Amplify Math TENNESSEE

Amplify Math

Grade 7

Volume 2: Units 5-8

Teacher Edition

About Amplify

Amplify is dedicated to collaborating with educators to create learning experiences that are rigorous and riveting for all students. Amplify creates K-12 core and supplemental curriculum, assessment, and intervention programs for today's students.

> A pioneer in $\mathrm{K}-12$ education since 2000, Amplify is leading the way in next-generation curriculum and assessment. All of our programs provide teachers with powerful tools that help them understand and respond to the needs of every student.

Amplify Math is based on the Illustrative Mathematics (IM) curriculum. IM 6-8 Math ${ }^{\text {TM }}$ was originally developed by Open Up Resources and authored by Illustrative Mathematics, and is © 2017-2019 Open Up Resources. Additional adaptations and updates to IM 6-8 Math ${ }^{\text {TM }}$ are © 2019 Illustrative Mathematics. IM 9-12 Math ${ }^{\top M}$ is © 2019 Illustrative Mathematics. IM 6-8 Math ${ }^{\top \mathrm{M}}$ and IM 9-12 Math ${ }^{\text {TM }}$ are licensed under the Creative Commons Attribution 4.0 International license (CC BY 4.0). Additional modifications contained in Amplify Math are © 2020 Amplify Education, Inc. and its licensors. Amplify is not affiliated with the Illustrative Mathematics organization.

Desmos ${ }^{\circledR}$ is a registered trademark of Desmos, Inc.
English Learners Success Forum is a fiscally sponsored project of the New Venture Fund (NVF), a 501(c)(3) public charity.

Universal Design for Learning Guidelines and framework are developed by the Center for Applied Special Technology. © 2018 CAST.

The Effective Mathematics Teaching Practices are developed by NCTM in Principles to Actions: Ensuring mathematical success for all. © 2014 NCTM.

Notice and Wonder and I Notice/I Wonder are trademarks of NCTM and the Math Forum.

No part of this publication may be reproduced or distributed in its original form, or stored in a database or retrieval system, without the prior written consent of Amplify Education, Inc., except for the classroom use of the worksheets included for students in some lessons.

Cover illustration by Caroline Hadilaksono.
© 2023 by Amplify Education, Inc. 55 Washington Street, Suite 800, Brooklyn, NY 11201 www.amplify.com

ISBN: 978-1-63643-488-9
Printed in [e.g., the United States of America] [\# of print run] [print vendor] [year of printing]

Acknowledgments

Program Advisors

Amplify gratefully acknowledges the outstanding contributions and work of distinguished program advisors who have been integral to the development of Amplify Math. This product is testimony to their expertise, understanding of student learning needs, and dedication to rigorous and equitable mathematics instruction.

Phil Daro
Board member: Strategic
Education Research Partnership (SERP)
Area of focus: Content strategy

Fawn Nguyen

Rio School District, California Area of focus: Problem solving

Sunil Singh
Educator, author, storyteller Area of focus: Narrative and storytelling

Paulo Tan, Ph.D.
Johns Hopkins University, School of Education Area of focus: Meeting the needs of all students

Educator Advisory Board

Amplify gratefully acknowledges the outstanding contributions and work of esteemed members of our Educator Advisory Board. This product exhibits their respected observations and reflections.

Melvin Burnett

Alamance Burlington
Schools, North Carolina

Jessica Childers

Putnam County Schools, Tennessee

Brent Christensen

Spokane Public Schools,
Washington

Rhonda Creed-Harry

New York City Schools,
New York

Jenny Croitoru

Chicago Public Schools, Illinois

Tara DeVaughn

Fairbanks Northstar Borough
School District, Alaska

Elizabeth Hailey

Springfield R-XII School District, Missouri

Howie Hua

California State University at Fresno, California

Rachael Jones

Durham Public Schools, North Carolina

Rita Leskovec

Cleveland Metropolitan School District, Ohio

Corey Levin

New York City Schools, New York

Sandhya Raman

Berryessa Union School District, California

Jerry Schmidt
Brentwood School
District, Missouri

Deloris Scott

Yazoo County School
District, Mississippi

Noah Sharrow

Clarkston Community Schools, Michigan

Myla Simmons
Plainfield Public Schools, New Jersey

Michele Stassfurth

North Plainfield School District, New Jersey

Field Trials

Amplify gratefully acknowledges the time and efforts of educators from the following districts and schools whose participation in field trials provided constructive critiques and resulting improvements. This product reflects their valuable feedback.

Berryessa Union School	Leadership Learning
District, California	Academy, Utah
Chicago Jesuit Academy,	Lusher Charter School, Illinois
Lrvisiana Unified School District,	Memphis Grizzlies Preparatory California
Charter School, Tennessee	
District, California	

Saddleback Valley Unified
School District, California
San Juan Unified School
District, California
Santa Paula Unified
School District, California
Silver Summit Academy, Utah

Streetsboro City Schools, Ohio

West Contra Costa Unified School District, California

Wyoming City Schools, Ohio
Young Women's Leadership School of Brooklyn, New York

Amplify Math Product Development

Product

Molly Batchik
Candy Bratton
Stephanie Cheng
Rebecca Copley
Marsheela Evans
Christina Lee
Brad Shank
Kathleen Sheehy
Jennifer Skelley
Rey Vargas
Allen von Pallandt
Steven Zavari
Curriculum and Editorial
Toni Brokaw
Anna Buchina
Nora Castiglione
Jaclyn Claiborne
Kristina Clayton
Drew Corley
Karen Douglass
Karen Everly
Chris Ignaciuk
Justine Jackson
Louise Jarvis
Brian Kam
Rachel King
Suzanne Magargee
Mark Marzen
Nana Nam
Kim Petersen
Molly Pooler
Elizabeth Re
Allison Shatzman
Kristen Shebek
Ben Simon
Evan Spellman
Amy Sroka
Shelby Strong
Rajan Vedula
Zach Wissner-Gross
Digital Curriculum
Ian Cross
Phil DeOrsey
Ryan de la Garza
Sheila Jaung
Nokware Knight
Michelle Palker

Vincent Panetta	Marketing
Aaron Robson	Megan Hunter
Sam Rodriguez	Zach Slack
Eileen Rutherford	Heath Williams
Elliot Shields	
Gabe Turow	Engineering
	Jessica Graham
Design and Illustration	Matt Hayes
Amanda Behm	Bardh Jahjaga
Irene Chan	Eduard Korolchuk
Tim Chi Ly	Nick Maddalena
Cindy Chung	Syed Rizvi
Caroline Hadilaksono	Jon Tully
Justin Moore	
Christina Ogbotiti	Digital Production
Renée Park Andrew Avery	
Eddie Peña	Ryan Cooper
Todd Rawson	Jessica Yin Gerena
Jordan Stine	
Veronica Tolentino	
J Yang	Julie Palomba
	Heather Ruiz
Narrative Design	Ana Zapata
Bill Cheng	
Gala Mukomolova	
Raj Parameswaran	

Program Scope and Sequence

Volume 2

Unit 5	Unit 6	Unit 7	Unit 8
Arithmetic in Base Ten	Expressions and Equations	Rational Numbers	Data Sets and Distributions
14 Instructional Days	19 Instructional Days	19 Instructional Days	17 Instructional Days
2 Assessment Days	2 Assessment Days	2 Assessment Days	3 Assessment Days
16 days total	21 days total	21 days total	20 days total

Unit 1 Scale Drawings

Certain objects in our universe exist at sizes and distances that are impossible for our eyes to see (such as a red blood cell, or Jupiter). In this unit, students harness the power of scaling - bringing large and small objects to a manageable size without distorting them.

Sub-Unit Narrative:

How do you get the perfect fit?
If we are making a larger or smaller copy of something, it needs to look right. The key is the scale factor.

Sub-Unit 2 Scale Drawings $\quad 47$
1.07 Scale Drawings48A 48,

1.09 Scale Drawings and Maps (optional).......................61A
1.10 Changing Scales in Scale Drawings

CAPSTONE 1.13 Build Your Brand
86A
END-OF-UNIT ASSESSMENT

Sub-Unit Narrative:

Who was the King of Monsters?
We use maps and other scale drawings to help simplify large, complex places. Interpreting them is about knowing the scale and how to measure.

Unit 2 Introducing Proportional Relationships

PRE-UNIT READINESS ASSESSMENT

LAUNCH

2.01 Making Music

Sub-Unit 1 Representing Proportional
Relationships With Tables and Equations 101
2.02 Introducing Proportional Relationships With Tables .. 102A
2.03 More About the Constant of Proportionality 108A
2.04 Comparing Relationships With Tables …
2.05 Proportional Relationships and Equations121A
2.06 Speed and Equations ..
2.07 Two Equations for Each Relationship133A
2.08 Using Equations to Solve Problems \quad 140A
2.09 Comparing Relationships With Equations146A
2.10 Solving Problems About Proportional Relationships . 154A

Sub-Unit 2 Representing Proportional Relationships With Graphs 161
2.11 Introducing Graphs of Proportional Relationships 162A
2.12 Interpreting Graphs of Proportional Relationships. 168A
2.13 Using Graphs to Compare Relationships 176A
2.14 Two Graphs for Each Relationship 183A
2.15 Four Ways to Tell One Story (Part 1) 189A
2.16 Four Ways to Tell One Story (Part 2) 196A
CAPSTONE2.17 Welcoming Committee202A
END-OF-UNIT ASSESSMENT

Sub-Unit Narrative:
Who was the original globetrotter?
Tables help keep us organized, but equations tell an entire story with just a few symbols. We'll use both of them to represent proportional relationships.

Sub-Unit Narrative:
Narrative: What good is a graph?
We turn to drawing, interpreting, and comparing proportional relationships in graphs, and notice what is particular to these types of graphs.

Unit 3 Measuring Circles

Identifying a circle may be straightforward, but measuring it is decidedly not. Students experience both the usefulness and challenges presented by this "perfect" shape.

PRE-UNIT READINESS ASSESSMENT

3.01 The Wandering Goat 212A

Sub-Unit 1 Circumference of Circles $\quad 219$

3.03 How Well Can You Measure?
3.04 Exploring Circumference 234A
3.05 Understanding $\pi \ldots \ldots$ 242A
3.06 Applying Circumference \quad 248A
3.07 Circumference and Wheels ...

Sub-Unit 2 Area of Circles
261
3.08 Exploring the Area of a Circle ..
3.09 Relating Area to Circumference 268A

3.11 Distinguishing Circumference and Area281A

CAPSTONE 3.12 Capturing Space 287A

END-OF-UNIT ASSESSMENT

Sub-Unit Narrative:
Why do aliens love circles? Circles are famously difficult to measure precisely, but that won't stop us from trying. Let's see how close we can get.

Sub-Unit Narrative: What makes a circle so perfect?
Squares and circles
may not have much
in common, but we'll need both to measure a circle's area.

Unit 4 Percentages

From the supermarket to the stock market, percents are relied on to communicate quickly about how much something has changed. Students build on their experience with proportional relationships while using percentages to compare quantities within the friendly confines of the number 100.

PRE-UNIT READINESS ASSESSMENT

4.01 (Re)Presenting the United States

296A

Sulb-Unit 1 Percent Increase and
Decrease303
4.02 Understanding Percentages Involving Decimals........304A
4.03 Percent Increase and Decrease
4.04 Determining $100 \% \ldots+. . . \quad 317 \mathrm{~A}$
4.05 Determining Percent Change323A
4.06 Percent Increase and Decrease With Equations331A
4.07 Using Equations to Solve Percent Problems338A

Sulb-Unit 2 Applying Percentages 345
4.08 Tax and Tip ...

4.10 Determining the Percentage360A

4.12 Error Intervals (optional)373A

CAPSTONE
4.13 Writing Better Headlines

379A
END-OF-UNIT ASSESSMENT

Volume 2

Unit 5 Rational Number Arithmetic

Sub-Unit Narrative:
What was Jeanne
Baret's big secret?
Sure, you've probably been adding and subtracting for many years, but have you ever tried to take something away when you had less than zero to start with?

Sub-Unit Narrative

Who was the toughest Grandma to ever hike the Appalachian Trail? Travel forwards and backwards in time to help make sense of multiplication and division of negative numbers.

[^0]
Unit 6 Expressions, Equations, and Inequalities

Students return to the study of algebra and focus on how representation plays such a large role in communicating mathematical ideas. In this unit, the symbols, language, and drawings students use will help them tell the stories they see in the numbers.

Sub-Unit Narrative: What are the first words you learn in "Caveman"?
Dog walking, tools of early civilization, and hangers all come together to help you explore new ways of solving equations.

Sub-Unit Narrative:
Who were the VIPs of
ancient Egypt?
Solving word problems is about making
meaning of the
quantities, and tape

[^1]
Sub-Unit Narrative:

Which three
blockheads did NASA send into space? Find efficiencies for simplifying expressions like the Distributive Property and combining like terms.
diagrams return to help.

PRE-UNIT READINESS ASSESSMENT

Sub-Unit 3 Inequalities615
6.13 Reintroducing Inequalities 616A
6.14 Solving Inequalities 623A
6.15 Finding Solutions to Inequalities in Context 631A
6.16 Efficiently Solving Inequalities 637A
6.17 Interpreting Inequalities 644A
6.18 Modeling With Inequalities 650A
Sub-Unit 4 Equivalent Expressions657
6.19 Subtraction in Equivalent Expressions 658A
6.20 Expanding and Factoring 665A
6.21 Combining Like Terms (Part 1) 672A
6.22 Combining Like Terms (Part 2) 679A
6.23 Pattern Thinking 685A

Unit 7 Angles, Triangles, and Prisms

This unit is about the math of what can be seen and what can be held. Through constructing and drawing, students explore relationships among angles, lines, surfaces, and solids.

Sulb-Unit 2 Drawing Polygons With Given Conditions 741
7.08 Building Polygons (Part 1) 742A
7.09 Building Polygons (Part 2) 749A
7.10 Triangles With Three Common Measures 756A
7.11 Drawing Triangles (Part 1) 763A
7.12 Drawing Triangles (Part 2) 769A
MID-UNIT ASSESSMENT

Sulb-Unit 3 Solid Geometry 777
7.13 Slicing Solids 778A
7.14 Volume of Right Prisms 785A
7.15 Decomposing Bases for Area 791A
7.16 Surface Area of Right Prisms 798A
7.17 Distinguishing Surface Area and Volume 805A

Sub-Unit Narrative:

Did radio kill the aviation star?
As you'll see, some angles were just meant to go together. Here, you'll be introduced to complementary, supplementary, and vertical angles.

Sub-Unit Narrative:

How did triangles help win a war? In this Sub-Unit, you will find that constructing polygons with specific lengths and angle measures can have dramatically different results.

Sub-Unit Narrative:
This machine will slice, but will it dice? You've studied the surfaces of threedimensional figures and the spaces inside them. Now, let's see what happens when we slice them open.

Unit 8 Probability and Sampling

For the first time, students encounter how to quantify the chances of something happening. Though the future is unwritten, probability and statistics help us make better predictions and thus better decisions.

PRE-UNIT READINESS ASSESSMENT

8.01 The Invention of Fairness 820A
Sub-Unit 1 Probabilities of Single-Step Events 827
8.02 Chance Experiments 828A
8.03 What Are Probabilities? 835A
8.04 Estimating Probabilities Through Repeated Experiments 841A
8.05 Code Breaking (Part 1) 847A
8.06 Code Breaking (Part 2) 854A

Sub-Unit 2 Probabilities of Multi-Step Events 861
8.07 Keeping Track of All Possible Outcomes 862A
8.08 Experiments With Multi-step Events 869A
8.09 Simulating Multi-step Events 876A
8.10 Designing Simulations 883A
MID-UNIT ASSESSMENT
Sub-Unit 3 Sampling889
8.11 Comparing Two Populations 890A
8.12 Larger Populations 897A
8.13 What Makes a Good Sample? 903A
8.14 Sampling in a Fair Way 910A
8.15 Estimating Population Measures of Center 916A
8.16 Estimating Population Proportions 922A
CAPSTONE 8.17 Presentation of Findings928A
END-OF-UNIT ASSESSMENT

Sub-Unit Narrative:

How did the women of Bletchley Park save the free world? Welcome to probability, the math of games and chance. Discover how probability can reveal hidden information, even secret codes.

Sub-Unit Narrative: How did a blazing shoal bring the Philadelphia Convention Center to its feet?
When predicting the chances gets complicated, a simulation can help make predictions.

Sub-Unit Narrative:

 What's on your mind? Not all data is created equal. It is important to know how to identify when a sample is representative of a population.
UNIT 5

Rational Number Arithmetic

Students discover the need to work with both positive and negative values to describe the vastness of the world around them. With the entire set of rational numbers and all four operations now at their disposal, the sky (or the sea floor) is the limit.

Essential Questions

- How do you represent addition, subtraction, or multiplication of rational numbers on a number line?
- How is solving problems with rational numbers the same or different from solving problems with only non-negative rational numbers?
- How can rational numbers be used to represent real-world situations?
- (By the way, do two negatives always make a positive?)

Key Shifts in Mathematics

Focus

- In this unit . . .

Students interpret rational numbers in contexts (e.g., temperature, elevation, payments and debts, position, direction, speed and velocity) together with their sums, differences, products, and quotients. Students use arrow diagrams to represent sums and differences of rational numbers and in contexts such as temperature or elevation change. They view situations in which objects are traveling at a constant speed, use multiplication equations to represent changes in position, and interpret positive and negative velocities in context. They become more fluent writing different multiplication and division equations for the same relationship.

Coherence

\& Previously ...
In Grade 6, students learned that rational numbers comprise positive and negative fractions. They plotted rational numbers on the number line and plotted pairs of rational numbers on the coordinate plane. In Unit 2, students explored proportional relationships exclusively with positive rational constants of proportionality.

Coming soon ...

In Unit 6, students apply their understanding of the entire set of rational numbers to expressions and equations. In Grade 8, they learn that there are numbers that are not rational (beyond π), which can only be approximated with rational numbers on the number line.

Rigor

In this unit, students engage in rich tasks that address one or more of these aspects of rigor. The following are examples of how each pillar is addressed. See each Lesson Brief to learn more about how rigor is balanced throughout the unit.

Operations with rational numbers are first explored in context, so students start with a concrete framework on which to build their understanding (Lessons 3 and 10).

Procedural Fluency

Students compare numerical expressions with all four operations, determining equivalent pairs using knowledge of additive and multiplicative inverses (Lesson 15).

Students apply their understanding of rational number arithmetic to interpret negative quantities, such as negative time or rates of change (Lesson 17).

A World of Opposites

SUB-UNIT

Lessons 2-9

Adding and Subtracting Rational Numbers

Students revisit rational numbers from Grade 6, including how to represent them on the number line. They extend their understanding by observing how values change in context, such as temperature and elevation changes, and generalize rules for the signs of the sums and differences of rational numbers.

Narrative: From botany to temperature and elevation, rational numbers are everywhere!

SUB-UNIT

Multiplying and Dividing

 Rational NumbersStudents consider problems about position, direction, constant speed, and constant velocity, and represent these quantities using arrow diagrams and numerical expressions containing rational numbers. They interpret products of rational numbers in terms of position and direction and use the relationship between multiplication and division to divide rational numbers.
Narrative: Discover how hiking the Appalachian trail relates to rational numbers. Launch

Target: Zero

Students warm back up to positive and negative values by playing a card game with the goal of being the closest to 0 . They notice the benefits of getting opposite values on their cards, and they compare how far their scores are from zero - from both above and below.

SUB-UNIT

Four Operations With Rational Numbers

Students engage in a smorgasbord of problem solving with rational numbers that buttons up work from throughout the unit. Ample opportunity is provided to both practice and extend understanding of how all four operations interact with rational numbers.

(4) Narrative: Rational numbers can help you make preparations for climbing Mt. Everest.

Summiting Everest

Let's end the unit the way we started: with a game. Now equipped with how to deal with rational numbers in various situations and contexts, students put themselves to the ultimate test: budgeting. Working with rational number rates, students plan for climbing Mt. Everest by strategizing about how quickly their limited resources will deplete.

Unit at a Glance

Spoiler Alert: Even though there are four operations, every subtraction and division problem can be rewritten as an addition or multiplication problem, respectively.

Sub-Unit 2: Multiplying and Dividing Rational Numbers

$$
\begin{gathered}
a \cdot b=a b \\
(-a) \cdot(-b) \\
a \cdot(-b)=-a b
\end{gathered}
$$

$$
\begin{aligned}
& ? \cdot 12=-48 \\
& ?=\text { negative }
\end{aligned}
$$

12 Multiply!

Reason about the sign of the product when multiplying more than two rational numbers and use properties to evaluate expressions.

$$
\begin{aligned}
& 2 \cdot(-3)=-6 \\
& -6 \div 2=-3
\end{aligned}
$$

11 Multiplying Rational Numbers
Apply understanding of the distance formula, $d=r t$, to make observations about the rules for multiplying rational numbers.

13 Dividing Rational Numbers

Use the relationship between multiplication and division to develop rules for dividing rational numbers.

Key Concepts

Lesson 6: Subtracting a number is equivalent to adding the additive inverse.
Lesson 10: Multiplying a negative by a negative results in a positive product. Lesson 13: Dividing by a number is equivalent to multiplying by the multiplicative inverse.

Pacing

20 Lessons: 45 min each Full Unit: 23 days 3 Assessments: 45 min each - Modified Unit: 21 days

Rational Numbers

3 Changing Temperatures •
Represent addition of rational numbers on a number line with arrow diagrams.

4 Adding Rational Numbers
Explore adding rational numbers and generalize rules about the sign of the sum.

5 Money and Debts
Use negative numbers in the context of money to represent an amount that is owed.

Assessment

9 Adding and Subtracting Rational Numbers

Apply knowledge of addition and subtraction of rational numbers to real-world contexts.

Sub-Unit 3: Four Operations With Rational Numbers

$$
10000-99999<0
$$

$$
\frac{1}{2}=0.5
$$

14 Negative Rates

Explore negative rates of change and how to represent them in equations and on graphs.

15 Expressions With Rational Numbers

Address common misconceptions that can arise about expressions involving variables, such as $-x$ must always be a negative number.
always be a negatıve number.

$$
2 \cdot\left(-\frac{3}{2}\right)=-3
$$

A Mid-Unit Assessment
10 Position, Speed, and Time
Formalize that the product of a positive and negative number is negative, by relating multiplication to repeated addition.

16 Say It With Decimals

Use long division to express fractions as decimals and see how calculations sometimes repeat, resulting in a repeating decimal.

Unit at a Glance

< continued

$$
+-x \div
$$

17 Solving Problems With Rational Numbers

Synthesize understanding of rational number arithmetic and interpreting negative quantities, such as rates of change.

Spoiler Alert: Even though there are four operations, every subtraction and division problem can be rewritten as an addition or multiplication problem, respectively.

$$
\begin{gathered}
x+a=b \\
p x=9
\end{gathered}
$$

18 Solving Equations With

 Rational Numbers ${ }^{\circ}$Solve equations of the forms $p+x=q$ and $p x=q$ with rational values.

19 Representing Contexts With Equations ${ }^{-}$

Build on the work from Lesson 18 to connect, write, and solve equations that represent real-world scenarios.

Key Concepts

Lesson 6: Subtracting a number is equivalent to adding the additive inverse.
Lesson 10: Multiplying a negative by a negative results in a positive product.
Lesson 13: Dividing by a number is equivalent to multiplying by the multiplicative inverse.

Pacing

20 Lessons: 45 min each Full Unit: 23 days 3 Assessments: 45 min each - Modified Unit: 21 days

Assumes 45-minute class periods per day. For block scheduling or other durations, adjust the number of days accordingly.

Captstone Lesson

Assessment

20 Summiting Everest

Use rational number rates while role playing as mountain climbers attempting to summit Mt. Everest.

A End-of-Unit Assessment

Modifications to Pacing

Lessons 2 and 3 : If students enter with a very strong foundation in their understanding of placing rational numbers on the number line, it is possible to omit these lessons, or combine them into a 1-day lesson.

