ask for more
information about a line other than what	
your partner tells you.	

When you and your partner are finished, place the drawing next to the card with the design, so that you and your partner can both see them. How is the drawing the same as the design? How is it different? Discuss any miscommunication that might have caused the drawing to look different from the design.
Pause here so your teacher can review your work. When you are given a new set of cards, trade roles with your partner and repeat the activity.

(1) Launch

Explain to students they will describe some lines to a partner to try and get them to recreate a design. Give one partner Design Card 1 and the other partner a Blank Graph Card 1 from the Activity 1 PDF. Display the Info Gap Routine PDF and model the Info Gap routine. Arrange the room to ensure that the partner drawing the design cannot peek at the design from anywhere in the room. Once the first design has been successfully created, provide the second design and a blank graph to the other student in each partnership. Provide access to rulers.

2 Monitor

Help students get started by having them choose one line and describe the slope and y-intercept.

Look for points of confusion:

- Forgetting to describe the slope as positive or negative. Have students with the design card label each line with a plus or minus sign.

Look for productive strategies:

- Noticing parallel lines and using translations during their descriptions.
- Using coordinates, equations, or vertical and horizontal intercepts to describe the line.
- Visually inspecting the line to determine a positive or negative slope.

3 Connect

Have pairs of students share their methods for describing the lines. Start with students who used coordinates to describe the line placements, then students who used translations, then students who used equations or intercepts.
Ask, "What details were important to pay attention to?" Answers may vary. Some students may pay attention to coordinates or intercepts, while others look for parallel lines and translations.
Highlight that there are different methods to describe a line.

Differentiated Support

Accessibility: Guide Processing and Visualization

Display Design Card 1. Use a think-aloud to model Steps 1 and 2 for how to describe the location of line a, as if you were the recipient of that card. Consider using the following during the think-aloud.

- "In order to best describe the location of line a, I think I should provide the slope of the line and the y-intercept."
- "I could also provide the coordinates of two points that line a passes through."

Math Language Development

MLR4: Information Gap

Display these sentence frames for students who would benefit from a starting point, such as:

- "The slope of line \qquad is _."
- "The y-intercept of line ___ is
- "Line __ passes through points __ and __ "

Summary

Review and synthesize how the sign of the slope affects the location of a line on a coordinate plane.

Synthesize

Display Design Card 1 from the Activity 3 PDF.
Have students share how they can identify if the slope of a line is positive or negative.

Ask:

- "How do you know if the slope of a line is positive or negative using coordinates of two points?" Divide the difference in the values of y by the values of x and then look at the sign.
- "How do you know if the slope of a line graphed on the coordinate plane is positive or negative by visual inspection?" If the line increases (from left to right) the slope is positive. If the line decreases (from left to right) the slope is negative.
- "How do you know if the slope of a line is positive or negative from a description?" For a positive slope, look for keywords such as increasing or adding values. For a negative slope, look for keywords such as decreasing or subtracting values.
Highlight that when a linear relationship has a negative slope, as the values of x increase, the values of y decrease at a constant rate.

Formalize vocabulary:

- horizontal intercept.
- x-intercept

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What does it mean for a slope to be negative?"

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in Lesson 2. Ask them to review and reflect on any terms and phrases related to the terms horizontal intercept and x-intercept that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding by graphing a line with a negative slope from a description and writing its equation.

Exit Ticket

```
Date:
```

Period:

E

Kiran adds $\$ 20$ to his public transportation fare card. Every time he rides public transportation, $\$ 2$ is subtracted from the amount available on his card.

1. Graph the relationship between the dollar amount y, available on the card after x rides.

2. Write an equation that gives the dollar amount y available on the card after x rides. $y=-2 x+20$

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...

- In earlier lessons, students calculated the slope using two points. How did that support their work calculating a negative slope?
What challenges did students encounter as they worked on Activity 3, Info Gap? How did they work through the challenges?

Success looks like . . .

- Creating a graph of a line representing a linear relationship with a negative rate of change.
- Interpreting the slope of a decreasing line in context.
- Language Goal: Identifying and interpreting the horizontal intercept of a graph of a linear relationship. (Reading and Writing)

Suggested next steps

If students do not draw the line correctly, consider:

- Having them create a table for the first five rides and amount on the card, and then use the data to draw the line.
- Reviewing Activity 1.

If students write the incorrect slope, consider:

- Having them choose and label two points on the line to calculate the slope. Or have students visually inspect the slope of the line to determine if it is positive or negative.

-

Elena and Diego both have part-time jobs. Elena's aunt pays her $\$ 1$ for each call she makes to let people know about her aunt's new business. Diego washes	Number of windows	Amount earned (\$)
his neighbor's windows and earns the same amount	27	29.70
statements about their part-time jobs that are true.	45	49.50

A. Elena makes more money for making 10 calls than Diego makes for washing 10 windows.
B. Diego makes more money for washing each window than Elena makes
for making each call.
C. Elena makes the same amount of money for 20 calls as Diego makes
for 18 windows.
D. Diego needs to wash 35 windows to make as much money as Elena
.
©. The equation $y=1.10 x$, where y represents the number of dollars and
F. The equation $y=x$ represents Elena's situation, where y represents the number of dollars and x represents the number of calls.

```
5. A line passes through the points
\((1,1.5)\) and ( 4,6 ). Determine
whether each point is also on line. Place a check mark in the appropriate column.
appropriate column.
```


6. Which expression has a value of -25 when $a=-2$?
A. $-10 a+5$
B. $-10 a-5$
C. $10 a+5$
(D.) $10 a-5$

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Writing Equations for Lines Using Any Two Points, Revisited

Let's write equations for lines.

Focus

Goals

1. Create an equation of a line with a positive or negative slope on the coordinate plane.

Coherence

- Today

Students revisit how to write an equation of a line given two coordinates of points and develop an algebraic method to write the equation. They attend to precision as they apply their understanding in writing equations of lines with a positive or negative slope.

< Previously

In Lesson 11, students applied their knowledge of similar triangles to write the equation of a line with a positive slope using two coordinates of points.

> Coming Soon

In Lesson 15, students will extend their previous work to include equations for horizontal and vertical lines.

Rigor

- Students apply their algebraic understanding to write the equation of a line using two points.
Δ

Activity 1
(1)
Activity 2
(D)

Summary

Exit Ticket

() 5 min	(d) 15 min	(J) 15 min	(J) 5 min	(J) 5 min
$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc$	ํํํํํ ํํํํํ Whole Class	$\stackrel{\bigcirc}{\cap}$ Independent

Amps powered by desmos Activity and Presentation Slides
For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 2 PDF (for display)
- Anchor Chart PDF, Representations of Linear Relationships (as needed)
- Anchor Chart PDF, Writing Linear Equations in $y=m x+b$ Form
- rulers

Math Language
 Development

Review words

- slope
- y-intercept

Building Math Identity and Community
 Connecting to Mathematical Practices

Students might choose to draw the lines, but skip the step of writing the equation for the line in Activity 2 . Have students consider constructive decisions they can make before starting the activity. Reflect on why skipping steps is not helpful to themselves. Challenge them to analyze the situation well so that they can minimize the work needed to achieve the goal.

Amps Featured Activity

Activity 2

Coin Game
Students enter an equation that will animate a line to collect coins.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted
- In Activity 2, round 3 may be omitted.

Warm-up Two Truths and a Lie

Students analyze three statements to review methods that do or do not work for calculating the slope of a line.

Unit 3 | Lesson 14

Writing Equations for Lines Using Two Points, Revisited

Let's write equations for lines.

Warm-up Two Truths and a Lie
Line ℓ is shown on the coordinate plane. Two points are labeled on the line. Which of these three statements is a lie?
A. The slope of the line can be calculated by evaluating the expression $\frac{13-9}{15-3}$.
B. The slope of the line can be calculated by evaluating the expression $\frac{9-13}{3-15}$.
C. The slope of the line can be calculated by evaluating the expression $\frac{13-9}{3-15}$.

Explain your thinking

Sample response:
The expressions in Choices A and B have values equivalent to
while the expression in Choice C has a value that is equivalent to $-\frac{1}{3}$.
The x-coordinates are not subtracted in the same order as the y-coordinates.
(1) Launch

Conduct the Two Truths and a Lie routine.

(2) Monitor

Help students get started by having them simplify each expression.

Look for points of confusion:

- Thinking that Choice B is the false statement or thinking that Choice C is true. Ask students to simplify the expression first and then look for the answer choice that is not equivalent to the others.

3 Connect

Have students share their responses. Use the Poll the Class routine to determine which choice each student selected.

Ask, "How do you know that Choices A and B are equivalent?" The quotient of two negative values is positive.

Highlight that to calculate the slope, it is important to subtract the x-coordinates of the two points in the same order as the y-coordinates are subtracted.

Math Language Development

MLR3: Critique, Correct, Clarify

During the Connect, after determining that Choice C is the lie, ask pairs to critique the statement in Choice C and identify the error. Have them write a corrected statement and explain how they know their statement is true. Ask them to share their corrected statements with the class. Highlight sensemaking around the fact that the expression in Choice C yields a negative slope, but the line is increasing from left to right.

English Learners

Students may benefit from the opportunity to rehearse what they will say with a partner before they share with the whole class.

Power-up
To power up students' ability to substitute values into expressions and evaluating, have students complete:

Recall that when a number is 'attached' to a variable in an expression, it represents the product of the number and the variable. For example, $3 b$ represents $3 \cdot b$.

Evaluate the expression $6 z+8$ for $b=-5$. Show your thinking. $-22 ; 6(-5)+8=-30+8=-22$

Use: Before Activity 2
Informed by: Performance on Lesson 13, Practice Problem 6, and Pre-Unit Readiness Assessment, Problem 8

Activity 1 Writing an Equation from Two Points, Revisited

Students develop an algebraic method to determine the equation of a line given two points.

1 Launch

Tell students that today they will investigate another method for writing the equation of a line. Have students complete Problem 1 individually. Then have them share their responses with a partner before completing Problems 2 and 3.

2 Monitor

Help students get started by reminding them to plot coordinates as (x, y).

Look for points of confusion:

- Not understanding Andre's work. Highlight x and 7 in one color and y and 10 in another color to make the connection between the variables and values.
- Not understanding why the final equation does not include $\mathbf{7}$ and $\mathbf{1 0}$ as x and y. Tell students that x and y represent any point on the line. Because the values can vary, they appear as variables. The slope and y-intercept of this line does not vary, so these values will appear as -11 and 87 .

3 Connect

Ask, "If you substituted the point $(8,-1)$, would you arrive at the same equation?" As a class, substitute 8 and -1 into the equation to show that either point can be used to determine the y-intercept.

Display the Anchor Chart PDF, Writing Linear Equations in $y=m x+b$ Form.

Highlight that to write an equation for a line using two coordinates of points, first calculate the slope. Then substitute the coordinates of either point into the equation to solve for the y-intercept. Lastly, write the equation in $y=m x+b$ form using the slope and y-intercept.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge, Guide Processing and Visualization

Display the Anchor Chart PDF, Representations of Linear Relationships for students to reference throughout the activity. Consider providing students with the slope of the line in Problem 1 and have them begin the activity with Problem 2.

Extension: Math Enrichment

Ask students how they know the y-intercept they found in Problem 2 is reasonable, given the graph shown at the beginning of the activity. Sample response: The vertical axis ends a little past 20 but the line does not intersect the vertical axis. If I were to extend the line and use the same scale, the line should intersect the vertical axis a little less than halfway between 80 and 100 .

Activity 2 Coin Collector

Students attend to precision and strengthen their fluency in writing equations of lines using two coordinates of points.

Amps Featured Activity
Coin Game

Activity 2 Coin Collector

The Coin Collector arcade game at Honest Carl's Funtime World requires a player to control a character that moves along a straight line to collect coins. The fewer lines a player uses, the more points they earn.

For each graph shown, draw lines to collect coins. Label each line with a number ($1,2,3$, etc.), and then write the equation for each line.

Note: You may not need to use all of the space provided for the equations. Additionally, you may add more equations, as needed. Sample responses shown.

Round 1:

Equations:
Line 1: $y=-2 x+12$
Line 2: $y=-2 x+23$
Line 3:
Line 4:

1 Launch

Tell students that they are going to mimic playing the arcade game described in the prompt. The goal is to collect the coins using as few equations as possible. Use the Activity 2 PDF, to model different lines students can draw to collect coins. Provide access to rulers.

2 Monitor

Help students get started by instructing them to draw a line to collect the coins, and then label two points on that line. Next, have them use the method learned in Activity 1 to write the equation of the line.

Look for points of confusion:

- Having trouble writing the equation. Provide a list of steps. For example: First calculate the slope. Then choose any point and substitute its coordinates into the equation $y=m x+b$ to determine the y-intercept. Lastly, write the equation using the slope and y-intercept.

Look for productive strategies:

- Writing an equation with a positive or negative slope.
- Using any two points to write an equation for the line.

Activity 2 continued $>$

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can enter an equation and view an animation of the line collecting the coins.

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on completing Rounds 1 and 2.

Extension: Math Enrichment

Challenge students to collect all of the coins using only two equations for each round.

Math Language Development

MLR7: Compare and Connect

During the Connect, ask students how the strategies used by their classmates are the same and how they are different. Consider asking:

- "How did you know if the coefficient of x should be positive? Negative?"
- "How did you decide on a y-intercept?"

Have them discuss with their partner first and then ask pairs of students to share with the whole class.

English Learners:

Students may benefit from the opportunity to rehearse what they will say with a partner before they share with the whole class.

Activity 2 Coin Collector (continued)

Students attend to precision and strengthen their fluency in writing equations of lines using two coordinates of points.

Activity 2 Coin Collector (continued)

Round 2:

Equations:
Line 1: $y=-x+13$
Line 2: $\quad y=-3 x+27$
Line 3:
Line 4:

Round 3 :

Equations:
Line 1: $\quad y=2 x+14$
Line 2: $y=-3 x-6$
Line 3:
Line $4:$

Summary

Review and synthesize an algebraic method that can be used to write the equation of any line using two points through which the line passes.

Summary

In today's lesson.

You wrote the equation of a line that passes through two points, including lines with a negative slope.

For example, to write an equation of a line that passes through the points $(1,7)$ and $(2,4)$, you can follow these steps.

1. Calculate the slope by finding the ratio of the difference in the y-coordinates to the difference in the x-coordinates: $\frac{7-4}{1-2}=-\frac{3}{1}=-3$. The slope is -3 .
2. Substitute the slope and the coordinates of one of the points, for example $(1,7)$, into the equation $y=m x+b$. Then solve for b.
$7=-3(1)+b \quad$ The slope is -3 . The point is $(1,7)$.
$7=-3+b$
Multiply.
$10=b \quad$ Add 3 to both sides.
3. Write the equation in the form $y=m x+b$ using the slope, -3 , and the y-intercept, 10 .
The equation is $y=-3 x+10$
Even if you used the other point $(2,4)$, you would arrive at the same equation. Try it!

Reflect:

Synthesize

Have students share how they can write the equation of any line using two points through which the lines passes in their own words.

Highlight that to write an equation using two points, first calculate the slope, and then substitute the coordinates of one of the points into the equation $y=m x+b$ to determine the y-intercept. Lastly, write the equation in the form $y=m x+b$.

Ask:

- "Will the slope of a line that passes through $(4,10)$ and $(1,8)$ be positive or negative?" Positive
- "What do you think a line will look like if the numerator in the slope is 0 ? What about if the denominator is 0 ?" Note: Students will explore these situations further in Lesson 15 . Sample response: If the numerator is zero, then I think the line will be a flat horizontal line because there is no change. If the denominator is zero, then maybe the line is vertical because the x-values of a vertical line do not change.

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What strategies did you find helpful today when writing the equation of a line?"

Exit Ticket

Students demonstrate their understanding by writing the equation of a line given two points through which the line passes.

Success looks like ...

- Goal: Creating an equation of a line with a positive or negative slope on the coordinate plane.
» Writing an equation of a line that passes through given points.

Suggested next steps

If students write the incorrect slope, consider:

- Reviewing Lesson 11, Activity 1.

If students write the wrong y-intercept, consider:

- Reviewing Activity 1.
- Reviewing how to substitute values in an equation.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C. Points to Ponder ...

- How was writing the equation of a line using an algebraic method similar to or different from writing the equation of a line using similar triangles from Lesson 11?
- What surprised you as your students worked on Activity 2?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	1
Spiral	2	Activity 1	2
Formative $\mathbf{0}$	$\mathbf{5}$	Activity 2	2
	$\mathbf{4}$	Unit 3 Lessons 12-13	Unit 3 Lesson 15

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Equations for All Kinds of Lines

Let's write equations for vertical and horizontal lines.

Focus

Goals

1. Comprehend that for the graph of a vertical or horizontal line, one variable does not vary, while the other can have any value.
2. Language Goal: Generalize that a set of points of the form (x, b) satisfies the equation $y=b$ and that a set of points of the form (a, y) satisfies the equation $x=a$. (Writing)

Coherence

- Today

Students extend their previous work to include equations for horizontal and vertical lines. They interpret the graph of a horizontal line and reason why the slope of zero makes sense in terms of the context. Students connect the equations of horizontal and vertical lines to their graphs, reasoning about why it makes sense that one variable remains constant, while the other variable can have any value. Students attend to precision as they apply their understanding in writing equations of lines with different slopes during a friendly competition.

< Previously

In Lesson 13, students wrote the equation of a line with a negative slope and interpreted the slope in context. In Lesson 14, students wrote equations of lines with a positive and negative slope using coordinates of points.

> Coming Soon

In Lesson 16, students start exploring linear equations that are not written in $y=m x+b$ form.

Rigor

- Students build conceptual understanding of lines with a slope of zero as they interpret the graph of a horizontal line in context.
- Students build conceptual understanding of vertical and horizontal lines as they connect their equations to their graphs.
- Students write equations with different slopes to strengthen their fluency writing linear equations.

Building Math Identity and Community
 Connecting to Mathematical Practices

In Activity 1, students might feel uncomfortable with the new equations of lines with just one variable. Encourage students to step back and shift their perspective as they work through this activity. Students need to take control of their thoughts and focus them on determining why the equations are linear but have only one variable. With direct focus on this concept, students will be more likely to achieve success.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- Optional Activity 3 may be omitted.

Warm-up Which One Doesn't Belong?

Students analyze four lines as an introduction to lines with a slope of zero.

1 Launch

Conduct the Which One Doesn't Belong? routine.

2 Monitor

Help students get started by having them choose any one line and asking them what makes the line different from the others.

Look for points of confusion:

- Thinking that line d has a slope of zero. Revisit slope with these students during the Connect.

Look for productive strategies:

- Visually inspecting the slope of each line.
- Noticing all of the lines have a different slope.
(3) Connect

Display the graph from the Warm-up.
Have students share which line they chose. Use the Poll the Class routine to see which students selected each line.

Ask students if lines a and b have a positive or a negative slope. Then ask them about the slope of lines c and d. Have students choose two points on the line to help them determine their response.

Highlight that lines c and d have a slope that is neither positive nor negative. Tell students that line c, a horizontal line, has a slope where the numerator is 0 and the denominator is a nonzero number. Line d, a vertical line, has a slope where the numerator is a non-zero number and the denominator is 0 . Students will explore the equations for horizontal and vertical lines in the upcoming activities.

Math Language Development

MLR2: Collect and Display

During the Connect, as students describe which line does not belong, collect and display the language they use that describes the slope, such as negative, positive, horizontal, and vertical. Add visual examples of each type of slope to the display. Keep the display up for the duration of this lesson.

English Learners

Use gestures to amplify the different types of slopes students describe.

Power-up
To power up students' ability to visually assess if the slope of line is positive or negative:

Provide students with a copy of the Power-up PDF.
Use: Before the Warm-up
Informed by: Performance on Lesson 14, Practice Problem 5

Activity 1 All the Same

Students graph different points to write equations for horizontal and vertical lines and see that the variables for these lines are not dependent on one another.
(2)

Activity 1 All the Same

Complete the following problems using the coordinate plane shown.

1. Plot at least 10 points whose y-coordinate is -7 . What do you notice? Sample response: The points all lie on a horizontal line that intersects the y-axis at -7 .
2. Study these equations. Which equation do you think represents all the points with a y-coordinate of -7 ?
A. $x=-7$
B. $y=-7 x$
C. $y=-7$
D. $x+y=-7$
3. Plot at least 10 points whose x-coordinate is 5 . What do you notice? Sample response: The points all line on a vertical line that does not intersect the y-axis.
4. Study these equations. Which equation do you think represents all the points with a x-coordinate of 5 ?
(A.) $x=5$
B. $y=5 x$
C. $y=5$
D. $x+y=5$
5. Graph and label the equation $y=4$ on the coordinate plane.
6. Graph and label the equation $x=-8$ on the coordinate plane.

1. Launch

Set an expectation for the amount of time students will have to work in pairs on the activity. Provide access to rulers for the duration of the lesson.

Help students get started by plotting the point $(5,-7)$ and labeling it for students to use as an example.

Look for points of confusion:

- Plotting the points incorrectly. Have students create a table labeled x and y and write their values in the table before plotting the points.
- Thinking horizontal lines are written as $x=b$ and vertical lines are written as $y=a$. Have students look at the coordinates of each point to see that vertical lines have the same values of x and horizontal lines have the same values of y.

Look for productive strategies:

- Trying to use the slope and y-intercept to choose an equation.

3 Connect

Display student work showing the completed graph.
Have students share what they notice about the points, lines, and equations. Have them label each line with its equation.

Ask, "Why does the equation of a horizontal line not contain the variable x ? Why does the equation of a vertical line not contain the variable y ?" One of the two variables does not vary while the other can take any value.
Highlight that for a horizontal line, the value of y is the same regardless of its value of x, and for a vertical line the value of x is the same regardless of its value of y.

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on completing Problems 1-4. Alternatively, consider providing them with pre-completed graphs of the four equations. Have them determine $3-4$ points that fall on each line and write the ordered pairs next the graph. Then have them complete Problems 2 and 4.

Extension: Math Enrichment

Ask students to write the equations representing the two horizontal lines in slope-intercept form, $y=m x+b$. Then have them determine the value of the slope. $y=0 x+4$ and $y=0 x+(-7)$; The slope of each line is 0 .

Activity 2 Han's Game Card

Students interpret a graph of the situation and reason that it makes sense for the slope to be zero in terms of the context.
Activity 2 Han's Game Card
The graph shows the available amount, in dollars, on Han's arcade game card at Honest Carl's Funtime World for one day.

1. Describe what happened to the available amount on Han's game card as the number of games played increased.
Sample response: Han still had $\$ 20$ on the card after every game he played. The available amount on the card did not change.
2. What value makes sense for the slope of the line that represents the available amount on Han's game card? What does the slope represent in this situation?
Sample response: The slope of the line is 0 . This represents the amount he paid, which would be \$0 per game.
3. Write an equation that represents the available amount y on the card after playing x games. $y=20$

(8)

 Name: Period:\qquad - Perio

1 Launch

Have students use the Think-Pair-Share routine.

Monitor

Help students get started by asking them what the points $(0,20)$ and $(10,20)$ represent in the context of the problem.

Look for points of confusion:

- Writing the equation $\boldsymbol{x}=\mathbf{2 0}$ in Problem 3. Have students look back at the equations of horizontal lines in Activity 1. Ask them what the variable x represents in this situation. If x represents the number of games played, why would x always equal 20 ?

Look for productive strategies:

- Noticing the available amount on the card remains the same.

3 Connect

Have students share what they noticed about the amount on Han's game card and what the slope represents in this situation.

Highlight that the slope of 0 means that no money is added or subtracted for each game he plays. The available amount Han has on his card will be the same regardless of the number of games he plays.
Ask, "How do you think it's possible for Han to have $\$ 20$ available on his card regardless of how many games he plays?" Sample responses: It is possible that the arcade offered free games for a period of time or that someone paid for his games that day.

Differentiated Support

Accessibility: Guide Processing and Visualization

Some students may think that because the amount on the card is not decreasing, that this means Han has not played any games.
Show how the graph represents the number of games played has increased, and yet the amount on the card has not changed.

Extension: Math Enrichment

Have students generate some other real-world examples of situations that could be represented by a horizontal line. Sample response: The dollar amount in a checking account as no money is deposited or withdrawn over several weeks.

Math Language Development

MLR5: Co-craft Questions

Before revealing the problems in this activity, display the introductory text and the graph. Ask them to work with their partner to write 1-2 questions they have about the graph or situation. Ask pairs of students to share their questions with the class.

English Learners

Display a sample question, such as "Why is the amount on the card not decreasing?"

Activity 3 Coin Collector, Revisited

Students attend to precision and strengthen their fluency in writing equations of lines, including lines that have a zero slope.

Amps Featured Activity
Coin Game

Activity 3 Coin Collector, Revisited

During a two-player game of Coin Collector, players take turns moving a character along a straight line to collect coins. With your partner, determine who will be Partner A and who will be Partner B.

For each round, take turns drawing lines and writing equations to collect the most coins. Then determine the total number of coins collected by each person.

Round 1 Sample responses shown.

Partner A total: 10 coins Partner B total: 5 coins

1) Launch

Tell students they will revisit a version of the coin collector game in Lesson 14. Use the Activity 3 PDF to model how students will play the game in pairs. Tell students that once a coin is collected, it cannot be recollected to earn a point. Provide each partner with a different colored pencil to help them differentiate their lines.

(2) Monitor

Help students get started by asking them to look for coins that are on the same vertical or horizontal line.

Look for points of confusion:

- Writing the wrong equation. Have students check each other's equations and lines.
- Not realizing they can now write the equations of vertical or horizontal lines to collect coins. Remind students that they now have more tools in their toolbox for writing equations to represent lines.

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can enter an equation and view an animation of the line collecting the coins.

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on completing Rounds 1 and 2.

Math Language Development MLR7: Compare and Connect

During the Connect, ask the following questions to help support students make connections between algebraic and graphical representations of horizontal and vertical lines.

- "What is the same and what is different about the equations of horizontal and vertical lines?"
- "How do equations of slanted lines compare to equations of horizontal or vertical lines?"

Consider displaying a graphic organizer, such as the following:

Horizontal Lines	Vertical Lines	Slanted Lines
$y=\square$	$x=\square$	$y=\square x+\square$

Activity 3 Coin Collector, Revisited (continued)

Students attend to precision and strengthen their fluency in writing equations of lines, including lines that have a zero slope.

3 Connect

Display the lines students drew for each round.
Have pairs of students share their strategies for collecting the most coins.

Ask, "What are some ways you can check whether your partner wrote the correct equation for a line they drew?" When $\square=a$ number, equations in the form $y=\square$ should be horizontal, equations in the form $x=\square$ should be vertical, and equations in the form $y=\square x+\square$ should be slanted. I can substitute the coordinates of a point into each equation to see if the equation is true.

Highlight that the equation of a horizontal or vertical line will only have one variable. Ask students to explain why this is true. Students should realize that for horizontal or vertical lines, one variable remains constant, while the other variable can have any value.

Summary

Review and synthesize how to write equations of horizontal and vertical lines.

Summary

In today's lesson.

You wrote equations for horizontal and vertical lines. In the coordinate plane .

- Horizontal lines represent situations where the y-values do not change when the x-values change. Horizontal lines have a slope of 0 .
- Vertical lines represent situations where the x-values do not change when the y-values change. Vertical lines have an undefined slope.

For example, the horizontal line n shown is represented by the equation $y=4$. The vertical line ℓ shown is represented by the equation $x=-3$.

Reflect:

Synthesize

Have students share how they can tell a line will be horizontal, vertical, or neither from its equation.

Highlight that a set of points in the form (x, b) satisfies the equation $y=b$ and that a set of points in the form (a, y) satisfies the equation $x=a$.

Ask, "What do the lines with the equations $y=3$, $x=3$, and $y=3 x$ look like?" Sample response: $y=3$ is a horizontal line that passes through every point that has a y-coordinate of 3. $x=3$ is a vertical line that passes through every point that has an x-coordinate of $3 . y=3 x$ is a proportional line that passes through the points $(0,0)$ and $(1,3)$.

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How do the equations of horizontal and vertical lines compare to the equations of lines that are not horizontal or vertical?"

Exit Ticket

Students demonstrate their understanding by writing equations of vertical and horizontal lines.

- Goal: Comprehending that for the graph of a vertical or horizontal line, one variable does not vary, while the other can take any value.
- Language Goal: Generalizing that a set of points of the form (x, b) satisfies the equation $y=b$ and that a set of points of the form (a, y) satisfies the equation $x=a$. (Writing)
» Writing the equation of the horizontal or vertica line by determining the form of the points on each line.

- Suggested next steps

If students write the incorrect variable in the equation, consider:

- Choosing and labeling several points on the line and asking them to look at the values of each variable. Ask them which variable remains the same, and how that should be expressed in the equation.
- Reviewing Activity 1.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

© Points to Ponder...

- Which students' ideas were you able to highlight during Activity 2?
- In what ways have your students improved at interpreting the slope of a linear equation in context?

Students explore what it means for an ordered pair to be a solution to a linear relationship, using a graph, table, or the equation to justify their thinking.

y

Narrative Connections

Read the narrative aloud as a class or have students read it individually. Students continue to explore realworld applications of linear equations in the following places:

- Lesson 16, Activity 1 :

Barber vs. Jordan

- Lesson 18, Activity 1 :

Representations of Linear Relationships

- Lesson 18, Activity 2: Info Gap: Linear Relationships

Solutions to Linear Equations

Let's think about what the solution to a linear equation with two variables means.

Focus

Goals

1. Comprehend that the points that lie on the graph of an equation represent exactly the solution set of the equation of the line (i.e., that every point on the line is a solution, and any point not on the line is not a solution)
2. Create a graph and an equation in the form $A x+B y=C$ that represent a linear relationship.
3. Determine pairs of values that satisfy or do not satisfy a linear relationship using an equation or graph

Coherence

- Today

Students explore linear relationships as an equation with two variables and graph an equation in the form of $A x+B y=C$. They determine whether points on the graph of the equation represent solutions to the equation.

< Previously

Students have previously explored linear relationships in contexts where one variable depends on another, for example, distance depending on time.

> Coming Soon

In Lesson 17, students continue to work with linear equations in two variables by considering ordered pairs as solutions on a graph and by solving equations.

Rigor

- Students build conceptual understanding of solutions that represent real-world scenarios using linear equations of the form of $A x+B y=C$.

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- rulers

Math Language Development

Review words

- integer
- linear relationship
- ordered pair

Amps : Featured Activity

Activity 2

See Student Thinking
Students come up with length and width measures for rectangles by completing a table and updating a graph as you monitor their data in real time.

desmos

Building Math Identity and Community
 Connecting to Mathematical Practices

Some students may not be familiar with the kinds of baskets in basketball in Activity 1. Before the activity, encourage students to take on the perspective of someone who has never heard of basketball and have them explain what is needed to know for this exercise. By taking this approach, students all fully-understand the background in order to justify their models and make sense of the interpretations of them.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 1, Problem 1 may be omitted.
- In Activity 2, have students only complete the first three columns of the table.

Warm-up Ordered Pairs

Students find a solution to an equation with two variables to see that they can solve for one variable only when another variable is fixed.

(1) Launch

Activate prior knowledge by asking, "How can you show that a pair of numbers is a solution to the equation?" Provide access to rulers for the duration of this lesson.

(2) Monitor

Help students get started by asking what value they chose for x and how they then solved the equation for y.

Look for points of confusion:

- Thinking inverse operations alone can find the values of two different unknowns. Remind students that this equation has two unknowns and have them find a value for x before solving for y.

Look for productive strategies:

- Finding multiple solutions for x and y.
- Finding non-integer solutions.

Connect

Display the equation from the Warm-up.
Have students share how they found their solutions by taking several different correct responses.

Highlight that the solutions to the equation with two variables are the values of x and y that make the equation true.

Ask:

- "Is it possible to find a solution without knowing either value of x and y ? Why or why not?" Yes; Sample response: I can use the guess-and-check method to try different values of x and y to make the equation true.
- "If you chose a new value for x, can you always then find a value for y ?" Yes, by substituting the x-value and solving the equation for y.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Consider demonstrating how to determine the value of y for a given value of x, such as $x=0$. Then provide students with a sample x-value that they can use to get started, such as $x=2$.
(7) Power-up

To power up students' ability to determine a pair of values that would make an equation true, have students complete:

Consider the equation $\frac{1}{3}=\frac{a}{b}$. Answers may vary.

1. What is a fraction that is equivalent to $\frac{1}{3}$?
2. Compare your fraction in Problem 1 to $\frac{a}{b}$. Which value in your fraction is equal to a ?
3. Compare your fraction in Problem 1 to $\frac{a}{b}$. Which value in your fraction is equal to b ?

Use: Before the Warm-up
Informed by: Performance on Lesson 15, Practice Problem 5

Activity 1 Barber vs. Jordan

Students write an equation representing a relationship between two quantities, and use the equation to find pairs of numbers that make it true.

1 Launch

Conduct the Think-Pair-Share routine.

2 Monitor

Help students get started by asking, "How many points is 5 two-pointers worth?"

Look for points of confusion:

- Not knowing how to start Problem 2. Have students try to determine the greatest number of three-pointers Barber could have made.
- Writing $x+y=14$ for the equation where x and y represent the points from two- and threepointers. Ask students what unknowns they are trying to find and have them define their variables for those unknowns. Ask students to consider what steps they took in Problem 1 to find the total points.

Look for productive strategies:

- Precisely defining variables as the number of twoand three-point baskets made.

3 Connect

Ask:

- "How many combinations did you find for Problem 2? How did you know you found all of them?" Three combinations, only whole number values make sense in context.
- "Is the equation you wrote for Problem 3 a linear equation? Why or why not?"
- "How did you decide to define your variables?"
- "If x represents the number of two-point baskets made, is it realistic for $x=2.5$?"
Highlight how the scenario can be represented by a linear equation with two variables. Show different letters being used for variables to highlight that it does not matter which letters are used as long as they are defined precisely. Ask why defining x as "baskets" is insufficient.

Differentiated Support

Accessibility: Guide Processing and Visualization

Consider providing a table, or suggest students create one, that they can use to organize the number of two-pointers and threepointers that result in various scores for Problems 1 and 2. This will help them visualize the relationships to write the equation in Problem 3. For example:

Number of points for Two-pointers	Number of points for Three-pointer	Total number of points
$2\left(_\right)$	$3\left(_\right)$	$2\left(_\right)+3\left(_\right)$

Math Language Development

MLR6: Three Reads

Use this routine to help students make sense of the introductory text

- Read 1: Students should understand that Eric Barber and Michael Jordan played a game of wheelchair basketball.
- Read 2: Students should annotate the given quantities, such as the number of points scored for two-pointers and three-pointers.
- Read 3: Ask students to preview Problems 1-2 to brainstorm strategies to determine combinations of baskets made for given total scores.

English Learners

Emphasize that a "two-pointer" is the actual basket that is made and 2 points is the score given.

Activity 2 Rectangles

Students write an equation in the form of $\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{y}=\boldsymbol{C}$ and graph the solutions to see that the points create a line.

Amps Featured Activity See Student Thinking

Activity 2 Rectangles

1. There are many possible rectangles whose perimeter is 50 units. Complete the table with lengths x and widths y of at least five rectangles whose perimeter is 50 units. Sample response shown.

Length, x	10	12	5	20	8
Width, y	15	13	20	5	17

2. A rectangle with a length of 10 and a width of 15 is represented by the point $(10,15)$. Plot the lengths x and widths y of the other rectangles whose perimeter is 50 units. What do you notice?
I noticed the points appear to form a pattern that can be represented by a line.
3. Let x represent the length and let y
 represent the width of a rectangle whose perimeter is 50 units. Write an equation that represents the relationship between x, y, and 50 . Sample response: $2 x+2 y=50$
4. Could one of these rectangles have a width of 3.5 units? Explain your thinking using the graph and the equation.
Yes; Sample response: The width could be 3.5 units if the length is 21.5 units; $2(21.5)+2(3.5)=50$. The graph would show a point located at (21.5, 3.5).

1 Launch

Ask students to sketch a rectangle whose perimeter is 50 units and label the lengths of its sides. After giving them a minute to come up with their rectangle, ask them to share some of the lengths and widths they found.
(2) Monitor

Help students get started by having them pick a length, and then sketch a rectangle to find the width.

Look for points of confusion:

- Thinking the length and width will add to $\mathbf{5 0}$. Remind students they have to consider all four sides when finding the perimeter.

Look for productive strategies:

- Writing the equations $2 x+2 y=50$ or $y=25-x$.

3 Connect

Display student work showing various points plotted in Problem 2.
Have students share what equations can be used to represent the context. Discuss how the equations $y=25-x$ or $2 x+2 y=50$ (or $x+y=25$) represent the scenario.

Ask:

- "If you know an ordered pair is a solution to the equation, what does that look like on the graph?"
- "Is the ordered pair $(10,10)$ a solution?"
- "Imagine a line connecting the points. Is the slope positive or negative? What does a negative slope mean in this context?"
- "What are the vertical and horizontal intercepts? What do they represent in context?"

Highlight that the slope is negative, which means that as the width increases, the length decreases. Show that any point on the line segment has a perimeter of 50 with side lengths equal to the x - and y-coordinates of the point.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Provide students with a partially completed table for Problem 1 with the lengths given. Have them determine the corresponding widths. Consider providing them with a pre-completed graph for Problem 2 and have them record what they notice. This will still allow them to access the goal of the activity without having to create the graph themselves.

Extension: Math Enrichment

Ask students if the points $(0,25)$ and $(25,0)$ are solutions to the equation and make sense within the problem. They are solutions to the equation, but they do not make sense within the problem because a rectangle cannot have a length or width of 0 units.

Math Language Development

MLR7: Compare and Connect

During the Connect, as students share the equations they wrote, display the different equations that can accurately represent this situation and ask students how they compare with one another and how they relate to the graph. Consider asking these questions:

- Where do you see the y-intercept in the equation $y=25-x$? In the equation $x+y=25$? In the equation $2 x+2 y=50$?
- If the perimeter is 50 , why is the y-intercept 25 ?

English Learners

Use color coding to annotate the equations and graphs with how they demonstrate the intercepts and slope, or how these values can be determined from the different equations.

Activity 3 Diophantine Equation

Students explore the properties of a Diophantine Equation, seeing a historical example that deepens their understanding of the solutions to a linear equation.

1 Launch

Have students restate in their own words what a Diophantine Equation is after reading the introductory text. Ask students whether Activity 1 or 2 had a Diophantine Equation. Activity 1; There could only be positive integer solutions for the number of baskets.

2 Monitor

Help students get started by asking them to find a value of x and a value of y that makes an ordered pair a solution to the equation.

Look for points of confusion:

- Thinking they can only use positive values. Point out the word integer and ask students what they think it means. If needed, clarify that integer means positive or negative whole numbers.

Look for productive strategies:

- Noticing the pattern that shows adding 2 to the values of x and subtracting 3 from the values of y.
(3) Connect

Display student work showing points on the graph.

Have students share how they determined their ordered pairs.

Ask:

- "If you connect the points, will it form a line? Why or why not?"
- "Will the pattern extend into other quadrants besides quadrant I? How do you know?"

Highlight that any solution to the equation can be found on the line. Any point not on the line is not a solution.

(1) Differentiated Support

Accessibility: Guide Processing and Visualization

Display the general form of a Diophantine equation and the given equation $3 x+2 y=24$ vertically aligned so that students can see the value of A is 3 , the value of B is 2 , and the value of C is 24 . Ask them to underline or highlight the phrase "whose solutions include pairs of integers" and explain that if the only solutions of interest (given by the context) are integer solutions, the equation is Diophantine. Otherwise, the equation is not Diophantine.

Featured Mathematician Diophantus
Have students read about Diophantus, who detailed the solutions to different types of algebraic problems.

Summary

Review and synthesize what a solution to a linear equation in two variables represents and how solutions can be found.

Summary

In today's lesson...

You saw that a solution to an equation with two variables is any ordered pair (x, y) that makes the equation true.

You can think of pairs of numbers that are solutions to a linear equation as ordered pairs (x, y) that represent points on the coordinate plane. These points form a line that represents all of the solutions to the equation. Only points that fall on the line are solutions to the equation. Points that do not fall on the line are not solutions to the equation.
For example, consider the linear equation
$3 x+2 y=24$.
The point $(10,-3)$ is on the line
$3 x+2 y=24$. The ordered pair $(10,-3)$
s a solution to the equation $3 x+2 y=24$ $3(10)+2(-3)=24$.
The point $(10,10)$ is not on the line, The ordered pair $(10,10)$ is not a solution because $3(10)+2(10)=50$, not 24

Synthesize

Display the Summary page from the Student Edition.

Have students share how they found solutions to equations and graphs in today's lesson.

Ask:

- "How are solutions to an equation represented on a graph?" Solutions to an equation are represented by points on the graph of the equation. For example, the point $(10,-3)$ is a solution to the equation $3 x+2 y=24$ because that point lies on the graph of the equation.
- "Is the ordered pair $(1.5,2.5)$ a solution to the equation $3 x+2 y=24$? How can you be certain?" No; Sample response: The point $(1.5,2.5)$ does not lie on the graph of the equation. I can verify this by substituting 1.5 for x and 2.5 for y in the equation $3 x+2 y=24$. Because $3(1.5)+2(2.5)$ does not equal 24 , the ordered pair is not a solution to the equation.

Highlight that for the ordered pair to be a solution to an equation, the point must lie on the graph of the equation. When it is difficult to see on the graph, the coordinates of point (x, y) can be substituted into the equation for values of x and y to see whether they make the equation true.

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition.

To help them engage in meaningful reflection, consider asking:

- "What does it mean for an ordered pair to be a solution to a linear equation?"

Exit Ticket

Students demonstrate their understanding by identifying ordered pairs that make the equation true.

- Goal: Comprehending that the points that lie on the graph of an equation represent exactly the solution set of the equation of the line (i.e., that every point on the line is a solution, and any point not on the line is not a solution).
- Goal: Creating a graph and an equation in the form $A x+B y=C$ that represent a linear relationship.
- Goal: Determining pairs of values that satisfy or do not satisfy a linear relationship using an equation or graph.
» Determining whether an ordered pair makes the equation true.

Suggested next steps

If students are unsure how to check if the ordered pairs are a solution, consider:

- Reviewing Activity 2.
- Providing a graph of the line as a visual support for students.
- Assigning Practice Problem 1.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

0 Points to Ponder ..

- During the discussion about Activity 2, how did you encourage each student to listen to one another's strategies?
- How did Activity 1 set students up to develop an understanding of the solutions to a linear equation?

Name:
4. A sandwich store charges a delivery fee to bring lunch to an office building. One office pays $\$ 33$ for 4 turkey sandwiches. Another office pays $\$ 61$ for 8 turkey sandwiches. How much does each turkey sandwich add to the cost of the delivery? Explain your thinking.
 daditional $8-4=4$ sandwiches. This me Pair of points

- a.d
$(-8,-11)$ and $(-1,-5) \quad$ c -3
c $(5,-6)$ and $(2,3)$ e $-\frac{5}{2}$
d $(6,3)$ and $(5,-1) \quad$ b $\quad \frac{6}{7}$
e $(4,7)$ and $(6,2)$
>6. Refer to the graph shown.
(a) Write a story that matches the graph and label the axes Sample response: A plane descends from nt speed until it lands.

Label two points on the line, one where $x=0$ and one where $y=0$. Then explain what
point means in the context of the story. Sample response: The point where $x=$ represents sthe initial height of the plane
before it begins to descend. The point before it begins to descend. The point the plane to land on the ground.

Practice Problem	Analysis		
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	1
	2	Activity 2	2
Spiral	3	Unit 3 Lesson 10	1
Formative 0	$\mathbf{4}$	Unit 3 Lesson 7	1

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

More Solutions to Linear Equations

Let's find solutions to more linear equations.

Focus

Goals

1. Language Goal: Calculate the solution to a linear equation given one variable, and explain the solution method. (Listening and Speaking)
2. Determine whether an ordered pair is a solution to an equation of a line using a graph of the line.

Coherence

- Today

Students continue their study of the relationship between a linear equation in two variables, its solution set, and its graph. By considering equations where students can solve for either the value of x or the value of y, they prepare for finding solutions to systems of equations, leading them to look at the structure of an equation and decide whether it may be more efficient to solve for one variable than another.

< Previously

In Lesson 16, students studied the set of solutions to a linear equation, the set of all values of x and y that make the linear equation true.

Coming Soon

In Lesson 18, students continue their study of linear equations by looking at how linear equations can model scenarios in the real world.

Rigor

- Students apply their understanding of linear relationships in graphs, equations, and tables to different contexts.

(1) 5 min	(ㄱ) 15 min	(1) 15 min	(1) 5 min	(1) 5 min
\bigcirc Independent	으ํ Small Groups	ํำ Pairs	กัําัํา Whole Class	\bigcirc ¢ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 2 PDF, one set per pair
- plain sheets of paper

Math Language Development

Review words

- linear relationship
- ordered pair
- proportional relationship
- horizontal intercept
- vertical intercept
- y-intercept
- x-intercept

Amps ! Featured Activity

Activity 1
 Take a Digital Poll

Use real-time data to find out if your students think the statements in Activity 1 are true or false.

Building Math Identity and Community

Connecting to Mathematical Practices
In Activity 2, students might feel their stress levels rise as they try to make use of the structure of the equation. Ask students to describe ways that they can control their stress and encourage students to participate in one of these exercises prior to starting the activity. Then have them set an academic goal in order to focus their energy in a productive way.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 2, have students only use Card pairs A-C.

Warm-up Intercepts

Students activate their prior knowledge about horizontal and vertical intercepts to prepare for identifying solutions on the graphs of linear equations.

1 Launch

Set an expectation for time to work independently on the activity.