Lessons 7 and 8: It is possible to combine Lessons 7 and 8 into a 1-day lesson. Any activities not completed in class could be assigned for homework to provide extra practice.
Lessons 18-20: Consider spending 3 days on Lessons 18 and 19, instead of 2 . To gain a day back, omit the Capstone.

Unit Supports

Math Language Development

Lesson	New Vocabulary
2	rational numbers
3	arrow diagram
4	additive inverse balance charge credit debt deposit withdrawal
5	velocity
11	multiplicative inverse bar notation repeating decimal terminating decimal
13	

Mathematical Language Routines (MLRs) support students' language development in the context of mathematical sense-making.

Lesson(s)	Mathematical Language Routines
4	MLR1: Stronger and Clearer Each Time
$1-5,10,11$, 13,16	MLR2: Collect and Display
$6,7,18$	MLR3: Critique, Correct, Clarify
$2,3,5$	MLR5: Co-craft Questions
$9,17,19$	MLR6: Three Reads
$1-5,9-13,15$, $17-19$	MLR7: Compare and Connect
$1,6-8,12-14$, 18	MLR8: Discussion Supports

Materials

Every lesson includes:

Exit Ticket
Dil Additional Practice

Additional required materials include:

Lesson(s)	Materials
5,20	calculators
4	collection of small, short objects
19	materials for creating a poster
20	number cubes paper clips, snap cubes, or other objects to move on the number line
10,11	PDFs are required for these lessons. Refer to each lesson's overview to see which activities require PDFs.
$1,2,4-13$,	standard deck of playing cards
$15-19$	sticky notes
1,12	

Instructional Routines

Activities throughout this unit include the following instructional routines:

Lesson(s)	Instructional Routines
15	Card Sort
19	Gallery Tour
16	Notice and Wonder
$7,12,18$	Number Talk
$6,7,12$	Partner Problems
$2,7,9,12,18$,	Poll the Class
19	
$4,5,9-11,16$,	Think-Pair-Share
19	
15	True or False?
3,17	Which One Doesn't Belong?

Unit Assessments

Each unit includes diagnostic, formative, and summative assessment opportunities to gauge student understanding of the concepts and skills taught in the unit. All assessments are available in print and digital formats.

Assessments

Pre-Unit Readiness Assessment

This diagnostic assessment evaluates students' proficiency with prerequisite concepts and skills they need to feel successful in this unit.

Exit Tickets

Each lesson includes formative assessments to evaluate students' proficiency with the concepts and skills they learned.

Mid-Unit Assessment

This summative assessment provides students the opportunity to demonstrate their proficiency with the concepts and skills they learned in the first part of the unit.

End-of-Unit Assessment

This summative assessment allows students to demonstrate their mastery of the concepts and skills they learned in the lessons preceding this assessment. Additionally, this unit's Performance Task is available in the Assessment Guide.

When to Administer

Prior to Lesson 1

End of each lesson

After Lesson 9

After Lesson 20
desmos

Featured Activity

Target: Zero, Part 2

Put on your student hat and work through Lesson 1, Activity 2:

Points to Ponder ...

- What was it like to engage in this activity as a learner?
- How might you pace your students through this activity?
- What best practices might you employ for integrating technology in your classroom?

Other Featured Activities:

- Backward and Forward in Time (Lesson 10)
- How Close Can You Get? (Lesson 13)
- Greatest Product (Lesson 15)
- The Summit Attempt (Lesson 20)

Social \& Collaborative Digital Moments

Unit Study Professional Learning

This unit study is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can engage in a meaningful professional learning experience to deepen your own understanding of this unit and employ effective pedagogical practices to support your students.

Anticipating the Student Experience With Fawn Nguyen

Sub-Unit 3 has all four operations of adding, subtracting, multiplying, and dividing with rational numbers. Students use arrow diagrams and number lines to practice adding and subtracting rational numbers. They work on real-world examples of changing temperatures and elevation. Students interpret multiplication and division with rational numbers in the context of velocity and temperature change over time. Equip yourself to support your students with this concept by engaging in a brief problem-solving exercise to deepen your own learning.

Do the Math

Put on your student hat and tackle these problems from Lesson 19, Activity 2:

Activity 2 Changing Elevation

Hang Son Doong ("Mountain River Cave") in Vietnam. is the largest cave in the worid. It is so massive, it can fit an entire buildings, or have a 747 plane fly through it without the wings touching sides. Not discovered until 1990, and not first explored until 2009, there is much still to be discovered about this incredible wonder.

>1. in 2019. multiple members of the diving team were given the opportunity to explore a new underground tunnel in Son Doong Cave. They dove as far as they could below sea level. then dropped a weighted rope 42 m down. reaching 120 m below sea level. How deep was the team when they dropped the rope?
a Draw an arrow diagram on the number line that represents the problem.

b. Write an equation to represent the scenario. Make sure that you define your variable.
c. Solve your equation to determine the unknown value. Show your thinking.

Put your teacher hat back on to share your work with one or more colleagues and discuss your approaches.

Points to Ponder ...

-What was it like to engage in this problem as a learner?

- Students may not fully appreciate how deep 42 meters (in question 1) is, it might be interesting to ask for their estimates of the heights of different buildings on the school campus or around town.
- Arrow diagrams are used throughout this unit, what other diagrams might you share with students to aid their understanding?
- What implications might this have for your teaching in this unit?

Focus on Instructional Routines

Number Talk

Rehearse . .

How you'll facilitate the Number Talk instructional routine in Lesson 18, Warm-up:

```
Warm-up Number Talk
The variables a through hall represent different numbers.
Mentally determine the number(s) that make each equation true.
1. }-6+6=
2. }11+b=
3. c+d=0
4. }\frac{3}{5}\cdot\frac{5}{3}=
>5. }7\cdott=
*6. g}h=
```


Points to Ponder . . .

- Number Talk routines offer a chance to slow down and focus on the process of reasoning about a mathematical problem, instead of jumping straight to the solution.

This routine . . .

- Encourages divergent thinking as you solicit different approaches to the same solution.
- Helps to lift up voices that may not always want to be first to share.
- Shows that even a seemingly straightforward problem can hold complexity worthy of discussion.
- Requires students to be able to explain their thinking rather than just give an answer.

Anticipate...

- More students may want to share than you have time for. Have a plan for how much time you have for each problem and which are the most impactful to discuss further.
- If you haven't used this routine before, what classroom management strategies might you need to put in place to help it run smoothly?
- If you have used this routine before, what went well? What would you want to refine?

Strengthening Your Effective Teaching Practices

Elicit and use evidence of student thinking.

This effective teaching practice . . .

- Helps you assess student progress toward the mathematical goals and objectives of the lessons and units. By knowing where your students are at, you can help them get to where they need to be!
- Allows you to adjust your instruction, based upon student responses, so that you can support your students and extend their learning.

Math Language Development

MLR5: Co-craft Questions

MLR5 appears in Lessons 2, 3, and 5.

- In Lesson 2, after you display the images of the thermometers, ask students to work with their partner to co-craft questions they have about the thermometers. Sample questions are provided.
- In Lesson 3, ask students to examine the map before revealing the problems of the activity. Generating their own questions about the map will help them make sense of the scenario before diving in.
- English Learners: Dlsplay 1 or 2 sample questions and allow students to say their questions aloud as opposed to writing them, or vice versa.

3 Point to Ponder..

- As students work with each other to create mathematical questions they have about graphs or scenarios, how can you model for them how to use their developing mathematical vocabulary?

Unit Assessments

Use the results of the Pre-Unit Readiness Assessment to understand your students' prior knowledge and determine their prerequisite skills.

Look Ahead . . .

- Review and unpack the Mid- and End-of-Unit Assessments noting the concepts and skills assessed in each.
- With your student hat on, complete each problem.

O. Points to Ponder ...

- What concepts or skills in this unit might need more emphasis?
- Where might your students need additional scaffolding and support?
- How might you support your students with reasoning about rational numbers in new and unfamiliar contexts throughout the unit? Do you think your students will generally:
» Overgeneralize or misapply rules for operations with rational numbers?
» Face challenges keeping track of the signs or numbers in multi-step problems?
» Have a strong understanding when working with numerical expressions, but lose the thread when dealing with algebraic expressions?

Points to Ponder ...

- How and when will I use student responses from this unit's assessments to help adjust my instruction?
- Where are there moments during the lessons' activities in which I can informally elicit evidence of my students' thinking? How will I approach these moments?

Students With Disabilities

Accessibility: Guide Processing and Visualization

Opportunities to provide visual support and guidance to help students process new information appear in Lessons 1-7, 9-11, and 14-20.

- In Lesson 5, display or provide a checklist to help students complete the energy costs statement. A sample checklist is provided.
- In Lesson 10, use a think-aloud to demonstrate how the hiker's speed was used to determine their position at various times.
- In Lesson 11, ask student volunteers to demonstrate the bikers traveling at the same speed, but in opposite directions, passing an object at the same time.
- In selected lessons, display the Anchor Chart PDFs, Operations With Rational Numbers and Solving Equations With Rational Numbers, and the Graphic Organizer PDF, Blank Number Lines for students to use as references.

0 Point to Ponder...

- As you preview or teach the unit, how will you decide when your students may benefit from visual support or suggested guidance? What clues will you gather from your students?

Building Math Identity and Community

Throughout this unit, each lesson includes opportunities to support your students' capacity to build strong mathematical habits of mind
In this unit, pay particular attention to supporting students in building their relationship skills and self-management skills.

Points to Ponder ...

- Do students establish and maintain healthy relationships? Are they able to get along and work productively with others? Do students communicate clearly with each other? Are they able to negotiate through conflicts effectively?
- Do students show self-discipline while working? Are they able to stay organized? Do they set goals, both personal and academic and find paths towards achieving those goals? Can students manage their stress levels? Do they control their impulses?

Target: Zero

Let's aim for zero in this card game.

Focus

Goals

1. Identify negative numbers.
2. Comprehend that pairs of integers can combine to produce a sum of 0 .
3. Language Goal: Explain which card values will produce a sum closer to 0 . (Reading and Writing)

Coherence

- Today

In this Launch lesson, students are re-introduced to positive and negative values while keeping score in a card game. They compete and strategize to get closer to zero than their opponents. While the lesson avoids symbolic representation of operations with integers, students reason about opposite quantities by calculating scores resulting from combining positive and negative numbers.

S Previously

Units 1-4 have focused mainly on proportional reasoning, so the last known contact students had with the Number System domain stretches to Grade 6.

Coming Soon

As students progress through this unit, they will encounter addition, subtraction, multiplication, and division - in roughly that order - with the set of rational numbers. Some additional work with expressions and equations using rational numbers will appear as well, serving as a runway to Unit 6.

Rigor

- Students build conceptual understanding of the effects of adding positive and negative values.

Amps powered by desmos \quad Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 1 PDF, Game Cards (optional)
- standard deck of playing cards with face cards removed, one per small group (optional)
- sticky notes

Note: Activity 1 PDF is provided if you would rather use printed cards instead playing cards. You do not need both. If printing in grayscale, show students how to identify the "red" cards.

Math Language
 Development

Review words

- negative numbers
- positive numbers

Building Math Identity and Community

Connecting to Mathematical Practices
Students might be overly-competitive as they play Target: Zero in Activity 1 or Activity 2. While discussing the rules of the game, also discuss appropriate social behavior. Remind students that, while trying to win, they are also trying to learn. Ask them to be respectful of others as they try to learn, too

Amps ! Featured Activity

Activity 2
 Play Target: Zero

Students play a social card game to determine who can generate a score closest to zero. As they play, they reason about positive and negative values.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time

- The Warm-up may be omitted. During the Launch for Activity 1, tell students that black cards increase their score and red cards decrease their score.
- Activity 3 may be omitted. You may consider assigning this Activity as Additional Practice

Warm-up Guess the Rule

Students examine sets of cards with given, but ambiguous, scores. They work to determine a rule that fits all the sets of cards.

Unit 5 | Lesson 1 - Launch

Target: Zero
Let's aim for zero in this card game.

Warm-up Guess the Rule
Examine each set of cards and the score shown. Describe what you think is the rule for scoring each card set, and then predict the score of Set 4.

What is the rule that gives the score for the card sets?
Sample response: I think the rule is that the black cards add to your score and the red cards take away from your score. I predict the score for Set 4 will be $\mathbf{0}$.

1 Launch

Tell students they will be playing a card game during the lesson, but first they need to help reveal one of the rules. Point out that the numbers on the cards displaying a 6 or a 9 will be underlined to show their orientation.

(2) Monitor

Help students get started by suggesting they think about what the different colors of the cards might mean.

Look for points of confusion:

- Thinking that Set 2 means you subtract the second card from the first. Have students apply this reasoning to Set 3 and check whether it gives the same score.

3 Connect

Have students share the score they predicted for Set 4, and the rule they used to make their prediction. Confirm with the class that the rule is that black cards increase your score by the number written on the card and red cards decrease your score by the number written on the card.

Display a set of cards showing a red 2 and a red 6.

Ask:

- "What would be your score for these two cards, according to the rule?" -8
- "What is another set of cards, other than Set 4, that would give a score of 0 ?" Sample response: Red 5 and black 5

Highlight that during the Target: Zero game, black cards will always increase your score and red cards will always decrease your score by the amount shown on the card.

Math Language Development

MLR2: Collect and Display

Listen carefully for the language students begin to use as they encounter opposite or negative values. Collect these words and phrases and add them to a class display so they can be revisited and refined - or adopted more widely - as you continue through the unit.

Activity 1 Target: Zero, Part 1

Students play a simplified version of the Target: Zero game to get acquainted with the rules.

Players: 2-4

Goal: Combine your card values to produce a value as close to zero as possible.
Getting ready:

- Shuffle the set of cards and place them in a pile in the middle of the group.
- Choose one player to start the game.
For each round:
- Each player takes two cards from the pile and places them, face up, in front of them.
- When all players have their cards, the first player decides whether they want to take one additional card from the pile, or pass (not do anything). This continues until all players have had a turn.
- Complete the table for yourself at the end of each round, and compare your score to the other players. The player with the score closest to zero receives a check mark for winning the round
- Reshuffle the cards for the next round. Sample responses shown

	Cards	Score	Closest to 0?
Round 1	$-2,2$	0	\square
Round 2	$-6,-4,3$	-7	\square

1. How did you determine who was closest to zero after each round?
Sample response: We compared how far the resulting number was from
zero, regardless of whether it was positive or negative.
2. Consider the times when you decided whether to take an additional card.
a What thinking helped you to make your decision?
Sample response: I always took another card if my resulting value was more than 5 from zero because that seemed to be too great a number.
b If you had to change your strategy for the next round, how would you change it? Sample response: I would pay attention to the cards other students have in my group. If I can see that they have a card that I need, I might decide not to take another card.

1 Launch

Distribute either the decks of playing cards or the cards from the Activity 1 PDF to groups of students. Play a mock round with a student for the whole class to observe the game in action.

Monitor

Help students get started by reminding them that the first round is meant to be played collaboratively. Encourage them to be as helpful to each other as possible.

Look for points of confusion:

- Adding or subtracting values indiscriminately. Have students first work with any black cards, and then consider red cards.
- Not sure what to do in the event of a tie. Have students decide on a fair way to break the tie, and encourage them to share their solution during the Connect.

Look for productive strategies:

- Representing card values with + and - signs.
- Using a number line to support determining their score.

3 Connect
Display two cards: a red 4 and a red 6. Then show an additional black 10 as a third card.
Have students share how they would determine the score for these cards.

Ask:

- "If you have two cards of the same color, will getting another card of the same color ever help your score?"
- "What rules for ties were created that could be helpful for other groups?"
Highlight that, in the next activity, students will play the same game with some updated rules. Importantly, the values of the cards do not change, so students can continue to use similar strategies for calculating their scores.

Differentiated Support

Accessibility: Optimize Access to Tools

Provide access to two-sided counters - or a similar physical manipulative with two colors - for students to choose to use as tactile representations of addition and subtraction.

Extension: Math Enrichment

Have students respond to the following question: If you drew a red 7 as your first card, what is the exact value and color of the second card you would need to draw to get a score of exactly zero? Exactly 2? black 7 , black 9

Math Language Development

MLR8: Discussion Supports—Press for Details

During the Connect, as students share how they would determine the score for the cards displayed (red 4, red 6, black 10), press for details in their reasoning. For example:

If a student says...	Press for details by asking ...
"I added and then "Which numbers did you add? How did you subtracted." know to add them? Which number(s) did you subtract? How did you know to subtract?"	

Activity 2 Target: Zero, Part 2

Students play a more competitive version of the Target: Zero game to solidify their strategy and practice with determining the sum of positive and negative numbers.

Amps Featured Activity Play Target: Zero

Activity 2 Target: Zero, Part 2

Continue playing the game, with the following updates to the rules:

- Instead of only taking one additional card, each player will have three chances to take an additional card.
- Keep your cards to yourself until the end of the round
- After each player has taken all the cards they wish to take (a maximum of five cards), calculate your score.
- Show your cards to the other players and help each other confirm all scores are accurate. The player with the score closest to zero receives a check mark for winning the round.
Sample responses shown

	Cards	Score	Closest to 0?
Round 3	$2,-4,5$	3	\square
Round 4	$7,-2,5,2$	12	\square
Round 5	$8,-8$	0	\square
Round 6	$3,2,6,4,5$	20	\square
Round 7	$7,-8$	-1	\square
Round 8	$3,-4,-5$	-6	\square

Are you ready for more?

A Target: Zero player has a score of 1 during a round. If we know the player had two A arget: Zero player has a score of 1 during a round. If we know the player had two
cards and neither card was greater than 6 , how many different pairs of cards could cards and neither car
3, -2 ; 4, -3 ; 5, -4 ; 6 player could have had

1 Launch

Have students read through the new rules for playing the game, and then ask someone to explain the changes in their own words. (You might pretend to not understand the new rules yourself). Ask, "How might the new rules affect your strategy?"
(2) Monitor

Help students get started by asking, "What is the current value of your cards?"

Look for points of confusion:

- Thinking they need to add their cards in the order they received them. Ask, "Does the order in which you add numbers in an expression affect the sum?"

Look for productive strategies:

- Representing the total value of the cards with an expression.
- Using a number line to support determining their score.

3 Connect

Display the following cards: black 4, black 10, red 4 , black 2 .

Have students share the current score for this set of cards, and how they determined it. Listen for a strategy that first combines the black and red cards displaying a 4 , and then adds the black 10 and 2 cards to result in a total of 12 .

Ask:

- "How many other ways can we calculate the score for this same set of cards?"
- "Are you adding or subtracting in your calculations?"
- "Does the order of your cards affect your score? How do you know?"
Highlight that red cards function similarly to negative numbers and black cards represent positive numbers.

\oplus
 Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can play a social card game to determine who can generate a score closest to zero.

Accessibility: Guide Processing and Visualization, Optimize Access to Tools

Provide access to sticky notes and suggest that students keep a running tally of their score on a sticky note or in the open space in their Student Edition. Continue to provide access to two-sided counters - or a similar physical manipulative with two colors - for students to choose to use as tactile representations of addition and subtraction.

(12)

Math Language Development

MLR7: Compare and Connect

During the Connect, as students respond to the Ask questions, have them compare the various ways the score can be calculated for the same set of cards. Consider displaying the different strategies, such as:

One strategy:	Another strategy:	
1. Red $4+$ Black $4=0$ 1. Combine the black cards for a total of $4+10+2=16$.		
2. Black $10+$ Black $2=12$	2.	
3. $0+12=12$	3. $16-4=12$	

English Learners

Physically group the related cards together that show which values are added or subtracted.

Activity 3 Playing Strategically

Given some cards, students determine an ideal set of cards to add to produce a number as close to 0 as possible.

1 Launch

Let students know that they are still playing with an imaginary single deck of cards, though they do not know what any other player has. Tell students they do not need to make the pictures of the cards look accurate, as long as the values shown are clear.
(2) Monitor

Help students get started by having them determine the score of the current cards shown first.

Look for points of confusion:

- Choosing cards without paying attention to their color. Have students add a plus or minus sign to their cards to indicate their value.
- Not using all of the current cards shown. Tell students they must consider all of the cards shown.
Look for productive strategies:
- In Problem 2, drawing the two opposite cards of the current cards shown.

3 Connect

Ask, "A player has two cards that you cannot see. They take one more card, which is a black 1, and they say 'I've got zero!' What cards might they have had at the start?"

Highlight that many different combinations of cards can result in a given sum. Say, "As you continue throughout this unit, you will notice that there are often many different ways to write an expression that will give you the same result."

(1) Differentiated Support

Accessibility: Optimize Access to Tools

Continue to provide access to two-sided counters - or a similar physical manipulative with two colors - for students to choose to use as tactile representations of addition and subtraction.

Extension: Math Enrichment

Have students complete the following problem:
Suppose you have a set of cards that are labeled with numbers from 1 to 10 and consist of both black and red cards. Your current cards are a black 10 and a red 3. How many ways can you select two more cards of the same color to have a total score of 0 ? The current score is 7 . Possible ways to select two cards of the same color: red 1 and red 6 , red 2 and red 5 , red 3 and red 4 (in any order).

Summary A World of Opposites

Review and synthesize how to produce a score of 0 with differently numbered cards.

Narrative Connections

Read the narrative aloud as a class or have students read it individually.

C Synthesize

Display the Summary from the Student Edition. Have students read the summary or have a student volunteer to read it aloud.

Ask:

- "Were you already familiar with any of the people or places mentioned in the Summary? What else can you tell us?"
- "What must be true about two cards that result in 0 by themselves?"
- "What must be true about a set of three cards that result in 0 ?"

Highlight that cards that have the same number, but different colors result in zero automatically. This is because they represent opposite values.

(I) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. To help them engage in meaningful reflection, consider asking:

- "What are some things that feel like opposites to you in your own life?"

Exit Ticket

Students demonstrate their understanding of combining the value of positive and negative quantities by selecting sets of cards that will produce a score of 0 .

Success looks like ...

- Goal: Identifying negative numbers.
- Goal: Comprehending that pairs of integers can combine to produce a sum of 0 .
" Selecting a pair of cards that combine to give 0 .

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C. Points to Ponder ...

- What worked and didn't work today? What surprised you as your students played the Target: zero game?
What resources did students use as they played the game? Which resources were especially helpful? What might you change for the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 3	2
Spiral	$\mathbf{2}$	Activity 2	3
Formative 0	$\mathbf{5}$	Grade 6	2

(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Adding and Subtracting Rational Numbers

In this Sub-Unit, students generalize the rules for determining the sums and differences of rational numbers by reasoning about rational values in real-world contexts and modeling changes in values using arrow diagrams.

Read and discuss

Read the narrative aloud as a class or have students read it individually. Students continue to explore real-world applications of adding and subtracting rational numbers in the following places:

- Lesson 2, Activity 1:

Exploring the Extremes

- Lesson 3, Activities 1-2: Warmer and Colder, Comparing Temperatures
- Lesson 4, Activities 1-2:

Above or Below the Water?, Energy Supply

- Lesson 5, Activity 1: Dealing With Debt
- Lesson 7, Activity 2:

Expressions With Temperature

- Lesson 9, Activity 1: Writing Expressions

Interpreting Negative Numbers

Let's review what we know about negative numbers.

Focus

Goals

1. Interpret rational numbers in the contexts of temperature and elevation.
2. Language Goal: Order rational numbers, and justify the comparisons. (Speaking and Listening)
3. Plot points on a vertical or horizontal number line to represent rational numbers.
4. Comprehend that the term opposite refers to numbers with the same magnitude but different signs.

Coherence

Today

Students reacquaint themselves with the number line model, which is important for reasoning about the position and difference of rational number values. This lesson serves as both a general reintroduction to a model that will be used often throughout the unit and to basic operations with rational numbers. The well-known contexts of temperature and elevation help ease students into this work. Activity 2 is a wonderful social moment that can serve as an anchor for the remainder of the unit.

© Previously

In Lesson 1, students revisited positive and negative values. In Grade 6, students positioned and compared integer values on number lines.

> Coming Soon

In Lessons 3 and 4, students will add positive and negative numbers - including fractions and decimals - using number lines and arrow diagrams.