2 Monitor

Help students get started by having them sketch the intercepts for each equation on a graph and consider what values must be zero for each.

Look for points of confusion:

- Not knowing how to find the coordinates of the vertical and horizontal intercepts. Ask students which value must be zero for one of the intercepts and have them substitute zero into the equation. Ask them how they can find the other variable's value.

Look for productive strategies:

- Drawing a sketch of the line to visualize their response.

3 Connect
Display correct student work for Problems 1 and 2.
Have students share how they found the vertical and horizontal intercepts.
Ask:

- "How can you know you have found the vertical and horizontal intercepts without graphing the line?"
- "How could you use the vertical and horizontal intercept to graph the line of the equation?"

Highlight that, no matter what form the equation is in, students can substitute $x=0$ or $y=0$ and solve for the other missing variable to find an intercept. Because they know an ordered pair that is a solution to the equation is also a point on the line, they can identify the horizontal and vertical intercepts without graphing the line.

Differentiated Support
Accessibility: Optimize Access to Tools, Clarify Vocabulary and Symbols

Provide access to graph paper, rulers, or graphing technology for students to use if they choose. Display the general form of a linear equation in slope-intercept form with the y-intercept and slope annotated for students to refer to as they work on Problem 1.

Extension: Math Enrichment

Ask students to write an expression that gives the slope, x-intercept, and y-intercept of a line when the equation is written in the form $A x+B y=C$. Slope: $-\frac{A}{B} ; x$-intercept: $\frac{C}{A} ; y$-intercept: $\frac{C}{B}$.

Power-up

To power up students' ability to identify horizontal

 intercepts, have students complete:Recall that when a point is located on the x-axis it will be of the form $(x, 0)$ and if it is on the y-axis it will be of the form $(0, y)$.
Determine whether each point will be located on the x-axis, the y-axis, or neither
a. $(3,0) x$-axis
b. $(0,3) y$-axis
c. $(3,3)$ neither
d. $(0,-3) y$-axis

Use: Before the Warm-up
Informed by: Performance on Lesson 16, Practice Problem 6b and Pre-Unit Readiness Assessment, Problem 6

Activity 1 True or False

Students determine whether different ordered pairs are solutions to increase their understanding of the relationship between a linear equation and its graph on the coordinate plane.

Amps Featured Activity Take a Digital Poll

Activity 1 True or False?

 represents line m.
2. The coordinates of point G make both of the equations for line m and line n true.
3. The ordered pair $(2,0)$ makes both of the equations for line m and line n true.
4. There is no solution to the equation represented by line ℓ that has a y-value of 0 .
on line m.

Point G lies at the intersection of lines m and n, which means it lies True on both lines and its coordinates
are solutions to both equations.

The point $(2,0)$ does not lie on eithe line and is, therefore, not a solution to either equation.

While the graph doesn't show this value, I know that line ℓ will extend and intersect with the x-axis where $y=0$, meaning $y=0$ will be a solutio

334 Unit 3 Linear Relationship

1 Launch

Set an expectation for the amount of time students have to work, in pairs, on the activity.

(2) Monitor

Help students get started by asking what it means for an ordered pair to be a solution.

Look for points of confusion:

- Thinking they can find the equations of the lines. Have students identify what information they need to do this, and, if needed, remind them they cannot and do not need to find the equation with the information provided in the activity.

Look for productive strategies:

- Using the graph to identify a point is on the line and therefore a solution.

(3) Connect

Display the correct response to each statement, and give students a few minutes to discuss any discrepancies with their partner.

Have students share how they evaluated each statement without using an equation.

Ask:

- "For Problem 1, if you had an equation of the line, how could you use it to confirm $(4,0)$ is a solution?"
- "What is significant about Point H ?"
- "Can you say that $x=0$ is a solution to the equation for line n ?"

Highlight that a solution to an equation in two variables is an ordered pair of numbers. Solutions to an equation lie on the graph of the equation. Discuss that the solution must represent both values of x and y to represent the coordinates of the point on the line.

Differentiated Support

Accessibility: Guide Processing and Visualization

Provide access to colored pencils and suggest that students mark the points $(4,0), G$, and $(2,0)$ to help them respond to Problems 1-3. Consider omitting Problem 4

Extension: Math Enrichment

Have students determine if the following statements are true or false.

- There is no ordered pair that is a solution to all three equations represented by lines ℓ, m, and n. True.
- The intersection points G, H, and K form a triangle whose side lengths lie on lines ℓ, m, and n. False

Math Language Development

MLR3: Critique, Correct, Clarify

During the Connect, ask students to choose one of the statements they identified as false so that they become true statements. Ask these questions:

- Critique: "Which of the false statements will you choose to correct? Why did you identify this as a false statement?"
- Correct: "Write a corrected statement that is now true."
- Clarify: "How did you correct the statement? How do you know that the statement is now true?"

English Learners

Have students cross out the part of the statement they are correcting and write the correction near it.

Activity 2 I'll Take an X, Please

Students are given equation cards and must ask for information about the value of x or y from a matching card to develop strategies for how to solve for one variable, given the other.

1 Launch

Review the directions from the Activity 2 PDF and distribute the pre-cut cards. Activate students' prior knowledge about how they can solve for one variable (x or y) if they are given an assigned value for the other. Consider demonstrating for the class using the equation $y=5 x-11$ and $(1,-6)$ and a student volunteer.

2 Monitor

Help students get started by asking them to consider which variable's value will help them solve for the other variable more efficiently.

Look for points of confusion:

- Not being strategic about which variable to request. Remind students they can ask for the value of x or y. Ask, "In the case of this equation, which variable would you rather know? Why?"

Look for productive strategies:

- Being strategic about which value to request so that solving for the other variable is as efficient as possible.

3 Connect

Ask:

- "How did you decide whether you requested the value of x or the value of y ?"
- "Which equations represent proportional relationships? How do you know? Which do not?" Cards C and F are proportional because they can be written as $y=m x$.
- "Once you have identified one solution to your equation, what are some ways you could find others?"

Highlight that all of the equations in this activity are linear, even if they are written in different forms. When an equation is already solved for one variable, e.g. $y=m x+b$, it requires less steps to solve for y if given x.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on Cards A-D.

Accessibility: Guide Processing and Visualization

Display the equation Card a. Use a think-aloud to model Steps 1 and 2. Consider using the following during the think-aloud.

- "Could you give me the x-value? I would like to substitute the x-value into the equation so that I can solve the equation for y."
- "Now that I know the x-value is $10.5, \mathrm{I}$ can substitute that value into the equation 2(10.5) $-y=14$ and solve the equation for y. My result is that $y=7$. Is that value correct?"

Math Language Development

MLR8: Discussion Supports

During the Connect, as students respond to the Ask questions, display the following sentence frames to help students frame their responses.

- "I decided to ask for the value of __ because ..
- "The steps I took to determine the other value were .

Encourage the listener to ask clarifying questions such as:

- "What would you do if you had chosen the other variable?"
- "Did you strategically choose to request one variable rather than the other, based on the structure of the equation?"
- "For which equation(s) did it require more work to solve for the other variable? Why?"

Summary

Review and synthesize how to find solutions to linear equations in two variables.

Summary

In today's lesson.

You saw that no matter the form a linear equation is given, you can always determine solutions to the equation by starting with one value, and then solving for the other value.

For example, consider the linear equation $2 x-4 y=12$

To determine a solution that has $x=2$. you can substitute $x=2$ into the equation and solve for y
$2(2)-4 y=12$
$4-4 y=12$
$-4 y=8$
$y=-2$
To determine a solution that ha
$y=-1$, you can substitute $y=-1$
into the equation and solve for x.
$2 x-4(-1)=12$

$2 x+4=12$
$2 x=8$
$x=4$

Reflect:

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "You have worked with linear relationships represented in written form, tables, equations, and graphs. Which are you most comfortable using to find solutions? Which are you least comfortable using?"

Exit Ticket

Students demonstrate their understanding of solutions to linear equations in two variables by using both the graph and equation to determine whether given ordered pairs are solutions.

Success looks like ...

- Language Goal: Calculating the solution to a linear equation given one variable, and explaining the solution method. (Listening and Speaking)
- Goal: Determining whether a point is a solution to an equation of a line using a graph of the line.
» Determining whether a given ordered pair is a solution to an equation by using the graph.

- Suggested next steps

If students are unable to determine whether an ordered pair is a solution using the graph, consider:

- Reviewing Activity 1.
- Asking, "How do you know a point is the solution to a line?"

If students are unable to determine whether an ordered pair is a solution using the equation, consider:

- Asking, "What does it mean for an ordered pair to be a solution for the equation? How can you use substitution to determine whether an ordered pair is a solution?"
- Reviewing Activity 2.
- Assigning Practice Problem 2.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder...

- Thinking about the questions you asked students today and what the students said or did as a result of the questions, which question was the most effective?
- Which groups of students did and didn't have their ideas seen and heard today?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	1
	$\mathbf{2}$	Activity 2	2
Spiral	$\mathbf{3}$	Activity 2	2
Formative 0	$\mathbf{6}$	Unit 3 Lesson 15	2

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

(ت) Name:
> 4. A group of hikers park their car at a trailhead and walk into the forest to a campsite. The next morning, they head out on a hike from their campsite, walking at a constant rate. The graph shows their distance d in miles from their car after h hours of hiking.
a How far is the campsite from their car? Explain your thinking. 4 miles: Sample response: This is the distance at $h=0$ hours, is the distance at $h=0$ hours,
meaning that is the location of
their campsit.

b Write an equation that gives the distance d from their car for any number of hours hiked h. $d=3 h+4$
c) After how many hours of hiking will they be 16 miles from their car? Explain your thinking 4 hours; Sample response: Looking at the graph, I can see that the point on the line $(4,16)$ represents the distance 16 miles after 4 hours hiking.
5. Decide which graph best represents each of the following situations.
a) y represents the weight of kitten x days after birth. Graph B
b y represents the distance remaining in a car ride after
x hours of driving at x hours of driving at a constan Graph A
6. Write an equation to represent each relationship described
a Grapes cost $\$ 2.39$ per pound. Bananas cost $\$ 0.59$ per pound. You have $\$ 15$ to spend on g pounds of grapes and b pounds of bananas. $2.39 g+0.59 b=15$
b A savings account has $\$ 50$ in it at the start of the year and $\$ 20$ is deposited each week. After x weeks, there are y dollars in the account. $y=20 x+50$

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Coordinating Linear Relationships

Let's coordinate representations of linear relationships.

Focus

Goals

1. Coordinate between multiple representations of real-world linear relationships, including equations, graphs, verbal descriptions, and tables.

Coherence

- Today

Students apply what they have learned to solve real-world problems using the different representations of linear equations they have studied. Students see that both the equations $A x+B y=C$ and $y=m x+b$ can represent the same real-world situation.

< Previously

Students learned to represent linear relationships using equations of the form $A x+B y=C$ and $y=m x+b$. Students have also learned to create a graph of a linear relationship, and to coordinate the graph with the solutions for an equation.

Coming Soon

In the culminating lesson of Unit 3, students will apply their understanding of linear relationships by orienting coordinate planes to lines in unusual ways. In Unit 4, students discover strategies for solving linear equations and will explore concepts related to systems of linear equations.

Rigor

- Students apply their understanding of the multiple representations of linear relationships to a real-world problem.

Warm-up
(
Activity 1

Activity 2

Summary

Exit Ticket

○ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 2 PDF
- Activity 2 PDF (answers)
- Info Gap Routine PDF (for display)
- calculators (optional)
- rulers

Math Language

Development

Review words

- linear relationship
- ordered pairs
- proportional relationship
- horizontal intercept
- vertical intercept
- y-intercept
- x-intercept

Amps : Featured Activity

Exit Ticket
 Real-Time Exit Ticket

Check in real time if your students can write and graph a linear equation to represent a real-world scenario, using a digital Exit Ticket that is automatically scored.

Building Math Identity and Community
 Connecting to Mathematical Practices

Students might have a negative attitude about having to represent the linear relationship in several ways. Ask students to identify other times that the same information might be presented in different ways. Encourage them to "flip their thoughts" and look for the possible benefits of different kinds of models for the same information. This more optimistic viewpoint can help reduce students' resistance to active participation.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 1, provide students with a table of values they can use to write their equations and make their graphs.
- In Activity 2, have students complete only the first set of cards.

Warm-up Hunting for Ordered Pairs

Students activate prior knowledge about solving linear equations to develop strategies for substituting values for one variable to find the other unknown variable.

1 Launch

Activate students' prior knowledge about how to find ordered pair solutions to a linear equation in two variables.

(2) Monitor

Help students get started by having them identify a value for x they can substitute into the equation.

Look for points of confusion:

- Having difficulty solving for the other variable, based on the value they decided to substitute. Ask students what they notice about the coefficients, and then ask them to identify what is challenging. Suggest they substitute 5 and 6 for x, and then ask which value would help ease calculations, and why.
- Not being strategic about which values to substitute. Validate correct solutions and pull students into discussion about more efficient methods of substitution.
- Turning coefficient fractions to decimals. Point out that $\frac{1}{3}$ is non-terminating and will need to be rounded, meaning the answer students get will not be precise. Encourage them to use this answer as an estimate and rework the problem using fractions.

Look for productive strategies:

- Substituting multiples of 3 for x or multiples of 2 for y.

Connect

Have students share why they chose the values of x and y they did. Sequence responses by first choosing students who correctly worked with fractions and mixed numbers, followed by students who chose strategic multiples.
Ask, "Why is it preferable to have whole-number ordered pairs when working with a linear relationship?"
Highlight that when finding solutions to an equation in two variables, it can be helpful to be strategic about what values to substitute by looking at the coefficients.

(7) Power-up

To power up students' ability to write linear equations to represent scenarios, have students complete:
Match each context to the appropriate form of equation. After matching the equation, substitute the appropriate values to represent each scenario.
a. Tyler spent $\$ 4$ per pound on some strawberries and $A x+B y=C$ $\$ 3$ per pound on some grapes. He spent a total of $\$ 12$ on x pounds of strawberries and y pounds of grapes. $4 x+3 y=12$
b. Noah read 3 books during the first week of summer. He made a goal of reading 4 books each month. How many books y will he read after x months? $y=4 x+3$

Use: Before Activity 1
Informed by: Performance on Lesson 17, Practice Problem 6

Activity 1 Representations of Linear Relationships

Students create multiple representations for a linear relationship, seeing how each representation can show the slope and initial value.

1 Launch

Arrange students in groups of two. Ask for ideas for how to define the variables and complete Problem 1 with the class. Provide access to rulers.

Monitor

Help students get started by asking whether they would prefer to start from the table, graph, or equation. Suggest students write an equation first if they are unsure how to begin.

Look for points of confusion:

- Not able to generate values in the table. Have students begin by writing the equation. Then have students substitute values for x into the equation to solve for y.
- Not able to create a graph from an equation. Have students first complete the table. Then ask students which values they can substitute for x or y to find coordinates for two points on the graph.

Look for productive strategies:

- Using an equation to first generate points on the graph, and then in the table.
- Using guess and check to create a table and then create the graph.
- Writing an equation in $y=m x+b$ form, based on the graph.
- Representing an equation in two forms, $y=m x+b$ and $A x+B y=C$.

Activity 1 continued >

Differentiated Support

Accessibility: Guide Visualization and Processing

Provide a partially-completed table that shows 1 hour portaging corresponding with 12 hours paddling. Consider providing sample values for the number of hours spent portaging and ask them to determine the number of hours spent paddling. Display the general forms of linear equations: $y=m x+b$ and $A x+B y=C$.

Extension: Math Enrichment

Ask students if they think the x - and y-intercepts make sense within the context of this problem. Sample response: No, I don't think they make sense because it would mean that they either spend 0 hours portaging or 0 hours paddling.

Math Language Development

MLR1: Stronger and Clearer Each Time

Give students time to write a draft explanation for Problem 4. Have them meet with $2-3$ partners to share their responses and give and receive feedback. Reviewing partners should ask clarifying questions to make sense of their partners' drafts and offer suggestions for improvement. Consider providing sample questions, such as:

- "Does the response provide information about all four representations: equation, description, graph, and table?"
- "Does the response include any mathematical inaccuracies?"
- "Does the response make sense to you?"

Then have students write an improved response based on the feedback they received.

Activity 1 Representations of Linear Relationships (continued)

Students create multiple representations for a linear relationship, seeing how each representation can show the slope and initial value.

Activity 1 Representations of Linear Relationships (continued)
3. How can you find the rate of change using the table and the graph?

What does the rate of change mean within the context of this problem?
Sample response:

- Table: Find the change in hours spent paddling and divide that value by the change in hours spent portaging; $\frac{12-8}{1-4}=-\frac{4}{3}$.
Graph: The points $(\mathbf{1 0 , 0})$ and $(7,4)$ are on the line, which means the slope of the line is $\frac{4-0}{7-10}=-\frac{4}{3}$.
This rate of change means that for every hour spent portaging, $\frac{4}{3}$ fewer hours were spent paddling.

4. Explain how you can tell that the equation, description, graph, and table all represent the same relationship.
Sample response: The data in the table represent the coordinates of points found on the line in the coordinate plane. Because the points on the line are solutions to the equation for the line, when substituting coordinates $(4,8)$ into the equation $2 x+1.5 y=20$, I see the points make
the equation true $2(4)+1.5(8)=20$. on their feedback.

3 Connect
Display student work showing multiple correct representations.

Have students share what they chose to create first: the equation, the table, or the graph. Sequence responses starting with students who completed the table first and ending with students who wrote an equation first. If no students wrote an equation as $y=m x+b$, explore how to write this equation from the graph.

Ask:

- "How can you use the equation $2 x+1.5 y=20$ to create a graph and table?"
- "How can you test to see whether both equations are equivalent?" By substituting ordered pairs. Note: Students will learn how to solve linear equations in one variable algebraically in Unit 4.
- "How can you see the slope and initial value in each representation?"
- "Which representation do you think would be most helpful for Lin and Kiran?"

Highlight that an equation, a table, and a graph can all be used to represent the same linear relationship. Given one representation, the others can be created.

Activity 2 Info Gap: Linear Relationships

Students complete the Info Gap routine to identify the information necessary to create graphs and equations of linear relationships.

Activity 2 Info Gap: Linear Relationships Pictured here, rock climbers have set up their tents, suspended in air with ropes, as they rest and prepare to climb to the summit. You will be given either a problem card or data card describing a scenario related to rock climbing. Do not show or read your card to your partner.

If you are given the problem card:
If you are given the data card:

1. Silently read your card, and think
2. Silently read your card. able to solve the problem.
3. Ask your partner for the specific information that you need.
4. Explain how you are using the information to solve the problem. Continue to ask questions until you have enough information to solve the problem.
5. Share the problem card, and solve the problem independently in the space provided on this page.
6. Read the data card, and discuss your reasoning.

7. Ask your partner, "What specific information do you need?" and wait for them to ask for information
8. Before sharing the information, ask, "Why do you need that information?" Listen to your partner's reasoning, and ask clarifying questions.
9. Read the problem card, and solve the problem independently in the space provided on this page.
10. Share the data card, and discuss your reasoning.
11. Launch

Distribute the cards from the Activity 2 PDF. Display the Info Gap Routine PDF and model the Info Gap routine with students. Explain that they may need several rounds of discussion to determine the information they need.

(2) Monitor

Help students get started by helping them label their axes and determine a scale.

Look for points of confusion:

- Not knowing what information is required to create the graph. Ask, "What information is necessary to graph a linear relationship? What information do you have? What information do you need?"

Look for productive strategies:

- Asking questions with more precision until students receive the information they need.

3 Connect

Have pairs of students share their graphs and responses to the problem cards.

Ask:

- "Other than the answer, what information would have been nice to have?"
- "How did you decide what to label the two axes?"
- "How did you decide to scale the axes?"
- "What ways can you tell that the slope for Problem Card 2 is negative?"
- "What is the equation of the line for each card? Take a few moments to find the equations with your partner."
- "Why did you decide to write the equation in the form you did?"

Highlight that when writing an equation from a graph, it may often be more efficient to write the equation in $y=m x+b$ form because the slope and the y-intercept can often be readily identified from the graph.

Differentiated Support

Accessibility: Guide Processing and Visualization

Display Problem Card 1. Use a think-aloud to model Steps 1 and 2 as if you were the recipient of that card. Consider using the following questions during the think-aloud.

- "I know that the graph needs to show Jada's height compared to time. I think I should ask for the units. How is time measured? What are the units for the height?"
"In order to graph the relationship, I need to know at least two points. I think I should ask for Jada's height after a certain number of minutes."

Math Language Development

MLR4: Information Gap

Display prompts for students who benefit from a starting point, such as:

- "Can you tell me ... (specific piece of information)?"
- "Why do you need to know . . . (that piece of information)?".

English Learners

Consider providing sample questions students could ask, such as the following:

- "What are the units that represent Jada's height above ground?"
- "What is Jada's height above ground after ___ minutes?"

Summary

Review and synthesize the multiple representations of linear relationships and how they can each be used to provide information about a context.

Synthesize

Display the Summary from the Student Edition. Highlight that each representation of linear relationships calls attention to different features of the linear relationship.

Ask:

- "How can you tell whether data in a table represents a linear relationship?" If there is a constant rate of change for all values, the data represent a linear relationship.
- "How can you tell whether a graph represents a linear relationship?" If the graph of the relationship is a straight line, then the relationship is linear.
- "How can you tell whether an equation represents a linear relationship?" If the equation can be written in the form $y=m x+b$ or $A x+B y=C$, then it is a linear relationship.
- "What are the similarities and differences you see in the two different equations representing the linear relationship shown in the Summary?" Sample responses:
- Both equations use the variables x and y
- There are different coefficients on the variables in the two equations.
- There are different constants in the two equations.
- One equation is written in the form $y=m x+b$. The other equation is written in the form $A x+B y=C$.

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "Which representation of linear relationships do you find the most challenging to create or interpret?"

Exit Ticket

Students demonstrate their understanding of representations of linear relationships by writing an equation and creating a graph in context.

Amps Featured Activity

Real-Time Exit Ticket

Date: \qquad

Exit Ticket

 56Each day, the Fabulous Fish Market orders tilapia, which costs $\$ 3$ per pound, and salmon, which costs $\$ 5$ per pound. The manager of the market budgets $\$ 210$ daily to spend on this order.

1. Define variables and write an equation representing the relationship between the number of pounds of each type of fish bought and how much the market spends. Sample response: Let x be the number of pounds of tilapia, and let y be the number Sample response: Let x be the numb
of pounds of salmon; $3 x+5 y=210$.
2. Graph this relationship on the coordinate plane. Label the axes.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder...

- What challenges did students encounter as they worked on Activity 1 ? How did they work through them?
- Which teacher actions did you implement that made the Info Gap routine strong?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	2
Spiral	$\mathbf{2}$	Activity 1	2
Formative $\mathbf{0}$	$\mathbf{5}$	Unit 3 Lesson 16	1
Unit 3	Unit Lesson 12 Unit 3	1	

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.
nom
3. Match each equation with the set of ordered pairs that are solutions to the equation. Some sets of ordered pairs may have no matching equation or more than one matching equation.

Equation Sets of ordered pairs
(a) $y=1.5 x \quad$ a, d $(14,21),(2,3),(8,12)$
(b) $2 x+3 y=7 \quad$ c $(-3,-7),(0,-4),(-1,-5)$
(c) $x-y=4 \quad$ e $\left(\frac{1}{8}, \frac{7}{8}\right),\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{4}, \frac{3}{4}\right)$
d $3 x=2 y \quad$ b $\left(1,1 \frac{2}{3}\right) \cdot(-1,3),\left(0,2 \frac{1}{3}\right)$
(e) $y=-x+1 \quad(0.5,3),(1,6),(1.2,7.2)$
> 4. Use the coordinate plane to graph each equation.
(a) Equation A: $y=x-5$
(b) Equation B: $y=3 x+1$
c Equation C: $y=-\frac{1}{3} x-2$
d Equation $\mathrm{D}: y=0.4 x$

5. Consider the graph shown.
(a) What do you notice? Sample response: I notic
plane has been rotated
b What do you wonder? Sample response: Does the slope of the line change if the plane is rotated?

\qquad

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

UNIT 3 | LESSON 19 - CAPSTONE

Rogue Planes

Let's see what happens when the coordinate plane acts in unusual ways.

Focus

Goals

1. Language Goal: Describe how the values of m and b in the equation $y=m x+b$ affect the line on the coordinate plane.
(Speaking and Listening)

Coherence

- Today

Students are presented with coordinate planes oriented in unusual ways. They apply what they have learned about the equation $y=m x+b$ to organize the values of m and b to fit these unusual coordinate planes.

< Previously

Over the course of Unit 3, students developed their understanding of proportional and linear relationships. They learned different ways of representing these relationships and gained experience using graphs, equations, and tables to represent real-world examples of linear and proportional relationships.

> Coming Soon

In Unit 4, students will continue their study of linear equations, first by looking at methods for solving algebraically, and later by exploring systems of linear equations.

Rigor

- Students apply their understanding of linear equations to match graphs with coordinate planes oriented in unusual ways

-1
 Activity 1

Activity 2

Summary

Exit Ticket5 min
คํํํ Pairs
20 min
ㅇำ Small Groups
© 5 min
คํำํํ
(1) 5 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- geometry toolkits: protractors, rulers, tracing paper

Math Language
 Development

Review words

- linear relationship
- slope
- y-intercept

Amps ! Featured Activity

Activity 1

Digital Rogue Planes
Students match coordinate planes to lines using digital rotation tools.

desmos

Building Math Identity and Community
 Connecting to Mathematical Practices

In Activity 2, students may feel overwhelmed with the process of just starting. Remind students that they have a large mathematical tool box and that the first decision that they probably need to make for this activity is which tool(s) to use. In order to make the best choice of tool, however, students will need to identify the problem and analyze the situation.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- Activity 2 may be omitted.

Warm-up True or False?

Students critique a statement about the slope of a line on a rotated coordinate plane to notice a relationship between the line and the coordinate plane.

Warm-up True or False?
Is it true that the slope of line ℓ is -4 ? Explain your thinking.

True; Sample response: The slope is -4 even if it looks like it is increasing because of the way the coordinate plane has been rotated. The line for the equation is still $y=-4 x-1$.

- "What made this problem challenging?" Answers may vary, but students may struggle with the unusual orientation of the graph.
- "What is the equation of the line?" $y=-4 x-1$

Highlight that students will find that the coordinate plane they are used to seeing will be acting in unusual ways in this lesson. Even with a coordinate plane oriented in multiple directions, students can still find the equation of the line by using strategies discussed in this unit.
Have students use the Think-Pair-Share routine. Provide them 1 minute to think independently. Then have them complete the Warm-up with a partner.

(2) Monitor

Help students get started by asking them what they notice about the coordinate plane and generating ideas for how they can find the slope of the line

Look for points of confusion:

- Thinking that the statement is false. Acknowledge that the slope does appear to be positive. Ask students what they notice about the coordinate plane and have students rotate the page to position the coordinate plane in the regular way.

Look for productive strategies:

- Rotating their papers to orient the y-axis vertically.
- Finding two points on the line to find the slope of the line.

3 Connect
Display the Warm-up.
Have students share if they think the statement is true or false.

Ask:

 acting in unusual ways in this lesson. Even with a
©
 Power-up

To power up students' ability to generate ideas about a rotated coordinate

 plane, have students complete:Examine the rotated coordinate plane. Determine which statements are true. Select all that apply.
A. The slope of the line is positive.
(B.) The slope of the line is negative.
C. The slope of the line is $\frac{1}{2}$.
(D. The slope of the line is $-\frac{1}{2}$.
E. The slope of the line cannot be determined.

Unit 3 Linear Relationships

Use: Before the Warm-up
Informed by: Performance on Lesson 18, Practice Problem 5

Activity 1 Something Weird Is Happening . . .

Students manipulate coordinate planes and match lines to the given equations, deepening their understanding about relationships between m and b and the position of the line.

1 Launch

Distribute geometry toolkits including tracing paper and rulers. Help students create their coordinate plane on tracing paper. Assign students to groups of 2-4.

Monitor
Help students get started by showing them how to place their coordinate plane sketch paper on the line. Place it incorrectly and ask students what the slope of the line appears to be.

Look for points of confusion:

- Creating a graph of the equation $y=\frac{1}{5} x$ for Problem 2. Ask students to draw a slope triangle and have them restate the definition of slope.
- Creating graphs of the equations $y=-\frac{3}{2} x-2$ or $y=-\frac{3}{2} x+3$ for Problem 3. Confirm for students that the slope is correct and ask students to check their y-intercept by circling it on the graph and in the equation.

Look for productive strategies:

- Using the m or the b from $y=m x+b$ to help place a line in its correct place in the plane.
- Using a point that should be on the line to position the coordinate plane.
- Creating a line that matches the equation on the coordinate plane, and then rotating the plane so the line is matching.

4 Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can use digital rotation tools to match coordinate planes to lines. This will help them visualize how the coordinate plane has rotated.

Extension: Math Enrichment

Have students complete the activity without access to the Activity 1 PDF. This will challenge students to find strategies and tools for creating their own coordinate plane and scale on tracing paper.

Accessibility: Guide Processing and Visualization

Demonstrate how to use the Activity 1 PDF, Coordinate Plane Template and tracing paper to create the coordinate plane for Problem 1.

Activity 1 Something Weird Is Happening . . . (continued)

Students manipulate coordinate planes and match lines to the given equations, deepening their understanding about relationships between m and b and the position of the line.

3 Connect
Display student work showing correct responses for Problems 1-4.

Have students share what strategies they used to place the coordinate plane on the lines.

Ask:

- "What strategies did you find effective?" Answers may vary
- "What strategies did you find ineffective?" Answers may vary.

Highlight different strategies students used and support discussion by clarifying or providing vocabulary as needed. Knowing the values of m and the b from the equation $y=m x+b$ means students draw a line $y=m x$, parallel to the line $y=m x+b$, that passes through the point $(1, m)$. Then students can translate this line to make it pass through the point $(0, b)$ so that it matches the equation $y=m x+b$.

Activity 2 Partner Planes

Students write equations for a line not on a coordinate plane, challenging their partner to match the position of the plane to the equation.

1) Launch

Remind students that they should be able to
solve the problem they prepare for their partner.

Monitor

Help students get started by asking them to identify the values of m and b of their partner's equation, and then ask whether they need to adjust their scales accordingly.

Look for points of confusion:

- Not being able to place the plane on the line because the equation uses numbers that exceed their scale. Encourage students to come up with a new scale they can use.

Look for productive strategies:

- Creating a new scale that is appropriate for a line and a plane with a slope or y-intercept of magnitude greater than the scale from Activity 1.

3 Connect

Display examples of student work.
Ask, "What tools were most helpful?" Answers may vary.

Have students share any questions they have about the activity.

Highlight examples where students made interesting choices about tools that helped them complete the activity. Showcase examples of where students persevered in problem solving.

Accessibility: Vary Demands to Optimize Challenge

Restrict students to using positive or negative integers between -5 to 5 (inclusive) when writing their equations.

Extension: Math Enrichment

Have students write an equation in the form of $A x+B y=C$

Featured Mathematician

Emmy Noether

Have students read about Emmy Noether, who worked to further develop Albert Einstein's theory of general relativity.

Unit Summary

Review and synthesize takeaways and questions students have about Unit 3.

Narrative Connections

Read the narrative aloud as a class or have students read it individually
Synthesize
Display the Summary from the Student Edition. Have students read the Summary or have a student volunteer read it aloud.

Have students share their reflections from their work in this unit.

Ask:

- "What are your biggest takeaways from this unit?" Answers may vary.
- "What are your biggest questions about this unit?" Answers may vary.
Highlight that students will continue to study linear relationships in Unit 4. Consider posting any questions that can be revisited in Unit 4.

(I) Reflect

After synthesizing the concepts of this unit, allow students a few moments for reflection around the concepts of the unit. To help them engage in meaningful reflection, consider asking:

- Did anything surprise you while reading the narratives of this unit?
- Is there anything you would like to learn more about these topics? What are some steps you can take to learn more?

Exit Ticket

Students demonstrate their understanding by reflecting on how the values of m and b in the equation $y=m x+b$ affect the position of the line on the coordinate plane.

- Language Goal: Describing how the values of m and b in the equation $y=m x+b$ affect the line on the coordinate plane. (Speaking and Listening)

- Suggested next steps

If students are unsure what to write, consider:

- Activating students' prior knowledge by having students reference the Unit 3 Anchor Charts. Consider displaying them, if they are not currently displayed.
- Encourage students to write any remaining questions if they cannot think of how to respond to Problems 1 and 2.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Co. Points to Ponder...

- What was especially satisfying about seeing how students approached Activity 1 ?
- What, if anything, did students find frustrating or challenging about Activity 1 ? What helped them work through this frustration?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	2
Spiral	$\mathbf{2}$	Unit 3 Lesson 14	1
	$\mathbf{3}$	Unit 3 Lesson 12	1
	$\mathbf{4}$	Unit 3 Lesson 15	2
	5	Unit 3 Lesson 13	2

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

UNIT 4

Linear Bquations and Systems of Linear Equations

Students begin this unit by developing algebraic methods for solving linear equations with variables on both sides of the equation. They then use these algebraic methods, along with graphs and tables, to solve systems of linear equations.

Essential Questions

- How can you determine the solution to an equation with variables on both sides?
- What does the number of solutions (none, one, or infinite) to a system of linear equations represent?
- How can systems of equations be used to represent situations and solve problems?
- (By the way, does a female plumber earn the same amount of money as a male plumber?)

Key Shifts in Mathematics

Focus

- In this unit...

The unit begins with lessons on number puzzles and hanger diagrams, which help students develop the algebraic thinking they will use to write expressions and balance equations. Students will then study algebraic methods for solving linear equations in one variable. They analyze groups of linear equations, noting that they fall into three categories: no solution, exactly one solution, and infinitely many solution. The second Sub-Unit focuses on systems of linear equations in two variables.

Coherence

- Previously ...

In Grades 6 and 7, students worked with different representations, including hanger diagrams, to solve linear equations with a variable on one side. In Unit 3, students identified and drew graphs for proportional and linear relationships, which helps them reason about graphs for systems of linear equations.

Coming soon...

In Unit 5, students learn the definition of a function, linear or nonlinear. In high school, students will continue their exploration of systems of linear equations by studying more complex ways of solving systems using algebraic methods.

Rigor

In this unit, students engage in rich tasks that address one or more of these aspects of rigor. The following are examples of how each pillar is addressed. See each Lesson Brief to learn more about how rigor is balanced throughout the unit.

Conceptual
Understanding
Students learn they can set two expressions equal to find when two situations are the same (Lessons 10 and 11). They learn that the solution to the system of equations can be seen as a point of intersection of lines that represent the equations (Lesson 13).

Procedural Fluency

Equipped with skills for keeping equations balanced (Lessons 2-8), students practice strategic solving of linear equations (Lesson 9). To solve a system of equations, students practice graphing the lines of two equations (Lesson 14).

Application

Students consider how a system of equations can be used to describe real-world scenarios (Lesson 13) In the final lesson, students look at median earnings for men and women and graph a system of equations to project the gender pay gap over time (Lesson 17).

The Path the Mind Takes

SUB-UNIT

Lessons 2-9

Linear Equations in One Variable

This Sub-Unit is devoted to solving linear equations in one variable. Students build fluency with a variety of strategies and reason about the processes they use to solve linear equations, which prepares them for solving systems of linear equations in the next Sub-Unit.

Narrative: Without the work of mathematicians like Al-Khwarizmi, math might not be the universal language you know today.

SUB-UNIT

Lessons 10-16

Systems of Linear Equations

Students discover how systems of linear equations can be used to model and solve everyday problems. Using graphs, tables, and equations, they determine and interpret the meaning of a solution to a system, including systems with no solution or infinitely many solutions.
Narrative: Discover how more than one equation can help you solve problems with more than one constraint.

Number Puzzles
Students solve puzzles with number machines, building skills and concepts that mirror what they will do when solving linear equations.

Capstone
 Lesson 17

Pay Gaps

Supplied with U.S. Census data, students conduct an analysis of data describing the gender pay gap. They consider the implications of this gender pay gap over time using systems of linear equations.

Unit at a Glance

Spoiler Alert: To determine when two equations - each written in the form $y=m x+b$ - have the same solutions), you can set the two expressions equal to one another, creating one linear equation.

Sub-Unit 2:

ㅇ. Key Concepts

Lesson 5: The structure of an equation can be used to determine possible next steps when solving linear equations with variables on both sides.
Lesson 12: A graph of two intersecting lines has one solution, while one of lines that never intersect has no solution, and a graph of two lines directly on top of one another has infinitely many solutions.
Lesson 13: A solution to a system of linear equations is the ordered pair, (x, y), that makes all equations in the system true.

4 Balanced Moves
(Part 1)
Explore solution paths to solve an equation in one variable.

5 Balanced Moves (Part 2)

Rewrite equations while keeping the same solutions

6 Solving Linear
Equations
Explain and critique steps for solving linear equations.

7 How Many Solutions? (Part 1)

Explore how many solutions equations can have.

Systems of Linear Equations

12 On Both of the Lines

Interpret graphs with one solution, no solution, and infinitely many solutions.

$$
\left\{\begin{array}{l}
x+y=-2 \\
x-y=12
\end{array}\right.
$$

13 Systems of Linear Equations

Comprehend that solving a system of equations means determining what ordered pair makes both equations true.

14 Solving Systems of Linear Equations (Part 1)

Solve systems of linear equations by graphing.

15 Solving Systems of Linear Equations (Part 2)

Generalize a process for solving systems of linear equations algebraically.

Pacing

17 Lessons: 45 min each Full Unit: 19 days 2 Assessments: 45 min each - Modified Unit: 16 days
Assumes 45 -minute class periods per day. For block scheduling or other durations, adjust the number of days accordingly.

Modifications to Pacing

Lessons 3-4: If students are demonstrating proficiency with hanger diagrams and balancing equations, Lessons 3 and 4 can be combined.

Lessons 7-8: Lessons 7 and 8 can be combined if students are demonstrating fluency with solving equations.
Lesson 10: Lesson 10 helps students to better see why they can set expressions equal to each other to determine that two situations are the same. Because this concept is also covered in Lessons 11 and 12, Lesson 10 is considered optional and can be omitted.

Unit Supports

Math Language Development

Lesson	New Vocabulary
13	solution to a system of equations
system of equations	

Mathematical Language Routines (MLRs) support students' language development in the context of mathematical sense-making.

Lesson(s)	Mathematical Language Routines
3,17	MLR1: Stronger and Clearer Each Time
$1,2,10,12,13$	MLR2: Collect and Display
$4-6,8,16$	MLR3: Critique, Correct, Clarify
16	MLR4: Information Gap
11,17	MLR5: Co-craft Questions
$2,6,10-13$	MLR6: Three Reads
$1,4,8,13-15$	MLR7: Compare and Connect
$1-3,7,9,15,16$	MLR8: Discussion Supports

Materials

Every lesson includes:

Exit Ticket
Additional Practice

Additional required materials include:

Lesson(s)	Materials
10,17	calculators
2	glue or tape (optional)
16	graph paper
$13,14,16$	graphing technology
8	index cards Refer to each lesson's overview to see which activities require PDFs.
$1-7,9,10$,	plain sheets of paper
$12-17$	rulers
8	sticky notes
$11-14$	
1	

Instructional Routines

Activities throughout this unit include the following instructional routines:

Lesson(s)	Instructional Routines
16	Algebra Talk
3,13	Card Sort
6	Find and Fix
16	Info Gap
17	Notice and Wonder
15	Partner Problems
10	Poll the Class
7,14	True or False
$3,6,9,10,11$,	Think-Pair-Share
$13,15,16$	Which One Doesn't Belong?
12	

Unit Assessments

Each unit includes diagnostic, formative, and summative assessment opportunities to gauge student understanding of the concepts and skills taught in the unit. All assessments are available in print and digital formats.

Assessments

Pre-Unit Readiness Assessment

This diagnostic assessment evaluates students' proficiency with prerequisite concepts and skills they need to feel successful in this unit.

Exit Tickets

Each lesson includes formative assessments to evaluate students' proficiency with the concepts and skills they learned.

End-of-Unit Assessment

This summative assessment allows students to demonstrate their mastery of the concepts and skills they learned in the lessons preceding this assessment. Additionally, this unit's Performance Task is available in the Assessment Guide.

When to Administer

Prior to Lesson 1

End of each lesson

After Lesson 17

Social \& Collaborative Digital Moments

Featured Activity

Hanging Blocks

Put on your student hat and work through Lesson 3, Activity 1:

Points to Ponder . .

- What was it like to engage in this activity as a learner?
- How might you pace your students through this activity?
- What best practices might you employ for integrating technology in your classroom?

Other Featured Activities:

- Number Machines (Lesson 1)
- Trading Equations, Revisited (Lesson 8)
- A New Way of Solving (Lesson 11)
- How Many Solutions? (Lesson 14)
- Mind the Gap (Lesson 17)

Unit Study
 Professional Learning

This unit study is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can engage in a meaningful professional learning experience to deepen your own understanding of this unit and employ effective pedagogical practices to support your students.

Anticipating the Student Experience With Fawn Nguyen

Sub-Unit 2 introduces students to systems of linear equations. Students work with hanger diagrams as visual models for equations. They learn to solve linear equations in multiple steps and explain each step in their work, such as using the Distributive Property and combining like terms. Students see how graphing can help solve a system of linear equations that arise from everyday problems. They learn to identify if a system of linear equations has one solution, no solution, or infinitely many solutions. Equip yourself to support your students with this concept by engaging in a brief problem-solving exercise to deepen your own learning.

Do the Math

Put on your student hat and tackle these problems from Lesson 16, Activity 1:

Write a system of equations to model each scenario. Define the variables you choose to use. Without solving the system, interpret what the solution to the system would tell you about the scenario.

1. Elena plans a kayaking trip. Kayak Rental A charges a base fee of $\$ 15$ plus $\$ 4.50$ per hour, Kayak Rental B charges a base fee of $\$ 12.50$ plus $\$ 5$ per hour.
2. Diego works at a smoothie stand and prepares a batch of smoothies. The recipe calls for 3 cups of sliced strawberries for every cup of sliced apples. Diego uses a total of 5 cups of sliced strawberries and apples.
3. Andre orders some posters, At Store A, he can order 6 large posters and 4 small posters for $\$ 70$. At Store B, he can order 5 large posters and 9 small posters for $\$ 81$.

Put your teacher hat back on to share your work with one or more colleagues and discuss your approaches.

Points to Ponder . . .

-What was it like to engage in this problem as a learner?

- The scenario in question 1 might lend itself to equations in slopeintercept form, while those of question 3 are in standard form. How might you help students recognize the different types in real-world contexts?
- What implications might this have for your teaching in this unit?

Focus on Instructional Routines

Info Gap

Rehearse...

How you'll facilitate the Info Gap instructional routine in Lesson 16, Activity 2:

```
You will be given either a problem card or a data card. Do not show or read your card to your partner
    #\you are given the problem card: "you are given the drial carch:
    1. Silently read your card and mink about wha
        Intormation you need to te able to.00וve the
        \mathrm{ problem.}
    2. Ask your partner lor the specific information
        Ashat you need.
3. Explamitow you will use the information ta
    Meplam how you wil
    Continue to ask questions untilyou have
        Nough intormation to solve the problem.
    5. Share the problem card and solve the problem
    5. independently.
6. Read the data card and discuss your thinking.
        Silently readyour cara
            2. Ask your partner "What specilic information
                do youneed and wait for them to ask for
                information.
            3. It your partner asks for intormation Urat is not
                on the card, donnot perform the caleuluation
                for them. Tell them you don't have that
            4. Before sharing the information, ask *Why
                do youneed that information?'/Lsten to
            doyouneed that intormation?"Usten to 
            questions.
            5. Read the problem card and sove the problem
            independently
            6. Share the data card and discouss your thinking.
Pause here so your teacher can review your work. You will be given a new set of cards. Repeat
the activity, trading roles with your partner.
```


Points to Ponder . . .

- It will be helpful for students to see a demonstration of this routine before they participate. What can you model in this activity that will help students understand the routine, without revealing anything about the math in the activity?

This routine ...

- Strengthens the opportunities and supports for high-quality mathematical conversations.
- Helps students learn new mathematical language.
- Places an emphasis on communication in order to bridge information gaps.

Anticipate...

- Which part of the routine, posing or answering questions, will be most difficult for your students?
- How will you facilitate the multiple rounds of dialog such that students strengthen their discourse over time?
- If you haven't used this routine before, what classroom management strategies might you need to put in place to help it run smoothly?
- If you have used this routine before, what went well? What would you want to refine?

Strengthening Your Effective Teaching Practices

Facilitate meaningful mathematical discourse.

This effective teaching practice . . .

- Ensures that there is a shared understanding of the mathematical ideas students have explored and discovered during each lesson's activities.
- Allows students to listen to and critique the strategies and conclusions of others.

Math Language Development

MLR6: Three Reads

MLR6 appears in Lessons 2, 6, 10-13.

- Encourage students to read introductory text multiple times before jumping into a task. By doing so, they will have more opportunities to understand the task and the quantities and relationships presented. The Three Reads routine asks students to focus on the following for each read:
» Read 1: Make sense of the overall information or scenario, without focusing on specific quantities.
» Read 2: Look for specific quantities and relationships and make note of them.
» Read 3: Brainstorm strategies for how to approach the task.
- English Learners: Annotate or highlight key words and phrases in the introductory text to help students understand the relationships between quantities, such as each, twice, etc.

Point to Ponder ...

- Some students may resist reading information multiple times. How will you help them see the benefits to doing so before jumping into the actual task?

Unit Assessments

Use the results of the Pre-Unit Readiness Assessment to understand your students' prior knowledge and determine their prerequisite skills.

Look Ahead . . .

- Review and unpack the End-of-Unit Assessments, noting the concepts and skills assessed in each.
- With your student hat on, complete each problem.
©. Points to Ponder . . .
- What concepts or skills in this unit might need more emphasis?
- Where might your students need additional scaffolding and support?
- How might you support your students with solving one-step equations throughout the unit? Do you think your students will generally:
» miss the underlying concept of balance and mathematical equality?
» struggle using graphs to solve a system of equations?
» have difficulty using a system of equations to describe a story?

Points to Ponder . . .

- How can you establish a classroom environment in which diverse approaches to solving problems are cultivated?
- Some students may not know how to dive deeper into discussions about mathematics. How can you model these discussions?

Fostering Diverse Thinking

Use these opportunities for students to connect mathematics to the world around them:

- In Lesson 12, students research Wilma Rudolph, one of the first athletes to advocate for civil rights in the U.S.
- In Lesson 17, students research and learn about National Equal Pay Day in the U.S., what it represents mathematically, how it is calculated, and how it compares to prior years.

Point to Ponder . .

- How can I help raise my students' awareness of the contributions of mathematicians around the world, and connect the math they are learning in this unit to conversations about equity?

Building Math Identity and Community

Throughout this unit, each lesson includes opportunities to support your students' capacity to build strong mathematical habits of mind.

In this unit, pay particular attention to supporting students in building their social awareness and self-management.

Points to Ponder ...

- Are students able to motivate themselves to deepen their understanding of equations and the relationship they have to graphs? Do they use the tools available to explore new concepts and gain more knowledge on systems of equations?
- How do the students relate to each other? Are they able to communicate clearly? Do they work as a team? How do they build their relationships?

Number Puzzles

Let's solve some puzzles!

Focus

Goals

1. Language Goal: Calculate a missing value for a number puzzle that can be represented by a linear equation with one variable, and explain the solution method. (Speaking and Listening, Writing)
2. Create a number puzzle that can be represented by a linear equation with one variable

Coherence

- Today

Students begin this unit by finding solutions to number puzzles, including considering inputs and outputs of a number machine with given steps. These puzzles are good preparation for solving linear equations, in which students have to perform operations on each side of the equation to isolate the variable. Students use representations of their choosing, such as line diagrams, tape diagrams, and equations.

< Previously

In Grade 7, students worked with different representations to solve equations, including hanger diagrams. In Unit 3, students were introduced to the term linear relationship by studying graphs, but did not yet get the opportunity to practice solving linear equations algebraically.

> Coming Soon

In Lesson 2, students will continue studying puzzles, this time by writing equations to help them find a solution.

Rigor

- Students build conceptual understanding for solving linear equations.
©
Warm-up

Activity 1

Activity 2

Summary

Exit Ticket
(1) 8 min
$\cap \cap$ Pairs
$\oplus 15 \mathrm{~min}$
ㅇํำ Small Groups15 min
$\circ \circ$ Pairs
$\oplus 5 \mathrm{~min}$
ํํํํํํ
Whole Class
(1) 5 min

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Graphic Organizer PDF Guess and Check (as needed)
- sticky notes

Math Language

Development

Review words

- input
- order of operations
- output

Building Math Identity and Community

Connecting to Mathematical Practices
Students may lack confidence to represent each step as they work to solve the puzzle. Remind students to use their strengths as they compose their explanations. Assure them that they may not always be correct, but the attempt should be made with confidence.

Amps : Featured Activity

Activity 1
 Digital Number Machines

Students work with digital number machines to develop their equation-solving intuition.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In the Warm-up, Problem 2 may be omitted.
- In Activity 1, have students work only with one partner, instead of three.
- Activity 2 may be omitted.

Warm-up Number Machine

Students explore solutions for given number machines to gain an understanding for the number puzzles they will soon create.

1 Launch

Tell students they will be working with different number puzzles throughout this lesson, and their goal for the Warm-up is to understand how number machines work.

(2) Monitor

Help students get started by reviewing the terms input and output and asking, "What is the first thing that happens when a number is put into the number machine?"

Look for points of confusion:

- Not being sure how the number machine works. Ask students how many steps there are in the machine, and help students find the output after the first step.
- Not being sure how to find the missing step in Problem 2. Suggest that students try by starting with the output and reversing each step.

3 Connect

Have students share their reasoning for Problems 1 and 2 . Sequence responses by starting with students who guessed the answer, and by ending with students who wrote an expression, if applicable.
Highlight that the number machine produces an output by performing a series of operations on an input, the same way we evaluate an expression. Identify different strategies or representations students may have used to make sense of the number machine.

Ask:

- "What was different about your process for solving Problem 1 and Problem 2?"
- "Do these number machines follow the order of operations? What does this suggest?"
- "What are some other ways you could represent the number machine?"

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

To scaffold students' thinking for Problem 1, omit the second and third step and have students work with a number machine that has one step. Continue adding additional steps until students are able to work with the three-step number machine.

(12)

Math Language Development

MLR8: Discussion Supports - Restate It!

During the Connect, as students share their reasoning, have students who guessed first share, followed by students who wrote an expression. After each student shares their strategy, pause and ask another student to restate their reasoning in their own words. Ask, "How does the number machine relate to expressions that you can evaluate?"

English Learners

Annotate each number machine with a corresponding expression and write the term expression next to it.

Activity 1 Think of a Number . . .

Students determine an input based on their partners' output to develop new representations for finding the solutions.

1 Launch

Assign students to groups of 4. Distribute sticky notes. Note: Students will represent this number machine with an expression in Lesson 2. Discuss here only if you see students comfortably using expressions on their own.

Monitor

Help students get started by asking them to describe what is happening to their input in each step of the number machine.

Look for points of confusion:

- Multiplying their result by 3 or adding 3 in the third step of the number machine, instead of adding 3 times their input. Ask students to identify their input, and then ask what 3 times that number would be.
(3) Connect

Display student work showing different representations. Ask students to share any strategies they used to determine their partners' input.

Ask:

- "What made it challenging to work backwards with this number machine?"
- "How did your strategies evolve as you worked with other partners?"
- "What representations, if any, made determining the output more efficient? Were any representations or strategies ineffective?"
Highlight students who worked through a challenge by trying different strategies. Remind them that you will not be providing any hints or strategies for solving, but that they will need to rely on their own ideas, or their partners', to determine solutions.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Omit the second step of the number machine and have students work with a number machine that has two steps.

Accessibility: Guide Processing and Visualization

Have students use the Graphic Organizer PDF, Guess and Check to help organize their thinking.

Math Language Development

MLR2: Collect and Display

During partner discussion, circulate and listen to students explain their representations of the problems to one another. Listen for the variety of ways students solve for their partners' input. Write student-generated words on the class display and continue adding to the display throughout the unit.

English Learners

Highlight any visual representations students create and show how the visual representation connects to the number machine.

Activity 2 Build Your Own Number Machine

Students create their own number puzzle to apply new strategies about how number puzzles work and can be solved.

1 Launch

Give five minutes for students to write their own puzzle before trading their puzzle with a partner to solve. Make sure students write their input on a different sticky note than their output so their partner cannot see the solution.

(2) Monitor

Help students get started by asking them to describe the steps they see in their partner's number machine.

Look for points of confusion:

- Creating a number machine that is challenging for students to solve on their own. Remind students that they must be able to determine the output for a given input for their own puzzle to be able to confirm their partner solved it correctly. If students cannot, or are discouraged from solving their own puzzle, consider providing support or suggesting they rewrite their puzzle with simpler steps.

Look for productive strategies:

- Trying different strategies or representations based on their partner's work.

3 Connect

Have pairs of students share the puzzles they created with the class and any representations they created. If students do not mention this in their explanations, ask which of their representations was the most efficient one for solving the puzzle.
Highlight that there is no "best" representation for solving number puzzles. The best representation is the one that makes sense to each student and helps them solve the problem. However, as problems grow more complex, students are likely to find that certain representations are more useful for solving problems than others.

Accessibility: Vary Demands to Optimize Challenge

To support students getting started creating their own number machines, provide them with a simple input, such as 2 . Alternatively, suggest they create a two-step expression that would represent a two-step number machine.

Math Language Development

[^12]
Summary The Path the Mind Takes

Review and synthesize strategies for working with number machines.

Narrative Connections

Read the narrative aloud as a class or have students read it individually

Synthesize
Display the Summary from the Student Edition. Have students read the Summary or have a student volunteer read it aloud.

Have students share if they felt like they had strategies that helped them solve number machines.

Ask:

- "What strategies or techniques do you have for when you are working on a problem and fee stuck or frustrated?"
- "In what ways is the equation $x+5-2=10$ like a number machine?"

Highlight that it may feel like students are missing a skill or strategy for solving number machines. Pique curiosity by previewing that students will learn a powerful strategy for representing and solving number puzzles, such as number machines in Lesson 2.

Reflect
After synthesizing the concepts of the lesson, allow students a few moments for reflection. To help them engage in meaningful reflection, consider asking:

- "Which number puzzles did you find most challenging to solve today?"
- "Were any strategies or tools not helpful? Why?"

Exit Ticket

Students demonstrate their understanding by solving a number puzzle similar to a number machine.

亘 Printable

Exit Ticket 06

Clare asked Diego to consider a number machine with the following steps.

- Choose an input.

Multiply by 3 .

- Add 2.
- Subtract 7.

Add your input.
Diego's output is 27 . What was his input?
Show or explain your thinking.
; Sample response: I used guess and check. Because the first step is to
multiply by 3 , and I know the final result is 27 , I wanted a number that would multiply by 3 and get close to $\mathbf{3 0}$, based on how the following steps seemed
to not increase or decrease the value by much; $8 \cdot 3+2-7+8=27$.

Self-Assess

I can solve number puzzles using various strategies, such as guess and check or by working backward. 123

Success looks like ...

- Language Goal: Calculating a missing value for a number puzzle that can be represented by a linear equation with one variable, and explaining the solution method. (Speaking and Listening, Writing)
»Solving for Diego's input and explaining how they determined the value.
- Goal: Creating a number puzzle that can be represented by a linear equation with one variable.

Suggested next steps

If students work in the opposite order,

 consider:- Reminding students that they must work backward from the output to determine the input.
- Reviewing how to work backward from an output by looking at Problem 2 of the Warmup.
If students give up or feel like they are unable to solve the number puzzle, consider:
- Offering words of encouragement and suggesting that they will learn new strategies in Lesson 2 that may be helpful.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson
\bigoplus_{0} Points to Ponder . . .

- What trends do you see in participation?
- What did students find frustrating about writing or solving number machines? What helped them work through this frustration?

Practice Problem	Analysis		
Type	Problem	Refer to	DOK
	$\mathbf{1}$	Activity 1	1
On-lesson	2	Activity 1	2
	3	Activity 2	2
Spiral	$\mathbf{4}$	Grade 7	1
Formative 0	$\mathbf{6}$	Unit 3 Lesson 16	Unit 4 Lesson 2

(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.
4. Solve each equation. Show your thinking

$$
\text { a } \begin{array}{rlrl}
4 x+9 & =11 & \text { b }-3(x+7) & =-15 \\
4 x+9-9 & =11-9 & -3(x+7) \div(-3) & =-15 \div(-3 \\
4 x & =2 & x+7 & =5 \\
4 x \div 4 & =2 \div 4 & x+7-7 & =5-7 \\
x & =\frac{1}{2} & x & =-2
\end{array}
$$

5. Select all of the given points that lie on the graph of the linea equation $4 x-y=3$.
(A.) $(-1,-7)$
B. $(0,3)$
C. $\left(\frac{3}{4}, 0\right)$
(D.) $(1,1)$
E. $(5,2)$
F. $(4,-1)$
>6. Write each verbal description as a mathematical expression.
a 5 more than x
b k less than $\frac{1}{2}$
$\frac{1}{2}-\mathrm{k}$
c Half of r
$\overline{2}$
d The product of 12 and p
${ }^{12 p}$
\qquad

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Linear Equations in One Variable

In this Sub-Unit, students solve linear equations to build fluency with the strategies they will need to solve systems of linear equations in the second Sub-Unit.

Narrative Connections

Read the narrative aloud as a class or have students read it individually. Students continue to explore mathematical language and balancing methods related to linear equations in one variable in the following places:

- Lesson 2, Activity 1: Think of a Number, Revisited
- Lesson 3, Activities 1-3: Hanging Blocks, Card Sort: Hanger Diagrams, More Hanging Blocks
- Lesson 4, Activities 1-2: Matching Hangers, Matching Equations Moves
- Lesson 5, Activities 1-2:

Step by Step, Create Your Own Steps

- Lesson 6, Activities 1-2:

Trading Equations, Find and Fix

Writing Expressions and Equations

Focus

Goals

1. Write expressions and equations to represent real-world scenarios.
2. Generate an equivalent expression with fewer terms, including using the Distributive Property.
3. Use the Properties of Equality to solve equations.

Rigor

- Students grow their conceptual understanding of expressions and equations by creating them to represent scenarios.
- Students apply their knowledge of solving equations to new situations and scenarios.

Coherence

- Today

Students model the number machines from Lesson 1 and new verbal descriptions with expressions and equations. Students apply the Distributive Property, combining like terms, and the Properties of Equality to solve the equations.

Previously

In Grade 7, students solved equations of the form $p x+q=r$ and $p(x+q)=r$ and began to write expressions with fewer terms. In Lesson 1, students used representations of their choosing to determine solutions to number puzzles to begin the conversation about solving linear equations.

> Coming Soon

In Lessons 3 and 4, students will use hanger diagrams to show balancing equations to lead toward solving linear equations with variables on both sides of the equal sign.

Activity 1

Activity 2

Summary

Exit Ticket

(1) 5 min	($)^{10} \mathrm{~min}$	(J) 20 min	(1) 5 min	(1) 5 min
กำ Pairs	กำ Pairs	ํำ Pairs	คํำกำ Whole Class	\bigcirc ○ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 1 PDF, pre-cut cards (optional)
- Anchor Chart PDF, Properties of Operations
- Anchor Chart PDF, Properties of Equality
- glue or tape (optional)

Math Language Development

Review words

- coefficient
- constant
- Distributive Property
- equation
- equivalent equations
- expression
- input
- like terms
- output
- Properties of Equality
- solution
- substitution
- term
- variable

Building Math Identity and Community

Connecting to Mathematical Practices
Students may be confused and think of mathematics as a foreign language throughout the activities. Encourage students to resist their impulses to quickly write down the first thing that comes to mind. Have them first identify what they do know about writing and solving equations, and then ask them to develop a solution plan rather than just a solution attempt.

Amps : Featured Activity

Exit Ticket Real-Time Exit Ticket

Check in real time if your students can write and solve an equation by using a digital Exit Ticket.

- Modifications to Pacing

You may want to consider this additional modification if you are short on time.

- In Activity 2, have students only complete Problems 1-3.

Warm-up Think of a Number, Revisited

Students use a number machine from Lesson 1 to create an expression representing the operations of the machine.

Unit 4 | Lesson 2

Writing Expressions and Equations

Let's write expressions and equations.

Warm-up Think of a Number, Revisited
In Lesson 1, you worked with the number machine shown. Now, you will build an expression to represent the number machine.

1. The table shows the number machine steps. Let n represent any chosen input. Complete the table with a possible expression to represent the resulting value for each step.

Description from number machine	Expression
Let n represent the input.	n
Subtract 6.	$n-6$
Multiply by 2.	$2(n-6)$
Add three times the input.	$2(n-6)+3 n$

2. How can you use the final expression you wrote in Problem 1 to
a Determine the output if you use any input?
Sample response: To find the output, the input can be substituted for n in the expression, and then the expression can be evaluated following the order of operations.
b Determine the input if you know the output?
Sample response: Write an equation using the expression on one side of the equal sign and the output on the other side of the equal sign. Then solve the equation for n, the input.

1 Launch

Activate prior knowledge, and review the definition of expression. Consider having students provide examples and counterexamples of expressions.

(2) Monitor

Help students get started by asking how they can write an expression showing subtracting 6 from the variable n.

Look for points of confusion:

- Forgetting the parentheses in the expression. Remind students they want to multiply the entire result from the first step and ask them what symbols allow them to do the subtraction first, and then the multiplication. If further support is needed, review the order of operations and show that, without the parentheses, the multiplication step will happen first.
- Adding $\mathbf{3}$ in the last step instead of $\mathbf{3 n}$. Have students read the first row of the table and describe what variable was used to represent the input and how they can represent three times that number.

3 Connect

Display the number machine and table.
Have students share their expressions and responses to Problem 2.

Highlight the connection between the description and the expression showing how the words model the mathematical expression. Review any necessary vocabulary, including, expression, constant, coefficient, and/or order of operations.

Ask, "How would you write the following phrases as mathematical expressions?

- 7 less than a number $x-7$
- Twice a number $2 x$
- Twice more than 7 less than a number $2(x-7)$

Math Language Development

MLR8: Discussion Supports

Provide sentence frames, such as the following, while students work with their partner to write the expressions representing the number machine descriptions.

- "I think the expression is ___ because . . ."
- "I agree/disagree because . . ."

Show how the phrase "Multiply by 2 " is represented by the expression $2(n-6)$ instead of $2 n-6$. Ask students to explain why. Sample response: The entire expression from the previous line, $n-6$ is multiplied by 2 , not just the input n

(7) Power-up

To power up students' ability to write verbal phrases as mathematical expressions, have students complete:

Match each verbal phrase with its corresponding mathematical expression.
a. 5 more than a number.
c. $\quad 7 x+5$
b. 7 times a number.
b. $7 x$
c. 5 more than 7 times a number.
d. $7(x+5)$
d. 7 times 5 more than a number.
a $\quad x+5$
Use: Before the Warm-up
Informed by: Performance on Lesson 1, Practice Problem 6 and Pre-Unit Readiness Assessment, Problem 6

Activity 1 Think of a Number, Revisited

Students provide an explanation for each step in a student's process for solving an equation to prepare for solving similar equations in the future activities.
Kiran used the following steps to find the input for the number machine from the Warm-up if the output is 17 . Describe what Kiran did in each step.

Equation	Description
$2(n-6)+3 n=17$	Set the expression from the Warm-up equal to the output, 17.
$2 n-12+3 n=17$	Apply the Distributive Property.
$2 n+3 n-12=17$	Apply the Commutative Property of Addition.
$5 n-12=17$	Combine like terms.
$5 n=29$	Add 12 to each side.
$5 n-12+12=17+12$	Combine like terms.
$5 n \div 5=29 \div 5$	Divide each side by the coefficient of $n, 5$.

Are you ready for more?

Consider a number machine that processes the following steps. Write an expression
that represents the output, for any input. Define the variable you choose to use.

- Think of a number.
- Double the number
- Subtract
- Divide by 2.
- Subtract the original number
Sample response: Let n represent the chosen input. The expression that represents the output is $\frac{2 n+9-3}{2}-n$.

1 Launch

Activate prior knowledge and review examples of the associative, commutative, and Distributive Properties.

Activity 2 How Much Did Each Give?

Students use an ancient problem to practice writing and solving an equation, specifically one where like terms must be combined.

Activity 2 How Much Did Each Give?

In 1881, a local farmer from a village called Bakhsahli, a region in modern-day Pakistan, noticed a piece of birch bark buried in their field. Turned out, this was not some ordinary piece of bark. The bark was actually an ancient Indian mathematical text, the oldest known Indian mathematical text, now known as the Bakhshali manuscript. The manuscript is so old, researchers cannot say for certain when it was written. Some estimates suggest it was written as early as 224 CE.
Here is a similar problem to one written in the Bakhshali manuscript:
Of four coin donors, the second donor gave twice the first donor. The third donor gave three times more than the first donor and the fourth donor gave four more than the first. Together, all four donors gave 32 coins. How much did each give?

1. Choose a variable to represent the number of coins the first donor gave.

Sample response: Let x be the number of coins the first donor gave.
2. Write an expression that represents the number of coins each donor gave, based on the number of coins the first donor gave

3. Write an expression that represents how much the donors gave altogether.
$x+2 x+3 x+x+4$
4. Recall that together they donated 32 . Write an equation that represents this statement. $x+2 x+3 x+x+4=32$
5. Solve the equation you wrote in Problem 4. Show your thinking
$\begin{aligned} x+2 x+3 x+x+4 & =32 \\ 7 x+4 & =32\end{aligned}$
$7 x+4-4=32-4$
$\begin{aligned} 7 x & =28 \\ 7 x \div 7 & =28 \div 7\end{aligned}$
$\begin{aligned} 7 x \div 7 & =28 \div 7 \\ x & =4\end{aligned}$
6. How many coins did each of the donors give? Explain your thinking.
Sample response: The first donor gave 4 coins, and the second donor gave twice that, which is 8 coins. donor gave 4 more than the first, which is also 8 coins.

Reflect: How can identifying and defining the variable help you to be more successful in solving
this problem?

(1) Launch

Have students read the information regarding the Bakhshali manuscript and the problem. Activate students' background knowledge regarding the meaning of donors.

(2) Monitor

Help students get started by asking how they can represent the second donor's expression. Consider providing numerical examples. Ask, "If the first donor gave 8 coins, how many did the second donor give?"

Look for points of confusion:

- Thinking the fourth donor's expression is $4 x$. Have students explain the difference between 4 more and 4 times more.
- Not knowing how to write the expression for Problem 3. Ask students what it means by altogether. Continue to prompt them until they give the answer of addition.

Look for productive strategies:

- Recognizing they can combine like terms to solve the equation.

3 Connect

Have students share their responses to Problem 3 and 4 .
Highlight that this equation, such as the one from Activity 1 , has multiple variable terms. These can be combined together to create an equivalent equation with fewer terms. After this step, students can reason abstractly as they use the Properties of Equality to solve the equation. Consider displaying the Anchor Chart PDF, Properties of Equality to support this discussion.

Ask:

- "How did you use the answer from Problem 5 to find the number of coins the other donors gave?"
- "How do the equations from today differ from the equations from previous units or grades? How are they similar?"

Accessibility: Vary Demands to Optimize Challenge

Chunk this task into more manageable parts. After students complete Problem 2, provide feedback before they continue to Problems 3 and 4 For example, ask, "What do you notice about the relationship between the expressions for the first donor and the other donors?"

Accessibility: Guide Processing and Visualization

Have students color-code information in the text and subsequent expressions by using a different color to represent each donor. For example, have students color-code the text and subsequent expressions for the second donor blue. This will help students keep track of the structure of the expressions and what each term represents.

(112)

Math Language Development

MLR6: Three Reads

Use this routine to help students make sense of the introductory text.

- Read 1: Students should understand the historical context for the problem. Define the term donor as this term may be unfamiliar.
- Read 2: Ask students to name or highlight the given quantities and relationships, such as "The second donor gave twice the first donor."
- Read 3: Have students brainstorm strategies for choosing and defining a variable to represent the number of coins given by the first donor.

English Learners

Have students highlight key words and phrases, such as gave twice, gave three times more than, gave four more than the first, and together.

Summary

Review and synthesize the process of solving equations.

Synthesize

Have students share when they know to use which steps in solving. For example, ask, "When do you know to use the Distributive Property?"

Highlight that they will continue to practice solving equations for the rest of the unit.

Ask, "What are some strategies or steps you used when solving the equations?"
(1) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What is helpful about working step by step when solving equations? What is challenging?"

Exit Ticket

Students demonstrate their understanding by writing and solving an equation based on a verbal description.

Success looks like . . .

- Goal: Writing expressions and equations to represent real-world scenarios.
» Writing an equation to determine Bard's age.
- Goal: Generating an equivalent expression with fewer terms, including using the Distributive Property.
- Goal: Using the Properties of Equality to solve equations.
» Solving the equation to determine Bard's age by using the Properties of Equality.

Suggested next steps

If students have trouble writing the correct equation, consider:

- Reviewing Activities 1 and 2.
- Assigning Practice Problem 3.

If students write the correct equation but incorrectly solve the equation, consider:

- Reviewing Activities 1 and 2.
- Assigning Practice Problems 1 and 2.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder . . .

- What worked and didn't work today? The instructional goal for this lesson was to generate equivalent expressions with fewer terms. How well did students accomplish this? What did you specifically do to help students accomplish it?
- Thinking about the questions you asked students today and what the students said or did as a result of the questions, which question was the most effective? What might you change for the next time you teach this lesson?
>3. In a basketball game, Elena scored twice as many points as Tyler. Tyler scored 4 points fewer than Noah, and Noah scored three times as many points as Mai. If Mai scored 5 points, how many points did Elena score? Explain your thinking. Sample response: Let E, T, N, and M represent the number of points
$N=3 M, M=5$.
$M=5$
$N=3$.
$N=3 \cdot 5=15$
$T=15-4=1$
$E=2 \cdot 11=22$

4. Triangle A is an isosceles triangle. One angle measures x degrees and another angle measures y degrees
a What values could x and y represent? Determine three pairs of values for x and y that could be the angle measures of the triangle.
Sample response: $40^{\circ}, 40^{\circ}, 100^{\circ} ; 45^{\circ}, 45^{\circ}, 90^{\circ} ; 50^{\circ}, 50^{\circ}, 80^{\circ}$
b Write an equation relating x and y. Sample response: $2 x+y=180$
\qquad

Practice Problem Analysis			
Type	Problem	Refer to	DOK
	1	Activities 1 and 2	2
On-lesson	2	Activities 1 and 2	2
	3	Activity 2	2
Spiral	4	Unit 3 Lesson 16	2
	5	Unit 3 Lesson 7	2
Formative 0	6	Unit 4 Lesson 3	1

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.
5. A store is designing the space for rows of nested shopping carts. Each row has a starting cart that is 4 ft long, followed by the nested carts (so 0 nested carts means there is only the starting cart). The store measured a row of 13 nested carts to be 23.5 ft long, and a row of 18 nested carts to be 31 ft long.
a Create a graph of the situation. Remember to scale and label your axes.
Sample response shown.
b How many feet does each additional nested

cart add to the length of the row? Explain
1.5 ft is added by each cart.
1.5 ft is added by each cart.
Sample response: $\frac{31-23.5}{18-13}=\frac{7.5}{5}=1.5$

If the store design allows for each row of nested
of 43 ft, how many total carts can fitin a row
of 43 ft , how many total carts can fit in a row?
Sample response: Let x represent the num
epresent the length of a row of nested carts. The equation $y=4+1.5 x$
$\begin{aligned} 43 & =4+1.5 x \\ 43-4 & =4+1.5 x-4\end{aligned}$
$\begin{aligned} 43-4 & =4+1.5 x-4 \\ 39 & =15 x\end{aligned}$
$\begin{aligned} 39 & =1.5 x \\ 39 \div 1.5 & =1.5 x \div 1.5 \\ 26 & =x\end{aligned}$
A total of 27 carts (26 nested carts plus the starting cart) can fit in each row.
6. Match each expression with an equivalent expression
a $5(x-7)$
d $5 x+35$
b $-5(x-7)$
a. $5 x-35$
(c) $2 x-30-5-7 x$
(d) $3 x+2 x-5(-7) \quad \mathrm{b} \quad-5 x+35$

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Keeping the Balance

Let's determine unknown weights on balanced hanger diagrams.

Focus

Goals

1. Language Goal: Calculate the weight of an unknown object using a hanger diagram, and explain the solution method. (Speaking and Listening)
2. Comprehend that adding and removing equal items from each side of a hanger diagram or multiplying and dividing items on each side of the hanger diagram by the same amount are moves that keep the hanger balanced.

Coherence

- Today

Students recall a representation that they have seen in prior grades: the hanger diagram. They learn to work with hanger diagrams with variables on each side. In Activity 3, they are introduced to concepts related to infinite and no solutions, discussed formally in Lesson 7. Students use concrete quantities to develop their power of abstract reasoning about equations.

© Previously

In Lessons 1 and 2, students worked with number machines by representing them with equations and solving the equations.

>Coming Soon

Students will build on their conceptual understanding by solving equations while keeping the hanger diagram balanced.

Rigor

- Students strengthen their conceptual understanding of maintaining balance as one of the key strategies in solving equations.

Warm-up

Activity 1

Activity 2

Activity 3

Summary

Exit Ticket
(1) 5 min
คํํํ Pairs10 min
คํํํ Pairs
(1)
10 min
ㅇํㅇ Pairs
(1)
10 min
ㅇํㅇ Pairs
(d) 5 min

Amps powered by desmos \quad Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 2 PDF, pre-cut cards, one set per pair

Math Language Development

Review words

- equivalent
- hanger diagram
- like terms
- Properties of Equality
- substitution
- term

Building Math Identity and Community

Connecting to Mathematical Practices
At first, students may not immediately be able to identify the number of solutions and may want to quit before really getting started with Activity 3. Encourage students to set a goal of identifying what they do know about the diagram and then work toward a solution, one step at a time. By looking only one step ahead, a task can seem much more manageable.

Amps \vdots Featured Activity

Activities 1 and 3 Digital Hanger Diagrams

Students manipulate digital hanger diagrams and check whether they are balanced in real time.

- Modifications to Pacing

You may want to consider this additional modification if you are short on time.

- Consider giving students the matches for Activity 2 and having them focus on completing the Possible Move column.

Warm-up What's True?

Students reason about hanger diagrams to determine what a balanced or unbalanced hanger represents.

1 Launch

Activate prior knowledge by asking what students remember about balance and hanger diagrams.

(2) Monitor

Help students get started by asking what they notice about the first hanger diagram.

Look for points of confusion:

- Thinking that a triangle and circle must be equal. Explain that we only know the two squares are balanced with two triangles and two circles but not that a triangle is balanced with a circle.
- Thinking that a triangle and a circle could equal a square. Discuss with students that removing one square, one triangle, and one circle is removing half of the objects, which would still maintain balance and must be true.

Look for productive strategies:

- Assigning possible weights to the shapes to support their statements.

3 Connect

Display the hanger diagrams.
Have students share their statements of what must be, could be, or cannot be true and explain why.

Ask:

- "What shapes can you remove from the second diagram and still maintain the balance?" one square, one triangle, and one circle
- "If you remove one square from the first diagram, will the hanger become balanced?" That is unknown because we do not know the weight of each shape or how they compare to each other.

Differentiated Support

Accessibility: Activate Prior Knowledge, Guide Processing

 and VisualizationDisplay one of the hanger diagrams and ask students what they recall about balancing a hanger diagram. Suggest that students assign possible numerical values to each shape to help their thinking.

Extension: Math Enrichment

Have students assign x, y, and z to represent the weight of each square, triangle, and circle, respectively. Challenge them to write algebraic statements that represent the hanger diagrams.
Sample response: $x>y$ and $x=y+z$

(7) Power-up

To power up students' ability to determine equivalent expressions, have students complete:
Which of the following expressions are equivalent to $-3(x-7)+4 x$? Select all that apply.
A. $-3 x-21+4 x$
B. $x-21$
C. $-3 x+21+4 x$
D. $x+21$
E. $7 x+21$

Use: Before Activity 1
Informed by: Performance on Lesson 2, Practice Problem 6 and Pre-Unit Readiness Assessment, Problems 1, 2, and 3

Activity 1 Hanging Blocks

Students explain why adding or subtracting blocks from both sides of the hanger diagram will maintain balance to begin their work with solving equations.

1 Launch

Let students know the hanger diagram is balanced, and they will perform moves to maintain that balance.

2 Monitor

Help students get started by asking, "If you remove a triangle from the left side, what do you need to do on the right side to maintain balance?" Consider giving an incorrect answer to help students' process.

Look for points of confusion:

- Thinking they can only remove weights from the bottom. Let students know that if a weight is removed, then the others are rehung on the hanger diagram.
- Thinking that removing one shape from the right side will be balanced because there are 5 shapes on each side. Remind students each shape has a different weight.

Look for productive strategies:

- Drawing on the diagram or redrawing the diagram to show removed pieces or known weights.
- Representing the hanger diagram with an equation.

3 Connect

Highlight that it is acceptable to add or remove blocks of the same "size" from both sides of the hanger diagram. The sides will still be balanced and the resulting hanger diagram is equivalent to the starting diagram.
Have students share their responses and reasoning while displaying the hanger diagram. Start with students who first assigned a value to the triangles and end with students who removed equivalent weights and then assigned a value to the triangles in Problem 2. For Problem 3, discuss any proportional reasoning they used.
Ask, "How do you know if your move will keep the hanger diagram balanced?"

Differentiated Support

Accessibility: Guide Processing and Visualization

Represent the same information through different modalities by using concrete representations. For example, create a physical model of the hanger diagrams by using a clothes hanger and weighted objects. Highlight how the weights of objects on either side impact whether the hanger is balanced or unbalanced.

Accessibility: Vary Demands to Optimize Challenge

For Problem 3, consider providing a weight for one square and having the students determine the corresponding weight of the triangle. For example, provide the weight of a square as 6 grams. Students would then determine the weight of the triangle to be 4 grams.

(12R)

Math Language Development

MLR8: Discussion Supports - Press for Reasoning

During the Connect, amplify mathematical language that explains how to balance the hanger diagram. Press for reasoning by asking students "How do you know the hanger diagram is balanced?" Highlight any proportional reasoning students use and emphasize words and phrases, such as balance, same size, and equal weights.

English Learners

As students discuss which weights can be removed, mark up the diagram to show connections between student descriptions of maintaining balance and the visual diagram.

Activity 2 Card Sort: Hanger Diagrams

Students match two equivalent hanger diagrams and describe the possible move to turn one diagram into the other.

1 Launch

Provide the pre-cut cards from the Activity 2 PDF for each pair of students.

2 Monitor

Help students get started by suggesting they match the cards first before writing the possible move.

Look for points of confusion:

- Explaining Card 2 to Card 6 as doubling (or switching any card pair). Remind students they are finding the possible moves from the card listed under Hanger 1 to make the card listed under Hanger 2.

Look for productive strategies:

- Using mathematically precise language, such as "subtract one triangle from each side" or "multiply both sides by 3."

3 Connect

Display any necessary cards to help with the discussion.

Have students share their matches and possible moves to turn Hanger 1 into Hanger 2.

Highlight mathematically precise language for the possible moves. Review the possible moves used: adding blocks, subtracting blocks, increasing by the same multiple, and grouping the blocks to remove redundancy

Ask, "Are there any additional moves which could be made and which still keep the hanger diagrams balanced?"

Accessibility: Vary Demands to Optimize Challenge

Provide students with the card matches for each card. This will allow students to focus on writing their descriptions for the possible moves.

Accessibility: Guide Processing and Visualization

Suggest that students color code each shape to help them determine the matches. For example, color all of the squares blue, the triangles red, and the circles yellow.

Extension: Math Enrichment

Have students create their own pair of equivalent hanger diagrams according to their own descriptions of possible moves. Challenge them to incorporate two or three different types of possible moves, instead of just one.

Activity 3 More Hanging Blocks

Students reason about hanger diagrams and find unknown weights to begin the discussion on one, infinitely many, and no solutions.

1 Launch

Use the Think-Pair-Share routine as students work through each problem.
(2) Monitor

Help students get started by asking if there are any shapes that can be removed but still maintain balance.

Look for points of confusion:

- Thinking that triangles weigh 1 gram as in the previous activity. Have students read and highlight the weights in the directions.

Look for productive strategies:

- Removing shapes first before substituting numerical values for the known shapes
- Using an equation to represent the hanger diagrams.

3 Connect

Display the hanger diagrams.
Have students share strategies for finding the unknown weight without using equations. Ask students to be clear how they are changing each side of the hanger diagram.
Highlight how removing shapes before substituting in numerical values can help make the process more efficient. Explain the square in Problem 1 has only one value for the hanger diagram to stay balanced, the pentagon in Problem 2 can be any weight and the hanger diagram will always be balanced, and the diagram in Problem 3 will never be balanced. Note: The number of possible solutions will be formalized in Lesson 7.

Ask, "How can you change the known weights in Problem 3 so that you can determine the weight of the trapezoid?" You will not be able to determine the weight of the trapezoids because they balance with each other and can be any value regardless of the weight of the other shapes.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Have students focus on Problem 1. Consider providing a simplified hanger diagram, with fewer shapes. Encourage students to label the values they know, and then determine the weight of 1 square.

Extension: Math Enrichment

Have students complete the following as a follow-up to Problem 3: If the weight of a square is a grams, the weight of a pentagon is b grams, and the weight of a trapezoid is c grams, write an equation that could represent each hanger diagram.

1. $1 a+21=5 a+6$
2. $2 b+12=2 b+12$
3. $1 c+6=1 c+9$

Math Language Development

MLR1: Stronger and Clearer Each Time

After students complete Problem 1, use this routine to support students in crafting a well written explanation. Say, "Explain how you determined the weight of 1 square." Give students time to individually write an initial draft of their response. Have them meet with 2-3 partners to both give and receive feedback. Encourage partners to ask clarifying questions and invite students to write a final draft based on the feedback.

English Learners

Allow students to partner with at least one peer who speaks the same primary language. This will give students an opportunity to clarify feedback in their primary language as they work to improve their draft response.

Summary

Review and synthesize how to maintain balance in the hanger diagrams.

Summary

In today's lesson...

You balanced hanger diagrams and saw that adding or removing the same
amount from each side kept the diagram balanced. You also saw that multiplying or dividing each side by the same amount kept the resulting hanger diagram balanced.
In the next lessons, you will connect this idea of balance to solving equations.

Synthesize

Highlight that, if a possible move is done on the left side of the hanger diagram, it must also be done on the right side so that the hanger diagram maintains its balance.

Ask, "How can you determine the value of an unknown weight in a hanger diagram?"

(I) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition To help them engage in meaningful reflection, consider asking:

- "How do you make sure the hanger diagram maintains balance?'

Exit Ticket

Students demonstrate their understanding by finding an unknown weight on a balanced hanger diagram.

Success looks like ...

- Language Goal: Calculating the weight of an unknown object using a hanger diagram, and explaining the solution method. (Speaking and Listening)
» Determining the weights of the triangle and circle in the balanced hanger diagram.
- Goal: Comprehending that adding and removing equal items from each side of a hanger diagram or multiplying and dividing items on each side of the hanger diagram by the same amount are moves that keep the hanger balanced.
» Explaining how to determine the weights of the triangle and circle by first removing equal items from each side.

Suggested next steps

If students find that one square balances with two triangles but do not determine the weight of the triangle, consider:

- Highlighting that a square weighs 8 grams.
- Reviewing Activity 1.
- Reviewing Problem 1 from Activity 3.
- Assigning Practice Problems 1 and 3.

If students determine the weight of the triangle but not the weight of the circle, consider:

- Reminding them the question asked for the weight of both the triangle and circle.
- Asking if the weight of the circle could be 5 grams, 3 grams, or any other amount.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder ...

- What worked and didn't work today? What did students find frustrating about Problem 3 of Activity 2? What helped them work through this frustration?
- In this lesson, students balanced hanger diagrams. How will that support their work of solving equations? What might you change for the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	1	Activity 1	2
	2	Activity 2	2
Spiral	3	Unit 4 Lesson 2	1
	4	Unit 4 Lesson 2	2
	5	Unit 3 Lesson 12	2
Formative 0	6	Unit 4 Lesson 4	2

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.
(6) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Balanced Moves (Part 1)

Let's rewrite equations, while keeping the same solutions.

Focus

Goals

1. Language Goal: Compare and contrast solution paths to solve an equation in one variable by performing the same operation on each side. (Speaking and Listening, Writing)
2. Language Goal: Correlate changes on hanger diagrams with steps that create equivalent equations. (Speaking and Listening, Writing)

Coherence

Today

Students move from using hanger diagrams to using equations to represent a problem. They see how moves that maintain the balance of a hanger diagram correspond to steps that maintain the equality of an equation, such as halving the value of each side or subtracting the same unknown value from each side. Students reason about the equation which represents the hanger diagram and about the steps in solving an equation.

\& Previously

In Lesson 3, students made possible moves to keep hanger diagrams balanced and found unknown quantities of weights.

Coming Soon

In Lesson 5, students will focus on solving equations with variables on both sides.

Rigor

- Students build conceptual understanding of solving equations by relating it to keeping the hanger diagram balanced.
- Students apply the work they did with hanger diagrams to the process of solving equations.

() 20 min

\circ ㅇํ Pairs
$(5 \min$
$\stackrel{\circ}{\cap}$ Independent

Activity 1

Activity 2

Summary

Exit Ticket
(1)
10 min
คำ Pairs

© 5 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Properties of Operations
- Anchor Chart PDF, Properties of Equality

Math Language
 Development

Review words

- coefficient
- constant
- Distributive Property
- equation
- equivalent equations
- expression
- like terms
- Properties of Equality
- solution
- substitution
- term
- variable

Amps : Featured Activity

Activity 2
 Digital Card Sort

Students match pairs of equations with the corresponding step that produces the second equation from the first equation.

Building Math Identity and Community

Connecting to Mathematical Practices
Without a hanger diagram, students might feel that the task in Activity 2 is too difficult or even impossible. Encourage students to manage their stress levels by decontextualizing the processes used with the hanger diagram to those used with the equation. To stay organized and to visualize what they are doing, students might want to actually create and use a hanger diagram.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 1, consider writing the equations in Problem 2 together as a whole class.

Warm-up What's Being Represented?

Students represent each side of the hanger diagram with expressions to begin their work of solving equations.

1 Launch

Set an expectation for the amount of time that students will have to work individually on the activity.

2 Monitor

Help students get started by asking them to describe the shapes on one side of the hanger diagram. Write down what they say, and then have them replace the word square with the variable x.

Look for points of confusion:

- Wanting to remove shapes from both sides of the hanger diagram. Let students know they will be able to do this in the next activity, but right now they should describe each side separately.

Look for productive strategies:

- Representing the balanced hanger diagram with an equation. Have these students share their responses last during the discussion.

3 Connect

Display the hanger diagram.
Have students share their responses. Start with students who used phrases, followed by students who wrote expressions, and end with students who used equations to represent the balanced hanger diagram.

Highlight the many representations for the hanger diagram and how like shapes can be combined similarly to the like terms in Lesson 2. The many equations that the students created are considered equivalent equations.

Ask, "What could be done to both sides of this hanger diagram so it would still be balanced?"

Note: If a student writes the equation
$2(x+3 y)+2 z=2 z+4 x+2 y$, have them share last to segue to Problem 1 of Activity 1.

Math Language Development

MLR7: Compare and Connect

During the Connect, have pairs of students share and compare their responses. As students discuss, highlight those who used phrases compared to those who used expressions or equations. Ask:

- "How does the expression $x+x$ compare to the combined term $2 x$?"
- "How does the verbal phrase 'there are $2 x \mathrm{~s}, 6 y \mathrm{~s}$, and $2 z \mathrm{~s}$ on the left' compare with the expression $2 x+6 y+2 z$? Why are these terms added?"

English Learners

Annotate the shapes on the hanger diagram with their corresponding variables to make connections between the phrases and expressions or equations.

Power-up

To power up students' ability to write equivalent expressions involving division, have students complete:

Andre solves the equation $5(x-10)=35$ by dividing both sides by 5 .
a. Show Andre's next step.
$x-10=7$
b. Finish solving Andre's equation.
$x-10+10=7+10$

$$
x=17
$$

Use: Before Activity 1
Informed by: Performance on Lesson 3, Practice Problem 6

Activity 1 Matching Hangers

Students revisit the hanger diagram from the Warm-up to connect possible moves with hanger diagrams to possible next steps with equivalent equations.

Activity 1 Matching Hangers

Hanger Diagrams 2, 3, and 4 show the result of simplifying the previous hanger diagram by removing equal weights from each side.

Diagram 1	Diagram 2	Diagram 3	Diagram 4
Equation 1	Equation 2	Equation 3	Equation 4
$\begin{gathered} 2(x+3 y)+2 z= \\ 2 z+4 x+2 y \end{gathered}$	$2(x+3 y)=4 x+2 y$	$x+3 y=2 x+y$	$2 y=x$

1. How does Equation 1 represent Diagram 1 ? Recall that x, y, and z represent the weight of a square, triangle, and circle, respectively. Sample response: The left side has 2 groups of 1 square and 3 triangles, which is represented by the expression $2(x+3 y)$, and there are 2 circles, which is represented by the term $2 z$. The right side has 2 circles, 4 squares, and 2 triangles, which is represented by the expression $2 z+4 x+2 y$.

1 Launch
Give pairs a few minutes to think about Problem 1. Discuss it as a class to ensure everyone understands Equation 1 is a possible representation of Diagram 1.
(2) Monitor

Help students get started by asking what changed from Diagram 1 to Diagram 2.

Look for points of confusion:

- Writing Equation 2 as $2 x+6 y=4 x+2 y$. Although this is correct, students may have trouble determining the possible move to Equation 3. Review factoring by finding the greatest common factor.

Look for productive strategies:

- Using mathematically precise language to describe the moves, specifically in terms of describing variable terms instead of shapes.

Activity 1 continued >

Accessibility: Vary Demands to Optimize Challenge

Provide students with a list of possible equations for Hanger Diagrams 2, 3, and 4. Have students match the equations with the appropriate diagrams. This will allow students to focus on making connections between the symbols and the structure of the equivalent equations.

Extension: Math Enrichment

If students complete the Are you ready for more? activity, challenge them to create their own cryptarithmetic puzzle. While not all of the digits $0-9$ must be used, each digit can only represent one letter. Have students create their cryptarithmetic puzzles and trade them with a partner to try to solve.

Activity 1 Matching Hangers (continued)

Students revisit the hanger diagram from the Warm-up to connect possible moves with hanger diagrams to possible next steps with equivalent equations.

3 Connect
Have students share their possible moves. Start with students who described moving shapes (i.e., "remove two circles"), and end with students who described the moves in terms of variable expressions (i.e., "subtract $2 z$ ").

Highlight how the moves in the hanger diagrams relate to the steps in the equations. Display the Anchor Chart PDF, Properties of Equality to show adding or subtracting the same terms, or multiplying or dividing by the same value, on each side keeps the hanger diagram and the equation in balance.