Rigor

- Students build conceptual understanding of the relative positions and values of negative numbers on horizontal and vertical number lines.

Warm-up

Activity 1
(1) 20 min
ㅇํㅇ Small Groups
(J) 5 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 2 PDF, pre-cut cards, one set per group
- Activity 2 PDF (answers)
- Anchor Chart PDF, Wall Number Line
Note: The wall-length number line may be a challenge to prepare, but it is worth it. Students will benefit from this visual, tactile, and social experience throughout the unit.

Math Language Development

New word

- rational numbers*

Review words

- absolute value
- magnitude
- opposites
*Students may confuse the mathematical term rational with the term's everyday meaning as it relates to reason and logic. Be ready to address how a rational number gets its name because it can be written as a ratio of two integers.

Amps : Featured Activity

Activity 1
 Interactive Number Line

Students explore a large interactive number line and learn about the elevations of some of Earth's most extreme heights and depths.

Building Math Identity and Community Connecting to Mathematical Practices

As students try to work together to place their numbers on a number line in Activity 2 , they might not communicate well with each other. Remind students that effective communication is required if the group is to succeed. Set some guidelines for conflict resolution. Differences and mistakes will occur, so the group needs to work together to resolve them

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 1, Problem 3 may be omitted.
- In Activity 2, have groups of students discuss and then place their numbers directly on the number line, rather than create a model on their page.

Warm-up Supercooling Liquids

Students read and compare temperatures on a thermometer to review identifying positive and negative values on a number line.

1 Launch

Say, "Did you know it is possible to cool water to below its freezing point while remaining a liquid? Under certain conditions, it is!" Remind students that they worked with negative numbers in Grade 6, and that temperatures are a common context, where negative values are used in the real world.

(2) Monitor

Help students get started by demonstrating how to start from zero and count up or down to the temperature mark. You might also have students label each tick mark with its value.

Look for points of confusion:

- Thinking, for example, that one mark above $\mathbf{- 5}$ is -6. Ask, "Between which two labeled marks is the temperature? Does your answer still make sense?"
- Thinking $\mathbf{- 1 . 5}$ is the lowest temperature. Have students compare the height of the temperature mark across all four thermometers. Ask, "Which is the lowest?"

Look for productive strategies:

- Marking the intermediate values on one of the thermometers.

(3) Connect

Ask, "Suppose the temperature of another liquid is -4°. Is that colder or warmer than the coldest temperature shown?" - 4° is colder than the coldest temperature shown.
Highlight that temperatures below 0 can be referred to using a negative sign, such as -3 degrees, or by saying 3 degrees below 0 . Point out that the latter example does not include a negative sign because the words sufficiently describe its position.

Math Language Development

MLR5: Co-Craft Questions

During the Launch, display the introductory text and the images of the four thermometers. Ask students to work with their partner to write 2-3 mathematical questions they could ask about the situation and the thermometers shown. Listen for how students use the idea of numbers being above or below zero. Ask pairs to share their questions with the whole class Sample questions shown.

- Which container shows the least water temperature? The greatest?
- Which container(s) show temperatures above zero? Below zero?
- What does a zero temperature mean in this context?

English Learners

Display the thermometers and color code the numbers above and below zero as students describe them.

Unit 5 Rational Number Arithmetic

Power-up

To power up students' ability to plot values on a number line, have students complete:

1. Place and label the numbers on the number line:

$$
-5,2.2,-\frac{9}{2},|-3|,\left|\frac{1}{2}\right|
$$

2. Complete the statements with any values from part 1:

Use: Before Activity 2.
Informed by: Performance on Lesson 1, Practice Problem 6 and Pre-Unit Readiness Assessment, Problems 2, 3, and 4.

Activity 1 Exploring the Extremes

Students study elevations of well-known geographic landmarks next to a number line to identify their elevations and compare their relative positions.

Amps Featured Activity

Interactive Number Line

Name
\qquad

Activity 1 Exploring the Extremes

How high - or low - are you willing to go? Humans have now managed to explore both the highest and lowest points on Earth.

Compare the elevations of some of these extreme heights and depths.
>1. About how far above or below sea level is each point?
a Mt. Everest: $29,000 \mathrm{ft}$ above sea level
b Mt. Fuii $12,500 \mathrm{ft}$ above sea level
c Burj Khalifa: $3,000 \mathrm{ft}$ above sea level
d Wreck of the Titanic: $12,500 \mathrm{ft}$ below sea level
e Mariana Trench: $36,500 \mathrm{ft}$ below sea level
> 2. A skydiver jumped out of a plane flying $12,000 \mathrm{ft}$ above sea level. How does her starting vertical position compare to the height or depth of
(a) Mt. Fui? The same.
b Mt. Everest? The skydiver is below the top of Mt. Everest.
c The wreck of the Titanic?

The skydiver is above the Titanic.
3. A scuba diver is 100 ft below sea level. How does their vertical position compare to the height or depth of:
a The Burj Khalifa?
The scuba diver is below the Burj Khalifa
b The wreck of the Titanic? The scuba diver is above the Titanic.
4. The vertical distance of a butterfly from the starting point of the skydiver from Problem 2 is 500 ft . (Yes, they do fly that high!) What is the butterfly's distance from sea level? The butterfly could be 500 ft above or below the skydiver, so it could either be $12,500 \mathrm{ft}$ or $11,500 \mathrm{ft}$ above sea level.

1. Launch

Ask, "Which do you think is greater, the height of the highest point on earth or the depth of the lowest point?" Conduct the Poll the Class routine. Have students explore the elevation chart, noting the important point that an elevation of 0 ft is commonly referred to as sea level. You may choose to pause the class after Problem 1 to have a discussion about the elevations of each marked point.

2 Monitor

Help students get started by asking them where $15,000 \mathrm{ft}$ above sea level would be on the number line, and having them label it.
Look for points of confusion:

- Using numbers without a negative sign or appropriate description for elevations below sea level. Ask, "How would someone know whether this value is above or below sea level?"
- Thinking the Titanic is $\mathbf{8 , 0 0 0} \mathbf{f t}$ below sea level. Ask, "The Titanic is between which two marked values on the number line?'
3 Connect
Have students share how they reasoned about the butterfly's distance from sea level in Problem 3.
Ask:
- "Which elevations could also be written using negative numbers?"
- "Which elevations are the same distance from 0 , or sea level?"
Highlight that the absolute value of a number is its distance from 0 on the number line. In the case of the elevations, Mt. Fuji, the skydiver, and the wreck of the Titanic are all $12,000 \mathrm{ft}$ away from sea level, so they all have the same absolute value. Say, "You might recall from Grade 6 that we write 'the absolute value of 12,000 ' using this notation: $|12,000| . "$

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can explore a large interactive number line to learn about the elevations of some of Earth's most extreme heights and depths.

Extension: Math Enrichment

Have students estimate the distance between the peak of Mt. Everest and the Mariana trench. About 65,000 ft

Math Language Development

MLR2: Collect and Display

During the Connect, as you highlight the term absolute value, ask students to recall this term from Grade 6. Draw connections between this term and the words and phrases used in this activity, such as above and below sea level. Add these words and phrases to the class display. For example:

Distance	Absolute value
$12,000 \mathrm{ft}$ above sea level	$\|12,000\|=12,000$
$12,000 \mathrm{ft}$ below sea level	$\|-12,000\|=-12,000$

English Learners

Use gestures as students use the language of above and below.

Activity 2 Building a Number Line, Together

Small groups of students work together to place their numbers on a number line while reasoning about relative distances between rational numbers on both sides of 0 .

1. Launch

Say, "While it is useful to use a vertical number line for contexts, such as temperature and elevation, we also know that number lines can be placed horizontally. For this activity, your group will receive a set of cards that you will eventually place on the class number line." Distribute sets of cards from the Activity 2 PDF.

(2) Monitor

Help students get started by asking, "Which cards will be to the left of 0 ? Which will be to the right? How can you tell?"

Look for points of confusion:

- Placing numbers to the correct side of the other numbers, but not in the proper position on the whole number line. Ask for the student to explain the position of a friendly value, such as 15 , relative to 0 and 30 on the number line.

Look for productive strategies:

- Using opposite values to match distances from 0 .

3 Connect

Have students share pairs of numbers that are the same distance from 0 , but on opposite sides of the number line.

Highlight that these numbers have the same absolute value, which is always represented as a positive number because absolute value represents distance from zero. Distance is always positive. Numbers with the same value on opposite sides of the number line are called opposites.

Ask:

- "How can you tell, when comparing two numbers, which number will be farther from zero?"
- "How can you tell, when comparing two numbers, whether they will be on the same side or opposite sides of 0 ?"

Differentiated Support

Accessibility: Guide Processing and Visualization

Suggest that students first sort the cards into two categories: positive numbers and negative numbers. Then have them sort each group according to their absolute values. Remind them that a negative number with a greater absolute value is actually less than a negative number with a lesser absolute value. For example, $-5<-3$ and $|-5|>|-3|$.

Math Language Development

MLR7: Compare and Connect

During the Connect, as students share pairs of numbers that are the same distance from 0, but on opposite sides, draw connections between opposites and absolute value. Display the following sentence frame and ask students to complete it. Then add this statement to the class display, along with an example, such as 10 and -10 .

Numbers that are \qquad have the same \qquad because they are the same distance from zero. opposites; absolute value

Summary

Review and synthesize that number lines can be used to compare temperatures, elevations, and the relative value of positive and negative numbers.

Synthesize

Display the class number line from Activity 2.
Have students share where to find the least and greatest value numbers on a horizontal and vertical number line.

Define rational numbers as the set of all numbers, positive and negative, that can be written as fractions. For example, any whole number is a rational number.

Highlight that several important features of a number line can help when comparing positive and negative numbers: the number's distance from 0 , the distance from other numbers near it, and the side of 0 it is on.

Ask:

- "Can two numbers have the same absolute value if they have the same sign?"
- "Can two numbers with the same sign be opposites?"

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How was building a number line as a group more or less challenging than doing it by yourself?"

Math Language Development
MLR2: Collect and Display
As students formalize the new vocabulary for this lesson, ask them to refer to the class display that you started in this unit. Ask them to review and reflect on the terms and phrases related to the term rational numbers that were added to the display during the lesson. Highlight that the term rational comes from the term ratio; numbers that are rational can be written as the ratio of two integers.

Exit Ticket

Students demonstrate their understanding of the value of positive and negative numbers by comparing and ordering a set of rational numbers.

亘 Printable

Success looks like ...

- Goal: Interpreting rational numbers in the contexts of temperature and elevation.
- Language Goal: Ordering rational numbers, and justifying the comparisons. (Speaking and Listening)
» Ordering rational numbers from least to greatest in Problem 1
- Goal: Plotting points on a vertical or horizontal number line to represent rational numbers.
- Goal: Comprehending that the term opposite refers to numbers with the same magnitude but different signs.
»Identifying pairs of opposites in Problem 4.

Suggested next steps

If students identify $-\frac{1}{10}$ as the least value, consider:

- Reviewing the class number line from Activity 2.
- Assigning Practice Problem 1.
- Asking, "Which number would be farther from $0,-3$ or $-\frac{1}{10}$?"
If students do not order the numbers properly, consider:
- Having students say each number aloud as they consider where it should be placed on the number line.
- Having students mark other friendly values on their number line, such as 1 and -1 .

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
©. Points to Ponder ...

- What worked and didn't work today? In what ways did building the number line go as planned?
- Have you changed any ideas you used to have about building number sense around rational numbers as a result of today's lesson? What might you change for the next time you teach this lesson?

> 4. Han wants to buy a $\$ 30$ ticket to a basketball game, but the pre-order tickets are sold out. He knows there will be more tickets sold the day of the game, with a markup of 200%. How much should Han expect to pay for the ticket if he buys it the day of the game? Show or explain your thinking.

5. Decide whether or not each equation represents a proportional relationship. Show or explain your thinking.
a) Volume measured in cups, c, compared to the same volume measured in ounces, $z: c=\frac{1}{8} z$ Yes, the equation is in the form of $y=k x$ and the constant of proportionality is $\frac{1}{8}$.
(b) Area of a square, A, compared to the side length of the square, $s: A=s^{2}$ No, the ratio of s to A will not remain constant. When s is $1, A$ is 1 , No, the ratio of s to A,
but when s is $2, A$ is 4 .
(c) Perimeter of an equilateral triangle, P, compared to the side length of the triangle, Perimeter
$s: 3 s=P$
Yes, the equation is in the
proportionality is 3 .
d Length, L, compared to width, w, for a rectangle whose area is 60 square units: $L=\frac{60}{w}$
No, the ratio of w to L will not remain constant. When w is $1, L$ is 60, but when w is $2, L$ is 30 .
6. Which expression is modeled by this diagram?

A. $4+6$
(B.) $4+2$
C. 6-4
D. $6-2$

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Changing Temperatures

Let's add positive and negative numbers.

Focus

Goals

1. Language Goal: Determine the final temperature, given the starting temperature and the change in temperature, and explain the solution method. (Speaking and Listening, Writing)
2. Language Goal: Explain how to create a number line diagram that represents adding rational numbers. (Speaking and Listening, Writing)
3. Write an addition equation to represent a situation involving a temperature increase or decrease.

Coherence

- Today

Students represent addition of rational numbers on a number line using arrows. There are different ways to do this; in this unit, the convention is that each addend is represented by an arrow and the sum is represented as a point on the number line. Positive addends are represented by arrows that point to the right, and negative addends are represented by arrows that point to the left. The starting point is always zero; the next arrow starts where the first arrow ends. The sum is represented by a point on the number line where the arrow for the last addend ends.

< Previously

In Lesson 2, students became reacquainted with using vertical and horizontal numbers lines to position and compare rational numbers.

Coming Soon

In Lesson 4, students will further practice adding rational numbers in context, and they will also formulate some rules to better understand the sign of a sum.

Rigor

- Students build the conceptual understanding that rational numbers have both a direction and a magnitude.
- Students develop procedural skills by using number lines and equations simultaneously to represent addition of rational numbers.

Activity 1

Activity 2

Summary

Exit Ticket

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice

Building Math Identity and Community

Connecting to Mathematical Practices
Because of their understanding of addition of whole numbers, students might impulsively draw their own conclusions about how to add rational numbers. Explain to students that they are using so many different representations of the addition in Activity 1 so that they can reason abstractly about the correct rules for adding signed integers from their work.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 1, provide student choice by allowing them to choose any 4 or 5 problems to complete, then discussing all problems as a class.
- In Activity 2, have students only complete the first 2 or 3 problems.

Warm-up Which One Doesn't Belong?

Students explore unfamiliar, but intuitive, number line diagrams with arrows to discover a new representation for adding rational numbers on the number line.

Unit 5 | Lesson 3

Changing Temperatures

Let's add p
numbers.

Warm-up Which One Doesn't Belong?
Which number line does not belong? Be prepared to explain your thinking.

B.

D.

Sample responses:
Diagram A does not belong because it is the only number line where both arrows start at the same place.

- Diagram B does not belong because it is the only number line where the arrows have different lengths.
- Diagram C does not belong because it is the only number line where neither arrow starts at 0
- Diagram D does not belong because it is the only number line where both arrows point in the same direction.

402 \qquad
metic

1 Launch

Conduct the Which One Doesn't Belong? routine. Encourage students to jump right in by examining all of the diagrams and noting differences between them. Have students who finish early try to create a rule for why each diagram does not belong.
(2) Monitor

Help students get started by having them draw lines from the start and end of each arrow down to the number line.

Look for points of confusion:

- Thinking that Diagram A shows $3+(-3)$. Ask,
"Would a similar diagram work for $4+3$?"

Look for productive strategies:

- Annotating the arrows with their length and direction.

3 Connect

Display Diagram B, alongside the expression $3+(-6)$.

Ask:

- "How does this expression represent the diagram?"
- "What expressions could you write to represent Diagram D?"

Have students share their expressions for representing Diagram D.

Define an arrow diagram as a model used within a number line to show positive and negative numbers and operations on them.

Highlight that the second arrow is always placed slightly above the first arrow. This helps indicate which is the first, or starting, value.

Ask, "Why are Diagrams A and C impossible representation for adding two numbers?

Differentiated Support

Accessibility: Guide Processing and

 VisualizationSuggest that students ask themselves these questions as they compare the number line diagrams.

- Where do the arrows start?
- Where do the arrows end?
- In which direction does each arrow point?
- What is the length of each arrow?

(7) Power-up

To power up students' ability to interpret arrow diagrams, have students complete:

1. Add the numbers 3,4 , and 7 to the appropriate boxes in the given arrow diagram.

2. Write the equation that is modeled by the arrow diagram using the numbers 3,4 , and 7 . $3+4=7$
Use: Before the Warm-up.
Informed by: Performance on Lesson 2, Practice Problem 6.

Activity 1 Warmer and Colder

The context of temperature is used to help students make sense of adding rational numbers, writing equations, and representing using them arrow diagrams.

1. Launch

Ask, "If the temperature is 40° and it becomes 10° colder, what temperature is it?" Demonstrate representing this situation on a number line using arrows and write the equation $40+(-10)=30$. Tell students that placing the -10 inside parentheses is a convention that helps to separate the + operator from the negative sign. They do not need the parentheses when the negative number is first, or when a positive number follows the addition sign, such as in the expression $-3+4$.

2 Monitor

Help students get started by saying, "The first arrow should always start at 0."

Look for points of confusion:

- Drawing only one arrow - the change from the value of the first number. Say, "That is another way to represent the situation, but it will be more helpful for future situations to represent both values with arrows."
- Drawing both arrows starting from 0. Say, "Your second arrow should end at the new temperature after the change. Is that true for your diagram?"

Look for productive strategies:

- Drawing dots at the start and end of each arrow to help organize the representation.

Activity 1 continued >

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can represent changing temperatures on number lines using interactive arrow diagrams. The digital environment facilitates the ability to quickly manipulate the arrows.

Accessibility: Vary Demands to Optimize Challenge
Students may visually benefit from drawing jumps on the number line instead of drawing straight arrows. Allow them to do so and connect the length of all of their jumps in one direction to the length of a straight arrow.

Math Language Development

MLR7: Compare and Connect

During the Connect, draw connections between the visual representations of adding positive and negative numbers with numerical expressions. For example, for Problem 5, write the expression $-20+35$. Ask:

- "Which arrow represents the first addend in the expression?"
- "How is adding a positive number represented on the number line? In Problem 7 , how is adding a negative number represented?"
- "Where is the sum represented on the number line?"

English Learners

Add annotations to the number lines, such as labeling "warmer" as "add a positive number" and "colder" as "add a negative number."

Activity 1 Warmer and Colder (continued)

The context of temperature is used to help students make sense of adding rational numbers, writing equations, and representing using them arrow diagrams.

Activity 1 Warmer and Colder (continued)

[^2]
Activity 2 Comparing Temperatures

Students use their understanding from the previous activity to determine temperature differences and connect them to addition equations.

1 Launch

Ask, "Which place on the map would you expect to be the warmest? The coldest?" Let students know that because the number lines are unmarked, it will be up to them to determine reasonable lengths for their arrows.

2 Monitor

Help students get started by helping them locate Houston, where the temperature is given.

Look for points of confusion:

- Thinking that the temperature is the number in the text after the city name. Have students read the text carefully, then ask, "What does that mean? Do you have enough information yet?"
- Starting with Bozeman, because it's at the top and left of the map. Say, "It says Bozeman is 2° colder than Minneapolis. Do you know the temperature of Minneapolis? Is there another city that might make more sense to reference as a starting point?"

Look for productive strategies:

- Planning an order of which remaining temperatures to find.
- Marking each number line with the 0 point.

3 Connect

Display two different strategies for Minneapolis one that shows $8+4+(-24)$ and one that shows $12+(-24)$. Ask, "Which do you think is more accurate? Which better represents the statement?"

Highlight that both expressions accurately model the situation, because both use numbers that come from the other relevant cities. Either expression may be more helpful depending on how students prefer to add the values.
Ask, "How can using a number line - even a blank one - help make sense of what the final temperature should be?"

Differentiated Support
Accessibility: Guide Processing and Visualization
Suggest that students draw arrows from each city to the other city that helps them determine the temperature. For example, draw an arrow from Salt Lake City to Houston, and draw an arrow from Bozeman to Minneapolis.

Extension: Math Enrichment

Tell students that Detroit is 6° colder than St. Louis and St. Louis is 8° warmer than Denver. Ask them to write a statement that only compares the temperatures of Detroit and Denver. Denver is 2° colder than Detroit, or Detroit is 2° warmer than Denver.

Math Language Development

MLR5: Co-Craft Questions

During the Launch, display the map. Ask students to work with their partner to write 2-3 mathematical questions they could ask about the information shown.
Ask pairs to share their questions with the whole class. Sample questions shown.

- How can I determine the temperature for each city?
- In which order should I determine the temperature for each city?
- How does the temperature of Bozeman compare to Salt Lake City?

English Learners

To support students in developing metalinguistic awareness, model how to craft a mathematical question. Consider displaying one of the sample questions.

Summary

Review and synthesize that changing temperature can be represented using arrow diagrams and expressions with positive and negative numbers.

Summary

In today's lesson.

You learned that we can represent a change in temperature with a positive number if it increases and a negative number if it decreases.

We can also represent changing temperature using an arrow diagram. The addition of positive numbers are represented with arrows pointing to the right and the addition of negative numbers are represented with arrows pointing to the left. When adding rational numbers, each arrow begins where the previous arrow ended.
This arrow diagram models the equation $7+(-10)=-3$

Reflect:

Synthesize

Display the arrow diagram from the Summary in the Student Edition.

Formalize vocabulary: arrow diagram

Ask:

- "What expression could be written to represent this arrow diagram?" $7+(-10)$
- "How many different expressions could be written?" Only one. There are other expressions that are equivalent to this, but there is only one way to write the expression that is modeled by this arrow diagram.
Highlight that using arrow diagrams and equations in conjunction with one another strengthens and reinforces both visual and symbolic reasoning about adding rational numbers.

Ask:

- "How can you represent an increase or decrease in temperature using an addition equation?"
- "How can you represent an addition equation on a number line?"

(Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "Which representation - expressions or arrow diagrams - helps you to make sense of adding positive and negative numbers?"

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display that you started in this unit. Ask them to review and reflect on the terms and phrases related to the term arrow diagram that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding of adding rational numbers by creating, representing, and solving a temperature change problem.

Success looks like ...

- Language Goal: Determining the final temperature, given the starting temperature and the change in temperature, and explaining the solution method. (Speaking and Listening, Writing)
» Drawing an arrow diagram to determine the final temperature in Problem 2.
- Language Goal: Explaining how to create a number line diagram that represents adding rational numbers. (Speaking and Listening, Writing)
- Goal: Writing an addition equation to represent a situation involving a temperature increase or decrease.
» Writing an equation to determine a temperature decrease in Problem 2.

- Suggested next steps

If students struggle to write a coherent story for Problem 1, consider:

- Reviewing the contexts from Activity 2.
- Assigning Practice Problem 2 or 3.
- Asking, "How can you use times of day to help show how something has changed?"

If students show a change to $13^{\circ} \mathrm{C}$, consider:

- Having them reread the last sentence aloud.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

0 Points to Ponder ...

- What worked and didn't work today? Did students find Activity 1 or Activity 2 more engaging today? Why do you think that is?
Which groups of students did and didn't have their ideas seen and heard today? What might you change for the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
	1	Activity 1	2
On-lesson	2	Activity 2	2
	3	Activity 2	2
Spiral	4	Unit 4 Lesson 6	2
	5	Unit 4 Lesson 7	2
Formative 0	6	Unit 5 Lesson 4	1

Additional Practice Available

(6) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Adding Rational Numbers

Let's solve problems about adding rational numbers.

Focus

Goals

1. Create and interpret equations and diagrams that represent adding rational numbers in the context of elevation.
2. Language Goal: Generalize a method for determining the sum of two rational numbers. (Speaking and Listening)

Rigor

- Students build conceptual understanding of the structure of addition problems that give a positive or negative result.
- Students apply their rules for adding positive and negative numbers in context with climbing up and down.