Ask:

- "Why is it acceptable to halve both sides when moving from Equation 2 to 3 when that step removes different objects from each side?"
- "If you substitute 6 for every x in Equation 2 or 3, will you get the same answer as when you substitute that same value in Equation 4? Why?"

Activity 2 Matching Equation Moves

Students reason about pairs of equations to identify possible next steps in the solving process.

Amps Featured Activity Digital Card Sort

Activity 2 Matching Equation Steps

The following shows a series of equations and possible moves or steps.

1. Match each set of equations with a possible step that turns the first equation into the second equation.
Note: You may not have a matching equation for every possible step listed.
Equations
Possible Steps
(a) $\begin{aligned} 3 x+7 & =5 x \\ 7 & =2 x\end{aligned}$ c Divide each side by -3 .
(b) $-\frac{5 x}{3}=12$
a Subtract $3 x$ from each side
$5 x=-36$
d Add $3 x$ to each side.
c $\begin{aligned}-3(4 x-3) & =-15 \\ 4 x-3 & =5\end{aligned}$ Subtract 3 from each side
(d) $\begin{aligned} 4-3 x & =12 x \\ 4 & =15 x\end{aligned}$
e Subtract 3 from each side.
(e) $\quad 10-6 x=4+5 x$

Multiply each side by 3.
f $\begin{aligned} 12 x+3 & =6 \\ 4 x+1 & =2\end{aligned} \quad$ f \quad Divide each term by 3.
b Multiply each side by -3 .

Critique and Correct:
Your teacher will display an
incorrect statement. Work with
your partner to critique the
statement, write a corrected
statement, and clarify how and
why you corrected it.

1 Launch

Let students know this activity does not use hanger diagrams, but if they need help, they can create a hanger diagram to represent some of the equations.

(2) Monitor

Help students get started by asking what is missing from the first pair of equations and how that step could be done.

Look for points of confusion:

- Switching answer choices for part a and part e. Have students carefully look at which terms are changing from the first equation to the second equation.
- Switching answers for part b and part c. Have students perform the selected operations on the equation and determine whether they get the second equation.

Look for productive strategies:

- Focusing on the step to turn 12 into -36 for the equations in part b.
(3) Connect

Display any equation pairs needed to help with the discussion, and have students share their matches and reasoning. Consider displaying the Anchor Chart PDF, Properties of Equality.

Ask, "Were there any steps that left you wondering why that step was taken?" Some students may wonder why, in part e, 3 was subtracted or, in part f, why it was divided by 3 because they do not work towards isolating the variable.
Highlight that the Properties of Equality are used in every set of equations. The operation performed on the left side is also done on the right side to maintain equality. Although some steps are possible, such as the ones in part e and part f, they may not be helpful in solving equations.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, limit the number of pairs of equations so students focus on the sets of equations in parts a, b, c, and d first. If time permits, encourage students to complete the other sets of equations.

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can match pairs of equations with the corresponding step that produces the second equation from the first equation.

Math Language Development

MLR3: Critique, Correct, Clarify

During the Connect, display a partially incorrect statement, such as "When you add to both sides, it is the same." Ask:

- Critique: "Do you agree with this statement? Why or why not?" Prompt students to consider cases with positive and negative numbers, as well as fractions.
- Correct: "Write a revised statement that is correct and clearer."
- Clarify: "How did you revise the statement? How can you verify that your statement is correct?"

English Learners

Allow students to share their revised statements with a partner before sharing with the whole class.

Summary

Review and synthesize the possible next steps in solving an equation.

Synthesize

Display the equation $6 x+12=10 x-4$.
Have students share possible steps they could make to maintain equality.

Ask:

- "How do you know when a possible move is a mathematically valid step?"
- "Is multiplying both sides by 0 a valid step?" It will maintain equality but will cause all terms to become 0 , which is unhelpful.
- "What is the goal when solving an equation? How do you choose your steps based on that goal?" The goal is to isolate the variable and to find the solution of the equation, which is the value that makes the equation true. Steps can be chosen to isolate the variable.

Highlight that there are many possible steps, such as subtracting $6 x$ from both sides, adding 4 to both sides, dividing both sides by 2 , to name a few. The Properties of Equality are used to maintain equality (or balance). To help determine a possible step, students can use the terms presented in the problem. For instance, the equation adds 12 on the left side. If the goal is to remove this term, it makes sense to subtract 12 from both sides. Students should try to decide on steps which will isolate the variable. A more formal algorithm will be defined in Lesson 5.

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "Thinking about your work with hanger diagrams, how can you manipulate an equation with variables on both sides?"

Exit Ticket

Students demonstrate their understanding by analyzing the structure of the equation pairs to determine the possible step.

晑 Printable

Match each set of equations with a possible step that turns the first equation into the second equation.
Equations Possible Steps
a $\begin{aligned} 2(6 x-3) & =4 x \quad \text { b Subtract } 2 x \text { from each side }\end{aligned}$
$6 x-3=2 x$
d Divide each side by 4.
b $\begin{aligned} 6 x-3 & =2 x \\ 4 x-3 & =0\end{aligned} \quad$ a Divide each side by 2.
c $\begin{aligned} 4 x-3 & =0 \\ 4 x & =3\end{aligned}$
d $\begin{aligned} 4 x & =3 \\ x & =\frac{3}{4}\end{aligned}$
$x=\frac{3}{4}$

Success looks like ...

- Language Goal: Comparing and contrasting solution paths to solve an equation in one variable by performing the same operation on each side. (Speaking and Listening, Writing)
» Matching each set of equations with the step that turns the first equation into the second equation.
- Language Goal: Correlating changes on hanger diagrams with steps that create equivalent equations. (Speaking and Listening, Writing)

Suggested next steps

If students mismatch the possible steps with the equations, consider:

- Reviewing Activity 2.
- Having them draw a hanger diagram to represent the equations and discuss the possible moves.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson

Points to Ponder . . .
What worked and didn't work today? What challenges did students encounter as they worked on Problem 2 from Activity 1? How did they work through them?

- How did matching possible moves set students up to develop strategies for solving equations, particularly with variables on both sides? What might you change for the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
	$\mathbf{1}$	Activity 1	2
On-lesson	$\mathbf{2}$	Activity 2	2
Spiral	$\mathbf{3}$	Activity 2	1
Formative 0	$\mathbf{5}$	Unit 3 Lesson 16	Unit 4 Lesson 5

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Balanced Moves (Part 2)

Let's rewrite some more equations, while keeping the same solutions.

Focus

Goals

1. Language Goal: Calculate a value that is a solution for a linear equation in one variable, and compare and contrast solution strategies with others. (Speaking and Listening)
2. Language Goal: Critique the reasoning of others in solving a linear equation in one variable. (Writing)

Coherence

Today

Students continue to reinforce the connection between three fundamental ideas: a solution to an equation is a value that makes the equation true, performing the same operation on each side of an equation maintains the equality in the equation, and, therefore, two equations related by such a step have the same solution. They use the structure of the equation to determine the possible next steps as they practice solving linear equations with variables on both sides.

Previously

In Lessons 3 and 4, students used hanger diagrams as tools to solve linear equations.

Coming Soon

In Lesson 6, students will continue to practice solving linear equations with variables on both sides, and, in Lessons 7 and 8 , they will solve equations with no solution or infinitely many solutions.

Rigor

- Students practice procedural skills as they develop an algorithm to solve equations with variables on both sides.

Activity 1
Activity 2

Summary

Exit Ticket

(J) 5 min
ㅇํㅇ Pairs

() 15 min
ㅇํㅇ Pairs
(®) 1
15 min
กํํ Pairs
(1)
8 min
Whole Class
(๑) 5 min
\bigcirc ค Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Solving Linear Equations

Math Language
 Development

Review words

- coefficient
- constant
- Distributive Property
- equation
- equivalent equations
- expression
- like terms
- Properties of Equality
- solution
- substitution
- term
- variable

Amps ! Featured Activity

Exit Ticket
 Real-Time Exit Ticket

Check in real time to see whether your students can find errors in a solution and can correctly solve an equation with variables on both sides using a digital Exit Ticket.

Modifications to Pacing
You may want to consider this additional modification if you are short on time.

- Have students choose one problem from Activity 2 and assign the remaining problems as additional practice.

Building Math Identity and Community

Connecting to Mathematical Practices
Students might get frustrated if their algorithms are not the same as the given algorithm in Activity 1. Remind students that it is an algorithm, not the algorithm, and therefore, there could be multiple correct ways to solve a problem. It might also help for them to think of an algorithm as simply a list of steps to take to solve an equation. As they work toward developing an algorithm for solving equations with variables on both sides, they can evaluate their process and makes changes.

Warm-up Is It a Solution?

Students substitute a value into an equation to determine whether it is the solution.

Unit 4 | Lesson 5

Balanced Moves (Part 2)

Let's rewrite some more equations, while keeping the same solutions.

Warm-up Is It a Solution?
Consider the equation $10 x-2 x+9=3(2 x+9)$. Is $x=3$ a solution to
the equation? Show or explain your thinking.
Sample response:
$10 x-2 x+9=3(2 x+9)$
$10(3)-2(3)+9=3(2(3)+9) \quad$ Substitute 3 for x and evaluate the expression on each side.
$30-6+9=3(6+9)$
$24+9=3(15)$
$33=45$
This is not a true statement; therefore, $x=3$ is not a solution

Log in to Amplify Math to complete this lesson online.
(9)

1 Launch

Activate prior knowledge and ask students to define the solution of an equation.

2 Monitor

Help students get started by asking how they can check whether 3 is the solution.

Look for points of confusion:

- Not substituting 3 in for every x-variable. Remind students they are checking if 3 makes the equation true, so they must replace every x with 3 .

Look for productive strategies:

- Solving the equation correctly.

3 Connect

Have students share their work and reasoning.
Highlight that, when checking a solution, it is a best practice to substitute the value into the original equation. When 3 was substituted into the x-variables, the left part and the right part of the equation were not equal. This means that 3 is not the solution to the equation.

Ask, "What steps could you take to solve this equation?" If time permits, use the suggestions from the students and attempt to solve the equation. If they determine a solution, check to ensure it makes the equation true.

Accessibility: Guide Processing and Visualization

Demonstrate or suggest that students substitute $x=3$ for each x-value in the equation. Consider chunking the problem into the following steps.

- Substitute $x=3$ into the left side of the equation.
$10(3)-2(3)+9=$?
- Substitute $x=3$ into the right side of the equation.
$10(2 \cdot 3+9)=$?
- Compare these two values. Are they the same?

Differentiated Support
 48

Power-up

To power up students' ability to solve equations containing only one variable term, have students complete:

Solve each equation and check your answer.

1. $\frac{1}{3} x=8$
2. $3 x-4=11$
$\frac{1}{3} x \div \frac{1}{3}=8 \div \frac{1}{3}$
$3 x-4+4=11+4$
$x=24$
$3 x=15$
$x=5$

Use: Before Activity 1
Informed by: Performance on Lesson 4, Practice Problem 5 and PreUnit Readiness Assessment, Problem 4

Activity 1 Step by Step by Step by Step

Students solve an equation to build an algorithm to use when solving linear equations with variables on both sides.

1 Launch

Display the equation from Problem 1 and have students compare this equation with ones they have solved previously. Consider completing Problem 1 as a class to ensure understanding.

2 Monitor
Help students get started by asking whether they notice any familiar steps they could take.

Look for points of confusion:

- Being intimidated by the fractions. Let students know these are just numbers and they know how to perform operations with fractions.
- Not understanding the Distributive Property. Rewrite distribution as multiplication of the term on the outside with every term, such as $3(2 x+9)$ as $3(2 x)+3(9)$.
- Incorrectly distributing the negative sign in Problem 3. Have students rewrite the right side as $-1(x-2)$ before proceeding with the Distributive Property.
- Miscalculating the second term on the right side of Problem 3. Consider rewriting the terms inside the parentheses as $(x+(-2))$ to remind students that the 2 is negative.

Look for productive strategies:

- Rearranging the order of the steps in the algorithm, especially if it allows for a more efficient method.
- Wanting to subtract $14 x$ in Problem 1 instead of $4 x$. If time permits, consider showing that this step is acceptable.
- Performing addition and subtraction with the rational values without multiplying by the LCD first.
- Multiplying both sides by 3 before using the Distributive Property in Problem 3.

Accessibility: Guide Processing and Visualization

Display or provide students with a copy of the Anchor Chart PDF, Solving Linear Equations in a sheet protector so they can mark completed steps throughout their solving process.

Accessibility: Vary Demands to Optimize Challenge
If students need more processing time, have them focus on completing Problem 1 and choosing to complete either Problem 2 or Problem 3.

Activity 1 Step by Step by Step by Step（continued）

Students solve an equation to build an algorithm to use when solving linear equations with variables on both sides．

Activity 1 Step by Step by Step by Step（continued）

```
2. Solve the equation 10x-2x+9=3(2x+9) from the Warm-up.
    Show your thinking and check your solution.
    10x-2x+9=3(2x+9) Check your solution:
    10x-2x+9=6x+27 10(9)-2(9)+9=3(2(9)+9)
        8x+9=6x+27
    8x+9-8x=6x+27-8x
        -18+9=3(18+9)
                                72+9 = 3(27)
                                81=81
```



```
            -18=-2x
        -18\div(-3)=-2x\div(-3)
            9=x
3.Solve the equation }\frac{2}{3}(6x-1)=-(x-2). Show your thinking and
    check your solution.
    \frac{2}{3}}(6x-1)=-(x-2)\quad\mathrm{ Check your solution:
        4x-\frac{2}{3}}=\mp@code{-x+2
        4x-\frac{2}{3}=-x+2
    15x-2=6
                                \frac{2}{3}(\frac{16}{5}-1)=-(-\frac{22}{15})
            15x=8
            x=\frac{8}{15}
                    \⿳亠丷厂彡
                    \frac{22}{15}=\frac{22}{15}
                            This is a true statement; therefore,
                    M=\frac{8}{15}
        This is a true statement; therefore,
        x=9 is a solution.
```

(4) Featured Mathemandician
Bob Moses
Bob Moses was an educator and was an activist in the Civil
Rights Movement in the 1960s. He served as a leader of
Rights Movement in the 1960s. He served as a leader of
violence and intimidation as he helped register Black voters
Mississippi. In the 1980s, Moses founded the Algebra Project.
which makes algebra more accessible to students, because
every child has a right to a quality education, to succeed in this
technology-based society, and to exercise full citizenship." Bob
Moses passed away in 2021.
386

Bob Moses

3 Connect

Display any problem necessary to help with the discussion．

Have students share their solution process for Problems 2 and 3 ．Have students who used multiplication by the LCD in Problem 3 share their solution，or show this solution method if it was not used．Encourage the use of mathematically precise language．

Highlight how the structure of the equation determines which steps of the algorithm they need to take．For instance，Problem 2 does not contain fractions，so multiplying by the LCD is not necessary．Also，Problem 3 does not have like terms to combine，so that step of the algorithm can be omitted．

Ask：

－＂How can you tell when distribution might be a helpful step？＂
－＂How can you tell when multiplying by the LCD might be a helpful step？＂

Note：There are multiple ways to solve equations．The algorithm presented in this activity is just one way．Have students use the solving method of their choice．

Featured Mathematician

Bob Moses

Have students read about featured mathematician Bob Moses，a civil rights activist and algebra teacher．In the 1960s，Moses was a leader of the Student Nonviolent Coordinating Committee，facing violence and intimidation as he helped register Black voters in Mississippi． In the 1980s，he became an algebra teacher and received a MacArthur Fellowship grant to found the Algebra Project．Starting with one high school in Mississippi，Mosses worked to transform math education for students who had been historically underserved due to Jim Crow and racial discrimination．He enlisted community support，doubled up on math instructional time，and made the curriculum more student－centered and culturally aware． The Algebra Project expanded to serve students in more than 200 schools，and now partners with schools and organizations across the country to improve math literacy for students from kindergarten to high school．

Activity 2 Create Your Own Steps

Students practice solving linear equations with variables on both sides and with rational coefficients.

1 Launch

Set an expectation for the amount of time students will have to work in pairs on the activity.

2 Monitor

Help students get started by referencing the algorithm from Activity 1 and asking whether the Distributive Property, multiplying by the LCD, or collecting like terms on the left side or the right side is needed. All of these steps can be omitted, so students should begin with moving the variables to one side by adding or subtracting a variable term from both sides.

Look for points of confusion:

- Distributing the -3 incorrectly in Problem 2. Have students rewrite the equation as $-3(x+(-4))=9 x-4$ to show the -3 is multiplied by -4 to make 12 .
- Not knowing how to get started with Problem 3. Have students refer to the algorithm in Activity 1 and start with the first step of using the Distributive Property.
- Not knowing how to get started with Problem 4. If following the algorithm from Activity 1, have students skip the step with the Distributive Property and multiply by the LCD of 6 . Or, they can rewrite the equation as $\frac{1}{3}(12+6 x)=\frac{1}{2}(5 x-9)$ and proceed with the algorithm.

Look for productive strategies:

- Choosing to multiply both sides by 3 in Problem 3. This possible step yields the equation $3 m-12=$ $6 m-54$.
- In Problem 4, starting by multiplying both sides by 6 . This possible strategy yields the equation $2(12+6 x)=3(5 x-9)$.

Activity 2 continued >

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them complete Problem 1 and then choose to complete either Problem 2 or Problem 3. These problems will give them opportunities to solve equations with variables on both sides, with and without parentheses.

Extension: Math Enrichment

Have students think of as many different strategies as they can to solve the equation in Problem 4. For example, they could begin by:

- Rewrite the division as multiplication by a fraction.
- Multiply both sides by 6 to eliminate the fractions.
- Divide each numerator by its denominator.

Math Language Development

MLR3: Critique, Correct, Clarify

During the Connect, display an incorrect solution pathway for Problem 3, such as, adding 4 to both sides first, but then distributing the value $\frac{1}{3}$ to the 4 that is now on the right side. Ask:

- Critique: "Do you agree with this solution pathway? Why or why not?" Listen for students who correctly realize that the $\frac{1}{3}$ should only be distributive to the terms inside the parentheses.
- Correct: "What should have been the correct next step?"
- Clarify: "How would you use words to explain to someone who made this error why it is incorrect and what they should have done instead?"

ํํํ Pairs I © 15 min

Activity 2 Create Your Own Steps (continued)

Students practice solving linear equations with variables on both sides and with rational coefficients.

3 Connect

Activity 2 Create Your Own Steps (continued)

$$
\begin{aligned}
& m-4=\frac{1}{3}(6 m-54) \\
& \text { Sample response: } \\
& m-4=2 m-18 \\
&-4=m-18 \\
& 14=m
\end{aligned}
$$

> Check your solution: $\begin{aligned} 14-4 & =\frac{1}{3}(6(14)-54) \\ 10 & =\frac{1}{3}(84-54) \\ 10 & =\frac{1}{3}(30) \\ 10 & =10\end{aligned}$
This is a true statement; therefore,
$m=14$ is a solution.
4. $\frac{12+6 x}{3}=\frac{5 x-9}{2}$
Sample response:
Check your solution:
$\frac{12+6(17)}{3}=\frac{5(17)-9}{2}$
$\frac{12+102}{3}=\frac{85-9}{2}$
$\frac{114}{3}=\frac{76}{2}$
$38=38$
This is a true statement; therefore,
$x=17$ is a solution.

48 Are you reaty tor morea
A gaggle - or group - of geese are flying north after their summer migration. Half of the geese stop to rest on a lake while the other half continue the trip. When they pass the geese stop to rest on a lake while the other half continue the trip. When they pass
another lake, half of the remaining geese stop at the lake, while the rest continue to fly. This continues until the geese are spread out over 7 lakes. What is the fewest number of geese in the gaggle? Show or explain your thinking.
Sample response: $1+1+2+4+8+16+32=64$ geese

388

Summary

Review and synthesize the steps for solving linear equations with variables on both sides.

Synthesize

Display and complete the Anchor Chart PDF, Solving Linear Equations. Consider displaying the necessary steps for the problem to make sense for your class. The steps shown on the answer key represent possible steps which are not always necessary.

Ask, "Do the following steps maintain the equality of the equation?"

- Subtracting a number from each side. Maintains equality
- Adding $4 x$ to each side. Maintains equality
- Dividing each side by 7. Maintains equality
- Adding $5 x$ to one side and $10 x$ to the other. Does not maintain equality (unless $x=0$)
- Adding 4 to the left side and subtracting 4 from the right side. Does not maintain equality
- Multiplying both sides by -3 . Maintains equality
- Multiplying both sides by 0 . Maintains equality but causes everything to become 0 , so it is not useful when solving.

Highlight that the algorithm is useful in knowing how to get started, but it is not the only way to solve equations. Students can expect to become more fluent with different methods for solving as they practice and become more familiar with the process.

D Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How can you determine the solution to an equation with variables on both sides?"

Exit Ticket

Students demonstrate their understanding by analyzing an incorrect solution and determining the correct solution for a linear equation with variables on both sides.

Success looks like . . .

- Language Goal: Calculating a value that is a solution for a linear equation in one variable, and comparing and contrasting solution strategies with others. (Speaking and Listening)
- Language Goal: Critiquing the reasoning of others in solving a linear equation in one variable. (Writing)
» Explaining the error Lin made when solving an equation.

- Suggested next steps

If students identify the error in Lin's solution but do not solve it correctly, consider:

- Reviewing the algorithm in Activity 1.
- Assigning Practice Problems 2 and 3.

If students solve the equation correctly but do not find Lin's error, consider:

- Reviewing the Warm-up.
- Assigning Practice Problems 1 and 3

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...

- What worked and didn't work today? Knowing where students need to be by the end of this unit, how did the algorithm in Activity 1 influence that future goal?
- What surprised you as your students worked on solving linear equations? What might you change the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
	$\mathbf{1}$	Activity 1	2
On-lesson	2	Activity 1	2
Spiral	$\mathbf{3}$	Activity 1	2
Formative 0	$\mathbf{5}$	Unit 3 Lesson 16	Unit 4 Lesson 6

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Solving Linear Equations

Let's solve linear equations.

Focus

Goals

1. Language Goal: Calculate a value that is a solution to a linear equation in one variable, and explain the steps used to solve. (Speaking and Listening)
2. Language Goal: Justify that each step used in solving a linear equation maintains equality. (Speaking and Listening)

Coherence

- Today

Students encounter several different structures of equations and suggest steps for solving them. They explain their reasoning for choosing a particular step while solving equations. Students also critique their partner's choice.

Previously

In Lesson 5, students developed an algorithm for solving linear equations with variables on both sides.

Coming Soon

In Lessons 7 and 8, students will solve linear equations with no solution or infinitely many solutions.

Rigor

- Students work toward fluency with solving linear equations with variables on both sides.

Activity 1
Activity 2

Summary

Exit Ticket

(1) 5 min	(1) 15 min	(1) 15 min	(1) 5 min	(1) 5 min
กำ Pairs	กำ Pairs	\bigcirc ํํ Pairs	ำว้ก Whole Class	\bigcirc O Independent

Amps powered by desmos Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 1 PDF, pre-cut cards, one set per pair
- Anchor Chart PDF, Solving Linear Equations

Math Language

Development

Review words

- coefficient
- constant
- Distributive Property
- equation
- equivalent equations
- expression
- like terms
- Properties of Equality
- solution
- substitution
- term
- variable

Amps ! Featured Activity

Activity 1

Digital Collaboration
Students work together to solve linear equations.

Building Math Identity and Community

Connecting to Mathematical Practices
Students might not see a benefit to identifying common errors in the solutions to equations. Explain that to find a mistake, they must look closely at the solution's structure. They must have confidence in their understanding of equations, but also possess a growth mindset if they do not have the confidence yet.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 1, have students only complete the two cards.
- Have students choose one or two problems to complete in Activity 2

Warm-up Is It Equivalent?

Students analyze several equations to find equivalent equations and identify possible next steps in solving for x.

Unit 4 | Lesson 6

Solving Linear Equations

Let's solve linear equations.

Warm-up Is It Equivalent?
Analyze each of the following equations.

- Place a checkmark next to each equation that is equivalent to the original equation
- Circle the equation that you think represents the best next step for determining the value of b in the original equation.
- Solve the equation for b

Original equation: $\quad 2 b-3=\frac{1}{2}(2 b-3)$

$b=\frac{3}{2}$
Students' responses for which equation they circle as the best next
Students' responses for which equation they circle as the best ne
step may vary. Students may prefer the equation $4 b-6=2 b-3$
stecause it no longer contains fractions. Or students may prefer the equation $2 b-3=b-\frac{3}{2}$ because they want to distribute first.

1. Launch

Display the Anchor Chart PDF, Solving Linear Equations for the remainder of the lesson. Use the Think-Pair-Share routine.
(2) Monitor

Help students get started by asking what step they would use to start the process of solving the equation and if there is an equation which matches their answer.

Look for points of confusion:

- Not being able to determine the equivalent equations that do not match their process for solving. For instance, if a student used the Distributive Property, they may not notice $4 b-6=2 b-3$ is equivalent. Have students work with their partner to determine if there are additional equivalent equations.

Look for productive strategies:

- Solving the original equation first and then substituting the solution into the remaining equations to determine whether they are equivalent.
- Solving each equation to determine whether they reach the same solution as with the original equation.

3 Connect
Display the equations.
Have students share their selections and reasoning. Ask which equation they think represents the best next step and why.

Highlight that some problems might have several good next steps. Regardless of the possible next step taken, the equation should be equivalent whether it is a result of using the Properties of Equality, the Distributive Property, or combining like terms, and will have the same solution.

Differentiated Support
Accessibility: Vary Demands to Optimize Challenge, Guide Processing and Visualization

If students need more processing time, have them focus on identifying and solving one equivalent equation. Provide students with a copy of the Anchor Chart PDF, Solving Linear Equations to support them in organizing their solution pathways.

(7) Power-up

To power up students' ability to determine whether a value is a solution to an equation, have students complete:

Recall that in order to determine whether a value is a solution to an equation, you can solve the equation or substitute the value into the equation and evaluate it.
Determine whether $x=4$ is a solution of the equation $(x+5)+6=9$.
It is not a solution; Sample response: $3(4+5)+6=9$
$3(9)+6=9$
$27+6=9$
$33=9$ not true
Use: Before Activity 1
Informed by: Performance on Lesson 5, Practice Problem 5 and PreUnit Readiness Assessment, Problem 5

Activity 1 Trading Equations

Students work together to find the next step for solving equations.

1 Launch

Distribute one set of pre-cut cards from the Activity 1 PDF to each pair of students. Read and discuss the procedure for this activity.

2 Monitor

Help students get started by referencing the Anchor Chart PDF, Solving Linear Equations and asking which step is needed for their equation.

Look for points of confusion:

- Not understanding that $\mathbf{0}$ is a solution for Card 4. Have students check the solution by substituting 0 in for x and evaluating the equation.

Look for productive strategies:

- Looking for an efficient way to solve the equations. For instance, multiply by 2 on both sides for Card 2, or divide both sides by 2 on Card 4 .

3 Connect

Have students share any interesting steps made by their partners while solving the equations and then display their solutions.

Highlight that while students might think about solving equations as an entire process, this activity shows each intermediate step produces an equivalent equation which can be solved independently and will yield the same solution. This is true if the possible steps involve using the Properties of Equality, the Distributive Property, or combining like terms until the variable is isolated.

Ask, "How can you check your solution?"

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge, Guide Processing and Visualization

Chunk this task into smaller, more manageable parts by having partners focus on solving the equations on one pair of cards. Continue having students refer to the Anchor Chart PDF, Solving Linear Equations to support them in organizing their solution pathways.

Extension: Math Enrichment

Have students complete a similar activity, but have them start with the solution first and perform operations to create equivalent equations with each trade. Sample response:

$$
\begin{aligned}
& -12=x \\
& -2=x+10
\end{aligned}
$$

$$
x-2=2 x+10
$$

(1ㅛ)

Math Language Development

MLR6: Three Reads

Use this routine to help students make sense of the activity's directions.

- Read 1: Students should read the directions individually, noting any questions they may have.
- Read 2: Ask students to read the directions aloud in pairs and clarify what the directions are asking them to do.
- Read 3: Ask students to read the directions again and this time, perform the actions described in each step.

Activity 2 Find and Fix

Students critique solutions to equations to analyze common mistakes and how to fix them.

1 Launch

Let students know they will be analyzing the solutions for linear equations. They should look closely and determine whether there are errors and then correct the errors.

(2) Monitor

Help students get started by asking how they want to approach the problem. Do they want to check the solution first, solve the problems first, or analyze the work shown? Once students decide which process they want to take, ask them what their first step would be. Clarify any procedural issues.

Look for points of confusion:

- Not finding the errors in Problems 1 or 2. Have students substitute their answer into the equation to determine if it is the solution. Once they see it is not, have them work through the problem using the algorithm from Lesson 5.
- Multiplying only one side of the equation in Problem 2 by the LCD. Students may think the resulting step is $12 x-5=x-6$, instead of $12 x-5=3 x-18$. If students choose to multiply by the LCD to eliminate fractions, remind them to maintain balance and multiply both sides by 3 . Refer to Cards 5 and 9 from Lesson 3, Activity 2, if needed.
- Not realizing the first step in Problem 4 as multiplying by $\mathbf{1 0}$. Ask students to determine which parts changed from the first equation to the second.

Look for productive strategies:

- Checking the solution before deciding if there is an error.

Differentiated Support

Accessibility: Guide Processing and Visualization

To help students get started and remain organized throughout the activity, provide students with the following checklist to keep track of their work:

- Check the solution to the equation to determine accuracy.
- Analyze the work shown to identify potential errors.
- Solve the equation using correct mathematical reasoning.
- Explain why the equation was incorrect and how it was corrected.

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them focus on Equation 1. Provide students with a copy of the Anchor Chart PDF, Solving Linear Equations to support them in organizing their solution pathways.

Math Language Development

MLR3: Critique, Correct, Clarify

During the Connect, display Problem 2's incorrect solution pathway. Ask:

- Critique: "Where do you see any mathematical errors in this solution attempt?"
- Correct: "How would you correct any errors? What is a correct solution strategy?"
- Clarify: "How can you verify that your solution strategy is correct?"

English Learners

Allow students to share their correct solution strategy with a partner before sharing with the whole class.

Activity 2 Find and Fix (continued)

Students critique solutions to equations to analyze common mistakes and how to fix them.

Name:
Activity 2 Find and Fix (continued)
> 3. Equation 3:
$3 x-6+4\left(x-\frac{1}{2}\right)=\frac{1}{4}(2 x-6)$
$3 x-6+4 x-2=\frac{1}{2} x-\frac{6}{4}$
$7 x-8=\frac{1}{2} x-\frac{6}{4}$
$28 x-32=2 x-6$
$26 x=26$
$x=1$ the equation:

- Students may may wait to combine like terms.
- They may simplify $\frac{6}{4}$ to $\frac{3}{2}$, which will cause them to only have to multiply by the LCD of 2 .
They may want to move the variables and constant terms in separate steps.

> 4. Equation 4:

$1.1(x-3)=0.1(2 x-6)$
$11(x-3)=1(2 x-6)$
$11 x-33=2 x-6$
$9 x-33=-6$
$9 x=27$
$x=3$
there are no errors present. Other ways to solve the equation:

- Students may want to use the Distributive Property first and then multiply by 10 on each side.
- Or students may not want to multiply by 10 at all and instead solve the equation using the decimal values.

3 Connect
Display any necessary problems to help with the discussion.

Have students share the errors they

 uncovered, why they are errors, and how they corrected them.Highlight strategies for solving the equations and reference the Anchor Chart PDF, Solving Linear Equations for ways to determine the errors. For instance, in Problem 1, the solution started with combining like terms, which is not appropriate, considering the multiplication from the Distributive Property should be done first.

Ask, "Let's look at Problem 2. If you check the solution of $x=-\frac{1}{3}$ into the equation
$4 x-5=x-6$, it is true. But it is not the solution. What happened? How should you fix it?" The error in solving started in the first step. You should always substitute the solution into the original equation to avoid potential errors in solving.

Summary

Review and synthesize strategies for solving linear equations with variables on both sides.

Synthesize

Display the Anchor Chart PDF, Solving Linear Equations.

Have students share their approaches to solving equations with different structures.

Highlight that the algorithm from Lesson 5 is a strategy to use if students are unsure where to start; it will help them get through the solving process. However, if they notice the structure of the equation lends itself to a different approach, they can use a more efficient path as long as equality is maintained throughout the process.

Ask, "After solving an equation, how can you check whether you found the correct solution?"

(1) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition To help them engage in meaningful reflection, consider asking:

- "How can you determine the solution to an equation with variables on both sides?"

Exit Ticket

Students demonstrate their understanding by reasoning about a solved equation to identify the steps taken.

Success looks like ...

- Language Goal: Calculating a value that is a solution to a linear equation in one variable, and explaining the steps used to solve. (Speaking and Listening)
- Language Goal: Justifying that each step used in solving a linear equation maintains equality. (Speaking and Listening)
» Explaining each step of Noah's work in the table.

- Suggested next steps

If students incorrectly identify Noah's steps, consider:

- Reviewing the Anchor Chart PDF, Solving Linear Equations.
- Reviewing Activity 2
- Assigning Practice Problems 1, 2, and 3.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

© Points to Ponder ...

- What worked and didn't work today? What different ways did students approach solving the equations in Activity 1 ? What does that tell you about similarities and differences among your students?
- Have you changed any ideas you used to have about teaching how to solve linear equations as a result of today's lesson? What might you change for the next time you teach this lesson?

Math Language Development

Language Goal: Justifying that each step used in solving a linear equation maintains equality.
Reflect on students' language development toward this goal.

- How have students progressed in their precision of describing the steps or reasoning behind the steps when solving a linear equation?
- Do students' descriptions provided for each step of the Exit Ticket problem demonstrate that they understand that equality is preserved?

Practice Problem Analysis		
Type	Problem	Refer to
On-lesson	$\mathbf{1}$	Activity 1
Spiral	$\mathbf{2}$	Activity 2
	$\mathbf{3}$	Activity 1 Unit 3
Formative 0	$\mathbf{4}$	Lesson 16 Unit 4 Lesson 2 Unit 4 Lesson 7

© Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

How Many Solutions?
 (Part 1)

Let's think about how many solutions an equation can have.

Focus

Goals

1. Correlate equations that are never true as equations with no solution and equations that are always true as equations with infinitely many solutions.
2. Language Goal: Describe a linear equation as having one solution, no solution, or an infinite number of solutions, and solve equations in one variable with one solution. (Speaking and Listening)

Coherence

Today

Students explore the idea of one solution, no solution, and infinitely many solutions of an equation, but without hanger diagrams. They substitute numbers, where there is one number, no numbers, or infinitely many numbers that make the equation true. Students then solve the equation, resulting with false statements, such as $27=22$, or true statements, such as $5=5$, and relate the statement to the number of solutions for the equation.

Previously

In Lessons 1-6, students balanced equations and explored the steps to solving equations with one solution. In Lesson 3, students explored the idea of one, none, and infinitely many solutions using hanger diagrams.

Coming Soon

In Lesson 9, students will determine the number of solutions for a linear equation by using the structure of the equation, instead of solving it.

Rigor

- Students strengthen their fluency in solving linear equations and identifying the number of solutions a linear equation might have.

Activity 1

Activity 2

Summary

Exit Ticket
(®) 20 min
ㅇํㅇ Pairs
> $\oplus 5 \mathrm{~min}$ กำำ ํํํํํ Whole Class
(ㄱ) 5 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- Power-up PDF (as needed)
- Power-up PDF (answers)
- Anchor Chart PDF, Solving Linear Equations (optional)
- Anchor Chart PDF, Properties of Equality

Math Language Development

Review words

- coefficient
- constant
- Distributive Property
- equation
- equivalent equations
- expression
- like terms
- Properties of Equality
- solution
- substitution
- term
- variable

Amps : Featured Activity

Warm-up
 Take a Poll

Digitally poll the class so that students can see which of their classmates' chosen number, if any, makes the equations true or false.

Modifications to Pacing

You may want to consider this additional modification if you are short on time.

- Replace the Warm-up with Activity 1.
- In Activity 2, have students only complete Problems 1-4.

Warm-up True or False?

Students test different values to discover that equations can be always true or be always false.

Math Language Development

MLR8: Discussion Supports - Revoicing
During the Connect, as students share their responses, ask them to revise what their classmates shared using mathematical language. Ask the original speaker whether their peer accurately restated their thinking. For example, if a classmate says, "Problem 2 never works," a student could revoice this statement using mathematical language by saying, "The equation in Problem 2 is a false equation because there is no value for x that makes both sides of the equation equal."

English Learners

Provide wait time for students to formulate a response. Encourage students to rehearse with a partner before sharing with the class.

1 Launch

Have students choose a number to substitute in each equation. Encourage them to choose an integer, decimal, or fraction that they think will be unique. Then conduct the True or False routine.

2 Monitor

Help students get started by activating their prior knowledge and asking them how to determine whether a number makes an equation true or false.

Look for productive strategies:

- Responding true or false for Problem 1.
- Using the order of operations to evaluate the left and right sides of the equation.

3 Connect

Have students share their responses. For each equation, invite students to share their number and whether the equation was true or false. Record for all to see.
Ask, "Do you think there is a number that will make Equation 1/Equation 2/Equation 3 true?" yes/no/yes

Highlight

- For Problem 1, there is only one value for x that will make the equation true. That value is 5 . This means there is only one solution for the equation.
- For Problem 2, there is no value of x that will ever make the equation true. When there is no value of x that makes an equation true, the equation has no solution.
- For Problem 3, any value of x will always make the equation true. When any value of x makes an equation true, the equation has infinitely many solutions.

(7) Power-up

To power up students' ability to solve equations containing multiple variable terms:

Provide students with a copy of the Power-up PDF.
Use: Before Activity 1
Informed by: Performance on Lesson 6, Practice Problem 6

Activity 1 Thinking About Solutions

Students solve equations to compare and contrast linear equations that have one solution, no solution, and infinitely many solutions.

1. Launch

Ask students if they can think of another way to check for the number of solutions other than substituting different values of x. If no student suggests to solve the equation, tell them that solving is one way to determine the number of solutions for a linear equation.

1. $3 x-10=-3 x+5+15$

Sample response:
$3 x-10=-3 x+20$
$6 x-10=20$
$6 x=30$
$x=5$
22. $3(x+4)=3 x+7$

Sample response:
$3 x+12=3 x+7$
$12=7$
This equation will never be true for any value of x.
) 3. $10-3 x=8-3 x+2$
Sample response:
$10-3 x=10-3 x$
$10=10$
This equation will always be true for any value of x

Monitor

Help students get started by having them rewrite each side of the equation with fewer terms.

Look for points of confusion:

- Struggling to solve for x in Problem 2 or 3. After writing the equation with fewer terms, suggest that students collect variables on one side. This will eliminate the variable and leave students with a false equation for Problem 2 and a true equation for Problem 3. Tell students to leave the equation as is, and revisit these equations during the whole-class discussion.

3 Connect

Have students share their solutions and their strategies for solving each equation.

Highlight that when students solve an equation, they rewrite the equation using equivalent equations. If the equivalent equation is of the form $x=a$, then the equation is true only for one number, so there is only one solution. If the equivalent equation is of the form $a=b$, where a and b are different values, then there are no values that make the equation true, so there is no solution. If the equivalent equation is of the form a $=a$, then any value makes this equation true, and so, there are infinitely many solutions.

Accessibility: Guide Processing and Visualization

Provide students with a copy of the Anchor Chart PDF, Solving Linear Equations to support them in organizing their solution pathways. Consider displaying a table similar to the following for students to reference.

After solving the equation, if the end result is . .

An equation of the form $x=a$	An equation of the form $a=a$	An equation of the form $a=b$
One solution	Infinitely many solutions	No solution

where a and b are numbers and a does not equal b.

Math Language Development

MLR8: Discussion Supports - Press for Details

During the Connect, press for details in students' reasoning. For example, if a student merely says, "Problem 2 has no solution," ask these questions:

- "How do you know the equation has no solution? Show me."
- "Did you try values for x ? Did you try all the possible values for x ? How else can you verify the equation has no solution?"
- "When you arrive at a statement that is always false, what does that tell you?

English Learners

Provide wait time for students to formulate a response. Encourage students to rehearse with a partner before sharing with the class.

Activity 2 Looking for Solutions

Students solve linear equations to build fluency in determining the number of solutions for an equation.

1. $v+2=v+4$

No solution.
Sample response:
$2=4$
This equation is never true for any value of v.
2. $-4+3 x=-4+3 x$

Infinitely many solutions.
Sample response:
$-4=-4$
This equation is always true for any value of x.
3. $2 t+6=2(t+3)$
nfinitely many solutions.
Sample response:
$2 t+6=2 t+6$
$6=6$
This equation is alway true for
any value of t.
5. $\frac{1}{2}+5 x=\frac{1}{3}+5 x$

No solution.
Sample response:
$\frac{1}{2}=\frac{1}{3}$
This equation is never true for any value of x.

```
4. 4x+3=-5x+3
```

4. 4x+3=-5x+3
One solution.
One solution.
Sample response:
Sample response:
9x=0
9x=0
x=0
```
    x=0
```


1 Launch

Have students work individually to complete each problem, and then have them share responses with a partner. If there is a disagreement, have students work together to come to an agreement.

Monitor

Help students get started by having them use the Properties of Equality to solve each equation.

Look for points of confusion:

- Thinking that their solution must be written as $x=\ldots$. Remind students that equations with no solution and infinitely many solutions may not be written in this form.
- Confusing an equation with the solution $x=0$ with an equation with no solution. Use Problem 4 and have students substitute $x=0$ to see if the equation is true or false. Remind students that $x=0$ means that 0 is the only value that will make the equation true, so there is one solution.

Look for productive strategies:

- Using the structure of the equation, instead of solving the equation, to determine the number of solutions. Note: Students will explore this concept further in Lesson 8.

3 Connect

Highlight that students can rewrite an equation until it is written with the fewest terms to determine the number of solutions for an equation.

Ask students to give examples of numbers that will make each equation true to develop further understanding of what it means for an equation to have one solution, no solution, or infinitely many solutions.

Differentiated Support

Accessibility: Clarify Vocabulary and Visualization

Display or provide copies of the Anchor Chart PDF, Properties of Equality for students to use as a reference during this activity.

Accessibility: Vary Demands to Optimize Challenge, Guide Processing and Visualization

Before solving, invite students to create a flow chart diagram that describes what to look for to determine whether a linear equation has one solution, no solutions, or infinitely many solutions. If students need more processing time, have them focus on Problems 1-4 only.

Extension: Math Enrichment

Have students complete the following equation three different ways so that one equation has one solution, one equation has no solution, and one equation has infinitely many solutions.
$3 x+8=$
Sample response:

- One solution: $3 x+8=x-5$
- No solution: $3 x+8=3 x+5$
- Infinitely many solutions: $3 x+8=3\left(x+\frac{8}{3}\right)$

Summary

Review and synthesize how to determine the number of solutions for any linear equation.

Summary

In today's lesson ..

You discovered that some equations have one solution, no solution, or infinitely many solutions.
Here are some examples.

One solution:	No solution:	Infinitely many solutions:
$3 x+8=6+2-3 x$	$3(x+4)=3 x+7$	$10-3 x=8-3 x+2$
$3 x+8=8-3 x$	$3 x+12=3 x+7$	$10-3 x=10-3 x$
$6 x+8=8$	$12=7$	$10=10$
$6 x=0$		
$x=0$		
This equation is only true when $x=0$.	This equation is never true for any value of x.	This equation is always true for any value of x.

Synthesize

Ask:

- "What does it mean for an equation to have one/no/ infinitely many solution(s)?" If an equation has one solution, only one number will make the equation true. If an equation has no solution, there is no number that will make the equation true. If there are infinitely many solutions, any number will make the equation true.
- "Do you think there is a linear equation with another type of solution other than one solution, no solution, or infinitely many solutions?" No; Sample response: When a linear equation is rewritten with the fewest terms, it could only be represented as $x=a$ number or a number $=a$ number. Therefore, there are three different types of solutions possible

Have students share how they know the number of solutions for an equation in their own words.

Highlight that linear equations could have one solution, no solution, or infinitely many solutions.

(1) Reflect

After synthesizing the concepts of the lesson allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition To help them engage in meaningful reflection, consider asking:

- "What strategies did you find helpful today when determining the number of solutions for an equation?"

Exit Ticket

Students demonstrate their understanding by explaining how they know when an equation has one solution, no solution, or infinitely many solutions.

Success looks like ...

- Goal: Correlating equations that are never true as equations with no solution and equations that are always true as equations with infinitely many solutions.
» Describing the conditions for a linear equation to have one solution, no solution, and infinitely many solutions.
- Language Goal: Describing a linear equation as having one solution, no solution, or an infinite number of solutions, and solving equations in one variable with one solution. (Speaking and Listening)

Suggested next steps

If students do not correctly describe when a linear equation has one solution, no solution, or infinitely many solutions, consider:

- Giving them three solved equations, each with a different type of solution, and asking them to identify which equation has one solution, no solution, or infinitely many solutions.
- Reassessing after Lesson 8.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder ...

- Which students' ideas were you able to highlight during Activity 1 ?
- In earlier lessons, students learned how to balance equations. How did that support their understanding of equations with no solution and infinitely many solutions?