Coherence

- Today

In this lesson, students build fluency adding rational numbers. Using the structure of opposites on the number line, they see that when adding two numbers with different signs, the sign of the sum will match the sign of the addend with the greater magnitude. Students then practice adding rational numbers with decimals.

< Previously

In Lesson 3, students represented addition of positive and negative numbers using arrow diagrams.

Coming Soon

In Lesson 5, students will encounter adding positive and negative numbers within the context of money.

Warm-up

(1) 5 min	(${ }^{\text {(})} 15 \mathrm{~min}$	(1) 13 min	(J) 20 min
$\bigcirc \bigcirc \bigcirc{ }^{\circ}$ Independent	คํำ Pairs	คํำ Pairs	ํํํ Pairs

Activity 1

Activity 2

Exit Ticket

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, Iog in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Operations, Part 1 (for display)
- Anchor Chart PDF, Operations, Part 1 (answers)
- a collection of small, short objects (e.g. erasers, paper clips, pen caps)

Activity 3 (Optional)

Summary

(1) 5 min

กํํำ Whole Class
(ㄱ) 5 min

Math Language
 Development

New word

- additive inverse

Review words

- absolute value
- arrow diagram
- opposite
- rational numbers

Amps : Featured Activity

Activity 3
 School Supply Number Line

Students select objects of their choice and arrange them on a digital number line to compare the values of rational-number variable expressions.

Building Math Identity and Community
 Connecting to Mathematical Practices

As students complete the Think-Pair-Share routine in Activity 1, they might not persevere in problem solving with their partner. As students are probably well aware of their strengths, during an exercise such as this, they should also lean on their partner to help them stretch beyond what they may think is a personal limitation. Working together will help accomplish solving the problems efficiently.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In the Warm-up, Problem 2 may be omitted.
- During Activity 2, instead of having students write responses for Problem 2 , ask this question during the discussion.
- Optional Activity 3 may be omitted.

Warm-up What's the Opposite?

Students explain, based on their background knowledge, what the opposite of a certain action is to better understand how opposites can appear in context.

1) Launch

Activate background knowledge by asking students what it means to "retrace your steps." Prompt students to describe opposite directions. You might ask students to give you directions to a specific location in the classroom (your desk, for example) and then give directions for how to get back to your original spot.

2 Monitor

Help students get started by having students sketch what is happening in the action described in each problem.

Look for points of confusion:

- Only giving a direction or a number, but not both. Ask, "Would someone know you are doing exactly the opposite of the action described?"
- In part c, saying walking is the opposite of running. Ask, "Will changing the speed affect the position at the end of the opposite action?"

Look for productive strategies:

- Identifying the important directional word in the action first.

(3) Connect

Have students share their own examples of opposite actions. After a few examples, conduct the Think-Pair-Share routine while asking, "Are these clear examples of opposite actions? How do you know"
Ask, "Why is traveling 100 steps north, and then 100 steps west not an example of opposite actions?"
Highlight that combining two opposite actions will always bring the action back to where it started.
Define the additive inverse of a number a as the number such that, when added to a, results in a sum of zero. It is the number's opposite.

Math Language Development

MLR2: Collect and Display

During the Connect, collect informal student language used to make sense of the additive inverse, such as "It is the opposite of a number," "It returns to the start," and "It makes zero." Add the language students use to the class display and remind them to continue to refer to and use the display during class discussions.

English Learners

Display or draw a compass rose annotated with north, south, east, and west to help students reason about opposite directions in parts b and c .

(7) Power-up

To power up students' ability to reason about how the placement of the decimal point affects the sum of decimal values, have students complete:
Determine whether each sum is greater than or less than 1.

1. 80 cents plus 53 cents. Greater than 1 .
2. $0.80+0.53$ Greater than 1 .
3. $0.08+0.53$ Less than 1 .

Use: Before Activity 2.
Informed by: Performance on Lesson 3, Practice Problem 6.

Activity 1 I Saw the Sign

Students examine patterns in repeated calculations to develop a rule for the sign of a sum of an expression including positive and negative numbers.

Activity 1 I Saw the Sign

Evaluate each expression shown in the table. You may use the number line to help reason about each expression.

1. Examine Columns 1 and 2.
a When do you notice that the solution results in a positive sum? Sample response: I noticed that the solution results in a positive sum when the absolute value of the positive number is greater than the
negative number.

When do you notice that the solution results in a negative sum? Sample response: I noticed that the solution results in a negative sum when the absolute value of the negative number is greater than the positive number.

1 Launch

Ask, "What similarities or differences do you notice between Columns 1, 2, and 3?" Conduct the Think-Pair-Share routine. Point out that for Problem 1, students are only considering Columns 1 and 2. Remind students that the absolute value means "the distance from zero."

(2) Monitor

Help students get started by suggesting they draw an arrow diagram for the first expression in Column 1.

Look for points of confusion:

- Not thinking that the results for positive and negative sums can be generalized to larger numbers. Ask students to write an additional expression that fits the pattern for each column.

Look for productive strategies:

- Noticing that the numbers in Columns 1 and 2 have different signs, but Column 3 has numbers with only negative signs.
- Using the term absolute value when comparing the size of numbers with different signs.

Activity 1 continued >

Differentiated Support

Accessibility: Guide Processing and Visualization

During the Launch, consider providing the following hints as students note the similarities and differences between the columns.

- "What is true about signs of the addends in Column 1? Column 2? Column 3?"
"How are the addends in Columns 1 and 2 similar? How are they different?"
While students complete Problems 1 and 2, suggest they record the absolute value of each number to help them notice any patterns.

Math Language Development

MLR1: Stronger and Clearer Each Time

After students complete Problem 3, have pairs meet with 1-2 other pairs of students to share their responses. Encourage reviewers to ask clarifying questions such as:

- "Do your rules include examples of when the addends are positive or negative?"
- "What math language can you use in your response?"
- "How do you know your rules are always true? Can you include examples to support them?"

Have students revise their responses, as needed.

English Learners

Consider chunking the feedback and revision portion of this routine. For example, after students meet with their first pair of students, have them refine their rules based on this initial feedback before meeting with the second pair of students.

Activity 1 I Saw the Sign (continued)

Students examine patterns in repeated calculations to develop a rule for the sign of a sum of an expression including positive and negative numbers.

Name: \quad Date: \longrightarrow Period:
Activity 1 I Saw the Sign (continued)
2. Now examine Column 3 .
a When do you notice that the solution results in a positive sum? Sample response: There are no positive sums in Column 3.
b When do you notice that the solution results in a negative sum? Sample response: I noticed that the solution is always a negative sum in Column 3.
3. What rules could you write that are always true for adding positive and negative numbers?
Sample responses:

- When the signs of the numbers being added are different, you have to determine which number has the greater absolute value. The sign of the calue will be the same the sign of the sum.
When the signs are different, the sum is equal to the difference of the absolute values of the two numbers. The solution will have the same sign as the number with the greatest absolute value.
When the two numbers being added are both negative, the sum will always be negative
When the two numbers being added are positive, the sum will always be positive.

Stronger and Clearer: Share your rules with 1-2 other pairs of students. Ask each
other clarifying questions other clarifying questions, your rules are always true? Revise your responses based on their feedback.

A8 Are you ready for more?
Fill in the boxes to make each equation true without using any number more than once.
Sample responses are shown
$2+(-7)=-5$
$\boxed{-2}+\boxed{-3}=-5$
$-4+(-\sqrt{1})=-5$

Activity 2 Above or Below the Water?

Students predict the final position of a crab by comparing distances with a given direction. This helps them reason about the sum of rational numbers in an elevation context.

Activity 2 Above or Below the Water?

A rock crab climbs up and down a cliff by the sea, searching for food.

1. First, predict whether the crab will be above or below sea level. Then write an equation to check your prediction. Note: Assume the crab always starts at sea level, 0 m . The crab:
(a) Climbs up 1.2 m , and then climbs down 1.3 m . Below sea level; $1.2+(-1.3)=-0.1$
(b) Climbs down 1.8 m , and then climbs down 0.2 m . Below sea level; $-1.8+(-0.2)=-2$

C Climbs down 1.23 m , and then climbs up 1.23 m . At sea level; $-1.23+1.23=0$
(d) Climbs down 0.7 m , and then climbs up 0.65 m . Below sea level;
$-0.7+0.65=-0.05$
e Climbs up 1.3 m , and then climbs down 1.29 m . Above sea level; $1.3+(-1.29)=0.01$

2. How can you predict whether the crab will be above or below sea level without performing any calculations?
Sample response: I can predict whether the crab will be above water or below water by comparing the absolute values. If the signs are different, the sum. If the signs are the same, the sum will have the same sign as the numbers being added.

1 Launch

Have students examine the number line Ask, "How is the number line partitioned? About how high is the top of the cliff from the water line?"

(2) Monitor

Help students get started by having them annotate each part of Problem 1, noting the specific direction of each value.

Look for points of confusion:

- Not knowing how to write the equation. For now, allow students to reason about the final position of the crab however they feel comfortable. They will have opportunities to practice writing equations in later lessons in the unit.

Look for productive strategies:

- First identifying which absolute value is greater, and then comparing the directions to decide whether the crab will be above or below the water line.

3 Connect

Display the number line.
Ask, "Suppose the crab climbs 0.9 m up the wall. How far does it need to climb down to be under the water?"

Have students share their responses to Problem 2.

Ask:

- "Does the order of the signs matter?"
- "Are there differences for determining the sign of the sum when the numbers are decimals, compared to when they are only integers?"
Highlight that comparing the magnitude of rational numbers is helpful when adding them. Knowing which number is greater gives a good reasonable check for whether the result makes sense.

Accessibility: Guide Processing and Visualization

Because this activity involves decimal values, suggest that students label the tick marks on their number line before beginning the activity. Consider having students make all of their predictions for each part of Problem 1 first, before going back to write the equations.

Extension: Math Enrichment

As a follow-up to Problem 2, have students determine whether the final location of the crab will be above or below sea level, if it starts at sea level, climbs up 1.4 m , climbs down 1.6 m , and then climbs up 1 m . Ask them to explain their thinking, without using the number line. Above sea level; Sample response: The absolute value of the difference of 1.4 and 1.6 is 0.2 . Because the absolute value of 1.6 is greater than the absolute value of 1.4 , the crab is below sea level by 0.2 m . To climb up 1 m means the crab's final location will be above sea level, by 0.8 m .

Activity 3 School Supply Number Line

Students see that even without actual numbers, knowing the signs and magnitudes of two numbers is enough to determine whether their sum will be positive or negative.

1. Launch

Have students gather, or provide them access to, two small, short objects that are no longer than the length given in Problem 1. Point out that Problem 2 specifies the longer object will be represented by a and the shorter will be represented by b.

2 Monitor

Help students get started by demonstrating how to lay the objects on the number line to mark the positions of a and b.

Look for points of confusion:

- Confusing the comparison symbols. Have students write "less than" and "greater than" above their respective symbols.
- Being confused between comparing the value of the expression and the magnitude of the expression. Explain that the number to the left or lower on a number line has the lesser value but greater magnitude because it is further from 0 .

3 Connect

Display a completed number line to the class. Have students compare the number line on display to their own.

Ask:

- "Is the order of the expressions on this number line the same or different than on yours?"
- "Would it be possible for $a+b$ to ever be greater than $2 a$? Why or why not?"
- "What must always be true about $2 a$ and $-2 a$?"

Highlight that, even without knowing the actual numbers, knowing how the signs and magnitudes of two numbers compare is enough to determine whether their sum will be positive or negative.

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can select objects of their choice and arrange them on a digital number line to compare the values of rational-number variable expressions.

Math Language Development

MLR7: Compare and Connect

During the Connect, have students compare verbal descriptions with the algebraic comparison statements in Problem 3. For example, consider displaying a table similar to the one shown. Highlight math words and phrases, such as additive inverse or opposite.

a is longer than $b . \ldots a$ is greater than b.
The length of a is greater than the length of b.

Summary

Review and synthesize how to add rational numbers.

Summary

In today's lesson...

You formulated some rules for adding rational numbers:
To add two numbers with the same sign, determine the sum of the absolute value of each number, and then give the sum the same sign as the addends.

To add two numbers with different signs, determine
the difference of the
absolute values, and then
give the result the same sign
as the number with the sign greater absolute value.

Reflect:

Synthesize

Display the Anchor Chart PDF, Rational Numbers (Part 1). Obtain the missing information from your class and complete the chart together.

Highlight that, when adding two numbers with different signs, the sign of the sum will match the sign of the number with the greater magnitude.

Formalize vocabulary: additive inverse

Ask:

- "What is the opposite of 5 ? Of -8 ? Of $\frac{1}{3}$? Of -0.6 ?"
- "What is the sum of a number and its opposite?"
- "Are the numbers 3 and 3 additive inverses? Are the numbers 4 and -4.1 additive inverses? Why or why not?"

(1) Reflect

After synthesizing the concepts of the lesson allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How do you add two numbers with the same sign? How do you add two numbers with different signs?"

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display that you started in this unit. Ask them to review and reflect on the terms and phrases related to the term additive inverse that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding of how to add rational numbers.

Success looks like ...

- Goal: Creating and interpreting equations and diagrams that represent adding rational numbers in the context of elevation.
- Language Goal: Generalizing a method for determining the sum of two rational numbers. (Speaking and Listening)
» Determining sums of two rational numbers and explaining how to calculate the sums in Problems 1-3.

- Suggested next steps

If students are confused about the rules for adding numbers with the same versus different signs, consider:

- Suggesting they draw a number line to represent the problem.
- Assigning Practice Problem 1 to help connect the computations with context.
If students add the absolute values, but give the assign the sign of the number with the greater magnitude incorrectly, consider:
- Having them represent the problem on a number line with directional arrows.

Note: If students are showing facility with the computations, you may choose to not require them to explain their thinking.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...

- What worked and didn't work today? What did asking students to generate rules themselves reveal about your students as learners?
- Who participated and who didn't participate in Activity 3 today? What trends do you see in participation? What might you change for the next time you teach this lesson?

Practice Problem Analysis	DOK	
Type	Problem	Refer to
On-lesson	$\mathbf{1}$	Activity 2
Spiral	$\mathbf{2}$	Activity 2
Formative 0	$\mathbf{3}$	Activity 2 Unit 4 Lesson 6 Unit 5 Lesson 2 Unit 5 Lesson 5

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Money and Debts

Let's apply what we know about positive and negative numbers to money.

Focus

Goals

1. Language Goal: Apply addition of rational numbers to calculate an account balance after a deposit or withdrawal, and explain the solution method. (Speaking and Listening)
2. Language Goal: Explain how rational numbers can be used to represent situations involving money, including deposits or withdrawals and assets or debts. (Speaking and Listening, Reading and Writing)
3. Write an equation with an unknown addend to represent a situation where the amount of change is unknown.

Coherence

Today

Students are introduced to using negative numbers in the context of money to represent debts or debits. One point that often gets overlooked is that it is a convention that we do this, rather than a necessity, so be prepared to handle students' curiosities about why it is done this way Using a mathematical structure (rational numbers) to represent a context (a balance with an energy company) is an example of modeling with mathematics.

< Previously

In Lessons 2-4 in this unit, students worked with and reasoned about adding rational numbers in primarily distance contexts.

> Coming Soon

Students will begin to subtract rational numbers in Lesson 6, realizing that this operation is closely linked with addition, even within the set of rational numbers.

Rigor

- Students apply their understanding of adding rational numbers to the contexts involving money - debts, bills, and banking.

Warm-up

Activity 1

Activity 2

Summary

Exit Ticket

(7 min	(J) 12 min
$\bigcirc \bigcirc \bigcirc \bigcirc 冂$ Pairs	$\stackrel{\circ}{\circ} \mathrm{O}$ Pairs

($)$
15 min
ํํํ Pairs
(J) 5 min
Whole Class
() 5 min
\bigcirc Independent

Amps powered by desmos Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 1 PDF, Are you ready for more? (as needed)
- Activity 1 PDF, Are you ready for more? (answers)
- calculators

Math Language

Development

New words

- balance*
- charge
- credit
- debt
- deposit
- withdrawal
*Students may confuse the term balance with the many other variations of meaning for the term. Be ready to address the similarities and differences between the various definitions of this term.

Review words

- additive inverse
- commutative property

Amps \vdots Featured Activity

Activity 2
 Using Work From Previous Slides

Charges and credits students enter in a table help them calculate balances later on.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 2, have different pairs of students each complete one row, and then complete the rest of the table and balance column as a class.
- In Activity 2, Problem 2 may be omitted.

Warm-up Taking a Loan

Students explore a context where it is necessary to borrow money and go into debt to understand why this value can be represented with a negative number.

1 Launch

Activate background knowledge by prompting students to think of a time they borrowed money to pay for something they wanted. Ask, "What did you have to do after you borrowed the money?" Provide access to calculators throughout the lesson.

2 Monitor

Help students get started by asking, "WIII Priya spend $\$ 1.25$ for all of her clay?'

Look for points of confusion:

- Thinking Priya needs to borrow the total cost of the supplies. Remind students that Priya's current cash is given in the introduction to the problem.

Look for productive strategies:

- Noticing that the combination of $\$ 125+\$ 25$ for the clay and apron is equal to how much cash Priya has, and determining that she needs to borrow the cost of the sponges.

(3)
 Connect

Display different student strategies. Look for an expression that shows the opposite values of 150 and -150.

Have students share which strategy they believe helps to make the calculations more efficient.

Highlight that under certain circumstances, people or businesses need to borrow more money than they currently have. Banks can help with this. The money that you need to pay back, or that you owe, is called a debt.

Ask:

- "What do you already know about debt?"
- "Is a debt always a bad thing? Is it ever a good thing?"
- "Why might we typically represent debt as a negative number?"

Math Language Development

MLR5: Co-craft Questions

During the Launch, display the introductory text and images. Have pairs examine Priya's current amount of cash and the supplies she needs to buy. Ask them to work with their partner to write 2-3 mathematical questions that could be answered based on the information given.

English Learners

After students have had time to craft one of their own questions, provide an exemplar question for students to use as a reference, such as "What is the total cost of the clay that she needs to purchase?" Encourage students to use this exemplar question as a model for writing 1-2 more mathematical questions.

(7) Power-up

To power up students' ability to identify the meaning of positive and negative values in the context of money, have students complete:
Determine whether each scenario would best be represented by a positive or a negative value.

1. A loss of $\$ 4$. Negative
2. An earnings of $\$ 53$. Positive
3. A debt of $\$ 82$. Negative
4. Receiving a gift of $\$ 120$. Positive

Use: Before Activity 1.
Informed by: Performance on Lesson 4, Practice Problem 6 and Pre-Unit Readiness Assessment Problem 5.

Activity 1 Dealing With Debt

Students consider a set of transactions to determine whether an account has a negative balance and see how the commutative property can help make calculations more efficient.
(1) Launch

Read the introduction to the activity together as a class. Introduce the term balance as the current amount of money in an account, either positive or negative to represent the amount of money available or owed. A negative balance would indicate a debt.
(2) Monitor

Help students get started by mentioning that there may be multiple ways to solve this problem.

Look for points of confusion:

- Being unsure of how to incorporate the values of the counting rods. Let students know that the counting rods are just another way to express the value that is at the top of the bit of paper.

Look for productive strategies:

- Noticing that the combination of $\$ 14+\$ 6$ earned is the opposite of $\$ 20$ spent.

3 Connect

Display several student strategies. Be prepared with examples of expressions that show different methods for ordering and combining the values.

Have students share their observations about similarities and differences among the strategies.

Ask, "How might it be helpful to look over all the values in a set of positives and negatives before adding them?"

Highlight that it can be helpful to first consider the values before operating with them. Just as the pieces of clay could be rearranged into a more helpful order, the addends in an addition sentence can be reordered using the commutative property.

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can rearrange the values into an order that aids their calculations, by using the commutative property.

Extension: Math Enrichment

Have students complete the Activity 1 PDF, Are you ready for more?
(1) Math Language Development

MLR7: Compare and Connect

During the Connect, after displaying several student strategies, use a Think-Pair-Share routine to encourage partners to compare the various strategies. Ask:

- "What do the strategies have in common? How are they different?"
- "How much was earned? How much was spent? How can grouping these together aid calculations?"

Featured Mathematician

Abu al-Wafa' Buzjani

Have students read about featured mathematician Abu al-Wafa' Buzjani, who was the first of his time to include a discussion of negative numbers in an Arabic math text during the 10th century.

Activity 2 Energy Supply

Students complete a balance statement with missing credits and charges to make sense of a common real-world context and work with values that include decimals.

Amps Featured Activity Using Work From Previous Slides

Activity 2 Energy Supply

Homes with solar panels may actually produce more energy than they use, depending on the amount of sunlight they get. If a solar panel system produces more energy than a household can consume over a period of time, the excess energy is sent back into the electric grid.

Bard's home has a rooftop solar panel system. The statement from the local energy company shows Bard's family whether they consumed or produced more energy. Unfortunately, it seems that the printer ran out of ink as it was printing the statement!

1. Bard knows that the cost for energy is $\$ 0.25$ per kilowatt hour (kWh). Complete the missing information in the statement

	Details	Charges (\$)	Credits (\$)	Balance (\$)
$1 / 31$	Consumed: 500 kwH Produced: 480 kwH	5.00		5.00
$2 / 28$	Consumed: 525 kwH Produced: 490 kwH	8.75		13.75
$3 / 31$	Consumed: 497 kwH Produced: 500 kwH		0.75	13.00
$4 / 30$	Consumed: 482 kwH Produced: 550 kwH		17.00	-4.00
$5 / 31$	Consumed: 470 kwH Produced: 520 kwH		$\mathbf{1 2 . 5 0}$	$\mathbf{- 1 6 . 5 0}$
$6 / 30$	Consumed: 515 kwH Produced: 515 kwH			$\mathbf{- 1 6 . 5 0}$
$7 / 31$	Consumed: 545 kwH Produced: 530 kwH	$\mathbf{3 . 7 5}$	$\mathbf{1 7 . 5 0}$	$\mathbf{3 0 . 2 5}$
Totals		$\mathbf{1 2 . 7 5}$		
			$\mathbf{- 1 2 . 7 5}$	

2. How much does the energy company need to pay Bard's family to result in a balance of $\$ 0$?
$-12.75+12.75=0$; The energy company needs to pay Bard's family $\$ 12.75$ to reach a balance of $\mathbf{\$ 0}$.

Date: Period: \square

1 Launch

Have students look over the statement in Problem 1. Then have them share anything they think is important or anything that they have questions about. Point out that each line will display only a charge or a credit and take time to explain the meaning of each term.

2 Monitor

Help students get started by asking, "What does the information in the Details column tell you? How much more energy was consumed than produced in the first month?"

Look for points of confusion:

- Not finding the difference of the energy consumed and produced. Have students check, for the first few months, if their strategy works to determine the charge or credit given.
- Being confused about why the balance for the second month isn't $\$ 8.75$. Remind students that balance refers to the current amount, so it is a running total that includes the previous months.

3 Connect

Display a completed table.
Have students share at least two different ways for determining the final balance at the bottom of the statement.
Ask, "Does the negative balance mean that Bard's family owes money or that the energy company owes them money? Why do you think that is?"
Highlight that sometimes the sign of a number is conveyed by the word or words used to describe it. For example, someone might say that they "owe $\$ 3$ " or that they "have a balance of $-\$ 3$." However, it would not make sense to say that someone "owes -\$3."

Differentiated Support

Accessibility: Guide Processing and Visualization

Consider displaying or providing students with a checklist to help them complete the statement, such as the following:

- Determine the difference between the energy consumed and produced.
- Deciding whether the customer will be charged or given a credit.
- Use the given rate to determine the total cost.

Provide access to colored pencils and suggest that students color code the cells in the Details column with whether it represents a charge or a credit.

Math Language Development

MLR5: Co-craft Questions

During the Launch, display the image of the statement. Ask students to work with their partner to write 2-3 mathematical questions they could ask about the information shown. Ask pairs to share their questions with the whole class. Sample questions shown.