Practice Problem Analysis		
Type	Problem	Refer to
On-lesson	$\mathbf{1}$	Activity 2
Spiral	$\mathbf{2}$	Activity 1
	$\mathbf{3}$	Activity 1 Unit 4
Formative 0	$\mathbf{4}$	Lesson 6 Unit 3 Lesson 11 Unit 4 Lesson 8

© Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

(3)

Name: \quad Date: \quad Period:
3. Kiran solved the equation $2(x-3)=8 x-6$ and got the answer " $x=0$ no solution." Do you agree with Kiran's answer? Explain your thinking
Sample response: I Id not agree with his answer. Although the answer
$x=0$ is correct, this means there is only one solution 0, that will make $=0$ is correct, this means there is only one solution, 0 , that will make
the equation true. Writing "no solution" means that there is no number, the equation true. Writing no solutio
a) $3 x-6=4(2-3 x)-8 x$ explain your thinking. Sample strategies shown
$3 x-6=8(2-3 x)-8 x$
$3 x-6=8-12 x$
$3 x-6=8-20 x$
$\begin{aligned} 23 x-6 & =8 \\ 23 x & =14\end{aligned}$
$\begin{aligned} 3 x-6 & =8 \\ 23 x & =14 \\ & 14\end{aligned}$

$$
\text { (b) } \begin{aligned}
\frac{1}{2} z+6 & =\frac{3}{2}(z+6) \\
\frac{1}{2} z \cdot 2+6 \cdot 2 & =3(z+6) \\
z+12 & =3 z+18 \\
-2 z & +12 \\
-2 z & =6 \\
z & =-3
\end{aligned}
$$

5. The point $(-2,3)$ is on a line that has a slope of 2
(a) Write an equation for the line. Show or explain your thinking. need to write the equation in the form $y=m x+b$ using the slope, 2 1 substitute the slope and the coordinates of the points into the equation
$3=2(-2)+$
$3=-4+b$
b Determine two more points on the line Sample response: $(-1,5)$ and $(0,7)$
6. Several students are asked to identify the coefficient and constant in the expression $-5+3 x+12$. Select the statement that correctly identifies the coefficient and constant term.

- Jada. "The coefficient is -5 . and the constant is 12 "
B. Shawn: "The coefficient is 3 , and the constant is 7 :"
C. Diego: "The coefficient is 12 , and the constant is -5 .
D. Priya: "The coefficient is $3 x$, and the constant is 7."
E. Clare: "The coefficient is 7 , and the constant is 3 :

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

How Many Solutions?

(Part 2)

Let's solve equations with different numbers of solutions.

Focus

Goals

1. Language Goal: Compare and contrast the structure of linear equations that have no solution or infinitely many solutions. (Speaking and Listening, Writing)
2. Create linear equations in one variable that have either no solution or infinitely many solutions.

Coherence

Today

Students compare linear equations to see that the structure of equations could be used to identify the number of solutions. Students create their own equations to think strategically about which coefficients and constants in a linear equation will result in one solution, no solution, or infinitely many solutions.

< Previously

In Lesson 7, students solved linear equations to determine whether an equation had one solution, no solution, or infinitely many solutions.

Coming Soon

In Lesson 9, students will practice solving all types of linear equations to build fluency in solving equations.

Rigor

- Students use the structure of linear equations to identify whether an equation has one solution, no solution, or infinitely many solutions to develop procedural fluency.

Activity 1

() 12 min

ㅇํำ Small Groups

Activity 2

Summary

Exit Ticket
(7 min
\bigcirc 응

ํำ Small Groups
$\oplus 5$ min
กํํำกำ Whole Class
$\oplus 5$ min
\bigcirc 응́ndependent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- index cards
- plain sheets of paper

Math Language
 Development

Review words

- coefficient
- constant
- Distributive Property
- equation
- equivalent equations
- expression
- like terms
- Properties of Equality
- solution
- substitution
- term
- variable

Amps : Featured Activity

Activity 2
 Digital Collaboration

Students create three equations and challenge their classmates to match each equation with its number of solutions.

Building Math Identity and Community
 Connecting to Mathematical Practices

Working in groups during Activity 1 might be intimidating for some students, especially as they are identifying each other's mistakes and correcting them. Throughout the activity, students should show each other respect. More importantly, if a member of the group is nervous, the other members should empathize with the discomfort and behave in a way that comforts that member through encouragement.

Modifications to Pacing

You may want to consider this additional modification if you are short on time.

- Activity 2 may be omitted.

Warm-up Making Use of Structure

Students compare and contrast linear equations to see that the structure of equations could be used to identify the number of solutions for the equation.

1 Launch

Tell students that in this lesson, they will look more closely at the equations they solved in Lesson 7. Say, "Mathematics does not always require solving for an answer. It involves analyzing problems to look for patterns."

2 Monitor

Help students get started by having them circle the coefficients and underline the constants on both sides.

Look for points of confusion:

- Thinking that the coefficients and constants are different when the equation has more than two terms on each side. Have students write each side of the equation in fewer terms and then compare the left and right side of the equation.

3 Connect

Highlight that students do not need to solve a linear equation to determine the number of solutions it will have. Instead, they can look at the structure of the equation to determine the number of solutions.

- If a linear equation has the same coefficients and constants on both sides, it will have infinitely many solutions.
- If a linear equation has the same coefficients, but different constants on both sides, it will have no solution.
- If a linear equation has different coefficients and the same or different constants on both sides, it will have one solution.

Ask students for which equations they had difficulty in identifying patterns. Then, ask what students could do to identify a pattern more easily. I could write an equivalent equation with fewer terms.

(7) Power-up

To power up students' ability to identify the constant and the coefficient from an equation, have students complete:
Recall that a constant is a value that does not change, such as 2 or $-\frac{2}{2}$. A coefficient is a constant by which a variable is multiplied. For example, in the expression $3 x, 3$ is a coefficient. For each expression, identify the constant and the coefficient.

	$\mathbf{- 2 x}+\mathbf{1}$	$\mathbf{7}+\boldsymbol{g}$	$\mathbf{4 - 2 h}$
Constant	1	7	4
Coefficient	-2	1	-2

Use: Before Activity 1
Informed by: Performance on Lesson 7, Practice Problem 6

Activity 1 Three Responses!

Students use the structure of linear equations to identify if the equation has one solution, no solution, or infinitely many solutions.
Activity 1 Three Responses
With your group, decide who will complete Column A, who will complete
Column B, and who will complete Column C.
For each problem, without solving each equation, determine whether
there will be one solution, no solution, or infinitely many solutions. After
each row, share your responses with your group. For each row, your
group should have three different responses. If there is an error, work
together to solve the equation and correct your responses.

Activity 2 Trading Equations, Revisted

Students use the structure of equations to create and identify linear equations with one solution, no solutions, or infinitely many solutions.

1 Launch

Distribute an index card and a plain sheet of paper to each student. Have students write their three equations on the front of the index card and solve the equation with one solution on the back of their index card. Once students write their equations, have them switch cards with a partner. Tell students to use the extra paper to show their thinking. Allow students to switch index cards with additional partners, as time allows.

2 Monitor

Help students get started by telling them that they should have three equations, each with a different number of solutions.

Look for points of confusion:

- Struggling to create equations with different numbers of solutions. Have students look at the first row of the Warm-up. Using two different colors, highlight the coefficients and constants in an equation to emphasize when an equation has one solution, no solution, and infinitely many solutions. Allow students to use this as a reference when finishing the three equations.

3 Connect

Have students share their strategies for identifying each type of solution.

Ask students if anyone was able to create an equation with no solution using the equation in Problem 1c. Discuss reasons why the equation could have only one solution or infinitely many solutions. The constants are the same.

Highlight that students can use the structure of an equation to identify the number of solutions.

(1) Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can create three equations and challenge their classmates to match each equation with its correct number of solutions.

Accessibility: Vary Demands to Optimize Challenge

Consider one of these alternative approaches to this activity:

- Provide 6 equations from which students can choose, two equations from each category
- Remove the restrictions on the other values and allow students to write any equation, as long as they meet the given criteria.

Math Language Development

MLR3: Critique, Correct, Clarify

During the Connect, display an incorrectly identified equation, such as "The equation $10 x+6=2(5 x+3)$ has no solution." Ask:

- Critique: "Do you agree with this statement? Why or why not?"
- Correct: "Write a revised statement that is correct."
- Clarify: "How did you revise the statement? Did you choose to alter the equation or did you choose to alter the number of solutions the equation has? How can you verify that your statement is correct?"

English Learners

Allow students to share their revised statements with a partner before sharing with the whole class.

Summary

Review and synthesize the features of linear equations with one solution, no solution, or infinitely many solutions.

Summary

In today's lesson...

You discovered that the structure of an equation can tell you if the equation has one solution, no solution, or infinitely many solutions.
nfinitely many solutions: A linear equation has infinitely many solutions when the coefficients and constants are the same on each side. For example, the equation $2 x+5=2 x+5$ has infinitely many solutions.

No solution: A linear equation has no solution when the coefficients are the same, but the constants are not the same on each side. For example, the equation $2 x+5=2 x+10$ has no solution

One solution: A linear equation has one solution when the coefficients are different on each side. The constants may or may not be the same on each side. For example, the equation $2 x+5=3 x+10$ has one solution.

Synthesize

Ask:

- "What are two different ways in which you can determine the number of solutions for a linear equation?" Sample response: Solve the equation or look at the structure of the equation.
- "How many solutions does $5 x-8=5 x+8$ have?" no solution Point out that it is important to pay attention to the signs when looking at the structures of equations. In this example, the signs before the constants are different.

Have students share whether they prefer solving the equation or looking at the structure of the equation to identify the number of solutions it has and why.

Highlight that before students solve an equation, they could look at the structure of an equation to determine how many solutions it has.

(i) Reflect

After synthesizing the concepts of the lesson allow students a few moments for reflection on one of the Essential Questions for this unit Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How can you determine the solution to an equation with variables on both sides?"

Exit Ticket

Students demonstrate their understanding by using the structure of equations to identify the number of solutions to three different equations.

Success looks like ...

- Language Goal: Comparing and contrasting the structure of linear equations that have no solution or infinitely many solutions. (Speaking and Listening, Writing)
» Explaining why a given linear equation has one solution, no solution, or infinitely many solutions.
- Goal: Creating linear equations in one variable that have either no solution or infinitely many solutions.

- Suggested next steps

If students incorrectly identify the number of solutions for the equations, consider:

- Rewriting each equation using the fewest terms and reassessing.
- Reassessing after Lesson 15.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
© Points to Ponder ...

- Did students find Activity 1 or Activity 2 more engaging today? Why do you think that is?
- Which groups of students did and didn't have their ideas seen and heard today?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	2
Spiral	$\mathbf{2}$	Activity 1	2
Formative $\mathbf{0}$	$\mathbf{5}$	Activity 2	2

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Strategic Solving

Let's practice solving linear equations.

Focus

Goal

1. Language Goal: Describe strategies for solving linear equations in one variable with different features or structures. (Speaking and Listening)

Coherence

- Today

Students complete a scavenger hunt to determine solutions of linear equations. As they solve equations, students make use of structure and strengthen their fluency in solving equations.

< Previously

In Lessons 7 and 8, students learned that linear equations are not limited to one solution, but could have no solution or infinitely many solutions.

> Coming Soon

In Lesson 10, students will discover that they can set two expressions equal to each other to find when two amounts are equal in context.

Rigor

- Students strengthen their fluency in solving equations.

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 1 PDF, pre-cut cards (for display)
- Anchor Chart PDF, Solving Linear Equations

Math Language
 Development

Review words

- coefficient
- constant
- Distributive Property
- equation
- equivalent equations
- expression
- hanger diagram
- like terms
- Properties of Equality
- solution
- substitution
- term
- variable

Building Math Identity and Community

Connecting to Mathematical Practices
Students might become so excited about the scavenger hunt that they disregard those around them. Before they begin the activity, have students work together to determine ways they can analyze the structure of each equation - before solving it - to determine whether there is one, none, or infinitely many solutions. Remind students that checking their work is a way to identify whether they have solved a problem correctly, and encourage them to help each other check their equations.

Amps : Featured Activity

Warm-up
 Take a Poll

See what your students are thinking in real time by digitally polling the class.

- Modifications to Pacing

You may want to consider this additional modification if you are short on time.

- The Warm-up may be omitted.

Warm-up Predicting Solutions

Students shift the focus from solving equations to thinking about how the structure of an equation changes the solution.

1 Launch

Instruct students to inspect each equation carefully and use reasoning to answer the question rather than trying to solve each equation for a specific value. Then conduct the Think-Pair-Share routine.

Monitor

Help students get started by activating prior knowledge of operations with integers. For example, a negative number divided by a positive number will result in a negative number.

Look for points of confusion:

- Not understanding how to determine the sign of the answer without solving the equation. Provide different strategies that students can use. For example, ask students to substitute a positive or negative value for x and think about the sign of the outcome.

3 Connect

Have pairs of students share the strategies they used to determine whether the solution was positive, negative, or zero. After each pair shares their strategy, ask if anyone else thought about the problem in a different way, and invite them to share their thinking.

Highlight that students can look at the structure of an equation and the properties of integers to help them think about the solution to an equation without solving it.

Ask, "How can you apply your strategies to help you when solving equations?" Sample response: After I solve an equation, I can look at the sign of my solution and reason whether it makes the equation true.

Differentiated Support

Accessibility: Activate Prior Knowledge

Before revealing the Warm-up, ask, "What happens when you multiply or divide a negative number by a positive number? What about multiplying or dividing a negative number by a negative number?" Once students come to a consensus, reveal the Warm-up.

Power-up
To power up students' ability to determine whether a value is a solution to an equation with more than one variable term, have students complete:
Recall that when checking if a value is a solution to an equation, you can substitute the given value for each variable in the equation.

Determine whether $x=3$ is the solution to the equation $-2(x-4)+1=2 x-3$.
Yes, it is a solution; Sample response: $\quad-2((3)-4)+1=2(3)-3$

$$
-2(-1)+1=6-3
$$

$2+1=3$
3 = 3 true
Use: Before the Warm-up
Informed by: Performance on Lesson 8, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 5

Activity 1 Equations Scavenger Hunt

Students practice solving all types of linear equations to develop procedural fluency.

Activity 1 Equations Scavenger Hunt

Begin with any of the scavenger hunt cards and solve the problem, using the space provided here. Then look for your answer at the top of another scavenger hunt card and solve the problem on that card. Note: Use the hanger diagrams in the last box, if it helps your thinking. Sample responses shown.

uations

1 Launch

Shuffle the cards from the Activity 1 PDF, and post them around the classroom. If possible, laminate or use sheet protectors to facilitate reuse with other classes. Have students start with any of the Scavenger Hunt cards. Invite students to solve the problem and record their thinking, and then look for their answer at the top of a different Scavenger Hunt card and solve the problem on that card. This process continues until the students have solved all 10 problems and are back to their starting problem.
Note: Problem B and Problem D require students to solve for a missing weight in a hanger diagram. Tell students that they can write on the hanger diagrams provided at the end of their recording sheet if it helps them with their thinking.

(2) Monitor

Help students get started by assigning a few students to different Scavenger Hunt cards and having them solve the problem on that card. Model how to find the next problem. Tell students if they do not see their answer, they should check their answer for any mistakes.

Look for points of confusion:

- Not knowing how to solve a certain equation. Encourage students to refer to the Anchor Chart PDF, Solving Linear Equations.
- Struggling to find their answer or getting the wrong solution. Remind students how to check their answers by substituting the value for x in the original equation and evaluating it.

Look for productive strategies:

- Analyzing the structure of the equation, instead of solving it, to determine whether there is one, none, or infinitely many solutions.
- For the hanger diagrams, writing an equation and rewriting it with fewer terms before substituting the weight of the object.

Activity 1 continued >
Differentiated Support

Accessibility: Activate Prior Knowledge

Display the hanger diagrams from the end of the activity. Ask them what they recall from working with hanger diagrams, paying attention to explanations about balancing the diagrams and assigning weights. Encourage students to use the diagrams as they complete the activity.

Extension: Math Enrichment

Display the equation for Problem H. Ask, "Will multiplying both sides of the equation by 3 eliminate both fractions? Why or why not?" No; It will only eliminate the fraction with the denominator of 3 . To eliminate the other fraction, I then need to multiply both sides by 2 , or I could multiply both sides of the original equation by 6 .

Math Language Development

MLR8: Discussion Supports

Assign pairs of students to different Scavenger Hunt sheets from the Activity 1 PDF. Before solving any of the equations, ask pairs to reason about the number of solutions (one, infinitely many, or none). After students have determined and agreed upon the number of solutions, invite them to solve their respective equations.

English Learners

Provide students independent think time to formulate a response before discussing with their partner.

Activity 1 Equations Scavenger Hunt (continued)

Students practice solving all types of linear equations to develop procedural fluency.
(3) Name: Date: Period:

Activity 1 Equations Scavenger Hunt (continued)

Summary

Review and synthesize how students can apply different strategies for solving equations.


```
Summary
    In today's lesson...
You showed how to apply strategies for solving linear equations that include fractions, decimals, negative values, and equations written with many terms.
    For example:
    3(4-2x)+6=4-2x
    12-6x+6=4-2x Use the Distributive Property.
            18-6x=4-2x Combine like terms on each side.
            18=4+4x Add 6x to each side.
            14=4x Subtract 4 from each side.
            \frac{14}{4}=x\quad Divide each side by the coefficient.
    So, x=\frac{7}{2}}\mathrm{ .
Reflect:
```


Synthesize

Have students share their strategies for solving linear equations with different structures.

Highlight that there are different strategies students can use to solve an equation. Students could check whether their solution is correct by substituting their answer into the original equation and checking if the equation is true.

(I) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How has your understanding of equations changed since earlier lessons? What helped you develop your understanding of equations?"

Exit Ticket

Students demonstrate their understanding by solving an equation with variables on both sides.

亘 Printable

Name: \longrightarrow

Exit Ticket

Solve the equation $\frac{2}{3}(4 x+3)=\frac{1}{4}(3 x-15)$. Show or explain your thinking.
$\frac{2}{3}(4 x+3) \cdot 12=\frac{1}{4}(3 x-15) \cdot 12$
$8(4 x+3)=3(3 x-15)$
$32 x+24=9 x-45$
$23 x+24=-45$
$23 x=-69$
$x=-3$

Success looks like ...

- Language Goal: Describing strategies for solving linear equations in one variable with different features or structures. (Speaking and Listening)
» Showing how to solve the equation using the Distributive Property.

Suggested next steps

If students do not correctly solve the equation, consider:

- Providing the equivalent equation without fractions or parentheses, $32 x+24=9 x-45$, and having them solve it. If students still struggle solving this equation, consider reviewing Lessons 5 and 6 .

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
©. Points to Ponder...

- In what ways did Activity 1 go as planned?
- During the discussion about solving equations, how did you encourage each student to listen to one another's strategies?

© Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

When Are They the Same?

Let's use equations to think about situations.

Focus

Goals

1. Create an equation in one variable to represent a situation in which two quantities are equal.
2. Language Goal: Interpret the solution of an equation in one variable in context. (Speaking and Listening, Writing)

Coherence

- Today

In this lesson, students apply their knowledge of solving equations by considering two real-world situations. Students are asked to determine when amounts in context will be the same. It is the work of the student to recognize that they can set the two expressions equal and solve the equation for the unknown. This work sets up the concept of substitution for the coming Sub-Unit on systems of linear equations.

< Previously

In Lesson 9, students strengthened their fluency for solving linear equations.

Coming Soon

Starting in Lesson 11, students will begin exploring systems of linear equations by considering graphs of equations in context and the meaning of the solution. In Lesson 13, students will be formally introduced to the term system of linear equations.

Rigor

- Students develop conceptual understanding for finding which value makes two expressions by setting two expressions equal to each other and solving the linear equation.
- Students apply strategies for solving linear equations by setting two expressions equal to each other and solving for x

Warm-up

Activity 1

Activity 2

Summary

Exit Ticket
• 8 min
\circ ㅇํ Pairs
$\oplus 15 \mathrm{~min}$
ㅇํㅇ Pairs
(ㄱ) 1
15 min
ㅇํㅇ Pairs
($)$
5 min
ํํํํํํ Whole Class
(1) 5 min

Amps powered by desmos \vdots Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 1 PDF (for display)
- calculators

Math Language

Development

Review words

- slope
- solution
- variable

Amps \vdots Featured Activity

Exit Ticket
 See Student Thinking

Students are asked to explain what they think an equation represents related to a context, and these explanations are available to you digitally, in real time.

Building Math Identity and Community Connecting to Mathematical Practices

As students begin to use equations as models for real-world scenarios, they might experience a sense of doubt. Ask them to explain the scenario in their own terms, making sure that they understand it and then have them draw connections between the scenario and the equation. These connections will help them complete the activity and will help them build confidence in their ability to work with equations.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 1, omit Problems 1 and 2.
- In Activity 2, omit Problems 1-4. Instead, provide students with expressions that represent Han and Priya's locations on the stairs.

Warm-up Perimeter Puzzle

Students solve a problem by setting two expressions equal to each other to prepare their thinking for the lesson.

1 Launch

Conduct the Think-Pair-Share routine.

2 Monitor

Help students get started by having them write in the lengths for all four sides and asking what expression they could use to find the perimeter.
Look for points of confusion:

- Thinking Bard is correct. Have students substitute the value 2 for x. Ask students what this means about Bard's statement and have students determine another way to show it.

Look for productive strategies:

- Finding out that 2 makes the perimeters equal and substituting 2 for x to confirm.
- Setting expressions for the perimeters equal to each other and solving for x.

3 Connect

Have students share who they think is correct by conducting the Poll the Class routine.
Display student work that shows a sequence of strategies, such as students who:

- Used substitution or guess-and-check.
- Set the perimeters equal:

$$
4(2 x)=4(x+2)
$$

- Set the side lengths equal, $2 x=x+2$.

Ask:

- "After you set the expressions equal to each other, what is represented by the solution $x=2$?"
- "Will the perimeters be the same when $x=3$? Why or why not?"
- "What is the value of the perimeter when both are equal? How do you know?"

Highlight that, by setting two expressions in the same variable equal to each other, students can solve for the value that makes both expressions true.

(1) Power-up

To power up students' ability to compare rates to determine the

 best option when an initial value is given, have students complete:Two gyms open in your town. Gym A charges a starting fee of $\$ 50$, then $\$ 10$ per month. Gym B charges a starting fee of $\$ 30$, then $\$ 15$ per month. Complete each table to determine the costs for 6 months at each gym.

Gym A:

Months	0	1	2	3	4	5	6
Cost (\$)	50	60	70	80	90	100	(110)

Gym B:

Months	0	1	2	3	4	5	6
Cost (\$)	30	45	60	75	90	105	120

Use: Before Activity 1
Informed by: Performance on Lesson 9, Practice Problem 6

Activity 1 Education Gap?

Students work within a real-world context to see that setting two separate expressions equal to one another is one way to determine more information about the context.

Activity 1 Education Gap?

Now, more than at any point in history, women are earning college degrees comparably to men. However, that wasn't always the case.
The graph shown can be used to model the trend in college degrees earned by men and women starting in 1960.
The line represented by the equation $y=16.4 x+118.3$ shows the number of women that earned a college degree.
The line represented by the equation $y=$ $7.7 x+314.3$ shows the number of men that
 earned a college degree. In both equations, x represents the years since 1960 and
y represents the number of people in thousands.
>1. According to the trend line, how many women earned a degree in the year 1970? How many men?
Because 1970 is 10 years after 1960, I can substitute 10 into both equations.
Women: $16.4(10)+118.3=282.3$; Men: $7.7(10)+314.3=391.3$
About 282,300 women and about 391,300 men earned a degree in 1970.
2. During what year, if ever, do you think the number of women receiving a college degree will be the same as the number of men? Be as precise as possible.
Sample response: If I set the expressions equal to each other, $16.4 x+118.3=7.7 x+314.3$, I can find the number of years after 1960, x, when the numbers of degrees earned by men and women are equal.
$16.4 x+118.3=7.7 x+314.3$
$8.7 x=196$
$x \approx 22.5$
During the year 1982 , because $1960+22.5=1982.5$.
3. Make a prediction based on the trend lines: will there be more men or more women earning a college degree in the year 2025? How many more?
I predict more women will receive degrees in 2025.
Women: $16.4(65)+118.3=1,184.3$; Men: $7.7(65)+314.3=814.8$
$1,184.3-814.8=369.5$, which means I predict there will be about 369,500 more women earning college degrees in 2025 than men.

1. Launch

Read the text aloud with students. Activate students' background knowledge by asking them if they want to share whether their grandparents earned a college degree. Ask, "What year does the value 10 on the x-axis represent?" Provide access to calculators for the remainder of this lesson.

(2) Monitor

Help students get started by asking them to use the graph to estimate the number of degrees for women and men in the year 1970.

Look for points of confusion:

- Substituting 1970 for the year in Problem 1 or not interpreting $x=22.5$ as 22.5 years after 1960 in Problem 2. Have students underline the text that describes what x represents. Ask students what $x=1$ represents. Ask students what the value of x would be for the year 1965 in this situation.

3 Connect

Have students share their responses to Problems 1, 2, and 3.

Ask students to explain why they knew to set the expressions equal.
Display the Activity 1 PDF. Have students compare their predictions for Problems 2 and 3 with the actual data.

Highlight that the trend lines do not represent the exact number of degrees in a given year, but the expected trend over time. Ask students if they think it is reasonable to expect these trend lines to continue in the same direction for the next 10 years or the next 100 years. Preview that students will look more at a different gap in the Capstone Lesson - the gender disparity in wages.

48
 Differentiated Support

Accessibility: Activate Background Knowledge

Ask students if they would like to share if they know whether or not their grandparents earned a college degree. After students have shared, ask the class if they noticed any patterns about what their peers have said about their grandparents' earning of college degrees.

Extension: Math Enrichment

Have students determine the percentage of all degrees earned in 1970 that were earned by women, according to the graph in this activity.

282.3

$\frac{282.3+391.3}{2} \approx 0.42$

Math Language Development

MLR6: Three Reads

Use this routine to help students make sense of the graph and introductory text.

- Read 1: Students should understand that the graph represents the trend in college degrees earned by men and women starting in 1960. Ask students to explain what the scale along the x-axis represents.
- Read 2: Ask students to state or highlight the given equations that model the number of men and women that earned a college degree.
- Read 3: Ask students to plan their solution strategy as to how they will complete Problem 1.

Activity 2 Staircase to the Sky

Students determine when two hikers meet to elicit reasoning about why setting two expressions equal to one another is a way to solve the problem.

1 Launch

Have students read the text. Ask, "Where is each hiker when the time is zero?" Then ask students to predict when they think the hikers will meet. After taking some guesses, ask students how they can use algebra to be more precise.

Monitor

Help students get started by asking what it means when each hiker is hiking at a constant rate and reminding them of the formula for determining the rate of change.

Look for points of confusion:

- Getting a positive rate of change for Han in Problem 1. Ask students to consider whether Han is climbing up or down.
- Not knowing what to do in Problem 5. Ask them how to write on which step each hiker will be at t minutes. Then ask them what does it mean for the hikers to meet.

Look for productive strategies:

- Using the table to estimate the time when the two hikers are at the same spot.
- Setting expressions equal in Problem 5.

Activity 2 continued >

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

After students complete Problems 1 and 2, provide students with expressions representing the number of stairs for Han and Priya and instruct students to focus on completing Problem 5.

Extension: Math Enrichment

Have students find the number of stairs from the start when both hikers meet and explain their thinking. 1968; Sample response: Substitute 10 (the number of minutes) into either expression to determine the number of stairs; $1568+40(10)=1968$.

Math Language Development

MLR2: Collect and Display

During the Connect, provide students with an opportunity to discuss their solutions to Problems 1-4 in groups of 3-4. Circulate through the groups and record language students use to describe what is happening with each hiker. Listen for language related to rate of change, differences between rates, initial height of each hiker, etc. Display the collected language so that students can refer to it throughout the rest of the activity and lesson.

$\cap \circ$ Pairs $I(1) 15$ min

Activity 2 Staircase to the Sky (continued)

Students determine when two hikers meet to elicit reasoning about why setting two expressions equal to one another is a way to solve the problem.
(3) Connect

Display student work showing a correct expression for Han and Priya set equal to each other.

Have students share why they decided to set the expressions equal to each other. If no student set the expressions equal, stop the class and present an equation with the expressions set equal. Have students share with a partner what the equation represents and then solve for the time.

Ask:

- "What does the variable represent in the first expression? the second expression?"
- "How did you find the time when the two hikers met using the expressions?"

Highlight that, by writing and setting expressions equal, students can find a precise solution. Remind students to pay attention to what that variable represents in context when considering their solution.

Summary

Review and synthesize how to represent a situation by setting two expressions equal.

Synthesize

Ask:

- "If you cannot guess exactly when two values are the same, what can you do to find a precise answer?"
- "What other real-world examples can you think of when you might set two expressions equal to each other?"

Have students share examples with the class.
Highlight that students can sometimes guess when two values will be equal, either by looking at a table, estimating on a graph, or by doing some quick mental math. Another option can be to write two expressions that can be set equal to each other. This is a precise way to find when two expressions are the same.

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What strategies did you find helpful today when setting two amounts equal in a context? How were they helpful?"
- "Were any strategies not helpful? Why?"

Exit Ticket

Students demonstrate their understanding by explaining what is represented when two expressions are set equal.

To own and operate a home printer, it costs $\$ \mathbf{1 0 0}$ for the printer and an additional $\$ 0.05$ per page for the ink. To print pages at an office store, it costs $\mathbf{\$ 0 . 2 5}$ per page. Let p represent the number of pages printed.

1. What does the equation $100+0.05 p=0.25 p$ represent?

It represents when the costs are the same to print at home or at an office store.
2. What is the solution to the equation, and what does it mean? $100+0.05 p=0.25 p$
$100=0.25 p-0.05 p$
$100=0.2 p$
$p=500$
This means that the costs are equal for printing 500 pages at home
or at an office store.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...

- The focus of this lesson was for students to see that they can set expressions equal to each other based on a context. How did this go?
- Which teacher actions made the Connect in Activities 1 and 2 strong?

Additional Practice Available

Practice Problem Analysis			
Type	Problem	Refer to	DOK
	1	Activity 1	1
On-lesson	2	Activity 1	2
	3	Activity 2	2
Spiral	4	Unit 4 Lesson 5	1
	5	Unit 1 Lesson 4	1
Formative 0	6	Unit 4 Lesson 11	1

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.
(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Systems of Linear Equations

In this Sub-Unit, students discover how systems of linear equations can be used to solve everyday problems. Using graphs, tables, and equations, students find and interpret the meaning of a solution to a system, including systems with no solution or infinitely many solutions.

Narrative Connections

Read the narrative aloud as a class or have students read it individually. Students continue to explore how systems of linear equations can be used to model and solve everyday problems in the following places:

- Lesson 11, Activities 1-2:

Pocket Full of Change, A New Way of Solving

- Lesson 12, Activities 1-2: Can a Computer Science Teacher Run as Fast as Grete Waitz?, A Different Pace
- Lesson 13, Activity 1: Time to Refuel
- Lesson 16, Activities 1-2: Situations and Systems, Info Gap: Walking, Jogging, Running
- Lesson 17, Activities 1-2: Mind the Gap, Gender Pay Gap

On or Off the Line?

Let's interpret the meaning of points on the coordinate plane.

Focus

Goals

1. Determine a point that satisfies two relationships simultaneously, using tables or graphs.
2. Language Goal: Interpret points that lie on one, both, or neither line on a graph of two simultaneous equations in context. (Speaking and Listening, Writing)

Coherence

- Today

In this lesson, students consider pairs of linear equations, of the form $A x+B y=C$, in context and interpret the meaning of points on the graphs of the equations. Students build upon earlier work with linear equations in two variables where there is an equation constraining the possible combinations of two quantities. Note: The goal of this lesson is not for students to write equations or learn the language system of equations, but rather to investigate the mathematical structure with two stated facts by using familiar representations and to develop the need for new solving strategies.

< Previously

In Lesson 10, students set two expressions equal to one another to determine a common value where both expressions are true (if it exists)

> Coming Soon

In Lesson 12, students will continue exploring the meaning of a solution for linear equations graphed on the coordinate plane, focusing on equations of the form $y=m x+b$. In Lesson 13, students will be formally introduced to the term system of equations.

Rigor

- Students build conceptual understanding for the meaning of a solution to two simultaneous linear equations that can be used to model a real-world scenario.
©
Warm-up

Activity 1

Activity 2

Summary

Exit Ticket
(1) 5 min
(ㄱ) 20 min
ㅇํㅇ Pairs
ㅇํㅇ Pairs
(1)
15 min
ㅇํㅇ Pairs
(1)
5 min
คํํํํํ Whole Class
d 5 min

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- rulers

Math Language

Development
Review word

- solution

Amps : Featured Activity

Activity 2
 Using Work From Previous Slides

In later slides, students can build on their work from previous slides. It's their work, so they get to hold onto it!

Building Math Identity and Community

Connecting to Mathematical Practices
Students may resist thinking deeply when they try to make sense of the coin problem. Have them engage in metacognitive functions by asking them to think about their own thinking process. For example, have them conduct their own Notice and Wonder routine, which will help them record their thought processes.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted and discussed briefly in the launch of Activity 1.
- In Activity 1, omit the last row of the table.
- In Activity 2, have students focus on Problems 1 and 3.

Warm-up Counting Coins

Students consider combinations of coins that could equal to $\$ 2$ to develop the need for using other methods for solving for two unknowns.

1 Launch

Conduct the Think-Pair-Share routine.

Monitor

Help students get started by asking, "What if I only had nickels in my pocket?"

Look for points of confusion:

- Thinking that there is only one correct answer. Ask students to reread the problem to see if other coin combinations could be considered

Look for productive strategies:

- Creating a table or drawing to strategically determine multiple combinations of nickels and dimes that total to $\$ 2$.

Differentiated Support

Accessibility: Guide Processing and Visualization

Provide the partially completed table below for possible coin combinations and ask students to continue completing the table with other possibilities.

Nickels	Dimes	Solution
10	15	$10(0.05)+15(0.1)=2$

Accessibility: Optimize Access to Tools

Consider bringing in nickels and dimes and allow students to physically manipulate the coins to determine possibilities that represent $\$ 2$.

Activity 1 Pocket Full of Change

Students focus on a context involving coins represented with a table to represent the context algebraically. strategies for solving problems that lead to the Diophantine equations you explored in Unit 3. In this activity, you will work to find a strategy to help Jada and Noah solve the following problem:
Jada told Noah that she has $\$ 2$ worth of nickels and dimes in her pocket and 31 coins altogether. She asked him to guess how many of each type of coin she has.
Use the table to find combinations of nickels and dimes that have a total value of $\$ 2$. Use the number of nickels given to determine the number of dimes, and then complete the rest of the first two columns. Then complete the third column to find the total number of coins for each combination. Can you find a combination of nickels and dimes that uses a total of 31 coins?

Number of nickels	Number of dimes	Number of coins
0	20	20
2	19	21
4	18	22
6	17	23
8	16	24
40	0	40

Zhang Qiujian

Little is known about the Chinese mathematician Zhang Quijian His 5th century book, Zhang Qiujian Suanjing, is considered one of the most important mathematical texts in history. In this book, Zhang explores different mathematical methods and problems. Perhaps the most famous one is the "Hundred Fowls Problem." Can you solve it
"Roosters cost 5 qian each, hens cost 3 qian each, and three chicks cost 1 qian. If 100 fowls are bought for 100 qian, how many roosters, hens and chicks are there?'

1. Launch

Read the problem context together. Ensure students understand that Jada has exactly $\$ 2$ in her pocket, that she only has nickels and dimes, and that she has exactly 31 coins.

Math Language Development

MLR6: Three Reads

Use this routine to help students make sense of the introductory text.

- Read 1: Students should understand that Jada has a certain amount of coins and is asking Noah to guess how many of each type of coin she has.
- Read 2: Ask students to name or highlight the given quantities and their relationships, such as " $\$ 2$ worth of nickels and dimes in her pocket and 31 coins altogether".
- Read 3: Ask students to plan their solution strategy as to how they will complete the table to find combinations of nickels and dimes that have a total value of $\$ 2$.

English Learners

Annotate the term altogether with the term total to help students make the connection that these words mean the same thing.

Monitor

Help students get started by asking for the value of a one nickel and one dime, written as a decimal.

Look for points of confusion:

- Not being able to find the number of dimes given the number of nickels. Ask students to find the value of the nickels and subtract that from $\$ 2$. Ask them how many dimes would they need to make equal to the remaining dollars value.
- Being unsure how to find new combinations of coins. Ask students what they notice about the nickel amounts already in the table and what value they could try based on what has worked in previous rows

Look for productive strategies:

- Noticing when students increase by 2 nickels, students must subtract 1 dime.

3 Connect

Have students share how they determined the number of dimes and what patterns they notice in the table.

Ask:

- "Is it possible to have a combination with 1 nickel?"
- "What patterns do you see when you add 2 nickels?"
Highlight that the solution must make both facts true. To solve this problem more efficiently, students will learn how graphs can be used to help them find the exact solution.

Featured Mathematician

Zhang Qiujian

Have students read about the featured mathematician Zhang Qiujian, who wrote an influential book in the fifth century.
Possible solutions to the Hundred Fowls Problem:

- 0 roosters, 25 hens, 75 chicks
- 4 roosters, 18 hens, 78 chicks
- 8 roosters, 11 hens, 81 chicks
- 12 roosters, 4 hens, 84 chicks

Activity 2 A New Way of Solving

Students graph simultaneous equations representing the number and value of the coins from Activity 1 to discover new strategies for finding and interpreting the solution to simultaneous equations.

Amps Featured Activity
Using Work From Previous Slides

Activity 2 A New Way of Solving

Refer to the scenario from Activity 1. The graph shows the relationship between the number of nickels and the number of dimes if the total number of coins is 31 .

1. Choose a point on the graph and explain what it means in context. Sample response: The point $(13,18)$ means that 13 nickels and 18 dimes represent a possible combination of 31 coins.
2. Using values from your table in Activity 1 , sketch the graph of the line that shows combinations of nickels and dimes that have a total value of $\$ 2$.
3. Label the point where the two lines intersect. What does this point represent? (22,9); 22 nickels and 9 dimes represent a total of 31 coins that have a total value of $\$ 2.00$ because, $\mathbf{0 . 0 5 (2 2) + 0 . 1 (9) = 2}$.
4. Let x represent the number of nickels and y represent the number of dimes.
a Write an equation that shows that there are 31 total coins. $x+y=31$ or $y=-x+31$
b Write an equation that shows that the total value of the coins is $\$ 2$. $0.05 x+0.1 y=2$ or $y=-\frac{1}{2} x+20$

1 Launch

Ensure students understand the graph representing coin combinations is already given, but that they will add a graph of the line that represents the values of the coin combinations found in Activity 1. Provide access to rulers.

Monitor
Help students get started by having them identify the labels for the x - and y-axes.

Look for points of confusion:

- Having difficulty graphing a second line on the plane. Ask students to identify their variables and to confirm they match the x - and y-axes. Then direct students to their tables.

3 Connect
Display student work showing a correct graph, and have students compare and contrast using a graph to using a table for solving in Activity 1.

Ask:

- "What does the point of intersection represent? Does it make sense in context?"
- "Is $(22,9)$ the only combination that works for both lines? Why or why not?"
- "What is an example of a combination of coins that is a solution for one line but not the other? A combination that is not on either line?"
- "How can you use your equations to confirm the ordered pair $(22,9)$ is on each line?"
Highlight that the solution $(22,9)$ represents the number of nickels and dimes that makes both requirements true. Then highlight that a point of intersection on a graph is a solution for both equations because it lies on both lines of the equations. This strategy can be more efficient than using a table to find combinations that work.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Provide a sample point for Problem 1 instead of having students generate one on their own. Have students focus on completing Problems 1-3 and provide equations for Problem 4 so that they can refer to them during the Connect.

Extension: Math Enrichment

Ask students to solve each equation they wrote in Problem 4 so that it is written in the form $y=m x+b$. Then have them set each of the expressions written in the form $m x+b$ equal to each other and solve for x. Ask them what they notice about this value of x. The value of x is 22 , which is also the x-coordinate of the point of intersection.

Unit 4 Linear Equations and Systems of Linear Equations

Math Language Development

MLR5: Co-craft Questions

During the Launch, display the graph before revealing the introductory text or any of the problems. Ask students to work with their partner to generate $1-2$ mathematical questions they have about the graph. Ask student volunteers to share their questions with the class.

English Learners

Provide sample questions, such as:

- "Can there be non-whole number inputs for nickels or dimes?"
- "What does the horizontal intercept mean in terms of the number of nickels or dimes?" Displaying sample questions will help support students in developing metalinguistic awareness as they learn different types of mathematical questions that can be asked.

Summary

Review and synthesize how two simultaneous linear equations can be used to represent information from the same scenario.

(9)

Name: Date. \qquad Period:

Summary

In today's lesson...

You saw an example of how you can use linear relationships to represent real-world scenarios. You saw that two equations can be used simultaneously to represent the same scenario, both graphed on the same coordinate plane. In some cases, this can be a more efficient way of finding a solution

Synthesize

Display the Student Edition Summary page.
Highlight what a solution to two simultaneous linear equations means.

Ask:

- "What are some advantages of tables? If you used two tables to describe the two relationships, how would you know whether a common point exists? If it did exist, how would you find it?" Tables are good for knowing the exact values for individual points. If the common point is listed in each table, it might be easy to notice, but it may be missing from at least one table or may be difficult to find if the tables are large and unordered. If the common point is listed in each table, one row of the table should match in both columns.
- "What are some advantages of graphs?" Graphs give a better overall picture of the relationships and usually makes estimating (if not finding exactly) the common point easier.
- "When using graphs, where are the points whose coordinates do not make a given relationship true?"

D Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What did you find challenging about math today? What did you do to overcome any challenges?"

Exit Ticket

Students demonstrate their understanding by graphing the lines of two simultaneous linear equations and examining the solution in context.

晑 Printable

Name: \longrightarrow D \qquad

Exit Ticket

On the coordinate plane shown, one line epresents the possible combinations of dimes and quarters that have a total value of $\$ 3$. The other line represents the possible combinations of dimes and quarters when the total number of coins is 12 .

1. Name one combination of 12 coins shown on the graph
Sample response: 6 quarters and 6 dimes
2. Name one combination of coins shown on
 the graph that have a total value of $\$ 3$. Sample response: 6 quarters and 15 dimes.
3. What combination of quarters and dimes would equal both 12 coins and total $\$ 3$?

12 quarters and 0 dimes.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

10 . Points to Ponder . . .

- In what different ways did students approach the process of finding a solution to simultaneous linear equations? What does that tell you about similarities and differences among your students?
- What might you change for the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	2
Spiral	$\mathbf{2}$	Activity 2	2
Formative 0	$\mathbf{3}$	Activity 2	2

(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

On Both of the Lines

Let's use lines to analyze real-world situations.

Focus

Goals

1. Language Goal: Create a graph that represents two linear relationships in context, and interpret the point of intersection. (Speaking and Listening, Writing)
2. Language Goal: Interpret a graph of two equivalent lines and a graph of two parallel lines in context. (Speaking and Listening, Writing)

Coherence

Today

Students study simultaneous equations in context, where the equations are in the form $y=m x+b$. The purpose of this lesson is to introduce students to the graphical interpretation of simultaneous equations that have one point of intersection, no points of intersection, or infinitely many points of intersection. Keeping the graphs in mind will be useful as students navigate algebraic techniques for solving systems in the lessons to come.

Previously

In Lesson 11, students studied graphs of simultaneous equations and considered the meaning of the point of intersection of the lines in context.

> Coming Soon

In Lesson 13, students will be formally introduced to the term system of equations. In Lesson 14, students will begin learning strategies for solving systems of linear equations algebraically.

Rigor

- Students build procedural skills for graphing simultaneous equations and for finding and interpreting the solution in context.
- Students deepen their conceptual understanding of a solution to simultaneous equations by looking at scenarios where there are no solution or infinite solutions.

Activity 2

(1) 15 min

$\bigcirc \circ$ Pairs15 min
$\circ \circ$ Pairs
\bigcirc Independent

Activity 1

Summary

Exit Ticket

() 5 min

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Representations of Linear Relationships
- rulers

Math Language
 Development

Review words

- slope
- solution

Building Math Identity and Community

Connecting to Mathematical Practices
Students may be able to complete the background mathematics without being able to interpret the results in context. Because these interpretations are all similar in pattern, have students reflect on the work that they did. Ask them to write a summary of how to interpret the graph in a context, focusing on decisions that need to be made to get to the solution.

Amps ! Featured Activity

Activity 2
 See Student Thinking

Students are asked to explain their thinking behind the meaning of different simultaneous graphs. These explanations are digitally available to you in real time.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up, may be omitted.
- In Activity 2, provide the line students are asked to create in Problem 1.

Warm-up Which One Doesn't Belong?

Students review graphed equations to elicit ways they can describe different characteristics that arise when more than one line is graphed on a coordinate plane.
(2)

Unit 4 | Lesson 12

On Both of the Lines

Let's use lines to analyze real-world situations.

Warm-up Which One Doesn't Belong?
Consider the lines graphed. Which graph doesn't belong?

Unit 4 Linear Equations and Systems of Linear Equations \qquad

1 Launch
Conduct the Which One Doesn't Belong? routine. Distribute rulers for the duration of the lesson.
(2) Monitor

Help students get started by saying, "Try looking for differences in the points of intersection.'

Look for points of confusion:

- Thinking there is only one correct answer. Ask students to consider why a different graph does not belong.
- Thinking Graphs C and D are the same because all three lines touch. Ask students which graph shares one point of intersection with all three lines (Graph C) and then have students describe how the lines are intersecting in Graph D.

Look for productive strategies:

- Describing the points of intersection in terms of "solutions.
- Determining more than one solution for Graph D.

3 Connect

Display the Warm-up page from the Student Edition.

Have students share one reason why a particular graph might not belong. Record and display the responses for all to see. Have students share if they agree or disagree with each response.
Ask, "Why do you think the lines do not intersect in Graph A?"

Highlight students' use of concepts and language introduced in previous lessons about lines, such as slope and intercepts. Discuss that, for two distinct lines, the lines will either be parallel or they will intersect.