- What does it mean when more energy is consumed than produced?
- How can I determine the amount charged or credited?
- What does a positive balance mean? A negative balance?

English Learners

Clarify the meanings of the terms in the statement (e.g., credit, charge, balance, consumed, and produced) in this context.

Summary
Review and synthesize the vocabulary and contexts that may be involved when dealing with money and debt.

Summary

In today's lesson...

You saw that it is sometimes necessary to borrow money to cover costs that you will pay back in the future. Though there are different names for what we call this owed money (e.g. debt, balance), we typically represent these amounts as negative values. This makes sense - if the money we have can be represented as a positive number, the money we owe may rightly be referred to as negative.
We can use positive numbers to represent payments into a bank account (deposits) and negative numbers to represent money taken out of an account (withdrawals). We can also use a negative balance to represent debt (owing money). The additive inverse of a number can be used to determine how much money is needed to reach a balance of zero

Reflect:

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display that you started in this unit. Ask them to review and reflect on the terms and phrases related to the terms balance, charge, credit, debt, deposit, and withdrawal that were used during the lesson. Add these new terms, along with any informal student language or visual examples, to the class display.

Synthesize

Highlight that sometimes the sign of the number depends on who is writing the number. If a company owes you money, they might consider the amount a negative, whereas you might consider it a positive (because it is money you will receive). When adding positive and negative amounts, you can use the commutative property to rearrange the order of the amounts for easier calculations.

Formalize vocabulary:

- balance
- charge
- credit
- debt
- deposit
- withdrawal

Ask:

- "If you borrow \$5 from your friend, would you consider that amount to be a positive value or a negative value? How might your friend consider it?"
- "What does it mean to have a balance of $\$ 0$?"

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "Why might the same amount of money be represented as a negative value to one person and a positive value to another?"

Exit Ticket

Students demonstrate their understanding of money and debt contexts by finding the account balance after various transactions.

Success looks like ...

- Language Goal: Applying addition of rational numbers to calculate an account balance after a deposit or withdrawal, and explaining the solution method. (Speaking and Listening)
» Determining Clare's account balance and explaining how to determine it in Problems 1 and 2.
- Language Goal: Explaining how rational numbers can be used to represent situations involving money, including deposits or withdrawals, and assets or debts. (Speaking and Listening, Reading and Writing)
- Goal: Writing an equation with an unknown addend to represent a situation where the amount of change is unknown.

Suggested next steps

If students add the cost of the bike to the amount in Clare's bank account, consider:

- Assigning Practice Problem 3.
- Asking, "If Clare buys a bike, did she earn or spend money?"
If students correctly find the difference of 150 and 200, but forget to represent the difference as a negative value, consider:
- Asking, "Would Clare have any money left in her bank account after buying the bike? How do you know?"

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
© Points to Ponder . .
What worked and didn't work today? What different ways did students approach writing expressions for adding several positive and negative numbers? What does that tell you about the similarities and differences among your students?
Which teacher actions made interpreting negative numbers in the context of money and debt strong? What might you change for the next time you teach this lesson?

Math Language Development

Language Goal: Explaining how rational numbers can be used to represent situations involving money, including deposits or withdrawals, and assets or debts.

Reflect on students' language development toward this goal.

- How did using the Co-craft Questions routine during Activity 2 help students make sense of positive and negative balances?
- How have students progressed in their comfort using the terms balance, charge, credit, debt, deposit, and withdrawal that were used in this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	3
Spiral	$\mathbf{2}$	Activity 2	2
Formative 0	$\mathbf{5}$	Exit Ticket Unit 5 Lesson 4 Unit 5 Lesson 6	2

© Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Representing Subtraction

Let's subtract rational numbers.

Focus

Goals

1. Language Goal: Use a number line to determine the difference of rational numbers, and explain the reasoning. (Speaking and Listening)
2. Language Goal: Generalize that subtracting a number from a given value results in the same value as adding the additive inverse of that number. (Speaking and Listening, Writing)

Coherence

- Today

Students extend their understanding of adding rational numbers to subtraction. They begin by applying the zero sum property to relate addition of opposites to subtracting a value from itself both on number lines and in equations. Students build on their observation that subtracting a value is the same as adding its opposite value (or additive inverse) when the sum or difference is zero to other values. They generalize this relationship, concluding that subtracting a number results in the same value as adding the additive inverse.

< Previously

In Lessons 2-5, students generalized rules for adding rational numbers with and without the use of a number line.

> Coming Soon

In Lesson 7, students connect their understanding of subtraction to determine the change in elevation and temperature.

Rigor

- Students build conceptual understanding of subtracting rational numbers using a number line.
- Students build conceptual understanding of the relationship between subtracting and adding rational numbers.
- Students apply their understanding of determining the sum of rational numbers to determining the difference of rational numbers.

Activity 1

Activity 2

Summary

Exit Ticket
(1) 10 min
\bigcirc Independent
(ㄱ) 13 min
ㅇํㅇำ Small Groups

(1) 5 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Operations, Part 2 (for display)
- Anchor Chart PDF, Operations, Part 2 (answers)
- calculator (as needed)

Math Language

Development

Review words

- additive inverse
- negative numbers
- opposites
- positive numbers
- rational numbers

Amps ! Featured Activity

Activity 2
 Digital Partner Problems

Students individually complete a series of problems digitally. After each problem, students check their response with their partner to come to a consensus before moving to the next one.

Building Math Identity and Community
 Connecting to Mathematical Practices

Defining subtraction in terms of addition might confuse some students in Activity 1 and make them question whether this new skill is really necessary. Challenge students to focus on the patterns that they see when rewriting subtraction as addition. Remind them that they know that addition and subtraction are inverse operations and that any nonzero number has an opposite. Therefore, they are simply combining previous skills into one that for now looks more complicated.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 1, omit part a.
- In Activity 2, have students complete any three rows of the table. Encourage pairs who are prepared for more challenging examples to complete the final three rows.

Warm-up Getting to Zero

Students apply their understanding of a sum or difference of 0 to determine the missing rational value in equations.

1 Launch

Activate students' prior knowledge by asking, "How do you use number lines to represent addition of rational numbers?"

2 Monitor

Help students get started by asking, "If two numbers have a sum of zero, what do you know about their signs?"

Look for points of confusion:

- Thinking that the missing value for Problem 4 is 4 . Ask, "How is Problem 4 similar or different from Problem 2?"

Look for productive strategies:

- Recognizing that an arrow of the same length, but opposite direction, needs to be added to each diagram to return to zero.

3 Connect

Display samples of student diagrams.
Have students share their method for determining the missing value in each equation.

Ask:

- "In general, what is true about two values whose sum is zero?" They are opposites
- "In general, for any value, what do you need to subtract from it to result in zero?" The same value.
- "Which diagrams are drawn the same?"

Highlight that Problems 1 and 2 model the same relationship, and Problems 3 and 4 model the same relationship.

(7) Power-up

To power up students' ability to write equations to match an arrow diagram, have students complete:

Match each diagram with the equation it models.

c $-3+1=-2$

Use: Before Activity 1.
Informed by: Performance on Lesson 5, Practice Problem 5.

Activity 1 Addition or Subtraction?

Students use number lines to make connections between equivalent addition and subtraction expressions involving rational numbers.

1. Launch

Explain that each number line should correspond to two expressions.

(2) Monitor

Help students get started by suggesting they first match the addition expressions to number lines.

Look for points of confusion:

- Thinking that $-4-(-3)$ is represented by Diagram c and not b. Ask, "How is $-4-3$ similar to or different from $-4-(-3)$? How are their representations on the number line the same or different?"

Look for productive strategies:

- Comparing the number lines in the Warm-up to the number lines in Problem 1.

3 Connect

Display the completed table for Problem 2.
Have groups of students share how they matched each expression to a number line.

Highlight that the corresponding diagrams have the same initial value, but when the operation is inverse (addition versus subtraction) the second value is also inverse (opposite sign).

Ask:

- "How would you represent 8 - 10 using addition?" $8+(-10)$
- "How would you represent $-6+8$ using subtraction?" -6 - (-8)
- "Can you think of any real-world examples of when you would subtract a negative value?" Sample response: Removing a debt.

Differentiated Support

Accessibility: Guide Processing and Visualization

Display these questions that students can ask themselves as they complete the matching in Problem 1.

- What number represents the starting number?
- In which direction is addition of a positive number represented? Addition of a negative number?
- In which direction is subtraction of a positive number represented? Subtraction of a negative number?

Math Language Development

MLR3: Critique, Correct, Clarify

During the Connect, display an incorrect statement about adding and subtracting numbers that reflects a possible misunderstanding, such as " $8-10$ has the same value as $-8+10$, because I can change subtraction to addition of the opposite." Ask:

- Critique: "Do you agree or disagree with this statement? Explain your thinking."
- Correct: "Write a corrected statement."
- Clarify: "How can you convince someone that your statement is correct? What mathematical language or reasoning can you use?"

English Learners

Annotate a clear example showing subtraction being rewritten as addition of the opposite, where the second addend becomes the opposite (or additive inverse) and the first addend stays the same.

Activity 2 Partner Problems

Students solidify their understanding of equivalent addition and subtraction problems by comparing their solutions with a partner who has the inverse representation.

1 Launch

Explain and conduct the Partner Problems routine.

2 Monitor

Help students get started by suggesting they use the provided number lines to help them to make sense of their problems.

Look for points of confusion:

- Changing subtraction to addition of the same value. Ask students if that relationship is true for a difference with simple whole numbers. For example, if $3-2$ is the equivalent to $3+2$. Ask, "What would be equivalent to $3-2$?"

Look for productive strategies:

- Changing subtraction expressions into adding the inverse value.

3 Connect
Display the partner problems.
Have pairs of students share their reasoning for the last two rows of the table.

Highlight that for any subtraction expression, it can be rewritten as addition using the additive inverse of the second term. This means students will not need to learn a new procedure for subtracting rational numbers. They can rewrite the problem using addition, and then use the rules they already know.

Ask, "How would you determine the value of $-10-(-5)$?"

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

If students need more processing time, have them only complete calculations for Problems 1-3, and then in Problems 4 and 5, only determine whether the sum or difference will be positive or negative. This will still allow them access to the main goal of the activity

Extension: Math Enrichment

Have students rewrite the following expression so that it only uses the operation of addition.
$-11-3 \frac{1}{2}+(-4.6)-1 \frac{2}{3}+9$
$-11+\left(-3 \frac{1}{2}\right)+(-4.6)+\left(-1 \frac{2}{3}\right)+9$

Math Language Development

MLR8: Discussion Supports-Revoicing

While students work, encourage partners to revoice each other's reasoning before correcting or resolving disagreements or errors. This will help foster productive mathematical discussions. Display sentence frames and/or questions students could ask each other, such as:

- "I hear you say that subtracting ___ is represented by ___ but when I use addition, I find that . .
- "What ideas do you have?"
- "Do you agree or disagree?"
- "Can you explain what you mean by ...?"

Summary

Review and synthesize how to determine the difference of two rational values by rewriting a subtraction expression as an addition expression using the additive inverse.

Summary

In today's lesson...

You reasoned that subtraction expressions can be expressed as equivalent addition expressions.

In general, when looking at an arrow on a number line, it can represent either addition or subtraction.

Using this representation, you found that you could determine the difference of wo values by rewriting the expression as an addition expression using the additive inverse of the second value

Reflect:

(i) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition To help them engage in meaningful reflection, consider asking:

- "How do you represent subtraction of rational numbers on a number line?"

Exit Ticket

Students demonstrate their understanding subtracting rational numbers by determining whether two expressions showing addition and subtraction are equivalent.

Success looks like ...

- Language Goal: Using a number line to determine the difference of rational numbers, and explaining the reasoning. (Speaking and Listening)
» Using a number line to determine whether each difference of rational numbers is true and changing the equation, if needed, in Problems 1-4.
- Language Goal: Generalizing that subtracting a number from a given value results in the same value as adding the additive inverse of that number.

(Speaking and Listening, Writing)

» Determining whether the correct additive inverse is added in Problems 1-4.

- Suggested next steps

If students incorrectly identify the equations that are true or false, consider:

- Reviewing Problem 1 from Activity 1.
- Asking, "How do you rewrite a subtraction expression as an equivalent addition expression?"
- Assigning Practice Problems 1 and 2.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
$\mathrm{C}_{\text {- }}$ Points to Ponder . .

- What worked and didn't work today? During the discussion in the Partner Problems routine, how did you encourage each student to listen to one another's strategies?
- In this lesson, students represented subtraction of integers on a number line. How did that build on the earlier work students did with adding rationa numbers? What might you change for the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	1
Spiral	2	Activity 1	2
Formative 0	$\mathbf{3}$	Activity 2	2

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.
(6) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Subtracting Rational Numbers (Part 1)

Let's determine the difference of rational numbers.

Focus

Goals

1. Recognize that the difference of two numbers can be positive or negative depending on the order given in the expression.
2. Language Goal: Subtract rational numbers, and explain the reasoning. (Speaking and Listening)
3. Language Goal: Compare subtraction expressions that give the same numbers in the reverse order. (Speaking and Listening)

Coherence

- Today

Students apply their understanding of subtracting rational numbers to compare differences and notice that, unlike addition, the order of subtraction changes the sign of the difference. Students apply this understanding to determine the change in temperature over time representing increases as a positive change and decreases as a negative change.

< Previously

In Lesson 6, students discovered that a subtraction expression can be written as an equivalent addition expression using the additive inverse of the second term.

>Coming Soon

In Lesson 8, students will apply their understanding of subtraction to reason about difference and distance on number lines and on the coordinate plane.

Rigor

- Students gain fluency in subtraction of rational numbers by comparing subtraction expressions with the same values in reverse order.
- Students apply their understanding of subtraction of rational values to determine change as a rational value.

Activity 1

Activity 2

Summary

Exit Ticket
(1) 10 min
ㅇํㅇ Pairs
(1) 15 min
ㅇํํ Small Groups
(ㄱ) 1
10 min
ㅇํㅇ Pairs
\oplus
5 min
ํํํํ Whole Class
(1) 5 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, \log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 1 PDF, Are you ready for more? (as needed)
- Graphic Organizer PDF, Blank Number Lines (as needed)

Math Language
 Development

Review words

- additive inverse
- commutative property
- difference

Amps ! Featured Activity

Activity 1
 Digital Partner Problems

Students individually complete a series of problems digitally. After each problem, students check their response with their partner to come to a consensus before moving to the next one.

powered by desmos

Building Math Identity and Community
 Connecting to Mathematical Practices

While working with a partner to determine whether the differences are equivalent in Activity 1, students might not take the time to be precise when writing subtraction as addition, which may cause conflict with their partner. Students should recognize that it is beneficial to both of them to cooperate and help each other when needed. They should both be willing to provide help if it guides the other person, and thus their team, to success.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In the Warm-up, have students only complete the first four rows of the table.
- In Activity 1, have students complete any three rows of the table. Encourage students who are ready for more challenging examples to complete the last two rows.

Warm-up Number Talk

Students compare the sums of pairs of values expressed in the reversed order.

Unit 5 | Lesson 7

Subtracting Rational Numbers

 (Part 1)Let's determine the difference of rational numbers.

Warm-up Number Talk
Determine each sum

Column A	Column B
$3+2=5$	$2+3=5$
$5+(-9)=-4$	$-9+5=-4$
$-11+2=-9$	$2+(-11)=-9$
$-6+(-3)=-9$	$-3+(-6)=-9$
$-1.2+(-3.6)=-4.8$	$-3.6+(-1.2)=-4.8$
$-2 \frac{1}{2}+\left(-3 \frac{1}{2}\right)=-6$	$-3 \frac{1}{2}+\left(-2 \frac{1}{2}\right)=-6$

What do you notice about the expressions in Column A compared to Column B? What do you notice about the sums in Column A and Column B?
Sample response: The values in each expression in Column A and Column B are ordered differently. The value of the sums are equivalent.
(6)

223 mplify Eucuation. inc. An raght reserved.

1 Launch

Conduct the Number Talk routine.

Monitor

Help students get started by covering up all but the first row of expressions. Suggest they uncover one row at a time.

Look for points of confusion:

- Thinking that the sign of the first addend determines the sign of the sum. Remind students that the sign of the sum matches the sign of the addend with the greater absolute value.
- Adding the magnitudes regardless of the original signs of each value. Ask students to represent $5+(-9)$ on a number line and to compare their sum from the number line with the sum from adding the magnitudes.

Look for productive strategies:

- Splitting the expressions in Columns A and B among their group, and then comparing their sums.

3 Connect

Display the table from the Warm-up in the Student Edition.

Have students share what they notice about each pair of sums.

Highlight that, by the Commutative Property of Addition, the sum of two numbers is the same regardless of the order of the addends.

Ask, "Do you think the commutative property holds true for subtraction?" Conduct the Poll the Class routine to assess student thinking. Do not ask students to explain their thinking, instead inform the class that they will be answering this question in the next activity.

MLR8: Discussion Supports-Press for Details

During the Connect, as students share what they noticed, press them for details in their reasoning by asking:

- "Does the order of the addends matter when adding two numbers?"
- "How do you know?"
- "Does it always work this way?"
- "Can you provide an example or a counterexample?"

Highlight student reasoning that demonstrates the importance of mathematical structure when adding negative numbers.

Power-up
To power up students' ability to write equations to determine the sum and difference of integers, have students complete:
Recall that subtracting in an integer is the same as adding its opposite For example, $-3-4=-3+(-4)$
Determine each sum or difference. Use a number line if helpful.

1. $-9+5=-4$
2. $5+(-9)=-4$
3. $5-9=-4$

Use: Before the Warm-up.
Informed by: Performance on Lesson 6, Practice Problem 6.

Activity 1 Partner Problems

Students compare differences of pairs of values in the reversed order to determine whether the differences are equivalent.

Amps Featured Activity Digital Partner Problems

Activity 1 Partner Problems

With your partner, decide who will complete Column A and who will complete Column B. After each row, share your responses with your partner. Compare your responses, and decide if they should be the same or not.

1. Determine each difference.

Column A	Column B
$3-2=1$	$2-3=-1$
$5-(-9)=14$	$-9-5=-14$
$-11-2=-13$	$2-(-11)=13$
$-6-(-3)=-3$	$-3-(-6)=3$
$-1.2-(-3.6)=2.4$	$-3.6-(-1.2)=-2.4$
$-2 \frac{1}{2}-\left(-3 \frac{1}{2}\right)=1$	$-3 \frac{1}{2}-\left(-2 \frac{1}{2}\right)=-1$

2. What do you notice about the expressions in Column A compared to Column B? What do you notice about their values?
Sample response: The values in each expression in Column A and Column B are ordered differently. The value of the differences are opposites.
A Are you ready for more?

Complete this table so that every row and every column has a sum of 0 . Can you determine anothe
way to solve this puzzle? No ; there is only one solution, in which each column has $-18,-12$ 0,5 , and 25 once

1) Launch

Conduct the Partner Problems routine, explaining to students that in this modified version, they should determine whether their differences are equivalent.

(2) Monitor

Help students get started by suggesting that they rewrite the subtraction expressions as addition expressions using the additive inverse of the second term.

Look for points of confusion:

- Thinking that the differences have to be equal because they have the same values. Have students sketch their differences from the first row on a number line and compare. Ask, "What do you notice about the two differences?"
- Dropping a negative sign when rewriting subtraction expressions as addition. Remind students that any expression $a-b$ is equivalent to adding the additive inverse, or $a+(-b)$.

Look for productive strategies:

- Comparing the equivalent addition expressions and noticing that when they change the order of subtraction that the addends in the addition expressions have opposite values.

Connect

Display the table from the Student Edition. Have students share what they noticed about the differences between Columns A and B.
Ask, "How could you represent the expressions in the first row as addition?" $3+(-2)$ and $2+(-3)$
Highlight that, unlike addition, the commutative property does not apply to subtraction. Compare the addition expressions for the first row, noting that they are adding opposite addends when the order of subtraction is reversed so the differences are opposite values.

Differentiated Support

Accessibility: Guide Processing and Visualization, Optimize Access to Tools

Provide copies of the Graphic Organizer PDF, Blank Number Lines for students to choose to use to help them organize their thinking and make sense of subtracting rational numbers.

Extension: Math Enrichment

Have students complete the table puzzles from the Are you ready for more? PDF.

(128)

Math Language Development

MLR8: Discussion Supports-Press for Reasoning

During the Connect, as students share what they noticed about the differences between Columns A and B, display the following prompt:

- "Changing the order of the numbers in a subtraction expression does/ does not change the value because . . ."
Ask students to complete the prompt, encouraging them to justify their reasoning using examples and nonexamples.

English Learners

Encourage students to respond to each other's ideas using the frames, "I agree or I disagree with \qquad because..."

Activity 2 Expressions With Temperature

Students compare temperatures to connect the relationship between differences in rational numbers and how far apart they are on the number line.

1 Launch

Activate prior knowledge by asking, "What is the first row in this table modeling?" Give students a chance to discuss with their partners prior to discussing as a class. Model the change on the number line by drawing an arrow from 25 to 20 and labeling it with -5 .

2 Monitor

Help students get started by having them place one finger on the temperature for Hanaupah Spring and second finger on the temperature for Telescope Park on their number line to help them to make sense of the chart.

Look for points of confusion:

- Giving the change as only a positive value. Bring their attention back to the first row of the table Ask, "Why was this change expressed as a negative value?"
- Reversing the order when determining change. Remind students that the expression to determine change is final value - initial value

Look for productive strategies:

- Rewriting each subtraction expression as addition to determine the change in temperature.

3 Connect

Have students share their strategies for determining the change in temperature between locations.

Ask, "What does it mean when the change in temperature is positive? Negative?"

Highlight that the change in temperature reflects how far apart the two values are as well as if the temperature was increasing or decreasing. Draw attention to Rows 2 and 3 of the table to highlight how the order of subtraction changed the sign of the change in temperature.

4 Differentiated Support

Accessibility: Guide Processing and Visualization

Demonstrate how the first row in the second table was completed to serve as a reference for students. Ask, "Why is 20 the first number in the expression, and not 25? Why is the change negative, not positive?"

Math Language Development

MLR3: Critique, Correct, Clarify

During the Connect, present an incorrect statement that reflects a potential misunderstanding such as, "If the final temperature is $-3^{\circ} \mathrm{C}$ and the starting temperature is $20^{\circ} \mathrm{C}$, then the difference is $17^{\circ} \mathrm{C}$." Ask:

- Critique: "Do you agree or disagree with this statement? Explain your thinking." Listen for students who reason that -3 and 20 are on opposite sides of zero on the number line.
- Correct: "Write a corrected statement."
- Clarify: "How can you convince someone that your statement is correct? What mathematical language or reasoning can you use?"

English Learners

Listen for ways students use the words, "negative," "difference," and "subtract," and clarify the meanings of these words.

Summary

Review and synthesize how the order of subtraction affects the difference of two values.

Synthesize

Display the Summary from the Student Edition.

(I) Reflect

After synthesizing the concepts of the lesson allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How did using the number line in Activity 2 help you determine the change in temperature?"

Exit Ticket

Students demonstrate their understanding determining the difference of two rational numbers by identifying equivalent subtraction and addition expressions.

Success looks like...

- Goal: Recognizing that the difference of two numbers can be positive or negative depending on the order given in the expression.
- Language Goal: Subtracting rational numbers, and explaining the reasoning. (Speaking and Listening)
» Selecting all the expressions equal to $-5-(-12)$.
- Language Goal: Comparing subtraction expressions that give the same numbers in the reverse order. (Speaking and Listening)
» Recognizing that $12+(-5)$ is equal to $-5-(-12)$.

- Suggested next steps

If students select Choice C, consider:

- Reviewing Activity 1.
- Assigning Practice Problem 1.
- Asking, "What is $5-3$? What about $3-5$?"

If students select Choice E, but not Choice D, consider:

- Reviewing the Warm-up.
- Asking, "Does order matter when adding?"

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C_{0} Points to Ponder ..
What worked and didn't work today? In what ways in Activity 1 did things happen that you did not expect?

- How did the Partner Problems routine support students in understanding how order affects the sign when determining the difference of two values? What might you change for the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	1
	2	Activity 1	2
Spiral	$\mathbf{3}$	Activity 2	2
Formative 0	6	Grade 6	2

O Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Subtracting Rational Numbers (Part 2)

Let's get more practice subtracting rational numbers.

Focus

Goals

1. Language Goal: Recognize and explain that the difference of two numbers can be positive or negative depending on the order of an expression, while the distance between two numbers is always positive. (Speaking and Listening)
2. Determine the distance between values on a number line and points on a coordinate plane.
3. Determine the location of events on a number line by determining the change from the current point in time.

Coherence

- Today

Students see that the difference of two numbers can be positive or negative, but the distance between two numbers is always positive. Using both a number line and points on a coordinate plane, they relate the value of the difference of two points to the distance between them concluding that the distance is the absolute value of the difference. Finally, they apply their understanding of difference and distance to create a number line of their lifetime, given that 0 represents today.

\checkmark Previously

In Lesson 7, students used a number line to determine the difference between two values concluding that the order of subtraction affects the sign of the difference.

Coming Soon

In Lesson 9, students will apply their understanding of addition and subtraction to solve a variety of real-world problems.

Rigor

- Students build conceptual understanding of the distance between two points.
- Students gain fluency in solving subtraction problems related to difference and distance.

Activity 1

Activity 2

Summary

Exit Ticket

(1) 7 min	(1) 10 min
คํํ Pairs	ㅇํํ Small Groups

(I) 5 min
ํํํํํํํ Whole Class
(1) 5 min

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Power-up PDF (as needed)
- Power-up PDF (answers)
- Activity 2 PDF, one per student
- Activity 2 PDF (answers)

Math Language

Development

Review words

- absolute value
- difference
- distance
- magnitude

Building Math Identity and Community Connecting to Mathematical Practices

The concept of representing today as 0 on a timeline might not sit well with students who think of today as having a date that is composed of numbers. Rather than give up before even getting started, students should persevere in their attempts to make sense of this problem. Ask them to identify the emotion they feel at the beginning of the problem and describe what they will do to turn it into a growth mentality.

Amps Featured Activity

Activity 2
 Digital Timeline

Students create a digital timeline of important moments in their lifetime by determining the difference between their current age and the age at which the event happened or is anticipated to happen.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In the Warm-up, Problems 4-6 may be omitted.
- In Activity 2, have students only choose two events in Problems 1 and 4. Alternatively, Activity 2 may be omitted entirely or assigned outside of class time. It makes for a great display in a classroom!

Warm-up Determining Distance

Students use a number line to determine the distance between two points.

1 Launch

Activate background knowledge by asking if any students know the distance around a track (400 m or $\frac{1}{4}$ mile). Ask, "Does the direction you run around the track change the distance?" Explain that regardless of the direction you run around the track the distance is always the same.

2 Monitor

Help students get started by saying, "Imagine the number line shown were a ruler, how far apart are points A and B ?"

Look for points of confusion:

- Giving the distance as a negative value. Remind students about the distance around the track example from the launch. Ask, "Would it make sense to say that the distance around a track is -400 meters?"

Look for productive strategies:

- Counting the spaces between values on the number line.
- Writing subtraction expressions to represent the difference between each value to aid in determining the distance.

3 Connect
Display the number line from the Student Edition.

Have students share their methods for determining the distance between the points, including writing expressions.

Define distance as the length between two points. In general, the distance between two values a and b is $|a-b|$.

Highlight that the distance is the magnitude of the difference.

Ask, "Does order matter when determining the distance between two points?"

Power-up
To power up students' ability to plot points on the coordinate plane:
Provide students with a copy of the Power-up PDF.
Use: Before Activity 1.
Informed by: Performance on Lesson 7, Practice Problem 6. and Pre-Unit Readiness Assessment, Problem 6.

Activity 1 Differences and Distances

Students connect their work with determining distance on the coordinate plane in Grade 6 to subtracting coordinate values.

Activity 1 Differences and Distances

```
1. Plot these points on the coordinate plane:
```

$A(5,4)$
$B(5,-2)$
C $(-3,-2)$
D $(-3,4)$

2. Connect the dots in order. What shape is created?

A rectangle
3. What are the side lengths of Figure $A B C D$?

Response shown in diagram.
4. What is the difference between the y-coordinates of A and B ? Show your thinking 6 units; $4-(-2)=6$
5. What is the difference between the y-coordinates of B and A ? Show your thinking -6 units; (-2) $-4=-6$
6. How do the differences of the coordinates relate to the distance between the two points?
Sample response: The absolute value of each difference
is equal to the distance between the two points.

Discussion Support: you use in your response to Problem 6? How can you represent this idea using both words and symbols?

\oplus

Differentiated Support

Accessibility: Activate Prior Knowledge

Remind students they previously plotted points in all four quadrants of the coordinate plane in Grade 6. Students may benefit from a review of the four quadrants of the coordinate plane and how to plot points that have positive and negative coordinates.

Extension: Math Enrichment

Without plotting, have students determine the distance between each pair of points.

- $(-4,1)$ and $(2,1) 6$
- $(3,6)$ and $(3,-3) \quad 9$
- (a, b) and $(c, b) \quad|c-a|$
- (m, n) and $(m, p) \quad|p-n|$

1. Launch

Activate prior knowledge by asking, "What does each value in the point $(5,4)$ tell you about the location of the point on the coordinate plane?"

2 Monitor

Help students get started by asking, "What do you remember about plotting points on the coordinate plane?" Model how to determine the location of point A.

Look for points of confusion:

- Mixing up the x and y-values when plotting points. Remind students the first value is the horizontal movement and the second value is the vertical movement.
- Not realizing that Problems 4 and 5 should give opposite values. Ask, "How does changing the order of the values in an expression affect the difference between them?"

3 Connect

Display a student sample of the completed coordinate plane.
Have students share their thinking for Problem 6.
Highlight that the values of the answers for Problems 4 and 5 are opposites. Distance is the magnitude of the difference. The distance between points A and B is the same regardless of the direction it is measured because the magnitude is the same. Generally, for any two values a and b, the distance between them is the same regardless of the order given in an expression; $|a-b|=|b-a|$.

Ask:

- "When you are determining the distance between two points on the coordinate plane, how do you determine when to look at the x-coordinate or the y-coordinate?"
- "How can you determine the distance between the points $(3,6)$ and $(-5,6)$?"

Math Language Development

MLR8: Discussion Supports

While students complete Problem 6, ask them to think about how they can use the math language they have been learning in their responses. During the Connect, have students share their responses. Listen for and amplify the ways students describe the distinction between distance and difference. Add this language to the class display and connect it to the language collected during the Warm-up.

English Learners

Add the coordinate plane to the display and add annotations to highlight the distinction students make between distance and difference.

Activity 2 My Lifetime Timeline

Students expand their understanding of subtracting rational numbers to create a number line of their life where "today" is represented by 0 .

Amps Featured Activity

Digital Timeline
Date:

Activity 2 My Lifetime Timeline

John Denver once sang, "Today is the first day of the rest of my life." Imagine today is a fresh start, and create a number line of the life you've had so far and the life you hope to have in the future. Your teacher will provide you a large number line for this activity.
>1. Including the day that you were born, think of three important events that have happened so far in your lifetime. Write down how old you were when each event happened, to the nearest month. (For example, Mai was 2 years and 1 month old the day her brother was born, so she would say that she was $2 \frac{1}{12}$ years old.) Sample responses shown.
a The day I was born. I was 0 years old.
b The day my little brother was born. I was $2 \frac{1}{12}$ years old.
c When I started taking ice hockey lessons. I was $8 \frac{10}{12}$ years old.
2. If today is represented by 0 , write and simplify and an expression to determine what number on your timeline would represent each event from Problem 1. Write each value as a mixed number to the nearest month. (For example, Mai is currently 12 years and 3 months old, so her day of birth would be represented by $-12 \frac{1}{4}$.) Sample responses shown. a $0-12 \frac{1}{4}=-12 \frac{1}{4}$
(b) $2 \frac{1}{12}-12 \frac{1}{4}=-10 \frac{1}{6}$, because $12 \frac{1}{4}-2 \frac{1}{12}=10 \frac{1}{6}$
(c) $8 \frac{10}{12}-12 \frac{1}{4}=-3 \frac{5}{12}$, because $12 \frac{1}{4}-8 \frac{10}{12}-=3 \frac{5}{12}$
3. Add each event from Problem 1 to the number line. Use the labels a, b, and c.

1 Launch

Explain that students will be using what they know about rational numbers and differences to create a timeline of their life where "today" is represented by 0 . Distribute the Activity 2 PDF to each student.

2 Monitor

Help students get started by asking, "Can you share an interesting fact about yourself?"

Look for points of confusion:

- Plotting the age (or the negative of the age) that each even happened, rather than the difference from their current age. Ask, "If something happened when you were 5, how would you represent how many years ago that was compared to today?"
- Difficulty in converting negative mixed numbers into improper fractions. Remind students that they can convert the magnitude of the mixed number into an improper fraction first, and then incorporate the sign.

Activity 2 continued >

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can create a digital timeline of important moments in their lifetime by determining the difference between their current age and the age at which the event happened or is anticipated to happen.

Accessibility: Vary Demands to Optimize Challenge

Allow students to approximate their ages to the nearest 6 months, or $\frac{1}{2}$ year, instead of the nearest month.

Activity 2 My Lifetime Timeline (continued)

Students expand their understanding of subtracting rational numbers to create a number line of their life where "today" is represented by 0 .

Activity 2 My Lifetime Timeline (continued)
4. Think of three goals you would like to accomplish in the next 15 years. Describe them in the space provided. Next to each goal, identify what age you hope to be when you reach that goal. (For example, Mai has a goal of graduating from high school with her class. She would be
17 years and 11 months old.) Sample responses shown.
d Getting my driver's license when I am 16 years old.
e Starting college when I am $17 \frac{11}{12}$ years old.
(f) Traveling to Machu Picchu when I am 22 years old.
5. If today is represented by 0 , write and simplify and an expression to determine what number would represent each event from Problem 4. Write each value as a mixed number to the nearest month. (For example, Mai's high school graduation would be represented by the expression $17 \frac{11}{12}-12 \frac{1}{4}=5 \frac{2}{3}$.) Sample responses shown.
d $16-12 \frac{1}{4}$ or $3 \frac{3}{4}$
(e) $17 \frac{11}{12}-12 \frac{1}{4}=5 \frac{2}{3}$
(t) $22-12 \frac{1}{4}=9 \frac{3}{4}$
6. Add each event from Problem 4 to your timeline. Use the labels d, e, and f.

3 Connect
Display examples of students' number lines.
Have students share how they determined the values that would represent each life event on their timeline.

Highlight that, in this scenario, each value represents the difference between their current age and the age at which the event occurred or is projected to occur.

Ask, "If you add your fourth and a half birthday on your number line, what value would represent it?" Answers may vary.

Summary

Review and synthesize the relationship between determining the distance between two points and the difference between two values.

Synthesize

Display the Summary from the Student Edition.

Ask:

- "Does the order of two numbers being subtracted matter when determining the difference?"
- "Does the order of the numbers being subtracted matter when determining the distance?"
- "How are difference and distance related?"

Highlight that difference can be positive or negative, and distance is the magnitude of the difference, therefore is always positive.

D Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How are difference and distance similar? How are they distinct?"

Exit Ticket

Students demonstrate their understanding of determining the difference and distance by analyzing and representing real-world scenarios.

亘 Printable

Exit Ticket
6S

Use the provided information to answer each question.

- A seagull is 6.8 m above sea level.
- A dolphin jumping out of the water is $\mathbf{0 . 4 5} \mathrm{m}$ above sea level.
- A manta ray is 9.4 m below sea level.

1. What is the distance between the seagull and the manta ray? Show or explain your thinking.
16.2 m ; Sample response: $|6.8-(-9.4)|=|6.8+9.4|=|16.2|=16.2$
2. What is the distance between the manta ray and the seagull? Show or explain your thinking.
16.2 m ; Sample response: the distance is always positive so the order of the animals doesn't matter.
3. What is the difference in the location of the manta ray compared to the dolphin? Show or explain your thinking.
-9.85 m ; Sample response: $-9.4-0.45=-9.4+(-0.45)=-9.85$; The manta ray is
9.85 m below the dolphin.

Success looks like . . .

- Language Goal: Recognizing and explaining that the difference of two numbers can be positive or negative depending on the order of an expression, while the distance between two numbers is always positive. (Speaking and Listening)
- Goal: Determining the distance between values on a number line and points on a coordinate plane.
» Determining the distance between pairs of animals above sea level in Problems 1-3.
- Goal: Determining the location of events on a number line by determining the change from the current point in time.

Suggested next steps

If students provide a negative distance for Problem 1 or 2, consider:

- Reviewing the definition of distance.
- Assigning Practice Problem 1.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
W_{0} Points to Ponder ...

- What worked and didn't work today? What challenges did students encounter as they worked on creating their timelines? How did they work through them?
- The instructional goal for this lesson was for students to understand the relationship between distance and difference. How well did students accomplish this? What did you specifically do to help students accomplish it? What might you change for the next time you teach this lesson?

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Adding and Subtracting Rational Numbers

Let's determine the sum and difference of rational numbers.

Focus

Goals

1. Language Goal: Apply addition and subtraction of rational numbers to solve problems in unfamiliar contexts, and explain the solution method. (Writing, Speaking and Listening)
2. Language Goal: Evaluate expressions involving both addition and subtraction, and explain the reasoning. (Speaking and Listening)
3. Language Goal: Determine whether the sum or difference of two rational numbers is positive or negative, and explain the reasoning . (Speaking and Listening)

Coherence

- Today

Students put their knowledge of addition and subtraction of rational numbers to use in real world contexts. They make sense of scenarios, writing expressions to determine the unknown quantity and reason about whether it would be a positive or negative value. Students continue working with expressions by writing their own scenarios to match a given expression and receiving feedback from a peer. Finally, students compare and contrast methods for simplifying expressions that include more than two rational values.

< Previously

In Lessons 2-8, students gained fluency in adding and subtracting rational numbers.

Coming Soon

In Lesson 10, students will extend their understanding of adding rational numbers to multiplication.

Rigor

- Students apply their understanding of addition and subtraction of rational numbers to write and evaluate expressions.

Warm-up

Activity 1

Activity 2 (optional)

Activity 3

Summary
Exit Ticket
(J) 10 min
$\circ \cap$ Pairs
(J) 5 min

คํํํํำ Whole Class
(J) 8 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- Graphic Organizer PDF, Labeled Number Lines (as needed)

Math Language
 Development

Review words

- absolute value
- associative property
- commutative property
- difference
- distance
- magnitude
- rational numbers

Amps Featured Activity

Activity 2
 Writing Scenarios

Students choose an expression and write a scenario that matches it. After trading scenarios with their partners, display multiple scenarios that match each expression and facilitate a discussion about the similarities and differences between them.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 1, have students choose any two scenarios to analyze, write expressions for, and answer.
- Optional Activity 2, may be omitted.
- In Activity 3, have students discuss Problem 2 without writing their responses on their paper.

Warm-up Positive or Negative?

Students reason about whether scenarios are representing positive or negative values without doing any calculations to prepare them to write expressions to represent them.

1 Launch

Conduct the Think-Pair-Share routine, asking students to read through each scenario twice prior to their partner discussion.

(2) Monitor

Help students get started by asking, "What do you need to do to determine how much greater one value is than another?"

Look for points of confusion:

- Taking the time to solve each scenario. Remind students that they should be making sense of each scenario to reason about the sign of the solution, and they are not being asked to determine the solution.

Look for productive strategies:

- Comparing the magnitude of the two given values in each scenario as well as the relationship between the values to help them to determine the sign of each solution.

3 Connect

Display the scenarios one at a time. Conduct the Poll the Class routine to determine the sign of each solution.

Have students share how they determined whether each solution would be positive or negative without doing any calculations.

Ask:

- "What expression could you write to represent the first scenario?" $4 \frac{1}{5}-\left(-12 \frac{3}{8}\right)$
- "What expression could you write to represent the second scenario?" 5350-6432
- "Do you feel that knowing the sign of the solution helped in writing the expressions?"

Highlight that when solving real-world problems, it is helpful to consider what type of solutions are possible prior to completing any calculations as a way to check the reasonableness of your answer.

(7)
 Power-up

To power up students' ability to determine whether the sum or difference of rational numbers is positive or negative, have students complete:

Without calculating, determine whether each sum or difference is positive or negative.

1. $4+13$ Positive
2. $4-(-13)$ Positive
3. $-4+13$ Positive
4. $-4-13$ Negative
5. 4-13 Negative
6. $-4-(-13)$ Positive
Use: Before the Warm-up.
Informed by: Performance on Lesson 8, Practice Problem 6.

Activity 1 Writing Expressions

Students apply their understanding of adding and subtracting rational numbers to write and evaluate expressions that represent scenarios.

1 Launch

Activate students' background knowledge by asking what they know about Antarctica. Ask, "It is colder in Antarctica in July than it is in December. Can anyone explain why?" Explain that they will be using what they know about addition and subtraction of rational numbers to write and evaluate expressions about the extreme conditions in Antarctica.

2 Monitor

Help students get started by asking, "Which operation would you use to model each scenario?"

Look for points of confusion:

- Struggling to write an equation. Suggest students sketch a number line to help them make sense of each scenario.
- Thinking that they have to use subtraction for all of the expressions. Remind students that they may use either addition or subtraction to best represent each scenario.
- Thinking that there is only one correct expression. Encourage students to check whether their expressions are equivalent.

Look for productive strategies:

- Rewriting subtraction expressions as addition to determine the sign of the solution.
- Checking the reasonableness of the solution with the original scenario.

Activity 1 continued >

Differentiated Support

Accessibility: Guide Processing and Visualization

Suggest that students draw number lines to help them visualize what is happening in each scenario.

Extension: Math Enrichment, Interdisciplinary Connections

Let students know the highest point on Earth is Mt. Everest, at about 29,000 ft above sea level. The deepest point on Earth is the Mariana Trench, in the Pacific Ocean, with a depth of about $36,000 \mathrm{ft}$ below sea level. Have students compare the distance between the highest and lowest points of Antarctica to the distance between highest and lowest points on Earth. (Geography) The distance between the highest and lowest points on Antarctica is $27,500 \mathrm{ft}$, which is about 24% of the distance between the highest and lowest points on Earth, 65,000 ft.

Math Language Development

MLR6: Three Reads

Use this routine to help students make sense of each scenario.

- Read 1: Students should understand the basic context for each scenario and what they are asked to determine.
- Read 2: Ask students to name or highlight the given quantities and relationships from each of the scenarios.
- Read 3: Ask students to plan their solution strategy and predict whether the answers will be positive or negative.

English Learners

After each read, provide students an opportunity to discuss their understanding with a partner to ensure comprehension.

Activity 1 Writing Expressions (continued)

Students apply their understanding of adding and subtracting rational numbers to write and evaluate expressions that represent scenarios.

Activity 1 Writing Expression (continued)
2. After coming to a consensus on which expressions are positive or negative, determine the solution to each scenario. Show or explain your thinking. Sample responses shown.
a The difference between the lowest and highest temperature is -205.1 $-135.8-69.3=-135.8+(-69.3)=-205.1$
b The average maximum temperature in January is $-15^{\circ} \mathrm{F}$ $67-52=15$, so $-67+52=-15$

C The distance between the highest and lowest point in Antarctica is $27,550 \mathrm{ft}$ $|16050-(-11500)|=\mid 16050+11500)=|27550|=27550$

CY Featured Mathematician

Sheila M. Wall

As an aeronautical engineer, Sheila Wall uses mathematics to create models of proposed designs and evaluate the structural integrity of each design. As she described, "Creating my mathematical models, 3D numerical representations of the instruments, is one of my favorite aspects of my job. I feel like I'm creating my very own jigsaw puzzle or elaborate LEGO set. Along with working on the ICESAT-2 mission, Sheila Wall has also worked on the Lunar Reconnaissance Orbiter mission and the Lucy mission to five Jupiter Trojans.

Featured Mathematician

Sheila Wall

Have students read about the featured mathematician, Sheila Wall, an aerospace engineer working for NASA. Her designs have been used to study Earth, the Moon, and Jupiter trojans (large asteroids that follow the same orbit as Jupiter around the Sun).

Activity 2 Writing Scenarios

Students write a real-world scenario to represent an expression with rational numbers and confirm with a peer.

Amps Featured Activity Writing Scenarios
Name:
Activity 2 Writing Scenarios

You will write a scenario about one of these expressions. Choose your
expression and circle it. Do not share which expression you chose with
your partner!
Sample response shown:
$-3.5-2.8$ $2.8-(-3.5)$ $1-3.5-2.81$
:---

1. Write a real-world scenario that can be represented by the expression. Be creative!
Mai and Clare are playing badminton together. Mai is 2.8 m to the right
of the net, and Clare is 3.5 m to the left of the net. How far is Mai from
Clare?

Stop here and wait for your partner to finish. Cover the top of your paper so that your partner cannot see which expression you chose, but can read your scenario. Once you are both ready, swap pages with your partner, and respond to Problems 2 and 3 on their paper.
2. Which expression matches your partner's scenario? Circle the expression.

$$
\begin{array}{llll}
-3.5-2.8 & 2.8-(-3.5) & 1-3.5-2.81 & -3.5+2.8
\end{array}
$$

3. Uncover the top of your paper. Does the expression you chose match the expression your partner chose? If not, determine where the misunderstanding occurred.
Responses may vary.

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can choose an expression and write a scenario that matches it. You can display multiple scenarios that match each expression and facilitate a discussion about the similarities and differences between them.

Accessibility: Guide Processing and Visualization

Provide a sample real-world scenario that can be represented by an expression not shown, such as $|2.8-(-3.8)|$ representing the scenario: Priya climbed 2.8 m up a mountain at the same time Andre descended 3.8 m of a cave. How far apart are they? Have students refer to this sample as a reference.

1. Launch

Explain to students that they will begin by writing their own scenario to match one of the given expressions. They should not share which expression they chose. Once all students have written their scenarios, they should cover the expression they chose, and swap papers with their partner.

2 Monitor

Help students get started by asking, "What are the two values being added or subtracted in each expression?"
Look for points of confusion:

- Writing a literal translation of the expression (e.g. the difference between -3.5 and 2.8). Remind students that their goal is to write a realworld scenario. Ask, "Can you think of a real-world scenario that would involve these values?"

3 Connect
Display the four expressions.
Have students share the scenarios they wrote. Try to have at least three scenarios for each expression.

Ask:

- "What similarities do you notice about the scenarios that were read aloud for the first expression?" Repeat this question for each expression.
- "Was there any confusion between the scenario that was written and the expression chosen?"
- "What was the most difficult part about writing your own scenario?"

Highlight that there are multiple scenarios for each expression. Although they all are unrelated in narrative, the description of the relationship between the values (e.g. difference, distance, or change) is similar.

Activity 3 Different Methods

Students explore different methods for simplifying expressions with both addition and subtraction by comparing and contrasting their method with their group.

1. Launch

Explain that students will be responding to Problem 1 independently, and then they will compare their methods as a group.

(2) Monitor

Help students get started by covering all but the first three values. Ask, "What would be your first step in simplifying this expression with three values?"

Look for points of confusion:

- Completing all of the addition, prior to subtracting. Remind students that addition and subtraction are done from left to right according to the order of the operations.

Look for productive strategies:

- Rewriting all of the subtraction in the original expression as adding the additive inverse.
- Using the associative and commutative properties to make the addition more efficient.
(3) Connect

Display student samples of correct methods for evaluating the expression. Ask students to determine whether they agree or disagree with each method.

Have students share what they notice are similar or different between the methods displayed.

Ask, "Did any of the methods use a strategy or idea that you did not consider?"

Highlight that when the expression is rewritten using only addition, the values can be added in any order.

Accessibility: Guide Processing and Visualization, Optimize Access to Tools

Provide copies of the Graphic Organizer PDF, Blank Number Lines for students to choose to use to help them organize their thinking and make sense of the expression and the operations involved.