Math Language Development

MLR2: Collect and Display

Collect and display language as students describe which graph doesn't belong. Highlight and add specific terms, such as slope, parallel, and intersect. Continue adding to the display in Activity 2.

English Learners

As students describe the various features of the graphs, annotate the graphs to indicate which lines are parallel and intersecting, amplifying that parallel lines have the same slope.

Power-up
To power up students' ability to graph a line given the slope and y-intercept, have students complete:

1. Determine the slope of line $a \cdot \frac{2}{3}$
2. Draw a line with the same slope as line a that has a y-intercept of $(0,1)$.
Use: Before Activity 2
Informed by: Performance on Lesson 11, Practice Problem 6

Activity 1 Can a Computer Science Teacher Run as Fast as Grete Waitz?

Students create a graph from a table to compare two simultaneous linear equations on the same plane and interpret their point of intersection.

Name: \quad Date: \quad Period:
Activity 1 Can a Computer Science Teacher Run as Fast as Grete Waitz?

Ms. Hernández, a computer science teacher, wants to run a marathon as fast as Grete Waitz, the geography teacher who became a marathon legend.

Ms. Hernández starts training by running shorter races with her trainer. The graph shows the distance and time run by her trainer. Ms. Hernández hopes to beat his time. To add a challenge, Ms. Hernández starts the race 20 seconds after her trainer.
> 1. Ms. Hernández records her distance and time ran, from when her trainer starts, in the given table. Use the table to sketch the graph for Ms. Hernández.

Time (seconds)	Distance (m)
20	0
40	160
60	320
120	800

2. At what speed, in meters per second, is Ms. Hernández running? Show or explain your thinking.
$\frac{160-0}{40-20}=8$, which means 8 m per second.
3. At what speed, in meters per second, is Ms. Hernández's trainer running? Show or explain your thinking.
$\frac{600-0}{100-0}=6$, which means 6 m per second.
4. Estimate the coordinates of the point where the two lines intersect. Explain what the point means in context.
$(80,480)$. This means at $\mathbf{8 0}$ seconds, Ms. Hernández catches up to the same distance, $\mathbf{4 8 0} \mathrm{m}$, as her trainer.

Lesson 12 On Bothot the Lines

Differentiated Support

Accessibility: Guide Processing and Visualization

Display or provide students with a copy of the Anchor Chart PDF, Representations of Linear Relationships to remind them of the formula for determining the slope of a line

Extension: Math Enrichment

Have students write the equation for each line in the form $y=m x+b$ and describe what they notice about the values for m and b in this context. Each value of m represents each person's rate. The values for b represent the trainer starting at time 0 and Ms . Hernández starting at time 20 seconds.
Ms. Hernández: $y=8 x+20 \quad$ Trainer: $y=6 x$

1 Launch

Activate students' background knowledge about Grete Waitz, whom they studied in Unit 3. Ask students to explain what it would look like on the graph if Ms. Hernández catches up to her trainer. Provide access to rulers for the remainder of the lesson.

(2) Monitor

Help students get started by asking, "What ordered pair is represented by the first row of the table?"

Look for points of confusion:

- Not being able to find each runner's speed. Refer students to the Anchor Chart PDF, Representations of Linear Relationships to remind them of the formula for finding the slope of a line.
- Being unclear what the point represents in Problem 4. Have students label the point of intersection and then ask what the x - and y-values represent.

Look for productive strategies:

- Identifying that, because Ms. Hernández is running at a faster speed, her graph has a steeper slope and it will catch up to, or intersect, the graph of her trainer.

3 Connect

Display student work showing the correct graph.
Ask:

- "How did you graph the line for Ms. Hernández?"
- "What can the graph tell you about what is happening at 50 seconds? At 200 seconds?"
- "How many points of intersection are there? What does that mean?"
Highlight that the point of intersection represents the one and only point when the two lines will meet. This is why we can say there is one solution that satisfies the equations of the lines of both runners.

(12)

Math Language Development

MLR6: Three Reads

Use this routine to help students make sense of the introductory text.

- Read 1: Students should understand that Ms. Hernández and her trainer are both running races together.
- Read 2: Ask students to name or highlight given quantities and relationships, such as "Ms. Hernández starts the race 20 seconds after her trainer."
- Read 3: Ask students to plan their solution strategy in Problem 1 as to how they will complete the graph using the information given in the table.

English Learners

Annotate the first row of the table with the phrase starts race 20 seconds after trainer.

Activity 2 A Different Pace

Students create a graph for two simultaneous situations to see how different positions of the lines can be interpreted in the context.

Amps Featured Activity
See Student Thinking

Activity 2 A Different Pace

To run a longer race, Ms. Hernández's trainer reminds her she will need to slow down to conserve energy. Ms. Hernández is now preparing to run a 5 K , or $5,000 \mathrm{~m}$ race. Her trainer starts 100 m ahead of the start line so that Ms. Hernández can run a comfortable distance behind him, still within eyesight. The graph shows Ms. Hernández's trainer's distance y, related to the time, in seconds, x.

1. Graph a line representing

Ms. Hernández's distance if she runs at the same speed as her trainer, but starts at the starting line.
2. Write an equation to represent each line

Trainer: $y=\frac{5}{3} x+100$
Ms. Hernández: $y=\frac{5}{3} x$
3. What do you notice about the two lines?

Sample response: They are parallel.
4. Ms. Hernández says that she will never catch up to her trainer at the pace they are both running. Does your graph support this? Explain your thinking. Sample response: Yes. Because the two lines are parallel, they will never intersect.
5. Mr. Patel, an art teacher, who ran the same race, said that his graph looks exactly the same as Ms Hernández's graph. What do you think this could mean? Sample response: He ran alongside Ms. Hernández at the same speed and from the same starting point

1 Launch
Set an expectation for time to work in pairs on the activity.

Monitor

Help students get started by asking, "What does it mean that Ms. Hernández runs at the same speed as her trainer? How can you represent this on the graph?"

Look for points of confusion:

- Not being able to write a correct description in Problem 5. Ask students to draw a line on top of the line representing Ms. Hernández. Ask students where each runner is at 0,5 , and 10 minutes.

(3) Connect

Ask:

- "How many solutions to the equations of the lines are there for Ms.Hernández and her trainer? What does this mean in context?"
- "How many solutions to the equations of the lines are there for Ms. Hernández and Mr. Patel? What does this mean in context?"
- "What would be the equation for Mr. Patel's line?"

Have pairs of students share examples of points that show there is no solution for Problem 3 and infinitely many solutions for the equations of the lines for Ms. Hernández and Mr. Patel.

Highlight that parallel lines will never intersect, and, therefore, there will be no point that is a solution for both lines. In this context, that means that there will be no time when the trainer and Ms. Hernández are at the same distance at the same time. One line that is completely on top of another shares infinitely many points, and, therefore, the equations share infinitely many solutions.

Fostering Diverse Thinking

Running for Change

Have students research Wilma Rudolph, who earned three Olympic gold medals and was one of the first athletes to advocate for civil rights. She was the first American woman in track and field to win three gold medals at one Olympics, setting a world record for each. She refused to attend her hometown's parade and banquet unless it was nonsegregated, and so it became the first nonsegregated event in the town's history. Rudolph has been quoted as saying, "I would be very sad if I was only remembered as Wilma Rudolph, the great sprinter."

Ask:

- "In 1960 , Rudolph ran 200 m in 23.2 seconds, setting a world record at the time. How did Rudolph's speed compare to Ms. Hernandez's speed from Activity 1?"
- "How are today's athletes using their platforms to show their support for different causes?"

Summary

Review and synthesize different situations with simultaneous equations.

Synthesize

Display the Summary from the Student Edition.
Have students share what it means for simultaneous equations to have one solution, no solution, or infinitely many solutions.

Ask:

- "What do you notice about the slopes and the y-intercepts of the lines when there is one solution? No solution? Infinitely many solutions?"
- What must be true about the m and the b for the equations of the lines, in $y=m x+b$ form, that have infinitely many solutions?"

Highlight the three types of two simultaneous equations explored today:

1. One solution: When simultaneous lines intersect at one point.
2. No solution: When simultaneous lines will never intersect because they are parallel.
3. Infinitely many solutions: When simultaneous lines are on top of each other and share an infinite number of points of intersection.

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What can graphs tell you about the number of solutions for simultaneous linear equations?"

Exit Ticket

Students demonstrate their understanding by writing and graphing an equation from a scenario and interpreting the solution in context.

冒 Printable

Exit Ticket
5G
4.12

Andre and Noah started tracking their savings at the same time. Andre started with $\$ 15$ and deposits $\$ 5$ per week. Noah started with $\$ 2.50$ and deposits $\$ 7.50$ per week. The graph of Noah's savings is represented by the equation $y=7.5 x+2.5$, where x represents the number of weeks and y represents Noah's savings.

1. Write the equation for Andre's savings and graph the line on the same coordinate plane.
$y=5 x+15$

2. Identify the point of intersection. What does the intersection point mean in this context?
In this context, the intersection point located
at $(5,40)$ means that after 5 weeks, Noah and
Andre each have $\$ 40$ in savings.

Self-Assess

a I can use graphs that represent real-world scenarios to identify the intersection point of two equations and explain what it means within context

123

Success looks like .. .

- Language Goal: Creating a graph that represents two linear relationships in context, and interpreting the point of intersection. (Speaking and Listening, Writing)
» Graphing the equation for Andre's savings on the same coordinate plane as the equation for Noah's savings in Problem 1.
- Language Goal: Interpreting a graph of two equivalent lines and a graph with two parallel lines in context. (Speaking and Listening, Writing)
- Suggested next steps

If students have difficulty writing or graphing Andre's line, consider:

- Reviewing graphing strategies from Activity 1.
- Assigning Practice Problem 2.

If students cannot explain the point of intersection in context, consider:

- Reviewing Problem 4 from Activity 1.
- Assigning Practice Problem 3.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder . . .

- Knowing where students need to be by the end of this unit, how did Activities 1 and 2 influence that future goal?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	1
Spiral	$\mathbf{2}$	Activity 1	2
Formative 0	$\mathbf{5}$	Activity 2	Unit 4 Lesson 10

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Name: \quad Date: \quad Period:
3. A stack of n small cups has a height h, in centimeters, that is represented by the equation $h=1.5 n+6$. A stack of n large cups has a height h, in centimeters, that is represented by the equation $h=1.5 n+9$.
a Graph the equations for each stack of Make sure to label the axes and decide on an appropriate scale.
b For what number of cups will the Exp stacks have the same height Explain your thinking
The stacks will never have the
same height because the lines
are parallel, meaning they will
never intersect.
never intersect.

4. For what value of x do the expressions $\frac{2}{3} x+2$ and $\frac{4}{3} x-6$ have the same value?
$\frac{2}{3} x+2=\frac{4}{3} x-6$
$2 x+6=4 x-18$
$\begin{aligned} 3 x+6 & =4 x-18 \\ 6 & =2 x-18\end{aligned}$
$6=2 x-18$
$\begin{aligned} 24 & =2 x \\ x & =12\end{aligned}$
For $x=12$, both expressions have the same value.
5. Write two equations that represent the following scenario. Be sure to
define your variables.
A hiker descends a mountain at a rate of 3.5 miles per hour from
a height of 0.5 miles above sea level. Another hiker ascends the
mountain from the trailhead - which is located 0.1 miles above sea
(elatata
ers' height above sea level in miles.
$y=-3.5 x+0$
$y=2 x+0.1$
\qquad

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Systems of Linear Equations

Let's understand how a system of equations can be used to model a real-world context.

Focus

Goals

1. Language Goal: Comprehend that solving a system of equations means determining values of the variables that makes both equations true at the same time. (Speaking and Listening)
2. Create a graph of two lines that represents a system of linear equations in context.

Coherence

- Today

Students are formally introduced to the concept of a system of linear equations with different contexts

Previously

In Lessons 11 and 12, students explored concepts of systems of equations without being formally introduced. In Lesson 12, they studied graphs of systems of linear equations that had one solution, no solution, or infinitely many solutions.

Coming Soon

Starting in Lesson 14, students will spend the final lessons of the unit developing and applying strategies for solving systems of linear equations.

Rigor

- Students build conceptual understanding for how to graph and solve systems of linear equations.
- Students develop fluency for writing systems of equations to match different contexts.

Warm-up

| (1) 5 min (1) 20 min
 ㅇํㅇ Pairs ㅇํㅇ Pairs |
| :--- | :--- |

Activity 1

ㅇํㅇ Pairs

Activity 2

Summary

Exit Ticket

> (1) 5 min ํํํํํํํ Whole Class
$\oplus 8$ min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 2 PDF, pre-cut cards, one set per pair
- graphing technology (optional)
- rulers

Math Language

Development

New words

- solution to a system of equations.
- system of equations*

Review words

- variable
*Students may be familiar with the term system as it relates to an organizational structure, such as the public school system or a gaming system. Point out how a system of equations can be considered an organizational structure.

Building Math Identity and Community
 Connecting to Mathematical Practices

At first, students may not immediately be able to connect the graph and the equations and might want to quit before really getting started. Encourage students to set a goal of identifying what they do know about them and build on that goal by using what they know to see how they are related. Ask them how they will motivate themselves to achieve this goal.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 1, have students use graphing technology to create their graphs.

Warm-up Midair Meetup?

Students study two lines on a plane and consider what it means for lines to be intersecting, even if not in view.

1. Launch

Conduct the Think-Pair-Share routine. Provide access to rulers for the duration of this lesson.

(2) Monitor

Help students get started by asking them what the graph will look like if the falcon catches the pigeon.

Look for points of confusion:

- Thinking that because the two lines do not intersect on the axes provided, the lines will never intersect. Ask students to consider what the graph would look like if the x-axis continued further in the positive direction.

Look for productive strategies:

- Using a ruler to extend the lines of the falcon and of the pigeon.
- Extending the x-axis in the positive direction.

(3) Connect

Have students share whether they think the falcon will catch the pigeon.

Ask, "How can you determine whether two lines will have a point of intersection, even if not shown on the plane?"

Highlight that if two lines have different slopes then they must intersect at some point. Based on the context, that point may or may not be a solution. Reveal that the line of the falcon and the line of the pigeon will intersect at the point $(7.5,2.5)$ by using graphing technology or a ruler.

To power up students' ability to write a two-variable equation to represent a scenario, have students complete:

Determine which equation matches the following scenario:
Noah's car has 3,000 mile on the odometer when he gets on the highway and travels at a constant speed of 60 mph . Write an equation to represent the number of miles on his odometer after traveling for a certain number of hours.
A. $y=3000 x+60$, where x represents hours and y represents miles
B. $y=3000 x+60$, where x represents miles and y represents hours.
C. $y=60 x+3000$, where x represents hours and y represents miles.
D. $y=60 x+3000$, where x represents miles and y represents hours.

Use: Before Activity 1

Informed by: Performance on Lesson 12, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 8

Activity 1 Time to Refuel

Students write a system of equations and solve for the point of intersection to strengthen their understanding of the connection between graphs and equations.

1 Launch

Read the context of the problem with the students to help them understand the situation. Ask, "When time is zero, where is the speed jet? Where is the refueling plane?"

Give 2-3 minutes of quiet work time and ask students to pause after they have completed the first problem to discuss their equations with a partner before starting to graph the equations. Give 5-7 minutes for students to complete the remaining problems with their partners followed by a whole-class discussion.

2 Monitor

Help students get started by helping them define their variables.

Look for points of confusion:

- Thinking both lines have a positive slope. Ask students to show you with their hands what it looks like for a plane to descend. Then ask whether that means the plane is adding or subtracting vertical feet for each unit of time.
- Not being sure how to write the equations for each plane. Ask students to pick a plane to start with and have them point to the value that represents the initial height. Then have them identify the value that represents the slope.
- Not being able to correctly graph the line of each equation. Have students point to the y-intercept for each equation and plot a point. Ask them which values of x they could substitute to find values of y for ordered pairs. Offer $x=50$ and $x=100$, if needed.

Look for productive strategies:

- Using the graph to identify the point of intersection.
- Precisely defining what the point of intersection represents in context.

Activity 1 continued >

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides, or other graphing technology, to graph the lines representing each equation in Problem 2.

Accessibility: Guide Processing and Visualization

Guide students to define the variables by asking the following questions:

- "What two quantities are being compared?" Distance and time.
- "Which quantity depends on the other? This is the dependent variable." Distance depends on the time.
- "Which quantity is the independent variable?" Time.
- "Which quantity will you use x to represent it?" Time, because it is the independent variable.
- "Which quantity will you use y to represent it?" Distance, because it is the dependent variable.

Math Language Development

MLR6: Three Reads

Use this routine to help students make sense of the introductory text

- Read 1: Students should understand that a pilot needs to refuel her jet while she is flying. She descends at the same time while the refueling plane takes off from the ground.
- Read 2: Ask students to name the given quantities, such as the pilot descends at a constant rate of 100 vertical ft per minute.
- Read 3: Ask students to brainstorm strategies for representing this situation with a system of two equations.

English Learners

Draw a quick sketch of the two planes with lines indicating their descent and ascent

Activity 1 Time to Refuel (continued)

Students write a system of equations and solve for the point of intersection to strengthen their understanding of the connection between graphs and equations.

3 Connect

Display the correct set of equations alongside the correct graph.
Have students share how they wrote their equations and how they graphed the lines of their equations.

Define the term system of equations and illustrate how the two equations can be written using a brace. Each equation has many solutions, represented by all of the points on the line, but a solution to a system of equations is the point that makes both equations true and that is a point on both lines. Thus a brace is used to show that students consider the equations in the system together.
Define the term solution to a system of equations as an ordered pair that makes all equations true. Tell students that "solving a system of equations" means to find this ordered pair. The solution to a system of equations is the point where the line representing the equation of the speed jet and the line representing the equation of the refueling plane intersect because it is the only point which satisfies both equations.

Ask:

- "What is true about the relationship between the coordinates of the point $(60,24000)$ and the equation for the speed jet? And for the equation of the refueling plane?"
- "How can you confirm that $(60,24000)$ is the solution to the system of equations?"
- "Would it still be the same system of equations if you used different variables, such as t for time and h for altitude?"

Highlight how the coordinates of the point $(60,24000)$ can be substituted as an ordered pair for x and y into each equation of the system of equations. Discuss how using the graph to determine a solution provides only a good estimate for the solution.

Activity 2 Card Sort: System Sort

Students match systems of equations to their context to develop fluency for writing systems that can be used to solve problems.

1. Launch

Distribute the cards from the Activity 2 PDF to the sets of partners. Tell students that if they use letters for variables that end up not matching the systems, they can still find the matching pairs.

(2) Monitor

Help students get started by making sure students are precisely defining their variables.
Look for points of confusion:

- Not being sure what strategy to take for Card 2. Have students reference Activity 2 in Lesson 12 where Mr. Patel and Ms. Hernández run side by side and ask about their equations.
- Missing that there are different units in the Card 4 scenario. Ask students to check the units in the story.

Look for productive strategies:

- Seeing that Card 8 has one constraint, so there is no match.
(3) Connect

Have pairs of students share their matches for all the even-numbered cards (story cards), starting with Card 4. Discuss their reasoning and any difficulties they might have had finding a match.

Ask:

- "What did you notice about the units given in Card 4? What implications does that have for writing systems of equations?" When writing an equation, it is important to be mindful of units. Adding or subtracting variables need to be in the same unit as in the equation.
- "Why was it not possible to find a match for Card 8?"
- "How can you quickly match a story to an equation?" Sample response: Checking the slope.

Highlight how to think of each story as being represented by two equations. Consider using color coding to help students make connections.

Differentiated Support

Accessibility: Guide Processing and Visualization

The first pair of cards is already matched for students - Cards 7 and 2 . Demonstrate how these cards make a matching pair by using a thinkaloud, similar to the following.

- "Card 2 states that two friends hike at the same rate. This means the slopes should be the same. I need to find two cards for which the coefficients of x are the same in each equation. This narrows the choices to Cards 1 and 7."
- "Card 2 also states that they start from the same distance from the parking lot. This means the initial values, the y-intercepts, should be the same. Only Card 7 has the same y-intercepts."

Math Language Development

MLR7: Compare and Connect

During the Connect, as students share their matches, draw their attention to the equations written in $y=m x+b$ form and how the slopes and y-intercepts are represented in the words of the story problem. Then highlight the equations that are written in __x+_ $y=\ldots$ form and how their corresponding story problems refer to a total or a measure that is "combined."

English Learners

Annotate key words and phrases in the story problems, such as same rate, same distance, combined length, already contains, and total coins.

Summary

Review and synthesize how a system of equations represents two equations that occur simultaneously and can represent real-world problems.

Summary

In today's lesson.

You saw that a system of equations is a set of two equations with two variables where the variables represent the same unknown values. (In a later course, you will encounter systems with more than two equations and variables.)

A solution to a system of equations is an ordered pair that makes all equations in the system true

For example, these equations make up a system of equations:
$\{x+y=-2$
$x-y=12$
One way to determine a solution to a system of equations is to graph both lines and locate the intersection point.

- If there is one point of intersection, you can conclude that the system of equations has one solution.
If there is no point of intersection, you can conclude that the system of equations does not have a solution.
- If there are infinitely many points of intersection, you can conclude that the system has infinitely many solutions.

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit, that you started in Lesson 1. Ask them to review and reflect on any terms and phrases related to the terms system of equations and solution to a system of equations that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding by graphing a system of equations to estimate its solution.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

©. Points to Ponder ...

- How did activities in this lesson, and Lessons 11 and 12 , set students up to develop a conceptual understanding of the term system of linear equations?
- Who participated and who didn't participate in the Card Sort activity today? What trends do you see in participation?

Success looks like ...

- Language Goal: Comprehending that solving a system of equations means determining values of the variables that makes both equations true at the same time. (Speaking and Listening)
» Estimating the solution of a system of equations and explaining its meaning in the given context in Problem 3.
- Goal: Creating a graph of two lines that represents a system of linear equations in context.
» Graphing the system of equations of the given context in Problem 2.

Suggested next steps

If students cannot correctly write a system of equations from context and define their variables, consider:

- Reviewing strategies from Activity 2.
- Asking students to identify the initial value and rate of change by annotating the text.

If students are unable to correctly graph the system of equations, consider:

- Reviewing graphing strategies from Activity 1.
- Assigning Practice Problem 1.

If students do not precisely describe the solution in context, consider:

- Reviewing the solution in context from Activity 1.
- Asking, "What does the x-value represent? What does the y-value represent?"

If students do not find the correct point of

 intersection, consider:- Having them substitute the x - and y-values into the system of equations to check whether it is a solution for both equations.

Math Language Development

Language Goal: Comprehending that solving a system of equations means determining values of the variables that makes both equations true at the same time.

Reflect on students' language development toward this goal.

- Do students' responses to Problem 3 of the Exit Ticket demonstrate that they understand the point of intersection represents the solution to the system where both Lin and Diego have the same number of ounces of smoothie remaining?
- How can you help students be more precise in their description of what the point of intersection represents in this context?

Practice Problem	Analysis		
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	1
Spiral	2	Activity 1	2
Formative 0	5	Unit 4 Lesson 10 Unit 4	1

(6) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Solving Systems of Linear Equations (Part 1)

Let's solve systems of linear equations.

Focus

Goals

1. Create a graph of a system of linear equations, and identify the solution to the system of equations.
2. Language Goal: Justify that a particular system of equations has one solution, no solution, or infinitely many solutions by using the structure of the equations. (Speaking and Listening, Writing)

Coherence

- Today

Students continue to explore systems of linear equations. They connect algebraic and graphical representations of systems by drawing their own graphs and identifying the solution. Students use graphing technology to analyze the structure of equations and the number of solutions for the system of linear equations.

Previously

In Lessons 7 and 8, students explored equations with no solution and infinitely many solutions. In Lesson 13, students were formally introduced to a system of equations based on a context.

$>$ Coming Soon

In Lesson 15, students will continue to explore systems of linear equations and solve the system algebraically to determine its solution.

Rigor

- Students graph a system of linear equations and identify the solution to develop procedural fluency.

Activity 1

Activity 2

Summary

Exit Ticket

Warm-up

(c) 5 min
ํํํ Pairs

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Power-up PDF (as needed)
- Power-up PDF (answers)
- Activity 2 PDF (optional)
- Activity 2 PDF (answers)
- graphing technology
- rulers

Math Language

Development

Review words

- coefficient
- constant
- solution to a system of equations
- slope
- y-intercept
- system of equations

Amps : Featured Activity

Activity 2
 Graphing Systems of Equations

Students enter a system of equations and use the graph to identify the number of solutions for the system.

Building Math Identity and Community
 Connecting to Mathematical Practices

When handed technology, sometimes students will turn their brains off. Encourage students to have a growth mindset instead. They need to think of technology as a tool to help them understand systems of equations, even when they might not be able to solve them on their own yet. Students see the benefit of graphing technology as they use the structure of the graphs of equations to identify the number of solutions to a systems of equations.

Modifications to Pacing

You may want to consider this additional modification if you are short on time.

- In Activity 2, display matching equations, graphs, and the number of solutions for Problem 1. Have students answer Problems 2 and 3 by using the provided information.

Warm-up True or False?

Students analyze equations and graphs to connect algebraic and graphical representations of equations.

1 Launch

Conduct the True or False routine. Record class responses. While some students may solve each equation to find whether it is true or false without relating it to the graphs, encourage all students to show why their answer is correct based on the graphs of the equations.

2 Monitor

Help students get started by having them identify the point and line given in statement a.

Look for points of confusion:

- Thinking that statements b and c are true. Remind students that ordered pairs are written as (x, y), which is different from (y, x)

Look for productive strategies:

- Remembering that a solution represents a point on the line.
(3) Connect

Display the graph from the Warm-up.
Have pairs of students share their reasoning based on the lines.

Highlight that the ordered pair $(2,8)$ is a solution to both $y=-x+10$ and $y=2 x+4$ because it is the only point on both lines. This point can be determined by looking at where the two lines intersect. Remind students that $(2,8)$ is the solution to the system of equations $\left\{\begin{array}{l}y=2 x+4 \\ y=-x+10\end{array}\right.$
Ask, "Can there be another point of intersection for the two lines? Why or why not?" No. Because the slopes of the lines are different, and the lines continue straight in both directions, they will never intersect again.

Differentiated Support

Accessibility: Activate Prior Knowledge

Before launching the activity, ask students, "How do you know whether a point on a graph is a solution to an equation?" Listen for and highlight student ideas that describe that if a point lies on the line, then it is a solution to the equation of the line.

(7) Power-up

To power up students' ability to graph a line given the equation:

Provide students with a copy of the Power-up PDF.
Use: Before the Warm-up
Informed by: Performance on Lesson 13, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 7

Activity 1 Graphing a System of Linear Equations

Students graph a system of linear equations to develop procedural fluency in estimating the solution from a graphical representation.

Activity 1 Graphing a System of Equations

Graph each system of equations. Then estimate the coordinates of the ordered pair (x, y) that makes both equations true.

Students' responses should be
close the point $(2,7)$.


```
2. {}{\begin{array}{l}{y=4x+3}\\{x+y=-7}
Students' responses should be close
the point \((-2,-5)\).
```


1) Launch

Activate prior knowledge by asking students different ways they could graph a line, such as using the slope and y-intercept or substituting values to determine ordered pairs. Provide access to rulers.

(2) Monitor

Help students get started by having them graph one line at a time and then having them look for the point of intersection.

Look for points of confusion:

- Not knowing how to graph Problem 2 because the second equation is not written in the form $y=m x+b$. Remind students that they can substitute values for x and y in the equation $x+y=-7$ to determine ordered pairs on the line and then graph the points.

Look for productive strategies:

- Drawing slope triangles.
- Using the x and y-intercepts to graph $x+y=-7$.

3 Connect

Display student work showing the completed graphs.

Have students share which strategies they used to graph each system of equations.

Ask, "Can the ordered pair $(7,2)$ be a solution to the system of equations for Problem 1? Why or why not?" Sample response: No, an x-value of 7 will not produce an output of 2 for either equation. In addition, the lines do not intersect at $(7,2)$.
Highlight that, for systems of linear equations that intersect, there is only one ordered pair that is a solution for both equations.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge,

Optimize Access to Technology

If students need more processing time, have them focus on completing Problem 1. Have students use the Amps slides, or provide access to other graphing technology, to help them estimate solutions to the systems of equations from a graphical representation.

Extension: Math Enrichment

Have students write a system of equations in which the ordered pair $(5,-3)$ is the solution to the system.

Sample response:

$$
\begin{aligned}
& y=5 x-13 \\
& 2 y-x=-11
\end{aligned}
$$

Activity 2 How Many Solutions?

Students graph systems of linear equations to connect the structure of equations and the number of solutions for the system of equations.

1 Launch

Have students use graphing technology to graph each system of equations to determine the number of solutions. Have students complete Problems 1 and 2 in pairs, and then discuss the problems as a whole class before moving to Problem 3.

Depending on time and resources, you may wish to use the Activity 2 PDF and have students match each system of equations with its graph before determining the number of solutions. Have students record their results in the table in the Student Edition.

(2) Monitor

Help students get started by activating their prior knowledge and asking what the graph looks like when a system has one solution, no solutions, and infinitely many solutions.

Look for points of confusion:

- Not recognizing any patterns in Problem 2. Have students rewrite the equations with fewer terms, then compare the coefficients and constants for each equation. Consider having students reference the Summary from Lesson 8.
- Thinking the coefficients in Problem 3d are the same. After students use the Distributive Property in the second equation, point out that x and $-x$ do not have the same coefficient.

Look for productive strategies:

- Rewriting the equations with fewer terms and noticing that they could compare the coefficient and constants, similar to Lesson 8 , to determine the number of solutions.

Activity 2 continued

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can enter a system of equations and use the graph to identify the number of solutions for the system.

Accessibility: Vary Demands to Optimize Challenge

For Problems 1 and 3, provide students with equivalent expressions with fewer terms. This will help facilitate the connection between the structure of the equations and the number of solutions to a system of equations.

Math Language Development

MLR8: Discussion Support

During the Connect, as students share their responses to the Ask question, add the following to the class display to help students make the connection between the mathematical terminology used and the structure of the equations.
When both equations are written in the form $y=m x+b$

One solution	No solution	Infinitely many solutions
Different slopes	Same slopes	Same slopes
Same or different y-intercepts	Different y-intercepts	Same y-intercepts

Lesson 14 Solving Systems of Linear Equations (Part 1)

\ldots Pairs I © 20 min

Activity 2 How Many Solutions? (continued)

Students graph systems of linear equations to connect the structure of equations and the number of solutions for the system of equations.

3 Connect
Have pairs of students share their responses for Problem 2. Record responses for all to see.

Ask, "How do you know the number of solutions to a system of equations by looking at the slopes and y-intercepts of the two lines?" If the slopes and y-intercepts are the same, there will be infinitely many solutions. If the slopes are the same, but the y-intercepts are different, there will be no solution. If the slopes are different, there will be one solution.

Highlight

- A system of linear equations with one solution has different coefficients. The constants may or may not be the same.
- A system of linear equations with no solution has the same coefficients and different constants.
- A system of linear equations with infinitely many solutions has the same coefficients and the same constants.

Summary

Review and synthesize how coefficients and slopes in a system of linear equations can help students determine the solution to a system of equations.

Synthesize

Display the Summary from the Student Edition.
Have students share how they can determine the number of solutions to a system of equations using the equations and the graph.

Ask, "How is determining the number of solutions to a system of equations similar to and different from determining the number of solutions to a single equation?" Sample response: They are similar because you can look at the coefficient and constants in a system of equations and in a single equation. They are different because a system of equations has more than one equation.

Highlight that students could rewrite the equations in a system with fewer terms and then compare the coefficients and constant terms to determine the number of solutions that the system has.

(i) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What does the number of solutions (none, one, or infinite) to a system of linear equations represent?"

Exit Ticket

Students demonstrate their understanding of identifying the number of solutions graphically and algebraically.

Name: $-\square$
Exit Ticket

Consider the parallel lines shown.
. Select two equations that could represent the system.
A. $y=\frac{1}{4} x-10$
B. $y=5(x-2)$
C. $y=\frac{1}{4}+10 x$
D. $y=\frac{1}{4} x+1$
E. $y=x-10$

2. How many solutions does this system of equations have? Explain your thinking.

None. Sample response: The equations of the lines have the same coefficients and represent parallel lines. Because the lines are paralle and never intersect, there is no solution to the system of equations.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson

Points to Ponder ..

- In what ways have your students improved in using the structure of equations to determine the number of solutions?
- During the discussion about determining the number of solutions by using the structure of equations, how did you encourage each student to share their understanding?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
	$\mathbf{1}$	Activity 1	1
On-lesson	2	Activity 1	2
Spiral	$\mathbf{3}$	Activity 2	Unit 4 Lesson 6
Formative 0	5	Unit 4 Lesson 15	1

(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Solving Systems of Linear Equations (Part 2)

Let's solve systems of linear equations.

Focus

Rigor

Goals

- Students solve systems of linear equations to build fluency.

Coherence

- Today

Students solve a system of linear equations, where the equations are of the form $y=m x+b$. Students associate solving a system of linear equations with solving an equation when they set two y-values equal to each other to solve for x. They build fluency in solving systems of equations, and critique the reasoning of others as they complete Partner Problems.

< Previously

In Lesson 10, students determined when two amounts, given a context, would be the same and started to develop a process for solving a system of linear equations. In Lesson 14, students solved systems of equations by graphing.

$>$ Coming Soon

In Lesson 16, students will apply their understanding of systems of equations to interpret and solve linear equations in a context.

Activity 1

Activity 2

Summary

Exit Ticket

$\oplus 5 \mathrm{~min}$
$\bigcirc \bigcirc$ Pairs
(๑) 12 min
$\bigcirc \circ$ 응 PairsD 18 min
$\bigcirc \circ\left({ }^{\circ}\right.$ Pairs

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 1 PDF (for display)
- Anchor Chart PDF, Solving Linear Equations

Math Language
 Development

Review words

- slope
- solution to a system of equations
- system of equations

Amps \vdots Featured Activity

Activity 1

See Student Thinking
Students are asked to explain their thinking when describing how to solve a system of equations.These explanations are digitally available to you, in real time.

Building Math Identity and Community

Connecting to Mathematical Practices
As partners work to agree on a solution, they might get excited about their own work and forget to listen well to their partner's responses. Remind students that, by listening well, each person can determine whether they need to seek or offer help. Review signals that indicate whether a person is actively listening and encourage students to practice them.

Modifications to Pacing

You may want to consider this additional modification if you are short on time.

- In Activity 2, consider having students complete the first row and assigning the remaining problems as additional practice.

Warm-up Clean up on Quadrant Four

Students study the graph of a system of equations as a reminder that they do not need to graph lines to solve the system and to generate ideas for solving a system algebraically.

(1) Launch

Conduct the Think-Pair-Share routine.

(2) Monitor

Help students get started by asking them how they can use the graph or equations to determine another method Priya could use.

Look for productive strategies:

- Using the visible points on the lines and the slope to estimate the ordered pair.
- Substituting values to guess the ordered pair.

3 Connect

Display the equation and graph from the Warm-up.

Have pairs of students share their response. Select pairs of students with varying responses. Record responses for all to see.

Ask:

- "How do you know there is a solution to the system of linear equations?" Sample response: The lines are not parallel, so they will intersect at one point. The coefficients are different, so I know there is one solution
- "Which method could you use to solve the system if you were given only the equations, and not the graph?" Sample response: Write one equation by setting the y-values equal to each other.
Highlight that, to determine the point of intersection, students need to determine the value of x so that both equations have the same y-value. One way to do this is to write one equation by setting the y-values equal to each other.

To power up students' ability to determine the corresponding y-value after substituting a given x-value into a two-variable equation, have students complete:
Which of the following demonstrate the correct work when determining the value of y when $x=2$ in the equation $y=-3 x+1$.
A. $y=-3(2)+1$
$y=-3(3)$
$y=-9$
B. $2=-3 x+1$
$2=-3 x$
$-\frac{1}{3}=x$
C. $y=-3(2)+1$
$y=-6+1$
$y=-5$

```
Use: Before Activity 1
Informed by: Performance on Lesson 14, Practice Problem 5
```


Activity 1 What's the Solution?

Students develop a method to solve a system of linear equations algebraically.

1 Launch

Have students complete Problem 1 individually. Then have them share responses with a partner before completing Problems 2 and 3 .

2 Monitor

Help students get started by having them review Elena's work step by step.

Look for points of confusion:

- Not understanding Elena's work. Use the graph from the Warm-up to point out that the point of intersection is where the y-values are equal. Then circle $-3 x+10$ and $-2 x+6$ and tell students that these represent the y-values algebraically.
- Having trouble describing a method to calculate y. Ask students to refer to the suggestions made in the Warm-up. For students who need more support, give them explicit instructions on how to substitute $x=4$ in one of the equations in the system.

3 Connect

Have students share their responses for Problem 2.

Highlight that students can substitute the x-value into either equation from the original system to determine the y-value, but should check their answer using both equations to determine whether their solution is correct. Also highlight that when students solve a system with two linear equations, the final response should have two variables written as an ordered pair (x, y).

Display the Activity 1 PDF. Ask, "Why are the y-values the same when the x-value is substituted into either equation?" Sample response: Because there is one point of intersection, no matter which line we look at, the coordinates (x, y) are the same.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Consider allowing students to verbally describe Elena's method for Problem 1, instead of writing a full explanation at first. Scribe their thinking onto a display, creating a complete sentence for them to see.

Extension: Math Enrichment

Ask students if they could still use Elena's method to solve the system of equations if both equations were not written in the form $y=m x+b$, such as the following system.
$\{y=-3 x+102 x+y=6$
Yes; I could solve the second equation for y and then set the two expressions equal to each other.

Math Language Development

MLR8: Discussion Supports

During the Connect, as students share their responses to Problem 2, display these sentence frames to help them organize their thinking:

- "First, I \qquad _ because...'
- "I noticed \qquad sol.
- "I chose to use the first/second equation because"

Ask, "Does it matter which equation you use to substitute the x-value to check the solution? Consider asking these follow-up questions:

- "Is the solution $(4,-2)$ a solution to one or both equations? How do you know?"
- "If you determined a solution and it only worked in one of the equations, would this be a solution to the system? Why or why not?"

Activity 2 Partner Problems

Students solve systems of linear equations to build procedural fluency.

Activity 2 Partner Problems

With your partner, decide who will solve the systems of equations in Column A and who will solve the systems of equations in Column B. After each row, share your responses with your partner. Although the problems in each row are different, your responses should be the same. If they are not the same, work together to correct any errors or resolve any disagreements

	Column A	Column B
$>$	1. $\left.\begin{array}{l} \left\{\begin{array}{l} y=-3 x+9 \\ y=2 x+4 \end{array}\right. \\ -3 x+9=2 x+4 \\ -3 x-2 x=4-9 \\ -5 x=-5 \\ x=1 \end{array}\right\} \begin{aligned} & y=2(1)+4 \\ & y=6 \end{aligned}$ Solution: (1, 6)	$\begin{aligned} & \left\{\begin{array}{l} y=-4 x+10 \\ y=8 x-2 \end{array}\right. \\ & \begin{array}{l} -4 x+10=8 x-2 \\ -4 x-8 x=-2-10 \\ -12 x=-12 \\ x=1 \end{array} \\ & \begin{array}{c} y=-4(1)+10 \\ y=6 \end{array} \end{aligned}$ Solution: (1,6)
\rangle	2. $\left.\begin{array}{c} \left\{\begin{array}{l} y=5 x+7 \\ y=6 x+4 \end{array}\right. \\ 5 x+7=6 x+4 \\ 5 x-6 x=4-7 \\ -x=-3 \\ x=3 \end{array}\right\} \begin{aligned} y=5(3)+7 \end{aligned}$ Solution: (3,22)	$\begin{gathered} \left\{\begin{array}{l} y=-2 x+28 \\ y=-x+25 \end{array}\right. \\ \begin{array}{c} -2 x+28=-x+25 \\ -2 x+x=25-28 \\ -x=-3 \\ x=3 \end{array} \\ \begin{array}{c} y=-2(3)+28 \\ y=22 \end{array} \end{gathered}$ Solution: (3, 22)

1 Launch

Conduct the Partner Problems routine. Remind students that solving a system of equations means that they should have two variables written as an ordered pair for their final response. Consider providing students with additional paper to thoroughly show their thinking.

(2) Monitor

Help students get started by asking them to inspect each system of equations to determine whether each system will have a solution.

Look for points of confusion:

- Writing one value for their solution. Tell students that they are looking for the same x - and y-values that will make both equations true.
- Having trouble solving Problem 3. Ask students whether they can identify an x - or y-value from either equation. Students should recognize the value of x. Then have them substitute $x=4$ in the other equation to solve for y.

Look for productive strategies:

- For the first two rows, substituting their x-value in both equations to check whether the y-values will produce the same value.

Activity 2 continued >

Math Language Development

MLRT: Compare and Connect

During the Connect, as students share how Problem 3 is different from Problems 1 and 2, listen for students who recognize that one of the equations gives the x-value, so the x-coordinate of the solution is 4 . Draw students' attention to the connections between the structure of the equations and the strategies that are most efficient to use. For example, for Problem 4, ask:

- "Why do you not need to solve either equation for x or y to determine that there is no solution to these systems?"
- "How can visual inspection be an efficient method to use when solving a system of equations?"

Activity 2 Partner Problems (continued)

Students solve systems of linear equations to build procedural fluency.
\qquad Date:
eriod:
Activity 2 Partner Problems (continued)

4. $\left\{\begin{array}{l|l}2 x+y=7 \\ 2 x+y=9\end{array} \quad\left\{\begin{array}{l}3 x-2 y=11 \\ 3 x-2 y=7\end{array}\right]\right.$

Summary

Review and synthesize how to solve a system of linear equations algebraically.

Summary

In today's lesson...

You discovered that for an ordered pair to be a solution to a system of equations, the x - and y-values of the ordered pair must make both of the equations true.

For example, consider the following system of equations:
$\left\{\begin{array}{l}y=4 \\ y\end{array}\right.$
$\left\{\begin{array}{l}y=4-5 \\ y=-2 x+7\end{array}\right.$
To determine the solution to the system, you can write a single equation that sets
the two expressions - for which y is equal to - equal to each other
$4 x-5=-2 x+7$
$6 x-5=7$
$6 x=12$
$x=2$
Then you can use the solution for x and either of the original equations in the system to determine the value of y :
If $x=2$, then $y=4(2)-5, y=3$.
The ordered pair $(2,3)$ is the solution to the system of equations.

Synthesize

Have students share how to solve a system of equations algebraically in their own words.

Highlight that the solution to a system of equations is the ordered pair that makes all the equations true.

Ask, "After you solve a system of equations, how could you check whether the solution is correct?" Substitute the x - and y-values into all the equations in the system and check whether all the equations are true.

(1) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How is solving a system of linear equations similar to solving an equation with variables on both sides? How is it different?"

Exit Ticket

Students demonstrate their understanding by solving a system of linear equations algebraically.

Success looks like ...

- Language Goal: Correlating the solution to an equation with variables on both sides to the solution to a system of two linear equations. (Speaking and Listening)
- Language Goal: Generalizing a process for solving systems of equations and calculating the values that are a solution to a system of linear equations. (Speaking and Listening, Writing)
» Explaining the process of solving the system of equations.

- Suggested next steps

If students do not solve for x correctly, consider:

- Reviewing Lesson 10 and having students refer to the Anchor Chart PDF, Solving Linear Equations.

If students do not correctly solve for y,

 consider:- Highlighting x in either equation in the system and having them rewrite the equation by substituting -5 for x.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
0_{0} Points to Ponder ...

- During the discussion in the Warm-up, how did you encourage each student to listen to one another's strategies?
- What challenges did students encounter as they worked on Activity 1 ? How did they work through them?

Practice Problem Analysis		
Type	Problem	Refier to
On-lesson	$\mathbf{1}$	Activity 2
Spiral	$\mathbf{2}$	Activity 2
Formative 0	$\mathbf{3}$	Activity 1 Unit 3 Lesson 12 Unit 3 Lesson 11 Unit 4 Lesson 16

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Writing Systems of Linear Equations

Let's write systems of equations to model real-world contexts.

Focus

Goals

1. Construct a system of linear equations that models a real-world context.
2. Language Goal: Determine the solution to a system of linear equations that represents a context and interpret its solution in context. (Speaking and Listening)

Coherence

- Today

Students write systems of linear equations representing different contexts and interpret the solution to those systems. They use the Info Gap routine to request information from their partner and use appropriate tools to determine the solution to a system of linear equations.

Previously

In Lessons 14 and 15, students developed procedural fluency in solving systems of linear equations graphically and algebraically.

> Coming Soon

In Lesson 17, students will apply what they have learned to solve problems about gender earning differences.

Rigor

- Students apply their understanding of systems of linear equations to interpret solutions in context.

Activity 1
Activity 2

Summary
(5 min
ㅇ. Independent
(1) 10 min

ㅇํㅇ Pairs
> (」) 5 min ํํํํํํํ Whole Class
() 5 min

○ Independent

Amps powered by desmos \quad Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 2 PDF, pre-cut cards, one set per pair
- Activity 2 PDF (answers)
- Info Gap Routine PDF
- Anchor Chart PDF, Solving Linear Equations (optional)
- graphing technology or graph paper

Amps : Featured Activity

Math Language Development

Review words

- systems of equations
- solution to a system of equations

Activity 2

Digital Collaboration
Students work together to communicate and to determine a solution to a problem.

Building Math Identity and Community
 Connecting to Mathematical Practices

Students may use paper and pencil, or a graphing calculator, when they are working with systems of equations. As students solve each problem algebraically, they might identify limitations to their methods. As they transition to solve by graphing, have students reflect on the effectiveness of graphing technology and digital tools to solve problems.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 1, omit Problems 2 and 3.