Math Language Development

MLR7: Compare and Connect

During the Connect, as students share what they notice about the different methods, draw their attention to the connections between them. Ask:

- "Did anyone rewrite the subtraction as addition? How do you know that this is a valid approach?"
- "Did anyone group the positive numbers (or negative numbers) together and add them separately? What property allows you to do so?"

English Learners

Encourage students to refer to and use the class display to support their use of appropriate mathematical language.

Summary

Review and synthesize methods for writing and evaluating expressions involving adding and subtracting rational numbers.

Synthesize

Have students share strategies they used throughout class today to determine the sum or difference of rational numbers.

Highlight that rational numbers can be used to represent problems in context. To solve problems in these situations, students have to understand what it means when the quantity is positive, when it is negative, and what it means to add and subtract them

Ask, "What are some other situations where adding and subtracting rational numbers can help solve problems?"

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How can rational numbers be used to represent real-world situations?"

Differentiated Support

Extension: Math Around the World, Interdisciplinary Connections

Ask students if they have ever wondered when the rules for addition and subtraction with rational numbers first appeared in the history of mathematics. Tell them that in his writings around 620 CE, Indian mathematician Brahmagupta first used a special sign for negative values and described the rules for adding and subtracting with negative values. The need to operate with negative numbers in India likely arose out of necessity of their highly developed and cosmopolitan civilization that began four to five thousands years ago. They traded with other civilizations including some from thousands of miles away which required them to grapple with concepts like assets, debts, revenues, expenses, and income.

Brahmagupta used the idea of "fortunes" as representing positive values and "debts" as representing negative values. He stated:

- A debt minus zero is a debt.
- A fortune minus zero is a fortune.
- Zero minus zero is a zero. - A fortune subtracted from zero is a debt.

Ask students to rewrite Brahmagupta's rules using the terms "positive number" and "negative number." Then ask them to provide numerical examples that illustrate Brahmagupta's rules.

Exit Ticket

Students demonstrate their understanding of expressions with rational numbers by writing expressions to represent scenarios and determining the sign of the solution.

Success looks like ...

- Language Goal: Applying addition and subtraction of rational numbers to solve problems in unfamiliar contexts, and explaining the solution method. (Writing, Speaking and Listening)
»Solving the problems of temperature and population by adding and subtracting rational numbers in Problems 1 and 2.
- Language Goal: Evaluating expressions involving both addition and subtraction, and explaining the reasoning. (Speaking and Listening)
- Language Goal: Determining whether the sum or difference of two rational numbers is positive or negative, and explaining the reasoning. (Speaking and Listening)

Suggested next steps

If students incorrectly write the expression, consider:

- Reviewing Activity 1.
- Suggesting that students model the scenario on a number line prior to writing an expression.
- Assigning Practice Problem 1.

If students correctly write the expressions but incorrectly identify the sum or difference as positive, consider:

- Reviewing the rules for adding and subtracting rational numbers.
- Suggesting that students model the expression on a number line.
- Assigning Practice Problem 2.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\sim_{0}. Points to Ponder ...

- What worked and didn't work today? In what ways have your students become better at making sense of problems and persevering in solving them?
- During the discussion about Activity 3 how did you encourage each student to share their understandings? What might you change for the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	2
Spiral	$\mathbf{2}$	Activity 1	1
Formative 0	$\mathbf{3}$	Activity 3	2

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

Multiplying and Dividing Rational Numbers

In this Sub-Unit, students build on their prior knowledge of distance, rate, and time, to model and interpret products and quotients of rational values in terms of position and direction, ultimately developing the rules for multiplying and dividing rational numbers.

Narrative Connections

How many Mt. Everests can a grandma climb between Georgia and Maine?

Emma Gatewood stood atop Mt. Oglethorpe. The Georgia wilderness lay before the 67 -year-old great-grandmother hundreds of mountains, trees, rivers, and streams. She had told her family back in Ohio that she was going for a walk. What she didn't tell them was that the walk was going to cover 2,168 miles along the length of the Appalachian Trail.
The Appalachian Trail follows the Appalachian Mountains across nearly a dozen states. Established in 1937, the trail was a place anyone could go to reconnect with nature. The trail linked work, study, and farming camps that were set up along the mountain range. Every year, "thru-hikers" like Gatewood take up the challenge of hiking its total length.

In the summer of 1955, equipped with barely any supplies and a pair of tennis shoes, Gatewood set to conquer the trail. Over the course of a season, she faced rocky passes, dizzying heights, floods, storms, and rattlesnakes. She ate off the land and slept rough in improvised shelters. Soon, newspapers caught wind of her story, and strangers started offering her food and a place to stay. Finally, after 146 days, across 14 states, she emerged from the trail at Maine's Mount Katahdin.

By the time her trip was done, she had trekked the equivalent of climbing up and down Mt. Everest 16 times. Not only was she the oldest hiker to thru-hike the trail, she was also the first woman. When reporters asked her why she set out on this task, she simply answered, "For the heck of it!"

To determine that Gatewood hiked the equivalent of 16 times the height of Mt. Everest (up and down), we need to understand how to multiply and divide rational numbers.

Read and discuss

Read the narrative aloud as a class or have students read it individually. Students continue to explore real-world applications of multiplying and dividing rational numbers in the following places:

- Lesson 10, Activity 1:

Backward and Forward in Time

- Lesson 11, Activity 1 : Velocity and Time
- Lesson 14, Activities 1-2:

Drilling a Well, Diving With the Ama

Position, Speed, and Time

Let's use rational numbers to represent time and movement.

Focus

Goals

1. Language Goal: Explain how rational numbers can be used to represent elapsed time and distance before and after a chosen reference point. (Speaking and Listening, Writing)
2. Write a multiplication expression to represent a situation involving constant speed and time.
3. Language Goal: Generalize that the product of a positive number and a negative number is negative. (Speaking and Listening)

Coherence

- Today

Students explore the product of a negative number and a positive number by analyzing the location of a person traveling at a constant speed given a positive or negative time. They model movement on a number line, noting that when going forward in time the location on the number line is positive and when moving backward in time the location is negative. Students formalize that the product of a positive number with a negative number is negative, by relating multiplication expressions to repeated addition.

< Previously

In Lessons 3-9, students developed and practiced the rules for adding and subtracting rational numbers.

> Coming Soon

In Lesson 11, students will generalize the rules for multiplying rational numbers.

Rigor

- Students use number lines and repeated addition to build conceptual understanding of multiplying a positive and negative value.

() 7 min
ㅇํㅇ Pairs
() 15 min
ㅇํำ Small Groups

(1) 5 min	(J) 5 min
กํํํํㅇํ Whole Class	\circ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Graphic Organizer PDF, Blank Number Lines (as needed)
- paper clips, snap cubes, or other objects to move on the number line

Math Language
 Development

Review words

- absolute value
- magnitude
- negative numbers
- positive numbers
- rational numbers

Building Math Identity and Community
 Connecting to Mathematical Practices

While working on Activity 1 , students might be stressed with the different concepts all being modeled in one problem. Prior to starting, have students brainstorm ways that they might lower their stress levels in order to focus on the task at hand. They might need to take a quick break, do some deep breathing, or get a drink of water. It might help them to color code their work to help them focus on the different goals of the Activity.

Amps : Featured Activity

Activity 1
 Interactive Number Line

Students use interactive number lines to determine the location of vehicles as they move at constant speeds forward and backward in time.

Amps

powereb br desmos

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 1, ask students to discuss Problem 3 with their group, without writing down their responses.
- In Activity 2, have students choose any three rows to complete along with the final row. Have students discuss Problem 2 as a group without writing down their responses.

Warm-up Before and After

Students reason about location in the past and future using positive and negative values for a person traveling at a constant speed.

1. Launch

Conduct the Think-Pair-Share routine. Provide students with an object (block, paper clip, etc.) to represent Kiran moving on the number line as well as the hiker moving in the next activity.

(2) Monitor

Help students get started by asking them to stand and model what it would look like for them to walk forward in time and backward in time to help them make sense of the number line model.

Look for points of confusion:

- Not taking Kiran's walking speed into consideration and placing his location at 1 second at 1 on the number line. Bring students attention to Kiran's speed of $4 \mathrm{ft} / \mathrm{second}$. Ask, "Without using the number line, think about his walking rate. How far would he travel in 1 second? 2 seconds?"

3 Connect

Display a large number line in the front of the room and ask for a student to represent Kiran.

Have students share how they determined the location of Kiran on the number line with the student volunteer acting out the movements.

Highlight that students can skip count by Kiran's walking speed, where each movement of 4 to the right represents moving forward in time and 4 to the left represents moving backward in time.

Ask, "What integer value could be used to represent 5 seconds in the future? 5 seconds in the past?" $5 ;-5$

Math Language Development

MLR7: Compare and Connect

During the Connect, ask students to share their responses to the questions posed in the Student Edition:

- "What do you notice about the locations on the number line that represent Kiran's position before his current position? After his current position?"
Encourage students for details about their reasoning by asking:
- "How did your solution to part a help you with part c?"
- "How did your solution to part b help with part d?"

English Learners

Use the number line to demonstrate Kiran moving forward and backward in time. Clarify the meaning of the word ago.

Unit 5 Rational Number Arithmetic

(7) Power-up

To power up students' ability to use proportional reasoning to solve problems involving distance, rate, and time, have students complete:
Mai travels at a rate of 8 mph when cross-country skiing.

1. Her total distance traveled can be modeled by the equation $d=8 t$. Match each part of the equation with what it represents.
a. $d \quad \mathrm{~b}$ The speed.
b. 8 c The time in hours
c. $t \quad$ a The distance in miles.
2. What is her distance traveled after half an hour? Show your thinking. She traveled 4 miles; $t=0.5$; $d=8(0.5)$
$d=4$
Use: Before the Warm-up.
Informed by: Performance on Lesson 9, Practice Problem 6.

Activity 1 Backward and Forward in Time

Students explore the relationship between speed and time noticing that the product of positive and negative values seems to be negative.

1 Launch

Activate students' background knowledge by asking whether they have heard of the Appalachian Trail. Explain that students will be working together to determine the location of a variety of hikers traveling at different speeds in relation to a camera. Provide access to objects to use to represent the hikers moving in time on the number line.

2 Monitor

Help students get started by covering the first three columns of the table. Ask, "What do you notice about the values in the table?"

Look for points of confusion:

- Skip counting by 2 instead of by 4 because that is the unit on the number line. Ask, "What is the speed of the car?"

Look for productive strategies:

- Noticing a pattern in the sign of the values of the ending position, and then checking the pattern by using the number line.

3 Connect

Display the completed table from Problem 2.

Ask:

- "What does the negative value represent in each expression?"
- "What does the negative value represent in the ending position?"
Have students share what they noticed about the relationship between each expression and the ending position of each hiker.

Highlight that it appears that the product of a positive and a negative value is negative. Explain that students will explore whether this is true outside of speed and time in the next activity.

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can use interactive number lines to determine the location of vehicles as they move at constant speeds both forward and backward in time.

Accessibility: Guide Processing and Visualization

Use a think-aloud to demonstrate how to respond to Problems 1a and 1b and how the hiker's speed was used to determine their position at 1 second and 2 seconds. Then have students work backward to complete the rest of the table. Ask, "What does a negative position mean?" The hiker was moving away from the camera, in the opposite direction.

Math Language Development

MLR7: Compare and Connect

During the Connect, draw students' attention to the connections between the signs of the factors in the expression and the sign of the product. Ask:

- "What do you notice about the ending position when one of the factors is negative?"
- "Why does this make sense in this context?"

English Learners

Annotate the number line by writing "camera" at 0 ft , "moving away from the camera in one direction" for positive distances, and "moving away from the camera in the opposite direction" for negative distances.

Activity 2 Multiplication or Addition?

Students use repeated addition to determine that the product of a positive and negative will always be negative.

(1) Launch

Activate students' prior knowledge by asking, "How could we model what $10 \cdot 2$ means?" After eliciting responses, illustrate that $10 \cdot 2$ represents 10 groups of 2 .

(2) Monitor

Help students get started by asking, "Can you explain why the two expressions in the first row are equivalent?"

Look for points of confusion:

- Thinking that $a \cdot b$ is b groups of a. Remind students that it is a groups of b, or b being added to itself a times.

3 Connect

Display correct student responses for the last row of the table. Give students a minute to look at the different responses.

Have students share what they notice about all of the responses as well as what conclusion, or rule, they can make about the product of a positive and a negative number.

Highlight that, in each case of multiplying a whole number by a negative value, it could be represented by repeated addition of the negative value resulting in a negative sum. In general, when multiplying a positive number by a negative number, first determine the product of the absolute value of the numbers, and then make the value negative.

Ask:

- "How would you determine the value of 2 • (-4)?" Write the expression as a sum of two groups of $-4 ;(-4)+(-4)=-8$.
- "What is the value of $\frac{1}{2} \bullet(-4)$?" -2 ; Sample response: Think of this as half of one group of -4 , which is -2 .

Differentiated Support

Accessibility: Guide Processing and Visualization, Optimize Access to Tools

Provide copies of the Graphic Organizer PDF, Blank Number Lines for students to choose to use to help them organize their thinking and make sense of the expression and the operations involved.

Extension: Math Enrichment

Have students explain whether they could use similar reasoning to determine the value of the expression $\frac{1}{2} \cdot(-6)$. Sample response: Yes, this represents half of one group of -6 , which is ${ }^{2}-3$.

Math Language Development

MLR2: Collect and Display

During the Connect, as students share their responses to Problem 2, add these statements - or a condensed version of them - to the class display. Include examples of multiplication expressions written as a sum, such as:

The product of two positive numbers is always positive.
 The product of a positive number and a negative

 number is always negative.$4 \cdot 3=3+3+3+3=12$
Four groups of positive $3=$ positive 12 .
$4 \cdot(-3)=(-3)+(-3)+(-3)+(-3)=-12$
Four groups of negative $3=$ negative 12 .

Summary

Review and synthesize that the product of a positive and a negative is always positive.

Synthesize

Display the Summary from the Student Edition.

Ask:

- "What kind of value do you get when you multiply a positive and a negative value?"
- "How can a number line be used to represent multiplication?"
- "Can you think of any scenarios other than speed and time that could be represented by the product of a positive and a negative value?"

Highlight that the product of a positive and a negative is always negative for any pair of rational values; integers, fractions, and decimals.

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How do you represent multiplication of rational numbers on a number line?"

Exit Ticket

Students demonstrate their understanding of determining the product of a positive and a negative by explaining why the product must be negative in their own words.

- Success looks like...
- Language Goal: Explaining how rational numbers can be used to represent elapsed time and distance before and after a chosen reference point. (Speaking and Listening, Writing)
- Goal: Writing a multiplication expression to represent a situation involving constant speed and time.
- Language Goal: Generalizing that the product of a positive number and a negative number is negative. (Speaking and Listening)

Suggested next steps

If students use the rule as their reasoning, consider:

- Encouraging them to use one of the other two methods discussed in class from Activity 1 or Activity 2 to explain why the rule makes sense.
- Assigning Practice Problem 3.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...
What worked and didn't work today? In earlier lessons, students added and subtracted values on the number line. How did that support students' understanding of moving at a constant rate on the number line?

- Thinking about the questions you asked students today and what the students said or did as a result of the questions, which question was the most effective? What might you change for the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	2
	2	Activity 2	2
Spiral	$\mathbf{3}$	Activity 1	3
Formative 0	6	Unit 5	Lesson 8
	5	Unit 2 Lesson 11 Unit 5	2

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

(3)

vem
4. For each equation, write two more equations using the same numbers that express the same relationship in a different way. Sample responses shown.

Original equation	Equation 1	Equation 2
$3+2=5$	$3-(-2)=5$	$3=5-2$
$7.1+3.4=10.5$	$7.1-(-3.4)=10.5$	$7.1=10.5-3.4$
$15-8=7$	$15+(-8)=7$	$15=7+8$
$\frac{3}{2}+\frac{9}{5}=\frac{33}{10}$	$\frac{3}{2}-\left(-\frac{9}{5}\right)=\frac{33}{10}$	$\frac{3}{2}=\frac{33}{10}-\frac{9}{5}$

5. Which of the following graphs could not represent a proportional relationship? Select all that apply. Explain your thinking.

(B)

©. ${ }^{\prime}$

B and $D ;$ Sample response: B is not a straight line and D does not go through the origin so neither graph can represent a proportional relationship.
6. An elevator in a building with multiple levels of parking under it, travels at a speed of $10 \mathrm{ft} / \mathrm{second}$. If it is currently on the ground floor (0 ft), and is traveling up and not making stops, determine its location at each given time.
(a) After 5 seconds have passed. $50 \mathrm{ft} ; 10 \cdot 5=50$
(b) After 12 seconds have passed. $120 \mathrm{ft} ; 10 \cdot 12=120$

C 4 seconds before it made it to the ground floor. $-40 \mathrm{ft} ; 10 \cdot(-4)=-40$

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

Multiplying Rational Numbers

Let's multiply rational numbers.

Focus

Goals

1. Language Goal: Explain how rational numbers can be used to represent position and speeds in opposite directions. (Speaking and Listening)
2. Language Goal: Generalize that the product of two negative numbers is positive. (Speaking and Listening)
3. Language Goal: Generalize that the product of two rational numbers with different signs is negative. (Speaking and Listening)

Coherence

- Today

Students apply their understanding of the distance formula, $d=r t$, to make observations about the rules for multiplying rational numbers. They connect their understanding from the previous lesson that time can be represented by positive and negative values with objects moving in opposite directions. Students determine that a negative velocity and a negative time gives a positive position, and a negative velocity and a positive time result in a negative position. Finally, students generalize the rules for multiplying rational numbers by applying the order of operations and the Distributive Property to expressions in the form $a(b+c)$.

< Previously

In Lesson 10, students modeled before and after as negative and positive time. They concluded that the product of a positive number and a negative number is negative.

> Coming Soon

In Lesson 12, students will gain fluency in multiplication of rational numbers, determining the products of three or more rational values.

Rigor

- Students build conceptual understanding of multiplying rational numbers.

Warm-up

Activity 1

Activity 2

Summary

Exit Ticket
(J) 5
ㅇํㅇ Pairs
(J) 18 min
คำำ Small Groups

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Graphic Organizer PDF, Blank Number Lines (as needed)
- paper clips, snap cubes, or other objects to move on the number line

Math Language
 Development

New word

- velocity

Review words

- absolute value
- Distributive Property
- magnitude
- order of operations
- rational numbers

Building Math Identity and Community
 Connecting to Mathematical Practices

In Activity 1, students predict the location of the bicycles and they might struggle to see any sort of repeated reasoning in the problem. Encourage students to continually evaluate their results, determining whether or not they are reasonable. Remind them that predictions could be incorrect, but they should apply a growth mindset and recognize that they have not determined the correct locations yet.

Amps : Featured Activity

Activity 1
 Interactive Number Lines

Students use interactive number lines to determine the location of bicyclists as they move at constant speeds forward and backward in time and in opposite directions.

Amps
powereb by desmos

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted. Instead, share the definition of velocity during the Launch for Activity 1.
- In Activity 2, have students work in pairs on Problem 3. One student should use the Distributive Property, while the other student uses the order of operations. Then they should compare their values.

Warm-up Going Up or Down?

Students reason about representing the speed and direction of an elevator moving within a building.

1 Launch

Activate prior knowledge by asking, "How did you use rational numbers to represent moving forward and backward in time in the previous lesson?" Have a student read the scenario, and then conduct the Think-Pair-Share routine.

(2) Monitor

Help students get started by having them sketch a picture of how an elevator moves.

Look for points of confusion:

- Not considering using positive and negative numbers. Ask, "How can you use mathematics to represent direction?"

Power-up
To power up students' ability to determine location with positive and negative times, have student complete:

Complete each statement with the values $-10,-2,2$, or 10 .
A man is jogging at a constant speed of 5 mph . His current location can be represented by 0 on a number line.

1. 2 represents the time after 2 seconds have passed.
2. -2 represents the time 2 seconds before his current location.
3. 10 represents the location of the runner after 2 seconds have passed.
4. -10 represents the location of the runner 2 seconds before.

Use: Before Activity 1.
Informed by: Performance on Lesson 10, Practice Problem 6.

Unit 5 Rational Number Arithmetic

Activity 1 Velocity and Time

Students use number lines and expressions to explore and represent the location of people traveling in opposite directions forward and backward in time.

Amps Featured Activity Interactive Number Lines
Name: \quad Date:__ Perio
Activity 1 Velocity and Time

The longest recreational trail in the world (open for hikers, bikers, horseback riders, and snowmobilers) is $\mathbf{1 4 , 9 1 3}$ miles long. It stretches from the Pacific to the Atlantic Ocean, across 13 provinces in Canada, and is called The Great Trail. A section of the trail, named the Kettle Valley Rail Trail, was built on a 1915 railway and has the largest collection of stone ovens in North America, built by masons during the construction of the original railway.

1. Two bikers pass one of the stone ovens at the same time. Bicycle A is traveling east at a speed $7 \mathrm{~m} /$ second, while Bicycle B is traveling west at a speed of $7 \mathrm{~m} /$ second. Use the number line shown to help you.

(a) What is the velocity of Bicycle A? $7 \mathrm{~m} /$ second
b Use the number line to help you complete the table for the location of Bicycle A at the given times.

Time (seconds)	-3	-2	-1	0	1	2
Position (m)	-21	-14	-7	0	7	14

c What is the velocity of Bicycle B? $-7 \mathrm{~m} /$ second
d Use the number line to help you complete the table for the location of Bicycle B at the given times.

Time (seconds)	-3	-2	-1	0	1	2
Position (m)	21	14	7	0	-7	-14

2. What is the relationship between the location of Bicycle A and Bicycle B at any time?
They are opposites.

1 Launch

Activate students' background knowledge by asking if they've ever been hiking or biking on a trail. Explain that in this activity they will build on their work from the previous lesson with hikers traveling on the Appalachian Trail, but now they will have people moving in opposite directions. Provide access to objects (paper clip, block, etc.) that could represent the vehicles moving in time on the number line.

2 Monitor

Help students get started by covering the first three columns of each table in Problem 1 and asking them to reason about the positive times first.

Look for points of confusion:

- Not starting their 'bicycles' at 0 for each scenario in Problem 1. Encourage students to place their "bicycle" at 0 ; then model one side of the table, and then the other (forward in time, then backward in time).
- Thinking that, because Bicycles A and B have the same speed, they also have the same velocity. Review the definition of velocity from the Warm-up.
- Thinking that Bicycle B would have a negative position for negative time. Ask, "What does the velocity tell you about the direction the bicycle is traveling? What direction would it be going if they were going backward in time?"
- For Problem 2, applying rules of addition to multiplication to determine the sign of the final position. Ask students to use the number line from Problem 1 to check their values.

Look for productive strategies:

- Using a noticed pattern to predict the location of Bicycle A and Bicycle B then using the number line to check their predictions.

Differentiated Support
Accessibility: Optimize Access to Technology
Have students use the Amps slides for this activity, in which they can use interactive number lines to determine the location of bicyclists as they move at constant speeds forward and backward in time and in opposite directions.

Accessibility: Guide Processing and Visualization

Consider asking two student volunteers to demonstrate the bikers traveling at the same speed, but in opposite directions. Have them pass an object, such as a desk, to represent passing the stone oven at the same time.

(ㄴ)

Math Language Development

MLR2: Collect and Display

During the Connect, as students share their responses to Problem 4, add a new statement about the product of two negative numbers to the class display, such as the one shown here.

The product of two negative numbers is always positive.

$$
-4 \cdot(-3)=12
$$

A biker is traveling at $4 \mathrm{~m} / \mathrm{second}$ in the opposite direction. Three seconds ago, the biker traveled a distance of 12 m .

Activity 1 Velocity and Time (continued)

Students use number lines and expressions to explore and represent the location of people traveling in opposite directions forward and backward in time.

Activity 1 Velocity and Time (continued)
3. Complete the table for several different bikers passing the oven.