Warm-up Algebra Talk

Students write an equation that is part of a system to remind them that they could look at the structure of equations to determine the number of solutions for a system of equations.

1 Launch

Conduct the Algebra Talk routine.

2 Monitor

Help students get started by activating their prior knowledge by asking, "How can you find the number of solutions for a system based on the coefficients and constants?"

Look for productive strategies:

- Using the coefficients and constants to write their equations.
- Solving the system of equations to determine the number of solutions.
- Writing an equation in a form other than $y=m x+b$.
- Making a general statement for each part. For example, for part b, students may write " $y=\frac{2}{3} x$ plus any number."

3 Connect

Have students share their equations. Record equations for all to see. Have students share their strategies for writing each equation. Start with students who solved the systems of equations to determine the number of solutions, and then with students who used the coefficient and constants.

Ask students to describe the possible different responses for each problem. For example, the equation that is part of a system with exactly one solution could have many different responses, while the equation that is part of a system with infinitely many solutions would not have many different responses because the coefficient and constants would remain the same.

Highlight that, before students solve a system of equations, they could check the number of solutions the system should have.

Math Language Development

MLR8: Discussion Supports

During the Connect, as students share their strategies for determining the second equation for each part, listen for and amplify the mathematical vocabulary they use, such as coefficient, slope, constant, y-intercept, etc. Ask:

- "What values must be the same for there to be infinitely many solutions? No solution?"
- "What values must be different for there to be no solution?"

English Learners

Annotate the values that are the same or different for parts b and c .

(7)
 Power-up

To power up students' ability to write an equation from a

 context, have students complete:A video game rental company charges an annual fee of $\$ 38$ plus an additional $\$ 12$ per month. Match each part of the equation $y=12 x+38$ with what it represents in context.
a. y
a The total cost.
b. 12
c The number of months.
c. x
b The cost per month.
d. 38
d The annual fee.

Use: Before Activity 1
Informed by: Performance on Lesson 15, Practice Problem 6 and Pre-Unit Readiness Assessment, Problem 8

Activity 1 Situations and Systems

Students write systems of linear equations and interpret the solution in context to determine that different contexts can lead to systems in different forms.

1 Launch

Conduct the Think-Pair-Share routine.

2 Monitor

Help students get started by having them define the variables they use for the problem.

Look for points of confusion:

- Having trouble writing a system of equations. Underline key words or phrases. For students who might need more help, consider using the suggested activity provided under Differentiated Support.
- Thinking that the equations in Problems 2 and 3 must be written in $y=m x+b$ form. Remind them that linear equations could be written in different forms.
- Not knowing how to interpret the solution. Remind students to define their variables and that a solution to the system makes both equations true.

3 Connect

Have students share their systems of equations and interpretation of the solution for each problem. As students share, record their systems of equations for all to see. When necessary, ask students to explain the meaning of the variables they used.

Highlight that different contexts could lead to systems written in different forms. Also highlight that, although one student may write a system of equations that is different from another student, as long as the equations are equivalent the solution will be the same.

Ask, "What information was helpful in writing each system of equations?"

Differentiated Support

Accessibility: Guide Processing and Visualization, Vary Demands to Optimize Challenge

If students need more processing time, have them focus on completing Problems 1 and 2. For each problem, provide an incomplete system of equations and have students complete it. For example:
$\{c=\square h+\square c=\square h+\square$

Accessibility: Clarify Vocabulary and Symbols

Highlight the phrase base fee in Problem 1 and explain that this represents the amount of money charged regardless of the number of hours a kayak is rented.

Unit 4 Linear Equations and Systems of Linear Equations

Math Language Development

MLR3: Critique, Correct, Clarify

During the Connect, display an incorrect or ambiguous statement, such as "This solution represents the same amount of money for both rental places" for Problem 1.

- Critique: "Do you agree with this statement? Why or why not? Why might it be challenging to interpret what this statement really means?"
- Correct: "Write a revised statement that is clearer."
- Clarify: "How did you revise the statement? Is your revised statement completely clear or should you add more detail?"

English Learners

Allow students to share their revised statements with a partner and rehearse what they will say before sharing with the whole class.

Activity 2 Info Gap: Walking, Jogging, Running

Students use mathematical language to communicate with each other in order to determine a solution about a problem in context.

1. Launch

Give one partner Problem Card 1 and the other partner Data Card 1 from the Activity 2 PDF. Display the Info Gap Routine PDF and model the Info Gap routine. Tell students that they may solve each problem by creating a system of equations and solving it algebraically or by graphing. Once the first set of cards have been successfully solved, provide the second set of cards, and have students switch roles. Provide access to graphing technology or graph paper.

(2) Monitor

Help students get started by encouraging them to refine their language and ask more precise questions until they get the information they need.

Look for points of confusion:

- Having trouble asking for appropriate information from their partner. Activate background knowledge by asking students what they know about walking, jogging, and running.
- For Problem Card 1, not knowing which number from the ordered pair is the answer. Have students define each variable and ask them which variable answers the question in the problem card.

3 Connect

Ask, "What information was most helpful in determining the solution for each problem?" Sample response: For Problem 1: Clare's running rate and her head start. For Problem 2: Defining x and y and Tyler's walking and jogging rates.

Have pairs of students share their strategies for solving each problem. Select students who used different strategies to show that systems of equations can be solved in different ways.

Highlight that there are different strategies to solving a problem that could be represented by a system of equations, such as writing and solving an equation or by using graphing technology.

Differentiated Support

Accessibility: Guide Processing and Visualization

Display Problem Card 1. Use a think-aloud to model Steps 1 and 2 as if you were the recipient of that card. Consider using the following questions during the think-aloud.

- "I am given the equation that represents one person's progress, but I don't know who that is. I will ask which person's rate is represented by this equation."
- "I know one person has a head start, but I don't know who has the head start. I will ask which person has the head start."
- "I don't know the rate for the other person. I will ask at what rate the other person is running."
- "I don't know how much of a head start one person has. I will ask for this information."

Math Language Development

MLR4: Information Gap

Display prompts for students who benefit from a starting point, such as:

- "Can you tell me ... (specific piece of information)?"
- "Why do you need to know . . . (that piece of information)?"

English Learners

Consider providing sample questions students could ask, such as the following, for Problem Card 1:

- "Which person has a head start?"
- "At what speed does Clare run?"

Summary

Review and synthesize writing systems of equations from a context.

Summary

In today's lesson...

You discovered that writing and solving systems of equations can help solve everyday problems. When writing a system of equations to model a given eal-world problem, it is important to define your variables. After you have solved the system, you will know what the solution represents if you have clearly defined your variables.

Reflect:

Synthesize

Have students share their strategies for writing and solving a system of equations.

Highlight that systems of equations could be used to solve real-world problems.

Ask students to think of a situation where a system of equations could be used to solve a problem in their life. Sample response: I can use systems of equations to calculate when I will get paid the same amount as my friend.

(1) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How can systems of equations be used to represent situations and solve problems?"

Exit Ticket

Students demonstrate their understanding by writing and solving a system of linear equations.

Success looks like ...

- Goal: Constructing a system of linear equations that models a real-world context.
» Writing a system of equations to represent the amount of money saved based on the number of weeks.
- Language Goal: Determining the solution to a system of linear equations that represents a context and interpret its solution in context.

(Speaking and Listening)

» Solving the system of equations to determine how many weeks it will take Shawn to save the same amount as Han and the amount Shawn will save.

Suggested next steps

If students do not write the correct systems of equations, consider:

- Reviewing Activity 1.
- Asking students to write one equation that represents Han's savings and another equation that represents Shawn's savings.

If students do not solve the system correctly,

 consider:- Reviewing Lessons 10 and 15.
- Reviewing the Anchor Chart PDF, Solving Linear Equations.

Professional Learning

Math Language Development

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

C. Points to Ponder ...

- What resources did students use as they worked on Activity 2? Which resources were especially helpful?
- How did the Info Gap routine support students in solving systems of equations in context?

Language Goal: Determining the solution to a system of linear equations that represents a context and interpret its solution in context

Reflect on students' language development toward this goal.

- How did using the Critique, Correct, Clarify routine in Activity 1 help students interpret the solution to a system of linear equations within context? Would you change anything the next time you use this routine?
- Do students' responses to the Exit Ticket problem include a correct interpretation of the solution to the system, including which variable represents which quantity?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	2
	$\mathbf{2}$	Activity 1	2
Spiral	$\mathbf{3}$	Activity 1	3
Formative 0	$\mathbf{6}$	Unit 4 Lesson 14	1

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Pay Gaps

Let's learn about earning differences by gender.

Focus

Goals

1. Language Goal: Identify the gender pay gap by calculating and graphing the disparity between men and women's earnings. (Speaking and Listening)

Coherence

- Today

Students look at data showing the median earnings for men and for women in different occupations. Students will discover that there is a pay gap - the gender pay gap - where men outearn women. Students will examine the impact of this pay gap over the course of a lifetime of earnings, if nothing were to change. Note: The purpose of this lesson is for students to see the data and to make observations about the data. Students may also have questions about why the gap exists and what can or should be done about it.

< Previously

In Lesson 16, students wrote systems of linear equations representing different contexts and interpreted the solution for those systems.

Coming Soon

This is the final lesson of Unit 4. In Unit 5, students will study functions. In high school, students will continue working with systems of linear equations in deeper and more complex ways.

Rigor

- Students apply concepts of systems of linear equations to examine the size and scope of the gender pay gap.

Activity 1

Activity 2
Exit Ticket

\oplus ¢ 5 min	() 15 min	(¢) 15 min	(1) 5 min	\oplus ¢ 5 min
$\bigcirc \bigcirc \bigcirc{ }^{\circ}$ Independent	$\stackrel{\bigcirc(\bigcirc)}{ }$ ¢ Small Groups	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	กำำกำ Whole Class	$\bigcirc \bigcirc \bigcirc{ }^{\circ}$ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 1 PDF, one page per group
- Activity 1 PDF (answers)
- calculators

Math Language

Development

Review word

- system of equations

Building Math Identity and Community

Connecting to Mathematical Practices
Students will study and explore the gender pay gap in this lesson and use mathematics to model the data. They may feel overwhelmed in looking at all of the data and thinking of how to organize, represent, and display the data using the mathematics they know. Encourage them to pause when they feel overwhelmed, and try to tackle one thing at a time.

Amps : Featured Activity

Activity 1
 Take a Poll

See what your students are thinking in real time by digitally polling the class to see student estimates for the size of the gender gap.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 1, have students only complete the first five rows of the table.
- Activity 2 may be omitted.

Warm-up Notice and Wonder

Students study a chart that shows majors associated with the highest earnings have low percentages of female students to make observations about the gender pay gap.

1 Launch

Activate students' background knowledge about the rates at which women and men have earned a college degree from Lesson 11. Conduct the Notice and Wonder routine. Ask students how they might make the survey more inclusive or otherwise improve it in future years.

2 Monitor

Help students get started by asking them to describe the labels they see in the chart.

Look for points of confusion:

- Drawing inaccurate conclusions based on the chart such as certain majors on the chart are better suited for men or women. Remind students that the goal is to focus on the data.

3 Connect

Display the chart from the Student Edition.
Have students share what they notice and wonder about the chart.

Ask:

- "Can you conclude that women earn less than men based on this chart?" No. "So, let's dive deeper into earnings to see what different occupations pay to men and women."
- "What other data would you want to see to better understand male and female earning outcomes?"
Highlight that there may be many reasons to explain why students see this trend, such as sexism, societal pressure, traditional family patterns, among others. However, explain that these are complicated reasons and deserve a greater study at a later time. Emphasize that, today, students will be focused on looking at what the data says about the earnings for male and female workers in the United States.

(7) Power-up

To power up students' ability to determine percentages, have students complete:

Recall that percent means out of 100 .
Bard finished 318 minutes of the required 600 minutes of reading. What percent of reading minutes did Bard complete?
53%; $\frac{318}{600} \cdot 100=53$
Use: Before the Warm-up
Informed by: Performance on Lesson 16, Practice Problem 6

Activity 1 Mind the Gap

Students analyze salaries for ten different occupations to uncover that there is a gap in earnings called the gender pay gap.

Amps Featured Activity Take a Poll

Activity 1 Mind the Gap

The table shows the median annual earnings for veterinarians in the year 2018, according to data from the U.S. Census Bureau

Men's median earnings (\$)	Women's median earnings (\$)	Women's median earnings as a percentage of men's
111,080	93,065	83.8%

1. Complete the table to calculate the women's median annual earnings as a percentage of men's for veterinarians. Round to the nearest tenth of a percent. Explain your thinking Sample response: To calculate the percentage, I divided the women's median earnings by the men's median earnings, and then multiplied by 100 .
$\frac{93,065}{111,080} \approx 0.83$
$0.838 \cdot 100=83.8$ or about 83.8%
2. Your group will be given a sheet with data showing the median earnings for men and for women for ten different occupations. Calculate the women's median annual earnings as a percentage of the men's median annual earnings, for each occupation Round to the nearest tenth of a percent. Record your responses in the table
3. What conclusions can you draw from the data? What questions do you have? Sample responses:

- Women earn about $\mathbf{8 0 \%}$, on average, what men do, for the same occupation.
- Occupations in math and science tend to pay higher.
- There is a wide range of salaries.
- There were some professions where women earned more than men, but these instances were rare, and when they did occur, the difference was not as much as when the men earned a greater amount.
- Some occupations had much greater gender pay gaps than others.

1 Launch

Have students complete Problem 1 in pairs. Discuss the solution with the class. Then, assign students to groups of 4 , and distribute one page of the Activity 1 PDF to each group. Provide access to calculators.

2 Monitor

Help students get started by asking them to recall the steps for determining the percent women earned compared to the percent men earned in Problem 1.

Look for points of confusion:

- Drawing inaccurate or premature conclusions based on the data. Remind students that they cannot draw many conclusions, at this point, with limited data and limited context. Have students focus on what they notice about the percentages they are finding and what they notice about the types of occupations with the greatest and least earnings.

3 Connect

Have groups of students share their completed table with another group. Have students look for patterns or trends they see in the data.
Display student observations for all to see. Ask students to guess the percentage representing the gender earnings gap for all occupations, and display these estimates on the board.
Highlight that this gap is called the gender pay gap. Reveal that, according to the U.S. Census Bureau 2018 data, the gap for all occupations averaged to be about 81.1%.

Ask, "Looking back to the Warm-up, can you conclude that women make less than men because they are choosing certain majors in college that lead to lower paying jobs?" No, that is only part of the story. You can see a trend across occupations that women are earning less than men.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Have students complete the table on the Activity 1 PDF for the first five occupations. Then provide the remaining percentages and have students record them in their tables.

Accessibility: Guide Processing and Visualization

Consider demonstrating and displaying how to determine the women's median earnings as a percentage of the men's median earnings. For example, display the following and keep it displayed throughout the activity:
$\frac{\text { women's earnings }}{\text { men's earnings }} \boldsymbol{\bullet} 100$

Math Language Development

MLR1: Stronger and Clearer Each Time

Use this routine to provide students an opportunity to revise and refine the conclusions they stated in Problem 3. Encourage students to focus on (1) making a claim and (2) adding a reason to support their claim. After students have had time to write their conclusions, ask them to meet with 1-2 partners to share their responses and receive feedback. After receiving feedback, give students time to improve their responses.

Activity 2 Gender Pay Gap

Students graph a system of linear equations to explore the impact of the gender pay gap over the course of a lifetime of earnings.

1 Launch

Give students one minute to independently complete Problem 1 before discussing the problem with the class. Then have students work in pairs on Problems 2 and 3.

2 Monitor

Help students get started by helping them label their axes.

Look for points of confusion:

- Having difficulty starting a graph. Ask students what the earnings would be in Year 0 and help them see that both graphs will start at the origin.
- Not being able to determine the slope of either graph. Make sure students are using $\$ 50,000$. Ask to identify the earnings after 1,2 , and 3 years. Suggest students use a table to determine 2 more values for men, and then plot their points before doing the same for women.
- Being unsure how to solve Problem 3. Ask students to identify the earnings for men and women after 40 years.
(3) Connect

Display student work showing a correct graph.
Ask, "Using the graph, what is the gap in earnings after 10 years? 20 years? 30 years?" Demonstrate how vertical distance between the two lines for any year x represents the difference in the earnings y.

Highlight that the gender pay gap is narrower, but still present, when students compare women and men with the same qualifications and experience. This is called the controlled gender pay gap. However, the gap is greater when students consider the occupation as a whole without controls. Ask students why both measures are important to consider.

Differentiated Support

Accessibility: Activate Prior Knowledge, Clarify Vocabulary and Symbols

Have students complete the table on the Activity 1 PDF for the first five occupations. Then provide the remaining percentages and have students record them in their tables.

Extension: Math Enrichment

To confirm their answer to Problem 3, have students write and solve a system of equations in which the ordered pair $(40,2000000)$ is the solution to the system.
Sample response:
$\left\{\begin{array}{l}y=50000 x \\ y\end{array}\right.$
$\left\{\begin{array}{l}y=50000 x \\ y=41000 x+360000\end{array}\right.$

Math Language Development

MLR5: Co-craft Questions

After students have independently described the graphic in Problem 1, pause and give them an opportunity to work with a partner to process the information and write 1-2 questions they may have about the graphic.

English Learners

Provide students examples of questions they can ask to make sense of the graphic, such as, "Do qualifications and experience account for this difference?"

Unit Summary

Review and synthesize how the concepts of this unit, particularly systems of linear equations, can be used to study the gender pay gap.

Narrative Connections

Read the narrative aloud as a class or have students read it individually.

(8) Synthesize

Display the Summary from the Student Edition. Have students read the Summary or have a student volunteer read it aloud.

Have students share their reflections from their work in this unit.

Ask:

- "What are your biggest takeaways from this unit?"
- "What are your biggest questions about this unit?"

Highlight that students will continue to study linear relationships and systems of equations in high school.

(I) Reflect

After synthesizing the concepts of this unit, allow students a few moments for reflection around the concepts of the unit. To help them engage in meaningful reflection, consider asking:

- "Did anything surprise you while reading the narratives of this unit?"
- "Is there anything you would like to learn more about? What are some steps you can take to learn more?"

Fostering Diverse Thinking

Equal Pay Day

Have students research National Equal Pay Day in the U.S. Ask students what this day represents mathematically, and how it can be calculated. Based on what they saw in the lesson, do they think another day might be more representative?

Highlight also that this day is for women in general and is calculated using averages. Note that disparities are different for Black, Native American, Asian American, and Hispanic women.

Ask these questions to facilitate class discussion:

- "For the current year, which day has been designated as Equal Pay Day? How do you think this day was determined mathematically, and how else could it be determined?'
- "How does this day compare to prior years? What does this tell you?"
- "What barriers do you think women face when it comes to earning equal pay?"
- "What would it mean for growing the economy if Equal Pay Day occurred on January 1?"

Exit Ticket

Students demonstrate their understanding by reflecting on their work in this unit.

1. Three things I learned:
Answers may vary.
2. Two things I found interesting or surprising Answers may vary.
3. One question I still have
Answers may vary.
Self-Assess
Self-Assess
$? \underbrace{1}_{\substack{\text { Idon'treally } \\ \text { get it }}} \underset{\substack{\text { I'm starting to } \\ \text { get it }}}{2} \underset{\text { I got it }}{3}$
I can use algebraic representations to represent, analyze, and
I can use algebraic representations to represent, analyze, and
I can use algebraic representations
I can use algebraic representations
1 2 3
1 2 3

Success looks like ...

- Language Goal: Identifying the gender pay gap by calculating and graphing the disparity between men and women's earnings. (Speaking and Listening)
» Writing a response that includes what they learned about the gender pay gap.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder ...

- What worked and what didn't work today?
- What might you change for the next time you teach this lesson?

4. A full 1,500 -liter water tank springs a leak, losing 2 liters per minute. At the same time, a second tank contains 300 liters and is being filled at a rate of 6 liters per minute. a second tank contains 300 liters and is being filled at a rate of 6 liters per minute your thinking.
our thinking
Let x be the number of minutes. Then the expression $1500-2 x$ represents the number of liters in the first tank after x minutes and the expression $300+6 x$ represents the number
f liters in the second tank after x minutes $y=1500-2 x \quad 1500-2 x=300+$ minutes.
y
$\left\{\begin{array}{rr}y=1500-2 x & 1500-2 x \\ =300+6 x \\ y=300+6 x & 1500 \\ y & =300+8 x\end{array}\right.$
$1,200=8 x$
1,0
$\begin{aligned} 1,200 & =8 x \\ x & =150\end{aligned}$
The two

Practice Problem Analysis	Problem	Refer to	
Type	Prok		
Spiral	$\mathbf{1}$	Unit 4 Lesson 13	1
$\mathbf{2}$	Unit 4 Lesson 15 Unit 4 Lesson 15	2	
$\mathbf{4}$	Unit 4 Lesson 16	2	

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 8 Additional Practice.

Glossary/Glosario

English

Español

valor absoluto Valor que representa la distancia entre un número y cero. Por ejemplo, dado que la distancia entre -3 y 0 es 3 , el valor absoluto de -3 es 3 , o $|-3|=3$.
ángulo agudo Ángulo cuya medida es menor que 90 grados.

ángulos interiores alternos Se crean ángulos interiores alternos cuando un par de líneas paralelas son intersecadas por una transversal. Estos ángulos están
 dentro de las líneas paralelas y en lados opuestos (alternos) de la transversal.
ángulo de rotación Ver rotación.
área Número de unidades cuadradas necesario para llenar una forma bidimensional sin dejar espacios vacíos ni superposiciones.
bar graph A graph that presents data using rectangular bars that have heights proportional to the values that they represent.
bar notation Notation that indicates the
 repeated part of a repeating decimal. For example, $0 . \overline{6}=0.66666 \ldots$
base The number that is raised to a power. The power indicates the number of times the base is multiplied by itself.
gráfica de barras Gráfica que presenta datos por medio de barras con alturas proporcionales a los valores que representan.
notación de barras Notación que indica la parte repetida de un número decimal
 periódico. Por ejemplo, $0 . \overline{6}=0.66666 \ldots$
base Número que se eleva a una potencia. La potencia indica el número de veces que la base debe multiplicarse por sí mismo.
center of dilation See the definition for dilation.
center of rotation See the definition for rotation.
circle A shape that is made up of all of the points that are the same distance from a given point.
circumference The distance around a circle.
clockwise A rotation in the same direction as the way hands on a clock move is called a clockwise rotation.
cluster A cluster represents data values that are grouped closely together.
coefficient A constant by which a variable is multiplied, written in front of the variable. For example, in the expression $3 x+2 y, 3$ is the coefficient of x.
cone A three-dimensional solid that consists of a circular base connected by a curved surface to a single point.

congruent Two figures are "congruent" to each other if one figure can be mapped onto the other by a sequence of rigid transformations.
centro de dilatación Ver dilatación.
centro de rotación Ver rotación.
círculo Forma constituida por todos los puntos que están a la misma distancia de un punto dado.
circunferencia Distancia alrededor de un círculo.
en el sentido de las agujas del reloj Una rotación en la misma dirección en que se mueven las agujas de un reloj es Ilamada una rotación en el sentido de las agujas del reloj.
agrupación Una agrupación representa valores de datos que se agrupan de manera cercana entre ellos.
coeficiente Constante por la cual una variable es multiplicada, escrita frente a la variable. Por ejemplo, en la expresión $3 x+2 y, 3$ es el coeficiente de x.
cono Sólido tridimensional compuesto de una base circular conectada a un solo punto por medio de una superficie curva.

congruente Dos figuras son "congruentes" si una de las figuras puede mapearse con la otra mediante una secuencia de transformaciones rígidas.

Glossary/Glosario

English

congruent Two figures are congruent to each other if one figure can be mapped onto the other by a sequence of rigid transformations.

constant A value that does not change, meaning it is not a variable.
constant of proportionality The number in a proportional relationship that the value of one quantity is multiplied by to get the value of the other quantity.
coordinate plane A two-dimensional plane that represents all the ordered pairs (x, y), where x and y can both represent on values that are positive, negative, or zero.
corresponding parts Parts of two scaled copies that match up, or "correspond" with each other. These corresponding parts could be points, segments, angles, or lengths.
counterclockwise A rotation in the opposite direction as the way hands on a clock move is called a counterclockwise rotation.
cube root The cube root of a positive number p is a positive solution to equations of the form $x^{3}=p$. Write the cube root of p as $\sqrt[3]{p}$.
cylinder A three-dimensional solid that consists of two parallel, circular bases joined by a curved surface.

dependent variable The dependent variable represents the output of a function.
diagonal A line segment connecting two vertices on different sides of a polygon or polyhedra.
diameter The distance across a circle through its center. The line segment with endpoints on the circle, that passes through its center.
dilation A transformation defined by a fixed point P (called the center of dilation) and a scale factor k. The dilation moves each point X to a point X^{\prime} along ray $P X$, such that its distance from P changes by the scale
 factor.

Distributive Property A property relating addition and multiplication: $a(b+c)=a b+a c$.

Español

congruente Dos figuras son congruentes entre sí, si una figura puede adquirir la forma de la otra figura mediante una secuencia de transformaciones rígidas.

constante Valor que no cambia, lo que significa que no es una variable.
constante de proporcionalidad En una relación proporcional, el número por el cual el valor de una cantidad es multiplicado para obtener el valor de otra cantidad
plano de coordenadas Plano bidimensional que representa todos los pares ordenados (x, y), donde tanto x como y pueden representar valores positivos, negativos o cero.
partes correspondientes Partes de dos copias a escala que coinciden, o "se corresponden", entre sí. Estas partes correspondientes pueden ser puntos, segmentos, ángulos o longitudes.
en el sentido contrario a las agujas del reloj Una rotación en la dirección opuesta a la forma en que las agujas de un reloj se mueven es llamada una rotación en el sentido contrario a las agujas del reloj.
raíz cúbica La raíz cúbica de un número positivo p es una solución positiva a las ecuaciones de la forma $x^{3}=p$. Escribimos la raíz cúbica p como $\sqrt[3]{p}$.
cillindro Sólido tridimensional compuesto por dos bases paralelas y circulares unidas por una superficie curva.

variable dependiente La variable dependiente representa el resultado, o salida, de una función.
diagonal Segmento de línea que conecta dos vértices que están en lados diferentes de un polígono o de un poliedro.
diámetro Distancia que atraviesa un círculo por su centro. El segmento de línea cuyos extremos se ubican en el círculo y que pasa a través de su centro.
dilatación Transformación definida por un punto fijo P (llamado centro de dilatación) y un factor de escala k. La dilatación mueve cada punto X a un punto X^{\prime} a lo largo del rayo $P X$, de manera tal que
 su distancia con respecto a P es cambiada por el factor de escala.

Propiedad distributiva Propiedad que relaciona la suma con la multiplicación: $a(b+c)=a b+a c$.

English

Español

equation A mathematical statement that two expressions are equal.
equivalent If two mathematical objects (especially fractions, ratios, or expressions) are equal in any form, then they are equivalent.
equivalent equations Equations that have the same solution or solutions.
equivalent expressions Two expressions whose values are equal when the same value is substituted into the variable for each expression.
exponent The number of times a factor is multiplied by itself.
expression A quantity that can include constants, variables, and operations
exterior angle An angle between a side of a polygon and an extended adjacent side.

ecuación Declaración matemática de que dos expresiones son iguales.
equivalente Si dos objetos matemáticos (especialmente fracciones, razones o expresiones) son iguales de cualquier manera, entonces son equivalentes.
ecuaciones equivalentes Ecuaciones que tienen la misma solución o soluciones.
expresiones equivalentes Dos expresiones cuyos valores son iguales cuando se sustituye el mismo valor en la variable de cada expresión.
exponente Número de veces que un factor es multiplicado por sí mismo.
expresión Cantidad que puede incluir constantes, variables y operaciones.
ángulo exterior Angulo que se encuentra entre un lado de un polígono y un lado extendido adyacente.

función Una función es una regla que asigna exactamente un resultado, o salida, a cada posible entrada
hanger diagram A model in which quantities are represented as weights attached to either side of a hanger. When the hanger is balanced, the sum of the quantities on either side must be equal
hemisphere Half of a sphere.

horizontal Running straight from left to right (or right to left).
horizontal intercept A point where a graph intersects the horizontal axis. Also known as the x-intercept, it is the value of x when y is 0 .
hypotenuse In a right triangle, the side opposite the right angle is called the hypotenuse.

function A function is a rule that assigns exactly one output to each possible input.

diagrama de colgador Modelo en el cual ciertas cantidades son representadas como pesos sujetos a cada lado de un colgador Cuando el colgador está en equilibrio, la suma de las cantidades en cualquiera de los lados debe ser igual.
hemisferio La mitad de una esfera.

horizontal Que corre en línea recta de izquierda a derecha (o de derecha a izquierda)
intersección horizontal Punto en que una gráfica se interseca con el eje horizontal. Conocida también como intersección x, se trata del valor de x cuando y es 0

hipotenusa En un triangulo rectángulo, el lado opuesto al ángulo recto se llama la hipotenusa.

Glossary/Glosario

English

Españo

imagen Nueva figura que se crea a partir de una figura original (llamada la preimagen) por medio de una transformación.
variable independiente La variable independiente representa la entrada de una función.
valor inicial Monto inicial en un contexto.
entrada La variable independiente de una función.
enteros Números completos y sus opuestos. Por ejemplo, -4 , 0 y 15 son números enteros.
ángulo interior Ángulo que se encuentra entre dos lados adyacentes de un polígono.
número irracional Número que no es racional. Es decir, un número irracional no puede ser escrito como fracción.
irrational number A number that is not rational. That is, an irrational number cannot be written as a fraction.
legs The two sides of a right triangle that form the right angle.
like terms Parts of an expression that have the same variables and exponents. Like terms can be added or subtracted into a single term.
line of reflection See the definition for reflection
linear association If a straight line can model the data, the data have a linear association.
linear function A linear relationship which assigns exactly one output to each possible input.
linear model A linear equation that models a relationship between two quantities.
linear relationship A relationship between two quantities in which there is a constant rate of change. When one quantity increases by a certain amount, the other quantity increases or decreases by a proportional amount.
long division A way to show the steps for dividing base ten whole numbers and decimals, dividing one digit at a time, from left to right.

0.375
$8 \lcm{3.000}$
-24
60
-56
40
-40
0

catetos Los dos lados de un triángulo rectángulo que componen el ángulo recto
términos similares Partes de una expresión que tienen las mismas variables y exponentes.
 Los términos similares pueden ser reducidos a un solo término mediante su suma o resta.
línea de reflexión Ver reflexión.
asociación lineal Si una línea recta puede modelar los datos, los datos tienen una asociación lineal.
función lineal Relación lineal que asigna exactamente un resultado, o salida, a cada entrada posible.
modelo lineal Ecuación lineal que modela una relación entre dos cantidades.
relación lineal Relación entre dos cantidades en la cual existe una tasa de cambio constante. Cuando una cantidad aumenta un cierto monto, la otra cantidad aumenta o disminuye en un monto proporcional.

división larga Forma de mostrar los pasos	0.375
necesarios para dividir números enteros en	$8 \longdiv { 3 . 0 0 0 }$
base diez y decimales, por medio de la división	-24
de un dígito a la vez, de izquierda a derecha.	$\frac{-50}{}$
	$\frac{-56}{40}$
	$\frac{-40}{0}$

English

Español

negative association A negative association is a relationship between two quantities where one tends to decrease as the other increases.
nonlinear association If a straight line cannot model the data, the data have a nonlinear association.
nonlinear function A function that does not have a constant rate of change. Its graph is not a straight line
nonproportional relationship A relationship between two quantities in which the corresponding values do not have a constant ratio. (In other words, a relationship that is not a proportional relationship.)
asociación negativa Una asociación negativa es una relación entre dos cantidades, en la cual una tiende a disminuir a medida que la otra aumenta.
asociación no lineal Si una línea recta no puede modelar los datos, los datos tienen una asociación no lineal.
función no lineal Función que no tiene un índice constante de cambio. Su gráfica no es una línea recta.
relación no proporcional Relación entre dos cantidades, en la cual los valores correspondientes no tienen una razón constante. (En otras palabras, una relación que no es una relación proporcional.)
obtuse angle An angle that measures more than 90 degrees

order of operations When an expression has multiple operations, they are applied in a consistent order (the order of operations) so that the expression is evaluated the same way by everyone.
ordered pair Two values x and y, written as (x, y), that represent a point on the coordinate plane.
orientation The arrangement of the vertices of a figure before and after a transformation. A figure's orientation changes when it is reflected across a line.
origin The point represented by the ordered pair $(0,0)$ on the coordinate plane. The origin is where the x - and y-axes intersect.
outlier Outliers are points that are far away from their predicted values.
output The dependent variable of a function.
ángulo obtuso Angulo que mide más de 90 grados.

orden de las operaciones Cuando una expresión tiene múltiples operaciones, estas se aplican en cierto orden consistente (el orden de las operaciones) de manera que la expresión sea evaluada de la misma manera por todas las personas.
par ordenado Dos valores x y y, escritos como (x, y), que representan un punto en el plano de coordenadas.
orientación El arreglo de los vertices de una figura antes y después de una transformación. La orientación de una figura cambia cuando esta es reflejada con respecto de una línea.
origen Punto representado por el par ordenado $(0,0)$ en el plano de coordenadas. El origen es donde los ejes x y y se intersecan.
valor atípico Los valores atípicos son puntos que están muy lejos de sus valores predichos.
resultado o salida Variable dependiente de una función.

Glossary/Glosario

English

Español

cubo perfecto Número que es el cubo de un número entero. Por ejemplo, 8 es un cubo perfecto porque $2^{3}=8$.
cuadrado perfecto Número que es el cuadrado de un número entero. Por ejemplo, 16 es un cuadrado perfecto porque $4^{2}=16$.
pi Razón entre la circunferencia y el diámetro de un círculo. Usualmente se representa como π.
función por partes Función definida por dos o más ecuaciones. Cada ecuación es válida para alguno de los intervalos.
polígono Forma cerrada y bidimensional de lados rectos que no se entrecruzan.
asociación positiva Una asociación positiva es una relación entre dos cantidades, en la cual una tiende a aumentar a medida que la otra disminuye.
preimagen Verimagen.
notación prima Notación para etiquetar que usa un signo de prima. Una notación prima usualmente se aplica a una imagen, para distinguirla de su preimagen.

Propiedades de igualdad Reglas que son aplicables a todas las ecuaciones. Incluyen las propiedades de suma, resta, multiplicación y división, las cuales señalan que si una ecuación es verdadera, al aplicar la misma operación a ambos lados se obtendrá una nueva ecuación que también es verdadera.
relación proporcional Relación en la que los valores de una cantidad se multiplican cada uno por el mismo número (la constante de proporcionalidad) para obtener los valores de la otra cantidad.

Teorema de Pitágoras El Teorema de Pitágoras establece que para todo triángulo rectángulo: cateto ${ }^{2}+$ cateto $^{2}=$ hipotenus 2. A veces puede ser también presentado como $a^{2}+b^{2}=c^{2}$, donde $a y b$ representan las longitudes de los catetos y c representa la longitud de la hipotenusa.

Triplete pitagórico Tres enteros positivos a, b y c, tales como $a^{2}+b^{2}=c^{2}$.
quadrilateral A polygon with exactly four sides.
cuadrilátero Polígono de exactamente cuatro lados.

English

Español

radius A line segment that connects the center of a circle with a point on the circle. The term can also refer to the length of this segment.
rate of change The amount one quantity (often y) changes when the value of another quantity (often x) increases by 1 . The rate of change in a linear relationship is also the slope of its graph.
ratio A comparison of two quantities by multiplication or division.
rational numbers The set of all the numbers that can be written as positive or negative fractions.
rectangular prism A polyhedron with two congruent and parallel bases, whose faces are all rectangles.
reflection A transformation that flips each point on a preimage across a line of reflection to a point on the opposite side of the line.
relative frequency The relative frequency is the ratio of the number of times an outcome occurs in a set of data. It can be written as a fraction, a decimal, or a percentage.
repeating decimal A decimal in which there is a sequence of nonzero digits that repeat indefinitely
rigid transformation A move that does not change any of the measurements of a figure. Translations, rotations, and reflections are all examples of rigid transformations (as well as any sequence of these).
rotation A transformation that turns a figure a certain angle (called the angle of rotation) about a point (called the center of rotation).

radio Segmento de línea que conecta el centro de un círculo con cualquier punto del círculo. El término puede también referirse a la longitud de este segmento.
tasa de cambio Monto en que una cantidad (usualmente y) cambia cuando el valor de otra cantidad (usualmente x) aumenta en un factor de 1. La tasa de cambio en una relación lineal es también la pendiente de su gráfica.
razón Comparación de dos cantidades a través de una multiplicación o una división.
números racionales Conjunto de todos los números que pueden ser escritos como fracciones positivas o negativas.
prisma rectangular Poliedro con dos bases congruentes y paralelas, cuyas caras son todas rectángulos.
reflexión Transformación que hace girar cada punto de una preimagen a lo largo de una línea de reflexión hacia un punto en el lado opuesto de la línea.
frecuencia relativa La frecuencia relativa es la razón del número de veces que ocurre un resultado en un conjunto de datos. Se
 puede escribir como una fracción, un decimal o un porcentaje.
número decimal periódico Decimal que tiene una secuencia de dígitos diferentes de cero que se repite de manera indefinida.
transformación rígida Movimiento que no cambia medida alguna de una figura. Traslaciones, rotaciones y reflexiones son ejemplos de transformaciones rígidas (como también cualquier secuencia de estas transformaciones).
rotación Transformación que hace girar una figura en cierto ángulo (Ilamado ángulo de rotación) alrededor de un punto (llamado centro de rotación).

Glossary/Glosario

English

S

scale factor The value that side lengths are multiplied by to produce a certain scaled copy.
scaled copy A copy of a figure where every length in the original figure is multiplied by the same value to produce corresponding lengths in the copy.
scatter plot A scatter plot is a graph that shows the values of two variables on a coordinate plane. It allows us to investigate connections between the two variables.
scientific notation A way of writing very large or very small numbers. When a number
 is written in scientific notation, the first factor is a number greater than or equal to one, but less than ten. The second factor is an integer power of ten. For example, $23000=2.3 \times 10^{4}$ and $0.00023=2.3 \times 10^{-4}$.
segmented bar graph A segmented bar graph compares two categories within a data set. The whole bar represents all the data within one category. Then, each bar is separated into parts (segments) that show the percentage of each part in the second category.
sequence of transformations Two or more transformations that are performed in a particular order.
similar Two figures are similar if they can be mapped onto each other by a sequence of transformations, including dilations.

slope The numerical value that represents the ratio of the vertical side length to the horizontal side length in a slope triangle. The rate of change in a linear relationship is also the slope of its graph.
slope triangle A right triangle whose longest side is part of a line, and whose other sides are horizontal and vertical. Slope triangles can be used to calculate the slope of a line.

solution A value that makes an equation true.
solution to a system of equations An ordered pair that makes every equation in a system of equations true.
sphere A three-dimensional figure that consists of the set of points, in space, that are the same distance from a given point called the center.

square root The square root of a positive number p is a positive solution to equations of the form $x^{2}=p$. Write the square root of p as \sqrt{p}.

Español

factor de escala Valor por el cual las longitudes de cada lado son multiplicadas para producir una cierta copia a escala.
copia a escala Copia de una figura donde cada longitud de la figura original es multiplicada por el mismo valor, para producir longitudes correspondientes en la copia.
diagrama de dispersión Un diagrama de dispersión es una gráfica que muestra los valores de dos variables en un plano de coordenadas. Nos ayuda a investigar relaciones entre las dos variables.
notación científica Manera de escribir números muy grandes o números muy
 pequeños. Cuando un número es escrito en notación científica, el primer factor es un número mayor o igual a uno, pero menor que diez. El segundo factor es un número entero que es potencia de diez. Por ejemplo, $23000=2.3 \times 10^{4}$ y $0.00023=2.3 \times 10^{-4}$.
gráfica de barras segmentada Una gráfica de barras segmentada compara dos categorías dentro de una serie de datos. La barra completa representa la totalidad de los datos dentro de una categoría. Entonces, cada barra es separada en partes (llamadas segmentos) que muestran el porcentaje de cada parte en la segunda categoría.
secuencia de transformaciones Dos o más transformaciones que se llevan a cabo en un orden particular.
similar Dos figuras son similares si pueden ser imagen la una de la otra, mediante una secuencia de
 transformaciones que incluyen las dilataciones.
pendiente El valor numérico que representa la razón entre la longitud del lado vertical y la longitud del lado horizontal en un triángulo de pendiente. Dada una línea, todo triángulo de pendiente tiene la misma pendiente.
triángulo de pendiente Triángulo rectángulo cuyo lado más largo es parte de una línea, y cuyos otros lados son horizontales y verticales. Los triángulos de pendiente pueden ser usados para calcular la pendiente de una línea.

solución Valor que hace verdadera a una ecuación.
solución al sistema de ecuaciones Par ordenado que hace verdadera cada ecuación de un sistema de ecuaciones.
esfera Figura tridimensional que consiste en una serie de puntos en el espacio que están a la misma distancia de un punto específico, llamado centro.

raíz cuadrada La raíz cuadrada de un número positivo p es una solución positiva a las ecuaciones de la forma $x^{2}=p$. Escribimos la raíz cuadrada de p como \sqrt{p}.

English

straight angle An angle that forms a straight line. A straight angle measures 180 degrees.
substitution Replacing an expression with another expression that is known to be equal.
supplementary angles Two angles whose measures add up to 180 degrees.
symmetry When a figure can be transformed in a certain way so that it returns to its original position, it is said to have symmetry, or be symmetric.
system of equations A set of two equations with two variables. (In a later course, you will see systems with more than two equations and variables.)

Español

ángulo llano Ángulo que forma una línea recta. Un ángulo llano mide 180 grados.
sustitución Reemplazo de una expresión por otra expresión que se sabe es equivalente.
ángulos suplementarios Dos ángulos cuyas medidas suman 180 grados.
simetría Cuando una figura puede ser transformada de manera tal que regrese a su posición original, se dice que tiene simetría o que es simétrica.
sistema de ecuaciones Conjunto de dos ecuaciones con dos variables. (En un curso posterior verán sistemas con más de dos ecuaciones y variables.)
term An expression with constants or variables that are multiplied or divided.
terminating decimal A decimal that ends in 0s.
tessellation A pattern made of repeating shapes that completely covers a plane, without any gaps or overlaps.
transformation A rule for moving or changing figures on the plane. Transformations include translations, reflections, and rotations.
translation A transformation that slides a figure without turning it. In a translation, each point of the figure moves the same distance in the same direction.

transversal A line that intersects two or more other lines.

Triangle Sum Theorem A theorem that states the sum of of the three interior angles of any triangle is 180 degrees.
two-way table A two-way table provides a way to compare two categorical variables. It shows one of the variables across the top and the other down one side. Each entry in the table is the frequency or relative frequency of the category shown by the column and row headings.
término Expresión con constantes o variables que son multiplicadas o divididas.
decimal exacto Un decimal que termina en ceros.
teselado Patrón compuesto por formas repetidas que cubren por completo un plano, sin dejar espacios vacíos ni superposiciones.
transformación Regla que se aplica al movimiento o al cambio de figuras en el
 plano. Traslaciones, rotaciones y reflexiones son ejemplos de transformaciones.
traslación Transformación que desliza una figura sin hacerla girar. En una traslación cada punto de la figura se mueve la misma distancia en la misma dirección.

transversal Línea que se interseca con dos o más líneas distintas.

Teorema de la suma del triángulo Teorema que afirma que la suma de los tres ángulos interiores de cualquier triángulo es 180 grados.
tabla de dos entradas Una tabla de dos entradas provee una forma de comparar dos variables categóricas. Muestra una de las variables de forma horizontal y la otra de forma vertical. Cada entrada en la tabla es la frecuencia o frecuencia relativa de la categoría mostrada en los encabezados de la columna y la fila.
unit rate How much one quantity changes when the other changes by 1 .
tasa unitaria Cuánto cambia cierta cantidad cuando la otra cambia por un factor de 1 .

Glossary/Glosario

English

Español

variable Cantidad que puede asumir diferentes valores o que tiene un solo valor desconocido. Las variables usualmente son representadas por letras.
vértice Punto donde se intersecan dos lados de una forma bidimensional, o dos o más aristas de una figura tridimensional.

vertical Que corre en línea recta hacia arriba o hacia abajo.
ángulos verticales Ángulos opuestos que comparten el mismo vértice, conformado por dos líneas que se intersecan. Los ángulos verticales tienen
 las mismas medidas.
intersección vertical Punto en que una gráfica se interseca con el eje vertical. También conocida como intersección y, se trata del valor de y cuando x es 0 .
volumen Número de unidades cúbicas necesario para llenar una figura tridimensional sin dejar espacios vacíos ni superposiciones.
intersección x Ver intersección horizontal.
y-intercept See the definition for vertical intercept.
intersección y Ver intersección vertical.

A

Abstract algebra, 349
Acute triangle, 796

Addition

Commutative Property, 365
Distributive Property, 365, 414
Addition, numbers in scientific notation, 703-709
Additional Practice, 9, 18, 26, 33, 39, $47,54,60,68,75,82,89,97,104,111$, 117, 124, 130, 139, 148, 155, 162, 169, 178, 184, 191, 198, 205, 211, 218, 228, 236, 242, 248, 254, 259, 269, 276, 283, 289, 296, 302, 309, 316, 324, 332, 338, 345, 352, 361, 369, 376, 383, 391, 398, 404, 410, 416, 423, 431, 437, 444, 451, 458, 464, 470, 480, 489, 495, 501, 513, $519,526,532,538,546,552,558,564$, 570, 577, 584, 591, 597, 604, 610, 619, 635, 642, 649, 656, 662, 668, 676, 682, 688, 695, 702, 709, 716, 725, 734, 740, 746, 752, 759, 766, 772, 780, 786, 792, 799, 805, 811, 817, 823, 832, 840, 848, 856, 863, 870, 886, 894
The Adventures of Prince Achmed, 11
Aerial refueling, 439-440
Age of Discovery, 813
Al-Khwārizmi, Muhammad ibn Musa, 363, 468
Algebra, 355, 359, 459, 468
Algorithm, 385-386
Altered equations, 659
Alternate interior angles,
105-111. See also Angles.
Amps Featured Activities, 4B, 5, 12B, 15, 19B, 20, 27B, 28, 34B, 36, 40B, 41, 42, 48B, 49, 55B, 57, 62B, 63, 69B, 70, 76B, 77, 83B, 85, 92B, 93, 98B, 99, 105B, 106, 112B, 113, 118B, 119, 125B, 127, 134B, 135, 142B, 144, 149B, 154A, 156B, 157, 163B, 168A, 172B, 174, 179B, 181, 185B, 186, 192B, 193, 199B, 201, 206B, 207, 212B, 214, 222B, 223, 230B, 232, 237, 237B, 243B, 245, 249B, 250, 255B, 258A, 262B, 265, 270B, 273, 277B, 279, 284B, 285, 290B, 293, 297B, 298, 303B, 304, 310B, 312, 317B, 320, 326B, 328, 333B, 334, 339B, 344A, 346B, 347, 356B, 357, 364B, 368A, 370B, 371, 373, 377B, 380, 384B, 390A, 392B, 393, 399, 399B, 405B, 407, 411, 411B, 417B, 422A, 426B, 428, 432B, 434, 438B, 441, 445B, 447, 452B, 453, 456B, 459B, 461, 465B, 466, 473H, 474B, 482, 482B, 490B, 492, 496B, 497, 502B, 508B, 514B, 518A, 520B, 521, 527B, 528, 533B, 535, 540B, 541, 547B, 551A, 553B, 554, 559B, 560, 565B, 569A, 571B, 572, 578, 578B,

585B, 586, 592B, 593, 594, 598B, 599, 605B, 613F, 614, 614B, 622B, 624, 629B, 636B, 638, 643B, 645, 650B, 651, 657B, 658, 663B, 670B, 678, 678B, 683B, 684, 689B, 691, 696B, 698, 703B, 705, 710B, 712, 719F, 720B, 721, 728B, 729, 735B, 736, 741B, 742, 747B, 748, 753B, 756, 760B, 762, 767B, 771A, 774B, 775, 781B, 782, 787B, 789, 793B, 794, 800B, 801, 806B, 807, 812B, 814, 818, 818B, 825F, 826B, 828, 834B, 836, 841B, 845, 849B, 850, 857B, 864B, 866, 871B, 875, 879, 879B 887B, 889
Analog cameras, 481
Angle of rotation, 16. See also Rotation.

Angles

adding, in a triangle, 112-116
alternate interior, 105-111
rotating $180^{\circ}, 99-100,101$
sides and angles, 63-64
in triangle, parallel lines and, 118-124 unknown, solving for, 101, 103

Animation, 11

Antarctic Ocean, 833
Anticipating the Student Experience With Fawn Nguyen, 3G, 133G, 221G, 255G
Apollo Guidance Computer, 711
Archimedes, 581
Arc notation, 762
Area, 71-72, 734
of base, 548, 551, 823
of circle, 513
of square, 490, 493, 734, 735-740, 745
Arithmetica (Diophantus), 329, 821
Art, counterfeit, 62
Assessments, 3F, 3H, 133F, 133H, 221F, 221H, 355F, 355H, 473H, 473J, 613F, $613 \mathrm{H}, 719 \mathrm{~F}, 719 \mathrm{H}, 825 \mathrm{~F}, 825 \mathrm{H}$

Associations

data displays to find, 887-894
linear, 842, 846, 847, 868
looking for, 879-886
negative, 843, 846, 851
nonlinear, $842,846,878$
positive, $843,846,847,851$
in scatter plot, 842-843
Avayou, David, 539

B

Babbage, Charles, 486
Balakrishnan, Jennifer, 820
Balanced hanger diagrams,
370-376
Barber, Eric, 325

Bar graphs, 881
segmented, 889-891
Bar notation, 762, 764, 765

Bases

area of, 548, 551, 823
rational, 663-668
Batteries, electric vehicle, 522-523
Baudhayana Sulbasutra, 773
Behavior, pattern recognition
and, 180
ben Dahir, Sissa, 621
Bike riding, 879-880
Biomass, 698-699, 706
Borders, using transformation,
125-129
Brain, of animals, 872-873
Brevard, Samarria, 510
Brunelleschi, Filippo, 137
Building Math Identity and Community, 3H, 4B, 12B, 19B, 27B, 34B, 40B, 48B, 55B, 62B, 69B, 76B, 85B, 92B, 98B, 105B, 112B, 118B, 125B, 133H, 142B, 149B, 156B, 163B, 172B, 179B, 185B, 192B, 199B, 206B, 221H, 222B, 230B, 237B, 243B, 249B, 255B, 262B, 277B, 284B, 290B, 297B, 303B 310B, 317B, 326B, 333B, 339B, 346B, $355 \mathrm{H}, 364 \mathrm{~B}, 370 \mathrm{~B}, 377 \mathrm{~B}, 384 \mathrm{~B}, 392 \mathrm{~B}$, 399B, 405B, 411B, 417B, 426B, 432B, 438B, 445B, 452B, 459B, 465B, 473J, 474B, 482B, 490B, 496B, 502B, 508B, 514B, 520B, 527B, 533B, 540B, 547B, 553B, 559B, 565B, 571B, 578B, 585B, 592B, 598B, 605B, 613H, 614B, 622B, 629B, 636B, 643B, 650B, 657B, 663B, 670B, 678B, 683B, 689B, 696B, 703B, 710B, 719H, 720B, 728B, 735B, 741B, 747B, 753B, 760B, 767B, 774B, 781B, 787B, 793B, 800B, 806B, 812B, 818B, 825H, 826B, 834B, 841B, 849B, 857B 864B, 871B, 879B, 887B
Burj Khalifa, Dubai, 683, 684

C

Cameras, 481

Cards

adding angles in a triangle, 114
transformations and, 35, 56
Center of dilation, 146, 147, 150, 151,
153, 156. See also Dilation
Center of rotation, 16, 55, 95
Centimeter, 669
Changes, patterns of, 226
Charting, path, 812
Chess game, 621

Index

Circle, 808
area of, 513
circumference of, 491
dilation, 165
diameter of, 553
dimensions of, 547
radius of, 553
volume of, 548-549
Circular grids, 142-148
a droplet on the surface, 143
quadrilateral on, 144-145
Circular solids, volume of, 585-591

Circumference, of circle, 491
Clock hands, 793
Clockwise rotation, 16, 29, 52. See also Rotation.

Clusters, 845, 846, 847
Coin collector, 312-313, 320-321
Commutative Property of
Addition, 365
Commutative Property of
Multiplication, 594
Computing power, 710, 711
Cone
cylinder and, 560
height of, 587
missing dimensions, determination of, 565-570
radius of, 569, 573, 599
sketching, 558
volume of, 559-564, 566, 569, 573, 574
576, 582, 585-591, 599, 676
in terms of pi $(\pi), 579-581$
Congruence, 71-72
corresponding points, 84
defined, 73
facts about, 73
ovals, 85, 86
polygons, 76-82, 87, 130
testing, 83-87
triangle, 148

Congruent pairs, 77

Constant, 468
Constant of proportionality, 257, 649.
See also Proportional relationships.
Conway, John Horton, 127
Coordinate, 290
dilations with, 163-170
Coordinate plane, 799 distances on, 800-811
Coordinate plane, points on, 40-47, 426-431
polygons on, 55
reflecting, 42-43, 45
rotation, 48-52
translating, 41, 45

Coordinate plane, rogue, 346-349
Corresponding points, 16
Counterclockwise rotation,
16, 28, 52. See also Rotation.
Counterfeit art, 62
Cracks in painting, 61, 62
Craquelure (cracks), 61, 62
Cross-curricular Connections. See Differentiated Instruction; Extension; Interdisciplinary Connections.
Croton, 727
Cryptarithmetic puzzle, 379
Cube, volume of, 491, 516, 571, 650
Cube roots, 747-752
Cutting, sandwiches, 720-721

Cylinder

cone and, 560
creation from rectangle, 549
dimensions of, 553-558
unknown, determining, 554-555
empty space inside, 606
height of, 557
radius of, 572, 603
sketching, 538
spheres in, 579-580
volume of, 540-552, 561, 562,567,572
574, 576, 582, 585-591, 594, 596, 603,
606, 661
formula for, 554
height and, 541-542
in terms of pi $(\pi), 579-581$

D

Data
associations in. See Associations
bivariate, analyzing, 871-878
clusters, 845
linear model, 857-863
line to fit, 849-856
patterns in, 826-832
tables, 827

Decimals

as fraction, 760, 761, 766, 769, 832
repeating, 763, 764, 765
converting into fractions, 767-772
notations to represent, 762
representations, of rational numbers,
760-766
terminating, 763, 764, 765
unit fraction as, 763
Dependent variables, 491, 493, 494
499, 508, 509, 512
Diagonals, 270, 723
length, in rectangular prism, 789

Diameter

of circle, 553
of hemispheres, 576

Differentiated Instruction, 3H, 133H, 221H, 355H

Accessibility

Activate Background Knowledge,
262, 304, 418, 475, 549, 684, 710,
852, 872
Activate Prior Knowledge, 28, 85,
173, 174, 270, 271, 370, 411, 412, 417
445, 467, 548, 553, 560, 574, 616, 623, 650, 697, 747, 748, 754, 756, 761, 763, 842, 860, 888
Clarify Vocabulary and Symbols, $35,120,181,333,365,401,460,467$,
549, 553, 560, 747
Guide Processing and
Visualization, 13, 27, 30, 34, 48, 56 $57,84,101,106,107,108,120,150,151$, 159, 164, 165, 200, 201, 208, 223, 230, 231, 233, 238, 244, 251, 256, 262, 263, 265, 278, 280, 286, 292, 293, 299, 306, 311, 319, 327, 329, 334, 335, 339, $340,342,347,357,365,366,370,371$, 372, 384, 385, 392, 393, 394, 400, 401, 406, 426, 433, 439, 441, 452, 454, 460, 461, 466, 473J, 483, 485, 491, 492, 504, 516, 521, 529, 543, 554, $561,567,572,573,574,579,580,581$, 586, 587, 588, 593, 599, 600, 606, 625, 630, 631, 632, 637, 638, 639, 644, 645, 651, 657, 659, 663, 664, 671, 672, 677, 685, 690, 712, 729, 730, $737,742,749,755,756,768,777,788$, 789, 796, 801, 818, 820, 827, 828, 835, 837, 850, 851, 859, 866, 874 . 880, 881, 888, 891
Optimize Access to Technology, $5,63,93,113,119,157,186,193,201$, 232, 285, 293, 312, 320, 347, 380, 407, 439, 446, 447, 476, 482, 492, $497,503,510,528,535,541,560$, $578,593,594,599,606,614,624$ 638, 651, 658, 663, 672, 678, 684, 691, 698, 706, 719H , 721, 729, 736, $742,748,756,775,782,789,807,818$, 825H, 828, 836, 850, 858, 866, 875, 879, 889
Optimize Access to Tools, 13, 23, 27, 30, 34, 76, 83, 86, 92, 101, 150, $156,174,333,426,438,498,515$, 528, 851
Vary Demands to Optimize
Challenge, $5,13,15,20,21,23,28,35$, 36, 41, 42, 44, 49, 50, 57, 65, 70, 71, 76, $77,78,84,86,93,99,101,107,113,114$, 119, 120, 126, 135, 143, 144, 152, 173, 174, 186, 187, 188, 195, 201, 207, 212, 213, 214, 223, 225, 231, 238, 239, 245, 250, 256, 263, 265, 270, 271, 273, 279, 291, 297, 298, 305, 311, 312, 318, 320, $326,328,335,349,356,357,358$, 366, 371, 372, 373, 378, 380, 385, 387. 392, 393, 394, 401, 407, 419, 428, 446, 447, 453, 454, 460, 466, 485, 491, $497,498,509,510,521,522,534,555$, 566, 600, 613H, 615, 623, 624, 631,

632, 639, 651, 652, 653, 658, 665, 671,
672, 673, 679, 692, 704, 711, 721, 722,
$731,736,742,749,755,769,777,788$,
794, 802, 807, 814, 818, 819, 829, 835, $836,850,858,860,865,866,867$, 872, 882
Extension
Interdisciplinary Connections, 4,
62, 63, 94, 125, 152, 172, 215, 285, 542, 586, 673, 679, 690, 705, 784
Math Around the World, 127, 172, 264, 542, 692
Math Enrichment, 5, 15, 21, 23, 30, 34, 35, 36, 49, 50, 63, 70, 77, 84, 93, $94,99,101,106,107,108,114,120,135$, 143, 144, 150, 151, 156, 157, 159, 165, 181, 187, 195, 207, $208223,213,215$, $225,233,238,239,245,265,273,278$, 279, 280, 286, 291, 298, 299, 304,
$305,311,312,318,319,328,333,334$, 340, 347, 349, 370, 372, 373, 378, 387, 393, 401, 406, 412, 418, 419, 428, 433, 446, 453, 467, 483, 485, 491, 498, 503, 504, 509, 515, 516, 529, 534, 535, $543,548,554,555,561,566,572,573$, $574,587,594,607,615,625,644,645$, 650, 652, 665, 672, 673, 690, 697,
704, 712, 722, 729, 731, 754, 755, 761, 763, 768, 782, 784, 794, 807, 814, 819, 820, 827, 835, 837, 842, 851, 865, 867, 880, 889
Digital cameras, 481
Dilating drops, 141

Dilation

along a ray, 149
center of, 146, 147, 150, 151, 153
circular grids, 142-148
defined, 146
line segment, 151
on a grid, 157-158
on a plane, 149-155
on square grid, 156-162
pupil (eye), 141
with coordinates, 163-170

Dimensions

one, scaling, 592-597
two, scaling, 598-604
Diophantine equation, 329, 427
Diophantus, 329, 821
Distances, 488, 491, 705
on coordinate plane, 800-811 as function of time, 487 graph of, 497, 534-535, 563, 682 to origin, 800
speed and, 519
between two points, 801
Distributive Property, 365, 367, 414

Division

long, 759
numbers in scientific notation, 696-702

of powers

with bases other than 10, 638 with same base, 636-642 of $10,637,653$
rule, 640
Double transversals, 108

E

Edge length, 271-272
Edges, of rectangular prism, 593
Effective Teaching Practices, 3H, 133H, 221H, 355H, 473J, 613H, 719H, 825H
Einstein, Albert, 349, 773
Einstein on the Beach (opera), 477
Electric vehicle batteries, 522-523
Empire State Building, 685
English Learners, 6, 13, 20, 28, 30, 35, 36, 41, 42, 56, 57, 65, 71, 77, 78, 84, $85,86,93,94,99,101,114,119,135$, $143,144,149,151,157,163,164,165$, $173,174,179,185,186,187,192,195$, 199, 206, 207, 213, 222, 225, 231, 232, 237, 243, 244, 245, 249, 250, 251, 255, 256, 263, 271, 273, 278, 279, 285, 290, 292, 298, 299, 303, 304, 305, 310,
$312,317,319,327,328,334,342,356$, $357,365,366,371,373,377,380,394$, 399, 400, 405, 406, 407, 412, 427,
428, 432, 433, 439, 441, 459, 460,
461, 467, 474, 476, 483, 490, 491, 492,
$498,503,509,510,514,516,521,522$,
$528,535,540,543,549,555,566,567$,
$572,573,579,587,593,594,613 \mathrm{H}, 615$,
616, 622, 624, 629, 631, 638, 658, 665,
678, 679, 683, 689, 691, 698, 703, 706,
$719 \mathrm{H}, 729,742,748,749,756,762,774$,
$775,782,795,813,814,828,835,836$,
$842,843,844,850,858,866,882,889$
Equal to (=), 623, 627, 739

Equations

altered, 659
description of, 365
and descriptions, 491
Diophantine, 427
equivalent, 381, 392
equivalent. See Equivalent equations.
errors in solving, 394-395
for functions, 490-495, 514, 517, 518
of a line, 232, 290-294, 310-316
linear, 425
with infinitely many solutions, 405-410
with no solution, 405-410
with one solution, 405-410
patterns of solutions, 405
solutions for, 399-410, 411
solving, 392-398, 411-416
structure of, 405
systems of. See Systems of linear equations.
linear relationships, 280, 281, 287, 343
lines represented by, 445 proportional relationships, 252 rewriting, 377-391
simultaneous, solutions to, 435
and situations, 417-423
solution for, 728, 733
solutions, 399-410
activities, 400-401
creation of, 387-388
structure of, 405
system of, 519
trading, 393, 407
translation of a line, 297-300
with two variables, 326-330
writing, 364-369, 526
Equilateral triangle, 615
Equivalent equations, 381, 392, 489
Equivalent expressions, 632, 642,
646, 649, 653, 681, 733, 740, 743, 746
Escher, Maurits C., 4, 128
Expanded form, 618, 622, 631, 644
Exponential pattern, 621
Exponents, 613, 617, 628
negative, 643-649
patterns, divide powers with same
base and, 636-642
positive, 646
practice with, 663
reviewing, 622-628
rules, 645-646
Expressions, 629
comparing, 623
equivalent. See Equivalent
expressions.
evaluation of, 619, 627, 636, 657
multiplication of, 657-662
negative, 625
with negative exponents, 643-649
ordering, 663
positive, 625
as single power, 634, 639, 641, 655, 746
sorting, 624
writing, 364-369
Eye examination, 141
Eye movement, illusion and, 216
Eyedrops, dilation and, 141

F

Fake art, 62
Fastest route, 814
Father of Algebra, 363
Featured mathematicians, Balakrishnan, Jennifer, 820 Conway, John Horton, 127 Diophantus, 329
Fry, Hannah, 180

Index

Featured mathematicians (continued)
Glass, Philip, 477
Graham, Ronald, 713
Hawking, Stephen, 586
Legendre, Adrien-Marie, 859
Loveleace, Ada, 486
Mirzakhani, Maryam, 42
Moses, Bob, 385, 386
Noether, Emmy, 349
Penrose, Sir Roger, 215
Qiujian, Zhang, 427
Sellers, Kimberly, 888
Shang Gao, 783
Sierpiński, Waclaw, 616
West, Gladys, 813
Wilson, Sophie, 671
Fermat, Pierre de, 820, 821
Fields Medal, 42
Flipping figures, 21-22
Forced perspective, 137
Forgery, in painting, 61
Fostering Diverse Thinking, 355H,
434, 468, 713
Fractions, 498
converting repeating decimals into,
767-772
decimal as, 760, 761, 766, 769, 832
rational number as, 771
Frog dance, 13-14
Fry, Hannah, 180
Functions, 478, 608
and computer programming,
485-486
concept of, 482-489
defined, 487
equations for, 490-495, 514, 517 graphs of, 496-513, 514, 517, 531-532 linear. See Linear functions. piecewise, 533-538 representations of, 514-519 and volume of cylinder, 540-546

G

Gardner, Martin, 7
Garfield, James A., 773
General relativity, 349
Glass, Philip, 477
Global Positioning System (GPS), 813
Goering, Hermann, 61
Googolplex, 712
Gougu Rule, 783
Graham, Ronald, 712, 713
Graphs, 495, 519, 528, 533, 564, 635, 662, 740, 841
for batteries percent of charge, 522 of distance, 497, 534-535, 563, 682
of functions, 496-513, 514, 517
531-532
and height of container, 542
linear, 597
linear relationships, 265-266, 287,343
lines, 432-437
points on coordinate plane,
426-431
nonlinear, 597
of piecewise function, 537
proportional relationships, 237-248, 250-254
representing high temperature, 506, 531
scale for, 831
scenarios and, connections between, 508-513
and score meter measurement, 850 systems of linear equations, 445-451 480
Greater than (>), 518, 623, 627, 628, 739
Grid moves, 27-33
Guessing, values, 729
Guinness World Records, 773

H

Hales, Thomas, 607
Hamwi, Ernest, 539
Hands, mirror image, 69
Hanger diagrams, 377-383
balanced, 370-376
blocks in, 373
describing, using variables, 377
and linear equations solutions, 412-413
Harriot, Thomas, 607
Hawking, Stephen, 586
Hawking radiation, 586
Headline news, 887
Heart rate, 230, 231, 234
Height, of cylinder, 541-542, 557
Height determination, shadows and, 199-205

Hemispheres

diameter of, 576
radius of, 576
volume of, 571-577
Hexagon, rotation, 31
Hilbert, David, 349
Hippasus of Metapontum, 755
Historical Moments, 200, 280, 581, 607, 762
Horizontal intercept, 307
Horizontal lines, 322
Human behavior, pattern recognition, 180

Hypotenuse, 778, 779, 790, 819
length of, determination of, 788 of unshaded triangles, 840

I

Image, 24, 66
mirror image, 20, 69, 73
preimage, 23, 24, 25, 66
Independent variables, 491, 493, 494,
499, 509, 512
Inequalities, 745
Initial value, 267
Instructional Routines, 3E, 3I, 4, 6, 12, 19, 41, 44, 48, 56, 65, 77, 79, 84, 86, 98, $105,112,114,125,127,133 E, 133 G, 134$,
142, 144, 152, 164, 172, 174, 175, 179,
192, 195, 199, 201, 206, 212, 213, 214,
221E, 221G, 222, 232, 239, 243, 249,
251, 255, 256, 272, 273, 277, 279, 286
$299,303,306,310,317,319,327,342$,
346, 355E, 355G, 373, 392, 399, 411,
$417,426,432,438,445,452,454,459$,
460, 461, 465, 473G, 473I, 474, 477,
486, 496, 502, 553, 559, 565, 578, 585,
613E, 613G, 614, 719E, 719G, 781, 825E,
825G, 826, 834, 841
Integers, ratio of, 754

Intercept

horizontal, 307
linear equations, 333
vertical, 281
Interdisciplinary Connections. See Differentiated Instruction, Extension: Interdisciplinary Connections.
Interior angles, triangle, 112-116
International Bureau of Weights and
Measures, 669
Intersecting lines, 139
Irrational numbers, 727, 753-759,
766, 840
examples of, 757
writing of, 758

J

Jordan, Michael, 325

K

Kepler (opera), 477
Kepler, Johannes, 477, 607
Kepler Conjecture, 607
Klein, Felix, 349
Krills, 833-839
matching, 835
populations, 834

L

Laptop, charging, 529

Large numbers

calculations with, 683-688 on number lines, 670-676 scientific notation to describe, 689-695
Last Theorem (Fermat), 820, 821
Latent image, 481
Legendre, Adrien-Marie, 859
Legs of a triangle, 778, 790
Length of edge, 271-272
Less than (<), 623, 627, 739
Like terms, 365
Linear association, 842, 846, 847
negative, 868
positive, 868
Linear equations, 281, 287, 425
Diophantine equation, 329 with infinitely many solutions, 405-410 intercepts, 333
with no solution, 405-410
with one solution, 405-410
rectangles, 328
solutions to, 326-338, 399-410
hanger diagrams and, 412-413
patterns of, 405
predicting, 411
solving, 392-398
structure of, 405
systems of. See Systems of linear equations.
system of, 479-480,526

Linear functions

comparing, 520-526
defined, 524
modeling with, 527-532
and rate of change, 538
Linear model, 857-863
comparing, 865
creation of, 864
drawing and using, 874
Linear relationships, 519 See also
Nonlinear relationships.
comparing, 865
coordinating, 339-344
creation of, 864
defined, 267
drawing and using, 874
graph, 265-266, 287,343
introducing, 262-269
proportional relationships. See Proportional relationships. representations of, 284-289, 340-341 rising water levels, 285 stacking cups, 263-264 total edge length, surface area, and volume, 271-272

Line of fit, 851
Line of reflection, $21,24,25,34$. See also Reflection.

Lines

equation for, 232, 290-294, 310-316 calculate the slope, 291 horizontal lines, 317-324 translated lines, 297-300 vertical lines, 317-324 writing an equation from two points, 292
graphing, 432-437
parallel lines, 94, 96
points on coordinate plane, 426-431
represented by equations, 445
segment, rotating, 93, 96

Line segment

dilating, 151, 198
rotating, 93
Logos, 857-858
Long division, 759
Longest string, 722
Loomis, Elisha, 773
Loveleace, Ada, 485, 486

M

Marathon, 229, 251
Marchiony, Italo, 539
Materials, 3E, 12B, 19B, 34B, 40B, 48B, 55B, 62B, 69B, 76B, 85B, 92B, 105B, 118B, 125B, 133E, 134B, 142B, 149B, 156B, 172B, 179B, 185B, 192B, 206B, 212B, 221E, 222B, 230B, 237B, 243B, 249B, 255B, 262B, 277B, 284B, 290B, 297B, 303B, 310B, 317B, 326B, 339B, 346B, 355E, 364B, 370B, 377B, 384B, 392B, 399B, 405B, 411B, 417B, 426B, 432B, 438B, 445B, 452B, 459B, 465B, 473G, 474B, 482B, 490B, 496B, 502B, 508B 514B, 520B, 527B, 533B, 540B, 547B, 553B, 559B, 565B, 571B, 578B, 585B, 592B, 598B, 605B, 613E, 614B, 622B, 629B, 636B, 643B, 650B, 657B, 663B, 670B, 678B, 683B, 689B, 696B, 703B, 710B, 719E, 720B, 728B, 735B, 741B, 747B, 753B, 760B, 767B, 774B, 781B, 787B, 793B, 800B, 806B, 812B, 818B, 825E, 826B, 834B, 841B, 849B, 857B, 864B, 871B, 879B, 887B

Math Around the World. See Differentiated Instruction, Extension: Math Around the World.

Math Enrichment. See Differentiated Instruction, Extension: Math Enrichment.
Math Language Development, 3E, 12B,
17A, 19B, 25A, 27B, 34B, 59A, 74A, 133E, 133H, 177A, 183A, 197A, 221E, 221H, 258A, 275A, 355E, 355H, 397A, 443A, 463A, 473G, 474B , 482B, 488A, 490B, 496B,

500A, 502B, 508B, 514B, 520B, 525A 527B, 551A, 533B, 540B, 547B, 551A, 553B, 559B, 565B, 571B, 578B, 585B, 592B, 598B, 648A, 605B, 613E, 614B, 622B, 629B, 636B, 643B, 648A, 650B, 657B, 663B, 670B, 671, 678B, 683B, 689B, 696B, 703B, 710B, 715A, 719E, 720B, 728B, 735B, 741B, 747B, 753B, 758A, 760B, 767B, 774B, 779A, 781B, 787B, 793B, 800B, 806B, 812B, 818B, 825E, 826B, 834B, 841B, 849B, 857B, 862A, 864B, 871B, 879B, 887B, 893A

Mathematical Language Routines. See Math Language Development.
Mauch Chunk Switchback Railway, 261
Medal, earning, 639
Metric measurement, 669
Mirror image, 20, 69, 73
Mirzakhani, Maryam, 42
Modifications to Pacing, 3D, 4B, 12B, 19B, 27B, 34B, 40B, 48B, 55B, 62B, 69B, 76B, 83B, 92B, 98B, 105B, 112B, 118B, 125B, 133D, 134B, 142B, 149B, 156B, 163B, 172B, 179B, 185B, 192B, 199B, 206B, 212B, 221D, 222B, 237B, 243B, 249B, 255B, 262B, 270B, 277B, 284B, 290B, 297B, 303B, 310B, 317B, 326B, 333B, 339B, 346B, 355D, 356B, 364B, 370B, 377B, 384B, 392B, 399B 405B, 411B, 417B, 426B, 432B, 438B, 445B, 452B, 459B, 465B, 473F, 474B, 482B, 490B, 496B, 502B, 508B, 514B 520B, 527B, 533B, 540B, 547B, 553B, 559B, 565B, 571B, 578B, 585B, 592B, 598B, 605B, 613D, 614B, 622B, 629B, 636B, 643B, 650B, 657B, 663B, 670B, 678B, 683B, 689B, 696B, 703B, 710B 719D, 720B, 728B, 735B, 741B, 747B, 753B, 760B, 767B, 774B, 781B, 787B, 793B, 800B, 806B, 812B, 818B, 825D, 826B, 834B, 841B, 849B, 857B, 864B 871B, 879B, 887B

Mona Lisa painting, 62

Montreal Protocol, 871, 892
Moses, Bob, 385, 386
Multiplication, 619
of expressions, 657-662
numbers in scientific notation,
696-702
powers, 633
with bases other than 10, 631
with same base, 629-635
of $10,630,653$
Music, and math, 474-480
Musical scales, 478

N

Nanoarchaeum equitans, 692
Naval Proving Ground, 813

Index

Negative associations, 843, 846, 851
Negative exponents, 643-649
Negative expressions, 625
Negative linear association, 868
Negative numbers, 626
Negative slope, 303-309, 314. See also Slope of the line.
Neutrino, 669
Noether, Emmy, 349
Nonlinear association, 842, 846, 878
Nonlinear relationships, 274, 519. See also Linear relationships.

Nonproportional linear relationships, slope and, 281

Number(s)
addition, in scientific notation,
703-709
division, in scientific notation
696-702
as fraction, 753
irrational. See Irrational numbers
large, on number line, 670-676
from least to greatest, 725
multiplication, in scientific notation, 696-702
negative, 626
ordering, 689
puzzles, 356-361
rational. See Rational numbers. small, on number lines, 677-682 subtraction, in scientific notation, 703-709

Number lines

labeling, 671
large numbers on, 670-676
ordering square roots on, 743 plotting numbers on, 740, 745 small numbers on, 677-682

Number machine, 356-357, 479
building, 358
expression building to represent, 364

0

Obtuse triangle, 796
Optical illusion, 137, 142, 152, 212-216
Ordered pair, as solution to
equation, 398, 423, 436, 442, 445,
446, 452, 456
Ordered pairs, 498
Orientation, 24
Outlier, 861, 862
Ovals, congruent, 85, 86
See also Congruence.
Owens, Jesse, 251
Ozone layer, 830

P

Packaging, shrinkflation in, 171
Paint cracking, 61, 62
Paper puppets, 11
Parallel lines, 94, 96, 155
angles in a triangle and, 118-124
transversal intersecting, 106-108

Parallelogram

dilation, 166, 191
Pattern recognition, 180
Pelagibacter ubique, 692
Pennies, 684-685
Penrose, Sir Roger, 214, 215
Penrose Triangle, 215, 217

Pentagon

reflection, 31, 32
rotation, 32
tessellating, 7, 8 (See also Tessellations.)
translation, 32
Percent of charge, 529
time period and, 522-523
Perfect squares, 731, 732
Perimeter, 71-72
of square, 494
of triangle, 802
Perimeter puzzle, 417
Perspective, forced, 137
Perspective drawing, 152, 216
Phone charging, 527-528
Phytoplankton, 833
$\mathrm{Pi}(\pi), 513,553$
volume in terms of cone, 579-581 cylinder, 579-581 sphere, 579-581
Piecewise functions, 533-538
Pitch (music), 474-480
Plane. See also Coordinate plane, points on.
dilations on, 149-155
moving on, 13-18
reflection on, 19-26
Point
on coordinate plane. See Coordinate plane, points on.
corresponding, in congruent figures, 84
equation for a line passing
through, 290-294
rotations of, 48-52
vanishing, 137
Polygons, 863
congruent, 76-82, 87, 130
dilation, 163, 167
scaled copy, 148
similar, 179-183
transformation, 55, 89, 162
Positive associations, $843,846,847$, 851
Positive exponents, 646
Positive expressions, 625
Positive linear association, 868

Powers

with bases other than 10 division of, 638 multiplication of, 631
multiplication of, 630
powers of, 650-656
of products, 658
with same base division of, 636-642 multiplication of, 629-635
single, 618, 622, 631, 634, 644, 652 expression as, 639
Powers of 2, 634

Powers of 10

applications of arithmetic with
683-688
division of, 637, 653
large numbers on number line using, 670-676
multiplication of, 630, 653
raising to another power, 651
rewriting, 696
small numbers on number line using 677-682
value as multiple of, 681
Prasinophyte algae, 692
Preimage, 23, 24, 25, 66
Prime notation, 24
Prisms, rectangular. See Rectangular prism.

Products. See also Multiplication power of, 658
Professional Learning, 3G-3H,
8A, 17A, 25A, 32A, 38A, 46A, 53A, 59A, 67A, 74A, 81A, 88A, 96A, 103A,
110A, 116A, 123A, 129A, 133G-133H,
138A, 147A, 154A, 161A, 168A, 177A,
183A, 190A, 197A, 204A, 210A, 217A,
221G-221H, 227A, 235A, 241A, 247A,
253A, 258A, 268A, 275A, 282A, 288A,
295A, 301A, 308A, 315A, 323A, 331A,
337A, 344A, 351A, 355G-355H, 360A,
368A, 375A, 382A, 390A, 397A, 403A,
409A, 415A, 422A, 430A, 436A, 443A
450A, 457A, 463A, 469A, 473I, 479A,
488A, 494A, 500A, 512A, 518A, 525A,
531A, 537A, 545A, 551A, 557A, 563A,
569A, 576A, 583A, 590A, 596A, 603A, 609A, 613G, 618A, 627A, 634A, 641A,
648A, 655A, 661A, 667A, 675A, 681A,
687A, 694A, 701A, 708A, 715A, 719G,
724A, 733A, 739A, 745A, 751A, 758A,

765A, 771A, 779A, 785A, 791A, 798A, 804A, 810A, 816A, 822A, 825G, 831A, 839A, 847A, 855A, 862A, 869A, 877A, 885A, 893A
Proportional relationships, 595
See also Linear relationships.
calculating the rate, 244
comparing, 255-259
constant of proportionality, 257
defined, 267
between distance and time, 237-240,
243-244
equation of a line, 232
graphing heart rates, 231
graphs of, 237-248, 250-254
moving through representations
238
representing, 249-252
scale factor, 233
slope of the line and, 234, 281
translation of a line and, 300
understanding, 237-240
Pupils, dilation, 141
Puppets, paper, 11

Puzzles

cryptarithmetic, 379
numbers, 356-361
perimeter, 417

The Pythagorean Proposition

(Loomis), 773
Pythagoreans, 723, 727, 731
Pythagorean Theorem, 773
applications of, 812-817
converse of, 793-799
defined, 778
to determine distance, 801-803
observing, 774-780
proving, 781-786
testing, 777
Pythagorean triples, 818-823

Q

Quadrilateral

on circular grid, 144-145
dilation, 168
translations, 31
Quijian, Zhang, 427
Quotients, 640

R

Radius
of circle, 553
of cone, 569, 573,599
of cylinder, 572,603
of hemispheres, 576
of spheres, 586
Rate of change, 267, 274

Rational numbers, 753-759, 840
decimal representations of, 760-766
defined, 757
examples of, 757
as fraction, 771
Ratio of integers, 754
Ratios, side lengths in triangles, 192-198
Ray, dilating along, 149
Rectangle, 328
cylinder creation from, 549
dilation, 157, 161
scaled copy, 138, 154
scale factor, 139
volume of, 634
Rectangular prism
edges of, 593
length of diagonal in, 789
volume of, 550, 592
Reflection, 19-26, 31, 128, 162. See
also Transformation.
congruence and, 73
drawing, 23
line of, 21, 24, 25, 34
pentagon, 31, 32
points on the coordinate plane
42-43, 45
polygon, 89
preimage, 23, 24, 25
triangle, 34
Refueling, aerial, 439-440
Reiniger, Lotte, 11, 128
Relative frequencies, 888, 891
Renaissance painting, 137
Repeating decimals, 763, 764, 765
converting into fractions, 767-772
notations to represent, 762
Reutersvärd, Oscar, 215
Rewriting equations, 377-391
Rice, Marjorie, 7, 128
Riddles, 359
Right triangle, 724, 783, 785, 795, 798
missing side lengths of,
determination of, 787-792
Rigid transformations.
See also Transformation.
defined, 66
parallel lines, 95
rotating angles and, 102
Rogue planes, 346-349
Roller coaster, 261
Rotation, 15, 16, 31, 128.
See also Transformation.
angle of, 16
angles, 99-102
center of rotation, 16, 55, 95
clockwise, 16, 29, 52
counterclockwise, 16, 28, 52
in different directions, 50-51
hexagon, 31
line segment, 93, 96
patterns, 98-104
pentagon, 32
of a point, 48-51
polygon, 89
triangle, 92
Rules, transformation, 57, 58

S

Sampling, 481
Savings account, 520, 521
Scaled copy, 138, 147
Scale factor, 138, 139, 150, 156, 168,
196-198, 233, 619, 649
Scaling, 134
Scatter plot, 830, 831, 852-853, 862,
869
associations in, 842-843
comparing, 844
creation of, 828
interpreting, 829
and linear models, 865
observing patterns in, 841-848
points on, interpreting, 834-840
Schattschneider, Doris, Dr., 7
Scientific notation, 613, 766
addition of numbers with, 703-709 defined, 693
to describe large and small numbers, 689-695
division of numbers with, 696-702
identifying, 690
multiplication of numbers with,
696-702
subtraction of numbers with, 703-709 writing, 691
Segmented bar graphs, 889-890
frequency tables and, 891
Sellers, Kimberly, 888
Sequence of transformations, 37-39,
58, 60, 128, 176, 189. See also Transformation.

Shadows, height and, 199-205
Shang Gao, 783
Shirham, King, 621
Shrinkflation, 171
Side lengths, in similar triangles,
192-198
Sierpiński, Waclaw, 616
Sierpiński triangle, 614-619
Similar figures, 176
Similarity, 172-178
creating similar figures, 173 determining, 174-175

Index

Similarity (continued)
polygons, 179-183
triangles, 185-191
Similar shapes, 69-75
Simultaneous equations, solutions for, 435
Single power, 618, 622, 631,
644, 652
expression as, 634, 641, 655, 746
Slicing, bread, 720-725
Slope, 628, 780
interpreting, 864-870
negative, 866, 878
Slope of a line, 206-210
calculate, 291
defined, 209 different slopes, different lines, 207 multiple lines with the same slope, 208
negative, 303-309, 314
nonproportional relationships and, 281 proportional relationships and, 234 281

Slope triangles, 209

Small numbers

on number lines, 677-682
scientific notation to describe,
689-695
writing in scientific notation, 692

Smartphones, 710-716
Solution to a system of
equations, 442

Sorting

expressions, 624
rectangles, 135-136
square roots, 737
Speed, 488, 507
and distance, 519
of light, 673

Spheres

in cylinder, 579-580
height of, 587
radius of, 586
shipping, 607
volume of, 516, 578-584, 582, 585-591 605
to packaging problems, 605-610 in terms of pi $(\pi), 579-581$

Square

area of, 490, 493, 734, 735-740, 745
comparing, 736, 741
perfect, 731, 732
perimeter of, 494
side lengths of, 735-740
spiraling, 818
tilted, 774

Square grid, dilations on, 156-162
Square roots, 728-734
estimation of, 741-746
notation, 733, 780
ordering on number lines, 743
sorting, 737
symbol, 733
Subtraction, numbers in scientific notation, 703-709

Sultan Qaboos Grand Mosque
(Muscat, Oman), 125-126
Surface area, 271-272, 823
Switchback Railway, 261
Symmetry, 19-26
See also Transformation
flipping figures, 21-22
mirror image, 20
reflection, 23, 24

Systems of linear equations,

438-444, 479-480, 526
aerial refueling, 439-440
defined, 442
graphing, 445-451
solution to, 442
solving, 445-458
writing, 459-464

T

Tables

frequency, 891
linear relationships, 273,343
proportional relationships, 252
representation of function in, 514,517 , 518
to represent linear/nonlinear
relationship, 519
two-way, 880, 884, 891
Technology. See Amps Featured Activities.
Temperature, 504
high, graph representing, 506, 531 time and, 503

Terminating decimals, 763, 764, 765
Tessellations, 4-8
pentagons and, 7, 8
Thompson, LaMarcus Adna,
261
Three-dimensional shapes, 540
Three-dimensional
space/drawing, 137, 152
Time, 488
distance as function of, 487 and temperature, 503

Trading equations, 393, 407

Transformations

animation and, 11 border pattern using, 125-129
describing, 55-60
frog dance, 13-14
grids, 27-33
identifying, 30
points on the coordinate
plane, 40-47
reflection, 19-26, 31, 128
rigid (See Rigid transformations.)
rotation, 15, 16, 31, 128
rules, 57, 58
sequence of, 37-39, 58, 60, 128, 176 ,
189
symmetry and reflection,
19-26
translation, 15, 16, 31, 128
Translated lines, equations of,
297-300
proportional relationships and, 300
Translation, 15, 16, 31, 128, 162. See
also Transformation
pentagon, 32
points on the coordinate
plane, 41, 45
polygon, 89
Transportation, 882-883
Transversals, 106-109
Trapezoid, 59, 83, 129
Tre Flip, 510
Triangles, 635, 649
acute, 796
angles, 185-190
adding, 112-116
congruence, 148
congruent, 73, 74, 75, 76
dilation, 147, 158, 161, 165-166, 168, 183
equilateral, 615
interior angles, 112-116, 139, 169
line of reflection, 34
making, 794
missing side length, 201-202, 204, 211,
218
obtuse, 796
parallel lines and, 118-124
Penrose Triangle, 215, 217
perimeter of, 802
and Pythagorean Theorem. See
Pythagorean Theorem.
ratios of side lengths in, 192-198
right. See Right triangle
rotating, 92
scaled copy, 138, 147, 184
scale factor, 196-198
side lengths, determination of,
774-780
Sierpiński, 614-619
similar, 185-191
slope, 209
tessellations, 6
unshaded, 615, 616
Triangle sum theorem, 122
Two-way tables, 880, 884, 891

U

Unknown angles, determining, 101, 103
U.S. Paralympic wheelchair basketball, 325

V

Vanishing point, 137
van Meegeren, Han, 61
Variables, 249, 468
describing hanger dependent, 491, 493, 494, 499, 508, 509. 512
diagram using, 377
equation with two variables, 326-330 independent, 491, 493, 494, 499, 509, 512

Vermeer, Johannes, 61
Vertical intercept, 281

Vertical lines

defined, 322
equations for, 317-324
Vinculum, 762
Visual patterns, 222-225
sketchy patterns, 225
What comes next?, 223-224
Vocabulary. See Math Language
Development.
Volume, 271-272
of circle, 548-549
of circular solids, 585-591
of cone, 559-564, 566, 567, 569, 573,
574, 576, 582, 585-591, 599, 676
of cube, 491, 516, 571, 650
of cylinder, 540-552, 561, 562, 567, 572,
574, 576, 582, 585-591, 594, 596, 603,
606, 661
greater, 600-601
of hemispheres, 571-577
of rectangle, 634
of rectangular prism, 550
of spheres, 516, 578-584, 585-591
to packaging problems, 605-610
in terms of pi $(\pi), 579-581$
Voyager (refueling aircraft),
440

W

Waffle cone, 539
Waitz, Grete, 229, 251
Weights, on balanced hanger
diagrams, 370-376
West, Gladys, 813
Wilson, Sophie, 671

Wheelchair basketball, 325
WMAP (spacecraft), 91
Women's racing, 229
World record, marathon, 229
Wright, Alex, 42

X

x-axis, 499

Y

y-axis, 499
y-intercept, 281
interpreting, 864-870

Z

Zhang Qiujian Suanjing (Quijian), 427
Zhoubi Suanjing, 783

[^0]: Desmos ${ }^{\circledR}$ is a registered trademark of Desmos, Inc.
 English Learners Success Forum is a fiscally sponsored project of the New Venture Fund (NVF), a 501(c)(3) public charity.

 Universal Design for Learning Guidelines and framework are developed by the Center for Applied Special Technology. © 2018 CAST.

 The Effective Mathematics Teaching Practices are developed by NCTM in Principles to Actions: Ensuring mathematical success for all. © 2014 NCTM.

 Notice and Wonder and I Notice/I Wonder are trademarks of NCTM and the Math Forum.

[^1]: CAPSTONE1.18 Creating a Border Pattern Using Transformations125AEND-OF-UNIT ASSESSMENT

[^2]: Sub-Unit Narrative
 What's got 10 billion
 galaxies and goes great with maple syrup?
 Construct a triangle from a straight angle and cut two parallel lines to see what angle relationships you notice.

[^3]: Key:
 \bigcirc Independent $\stackrel{\circ}{\circ}$ Small Groups ㅇํㅇ Pairs คํำํํ Whole Class

[^4]: When you launch a lesson, you'll have access to easy-to-skim teacher notes and all of the controls necessary to manage the lesson.

[^5]: Some routines adapted from Zwiers, J. (2014). Building academic language: Meeting Common Core Standards across disciplines, grades 5-12 (2nd ed.). San Francisco, CA: Jossey-Bass.

[^6]: Conceptual Understanding

 Students experiment with rigid transformations to explore how and why side lengths and angle measures are preserved (Lesson 9). Students discover why a triangle must be composed of angle measures that add to 180° (Lesson 16).

[^7]: 1.

 a Greater or less than 90° ? Greater than 90°
 b Approximate measure: Sample response: About 135°

[^8]: 30 \qquad

[^9]: Reflect:

[^10]: Reflect:

[^11]: Reflect:

[^12]: MLR7: Compare and Connect
 During the Connect, as students share their puzzles and any representations or strategies they used to solve their partner's puzzle, ask the class to identify similarities and differences between their strategies and representations. Ask volunteers to share which solution strategy they think is the most efficient and why. Draw students' attention to the fact that, as long as the strategy makes sense mathematically, it is a valid strategy.