	Velocity (m/second)	Time (s)	Expression	Position (m)
Biker A	5	10	$5 \cdot 10$	50
Biker B	-2	30	$-2 \cdot 30$	-60
Biker C	3	-40	$3 \cdot(-40)$	-120
Biker D	-10	-20	$-10 \cdot(-20)$	200
Biker E	-1.5	-8	$-\mathbf{1 . 5} \cdot(-8)$	12

4. Complete each sentence. Be prepared to explain your thinking.
(a) The sign of a positive number multiplied by a positive number is positive
b The sign of a positive number multiplied by a negative number is negative

C The sign of a negative number multiplied by a positive number is negative
d The sign of a negative number multiplied by a negative number is positive.

3 Connect
Display a large number line. Ask two students to represent Bicycles A and B and model the bicycles moving in opposite directions forward and backward in time.

Have students share what they noticed about the relationship between speed, time, and location.

Highlight that a negative velocity and positive time result in a "negative" location. A negative velocity and a negative time result in a "positive" location. Explain that students will explore if this is true outside of velocity and time in the next activity.
Ask, "Can you think of any other real-world examples of multiplying two negative values?" Sample response: Determining a previous temperature if it has been decreasing at a constant rate.

Activity 2 Distributing With Negatives

Students apply their understanding of order of operations and the Distributive Property to simplify expressions and solidify their understanding of the product of rational numbers.

1. Study the work shown.

Order of operations	Distributive Property			
$(14+(-4)) \cdot(-3)$	$=(10) \cdot(-3)$			
	$=-30$	\quad	$(14+(-4)) \cdot(-3)$	$=14 \cdot(-3)+(-4) \cdot(-3)$
---:	:---			
	$=-42+\square$			

a What is the sign of the missing value? Explain your thinking. Positive; Sample response: $\mathbf{- 3 0}$ is greater than $\mathbf{- 4 2}$, so I have to add a positive number to -42 to get up to -30 .
b What must the product of -4 and -3 be to make the last line true? 12
2. Study the work shown.

Activity 2 Distributing With Negatives

Analyze both methods for evaluating each expression. Use what you know about multiplying rational numbers to determine each missing value.

```
\begin{tabular}{rl|l} 
Order of operations & Distributive Property \\
\(-4 \cdot(-3+2)\) & \(=-4 \cdot(-1)\) & \(-4 \cdot(-3+2)\) \\
& \(=4\) & \(=-4 \cdot(-3)+(-4) \cdot(2)\) \\
& \(=12+\square\)
\end{tabular}
c What is the sign of the missing value? Explain your thinking. Negative; Sample response: 4 is less than 12 , so I have to add a negative number to 12 to get down to 4 .
d What must the product of -4 and 2 be to make the last line true? \(-8\)
3. Simplify the expression \((-6+16) \cdot(-10)\) using the Distributive Property. Check your response by using the order of operations.
-100;
Distributive Property:
Order of operations: \((-6+16) \cdot(-10)=(-6) \cdot(-10)+16 \cdot(-10) \quad(-6+16) \cdot(-10)=(10) \cdot(-10)\)
\(=60+(-160)\)
\(=-100\)
\(=-100\)
```

-2023 Amplity Eucuation. nc. Al Al rghts reseserved.

1 Launch

Activate prior knowledge by asking, "What are the two methods for simplifying $(1+3) \cdot 3$?" Verify that students are comfortable with simplifying Distributive Property expressions in the form $(a+b) \cdot c$.

Differentiated Support
Accessibility: Guide Processing and Visualization, Optimize Access to Tools

Provide copies of the Graphic Organizer PDF, Blank Number Lines for students to choose to use to help them organize their thinking and make sense of the expression and the operations involved.

Math Language Development

MLR7: Compare and Connect

During the Connect, as students share their responses to Problem 3, draw their attention to the connections between the two methods: the Distributive Property and the order of operations. Ask:

- "When using the Distributive Property, what do you do first?
- "When using the order of operations, what do you do first?"
- "Compare the results of these first steps: $(-6) \cdot(-10)+16 \cdot(-10)$ and $10 \cdot(-10)$. Are they equivalent expressions? Explain your thinking."

English Learners

Use color coding to annotate the parts of the expression students describe. This will help students visualize the relationships being discussed.

Summary

Review and synthesize the rules for multiplying rational numbers.

Summary

In today's lesson. .

You noticed that multiplying rational numbers, no matter the order, is very similar to multiplying positive numbers. You formulated the following rules:

- The product of two numbers with the same sign is positive.
- The product of two numbers with different signs is negative.

Once you have determined the sign of the product, multiply the magnitudes of the numbers as you would when multiplying two positive numbers. These rules work for all rational numbers, including integers and rational numbers.

Reflect:

Synthesize

Display the Summary from the Student Edition.
Have students share real-world examples of when they may want to determine the product of rational numbers.

Highlight that unlike adding rational numbers, the sign of the product is not based on the sign of the factor with the greater magnitude.
Formalize vocabulary: velocity.

(1) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How do you represent multiplication of rational numbers on a number line?"

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display that you started in this unit. Ask them to review and reflect on the terms and phrases related to the term velocity that were added to the display during the lesson. Highlight that velocity can be either positive or negative, while speed is always positive. Velocity represents both the magnitude and direction, while speed only represents the magnitude.

Consider adding a table to the class display, such as the one shown here.

Speed	Velocity
Represents the magnitude.	Represents both the magnitude and the direction.
Always positive. Can be positive or negative. A negative velocity represents an object traveling in the opposite direction.	

Exit Ticket

Students demonstrate their understanding of multiplying rational numbers by evaluating expressions.

Success looks like ...

- Language Goal: Explaining how signed numbers can be used to represent position and speeds in opposite directions. (Speaking and Listening)
- Language Goal: Generalizing that the product of two negative numbers is positive. (Speaking and Listening)
- Language Goal: Generalizing that the product of two rational numbers with different signs is negative. (Speaking and Listening)
» Determining the product of two rational numbers with different signs in Problems 2, 3 and 5 .

Suggested next steps

If students use the Distributive Property for

 Problems 5 and 6, consider:- Asking them to evaluate one of those expressions using the order of operations.

If students use the order of operations for

 Problems 5 and 6, consider:- Asking them to evaluate one of those expressions using the Distributive Property.

If students struggle with determining the sign of an evaluated expression, consider:

- Reviewing Activity 2.
- Assigning Practice Problem 1.
- Asking them to reread the Summary in the Student Edition.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
CO_{0}. Points to Ponder ..
What worked and didn't work today? What did students find frustrating about Activity 1? What helped them work through this frustration?

- The focus of this lesson was developing the rules for multiplying rational numbers. How did this focus go? What might you change for the next time you teach this lesson?

(C) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Multiply!

Let's get more practice multiplying rational numbers.

Focus

Goals

1. Language Goal: Identify multiplication expressions that are equal, and justify that they are equal. (Speaking and Listening)
2. Language Goal: Multiply rational numbers, including expressions with three factors, and explain the reasoning. (Writing, Speaking and Listening)

Rigor

- Students gain fluency in determining the product of two or more rational numbers.
- Students apply their understanding of addition, subtraction, and multiplication of rational numbers to evaluate and compare expressions.

Coherence

- Today

Students reason about multiplying more than two rational numbers. First, they return to the cards from the Launch lesson, now with the goal of producing the greatest product. They must strategize about how the sign of their cards impact the final product and when taking an additional card is or is not necessary. Next, students apply their understanding of the commutative, associative, and Distributive Properties to evaluate expressions, comparing and contrasting equivalent expressions with their partner.

< Previously

In Lessons 10 and 11, students applied their understanding of the distance formula to reason about and generalize the rules for multiplying rational numbers.

> Coming Soon

In Lesson 13, students will extend their understanding of multiplying rational numbers to generate the rules for dividing rational numbers.

Activity 1

Activity 2

Summary

Exit Ticket

(1) 5 min	() 18 min	() 13 min	(1) 5 min	(1) 5 min
\bigcirc ○ Independent	ํํำ Small Groups	กำ Pairs	คํํํํ กั่ำํํ Whole Class	\bigcirc ○ Independent

Amps powered by desmos \vdots Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Lesson 1, Activity 1 PDF, Game Cards, pre-cut cards, one set per group (optional)
- Activity 1 PDF (for display)
- Activity 2 PDF (for display)
- Anchor Chart PDF, Operations With Rational Numbers (Part 3) (for display)
- Anchor Chart PDF, Operations With Rational Numbers (Part 3) (answers)
- standard deck of playing cards with face cards removed, one per small group (optional)
Note: Activity 1 PDF is provided if you would rather use printed cards instead playing cards. You do not need both. If printing in grayscale, show students how to identify the "red" cards.

Math Language
 Development

Review words

- absolute value
- associative property
- commutative property
- Distributive Property
- magnitude
- opposites
- rational numbers

Amps ! Featured Activity

Activity 1

Formative Feedback for Students
Students revisit the cards from the Launch lesson, now working to obtain the greatest product. They are able to compare their hands and get immediate feedback on whether their calculated product is correct.

Building Math Identity and Community
 Connecting to Mathematical Practices

Students might miss any regularity in the multiplication of rational numbers if they do not approach the process with great organization, documenting each step along the way. Encourage students to not only write the equations of the problems they solve, but also write equation skeletons where they just use the signs of the numbers (+/-) and the multiplication and equals symbols. Looking at these skeletons will help students draw valid conclusions about the signs of products.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 1, have students only complete two rounds of the game.
- In Activity 2, have pairs of students complete only 2 or 3 of the rows.

Warm-up Math Talk

Students reason about the sign of missing value in equations that represent the product of rational numbers.

1) Launch

Activate students' prior knowledge by asking, "How do you determine the sign of the product of two rational numbers?" Explain to students that they are only responsible for determining the sign of each missing value. Conduct the Number Talk routine.

2 Monitor

Help students get started by asking, "What do you know about the sign of each value in the first equation?"

Look for points of confusion:

- Trying to determine the value of the missing number, rather than just its sign. Remind students that they are not responsible for solving for the missing amount.

Look for productive strategies:

- Annotating the sign above each value in an equation so they are focusing on the signs and not the values.

3 Connect

Display the expressions.
Have students share their strategies for determining the missing sign for each problem. Focus the discussion on the problems that did not have consensus.

Highlight that, for a product of two factors to be positive, the two factors must have the same sign. For the product of two factors to be negative the factors must have different signs.

Ask:

- "Do you think that this is true if there are more than two factors?"
- "What would the sign of the value of the expression $(-1) \cdot(-2) \cdot(-3) \cdot \ldots \cdot(-2021)$ be?"

Note: Do not confirm student responses at this point. You will address these questions throughout the lesson.

(7) Power-up

To power up students' ability to evaluate expressions with non-negative

 rational numbers, have students complete:Recall that you follow the order of operations to evaluate expressions. For each expression, circle the step that would be completed first based on the order of operations.

$1.3 \div 1.5 \cdot 4$	$3 \div 1.5$	$1.5 \cdot 4$
$2.3+4 \cdot 5-8$	$3+4$	$4 \cdot 5$
$3.4-2+6+7$	$4-2$	$2+6$

Use: Before Activity 2.
Informed by: Performance on Lesson 11, Practice Problem 6 and Pre-Unit Readiness Assessment, Problem 1.

Activity 1 Greatest Product

Students reason about products of rational numbers by determining a strategy to obtain the greatest product from up to four positive and negative numbers.

Amps Featured Activity
Formative Feedback for Students

Activity 1 Greatest Product

Your group will be given a set of cards to play a game.
Players: 2-4
Goal: Produce the greatest product when the values of the cards are multiplied.
Getting ready:

- Shuffle the set of cards and place them in a pile in the middle of the group.
- Choose one player to start the game.

Black cards represent positive values. Red cards represent negative values Note: Cards printed in black and white will show the red cards as light gray

For each round, follow these steps
Step 1 Each player selects two cards from the pile. Do not show your cards to other players.
Step 2 When all players have their cards, the first player decides whether they want to select one more card from the pile or to pass (not do anything). This continues until all players have had a turn.
Step 3 Repeat Step 2. Each player can have a maximum of four cards. Once all players have selected their cards, they calculate their score and complete the first two columns of the table.
Step 4 All players present their cards to their group and come to a consensus on the winner. Step 5 Reshuffle cards for the next round.

1. Consider the times when you decided whether to take an additional card.
a What thinking helped you to make your decision? Sample response: If I had only one negative card, I took an additional card hoping to get another negative so that the overall product would be positive.
b If you had to change your strategy for the next round, how would you change it? Sample response: If I had either no negative cards or two negative cards, I would not take additional cards because there is a chance it would be negative and then $m y$ product would be a negative value with a large magnitude.
\qquad

1 Launch

Invite one or more students to read the directions aloud for the class and model a round of the game with two players. Assess understanding by asking, "If Student A had $-4,1$, and 5 and Student B had $-1,2$ and 3 , who would win the round?" Student B

Monitor

Help students get started by asking, "For the cards you currently have, is their product positive or negative?"

Look for points of confusion:

- Thinking that they are comparing the magnitudes of the products, not the products. Remind students that they want the greatest product, not the product with the greatest absolute value.

3 Connect

Display the top half of the Activity 1 PDF. Conduct the Poll the Class routine asking, "Would you take a fourth card in this scenario?" Repeat for the bottom half of the PDF.

Have students share their strategies for determining when they should or should not take an additional card.

Ask, "If you have more than two cards (factors), how do you determine whether the product is positive or negative?"

Highlight that when three negative values are being multiplied, the product is negative. When four negative values are being multiplied, the product is positive. Ask, "What do you think would happen with 5 negative factors?" Generalize that if there are an odd number of negative factors, the product will be negative. Otherwise, the product is positive.

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can receive immediate feedback on whether their calculated product is correct.

Extension: Math Enrichment

Students can play more rounds of the game, as time allows. Consider asking them to alter the rules to make the game more challenging. For example, each player can have a maximum of three cards, instead of four.

(2) Math Language Development

MLR8: Discussion Supports

As you play the mock round during the Launch of this activity, talk through the directions as you go. Make sure to verbalize your thinking for any decisions that you make as you play. For example:

- [If one of your cards was negative] "Right now, I have one positive card and one negative card, so the product is negative. In order to obtain a positive product, I need one more negative card."
- [If both of your cards were positive, or if both are negative] "Right now, the product is positive. If I select one more card, I might select a negative card, which would result in the product being negative.

Activity 2 Partner Problems

Students simplify expressions involving rational numbers, addition, subtraction, and multiplication to come to a consensus with their partner.

1 Launch

Conduct the Partner Problems routine.

2 Monitor

Help students get started by suggesting they cover up all of the expressions, except the one they are evaluating.

Look for points of confusion:

- Thinking that any expression with at least two negatives must be positive. Remind students that, in the previous activity, they saw that the product of three negative cards resulted in a negative value.

3 Connect
Display the Activity 2 PDF.

Ask:

- "How would you read the first expression, $-(-0.5)$ out loud?" The opposite of negative 0.5 or positive 0.5 .
- "What if the expression was -(-(-0.5))? How else could the expression be represented?"

Highlight that when there are multiple "-" signs in front of a number, it can be thought of taking the opposite multiple times. The opposite of any value is that value multiplied by -1 , so the expression can be rewritten as the product of multiple factors of -1 .

Have students share what other relationships they notice in the other pairs of expressions. Encourage them to use vocabulary, such as associative and commutative properties.

Highlight that, in the remaining expressions, the magnitudes of the values are the same, but the placement of the negative sign or the order of the values is different between the expressions. Generalize that the sign of the product is dependent on the number of negative factors.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Allow students to choose three of the four rows to complete. Offering them the power of choice can lead to greater engagement and ownership of the task.

Extension: Math Enrichment

Have students determine whether the product of each of the following descriptions of expressions will be positive or negative, without performing any calculations.

- The number -1 is multiplied by itself thirty times. Positive
- The number -5 is multiplied by itself seventeen times. Negative

Math Language Development

MLRT: Compare and Connect

During the Connect, as you highlight how the sign of the product is dependent upon the number of negative factors, display these sentence frames and have students complete them. Add these completed statements to the class display.
In a multiplication expression, if the number of negative factors is.

- odd, the sign of the product will be
- even, the sign of the product will be \qquad

English Learners

Include examples of expressions and clarify the meanings of the terms odd and even.

Summary

Review and synthesize that the sign of the product of rational numbers is dependent on the number of negative factors.

Summary

In today's lesson. .

You reasoned that rules for multiplying rational numbers extend beyond integer values to all rational numbers. In general, for any pair of rational numbers, if the two numbers have the same sign their product is positive, and if the two numbers have different signs, their product is negative.
This rule extends to the product of more than two rational numbers

- If the number of negative factors is even, then the product is positive.
- If the number of negative factors is odd, then the product is negative.

Reflect:

Synthesize

Display the Anchor Chart PDF, Operations With Rational Numbers (Part 3). As a class, complete the section on multiplication.

Ask:

- "What would the sign of $-(-(-(-(-6)))))$ be?" Positive
- "What would the sign of $(-1) \cdot(-2) \cdot(-3) \cdot \ldots \cdot(-2021)$ be?" Negative
Have students share how they determined the sign of each problem with the class.

Highlight that, in order to determine the product of multiple rational numbers, first determine the product of the absolute value of each factor. Then determine the number of factors that are negative.

- If there is an odd number of negative factors, the product is negative.
- If there is an even number of negative factors, the product is positive.

(1) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How do you determine the sign of the product of two or more rational numbers?"

Exit Ticket

Students demonstrate their understanding multiplying multiple rational numbers by assessing the reasonableness of each other's work.

Success looks like ...

- Language Goal: Identifying multiplication expressions that are equal, and justifying that they are equal. (Speaking and Listening)
- Language Goal: Multiplying rational numbers, including expressions with three factors, and explaining the reasoning. (Writing, Speaking and Listening)
» Multiplying rational numbers and explaining whether Noah was correct in Problems 1-3.

2. $-\frac{3}{4} \cdot\left(-\frac{5}{7}\right)=-\frac{15}{28}$

I disagree with Noah; Sample response: The product of two negative values is positive, so the product should be $\frac{15}{28}$, not $-\frac{15}{28}$.
3. $-(-5.5) \cdot\left(-\frac{3}{5}\right)=3.3$

I disagree with Noah; Sample response: $-(-5.5)$ is the same as $-1 \cdot(-5.5)$. The product of three negative values is negative, so the product should be -3.3 , not 3.3.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...
What worked and didn't work today? What routines enabled all students to do math in today's lesson?

- Which students' ideas were you able to highlight during Activity 2? What might you change for the next time you teach this lesson?

(6) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Dividing Rational Numbers

Let's divide rational numbers.

Focus

Goals

1. Language Goal: Generalize a method for determining the quotient of two rational numbers. (Speaking and Listening)
2. Generate a division equation that represents the same relationship as a given multiplication equation with rational numbers.
3. Apply the order of operations while working with rational numbers.

Coherence

- Today

Students complete their work extending all four operations to signed numbers by studying division. They use the relationship between multiplication and division to develop rules for dividing rational numbers. They practice applying the rules for the order of operations and using the multiplicative inverse to evaluate expressions involving all four operations with rational numbers.

< Previously

In Lessons 10-12, students explored multiplication with rational numbers.

Coming Soon

In Lesson 14, students will apply their understanding of rational numbers to contexts with negative rates.

Rigor

- Students build conceptual understanding of why the rules for one set of operations also apply to another set.
- Students develop procedural skills multiplying and dividing rational numbers.

Activity 1
(ㄷ) 15 min

ㅇํㅇ Pairs

Activity 2

(1) 15 min
(1) 5 min
\circ Independent

Summary

Exit Ticket

Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 2 PDF (answers, for display)
- Anchor Chart PDF, Rational Numbers, Part 3 (for display)
- Anchor Chart PDF, Rational Numbers, Part 3 (answers)

Math Language Development

New word

- multiplicative inverse

Review words

- inverse operations
- rational numbers
- solution

Amps \vdots Featured Activity

Activity 2
 Track Your Path

Students move across a game board, evaluating rational number expressions, sometimes with multiple operations. Using the digital version allows them to efficiently track their path and revise their thinking.

Building Math Identity and Community
 Connecting to Mathematical Practices

Students might want to draw a conclusion for the sign of quotients without completing the activity, but explain that using the structure of the relationship between multiplication and division will help them verify or alter their conjecture. By the end of the activity, students should note that the pattern for the signs in division is the same as with multiplication.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 1, Problem 2 may be omitted.

Warm-up Thinking About the Sign

Students use what they know about multiplication with rational numbers to reason about the sign of the solution to an equation involving negative numbers.

1 Launch

Have students examine the table for 30 seconds. Ask, "What do you notice about the numbers in the last two columns? What parts of the equations are most important for you to pay attention to?"

2 Monitor

Help students get started by asking, "What types of numbers would need to be multiplied to produce a negative product?"

Look for points of confusion:

- Thinking that x can't be negative because it doesn't have a negative sign in front of it in the equation. Have students substitute a negative number into the equations.

Look for productive strategies:

- Dividing the product by the given factor, noticing that the same rules for multiplication of negative numbers also apply to division.

3 Connect

Display students' responses to the activity.
Have students share their thinking for how they found which number makes each equation true.

Highlight that this lesson will use multiplication equations, similar to those in the Warm-up, to help students make sense of dividing positive and negative numbers. Have students recall that the number that makes each equation true is called the solution.

Ask, "How are multiplication and division related to each other?" They are inverse operations. You can think of one of these operations undoing the other operation.

Math Language Development

MLR8: Discussion Supports

During the Launch, read the first equation aloud by saying, " 12 times an unknown number equals negative 36 " or "The product of 12 and an unknown number is negative 36." Encourage students to say verbal statements about the remaining equations to help them make sense of their structure.
(7) Power-up

To power up students' ability to divide when the divisor is a fraction, have students complete:
Determine each quotient.

1. $8 \div 4=2$
2. $8 \div 2=4$
3. $8 \div 1=8$
4. $8 \div \frac{1}{2}=16$

Use: Before Activity 2.
Informed by: Performance on Lesson 12, Practice Problem 6.

Activity 1 Equation Families

Students work through several equation families relating multiplication to division to articulate a rule for the sign of a quotient based on the signs of the dividend and divisor.

2. Create a different fact family of multiplication and division equations, using at least one negative number.
Sample response:
$-8 \cdot(-3)=24 \quad-3 \cdot(-8)=24 \quad 24 \div(-8)=-3 \quad 24 \div(-3)=-8$
3. Complete each sentence. Be prepared to explain your reasoning.
a The sign of a positive number divided by a positive number is positive
b The sign of a positive number divided by a negative number is negative
c The sign of a negative number divided by a positive number is negative
d The sign of a negative number divided by a negative number is positive
(1) Launch

Read through the introduction to the activity as a class. Ask, "What do you notice about these equations that make them belong to the same fact family?" Note that for the purposes of this activity, the sign of a number must stay the same throughout the fact family of equations.

(2) Monitor

Help students get started by asking, "Which number from the first equation in part a is missing from the second?"

Look for points of confusion:

- Thinking for part c they can make their own factors because there are two blanks in the first equation. Have students check the rest of the equations in the family to see which factors should be used.

Look for productive strategies:

- In Problem 3, noticing that the rules are the same for division of rational numbers as they are for multiplication.

3 Connect

Have students share their responses to Problem 3.

Highlight that students took two things they knew to be true - multiplication and division as inverse operations, and the rules for multiplication of rational numbers - and combined them into a new understanding. They were able to conclude that the same rules for multiplying rational numbers also apply to the division of rational numbers.

Ask:

- "How can you predict the sign of the quotient of a division problem?"
- "Why did none of the equations in the families have 3 negative numbers? Would that ever be possible?"

48

Differentiated Support

Accessibility: Activate Prior Knowledge

Remind students they previously learned about fact families in prior grades. A fact family consists of three numbers that are used together to create a set of math facts. Those math facts can be addition, subtraction, multiplication, or division.

Math Language Development

MLR2: Collect and Display

During the Connect, as students share their responses to Problem 3, add these statements - or a condensed version of them - to the class display. Compare them to the multiplication rules for rational numbers that students previously formulated.

Multiplication: The product of \ldots	Division: The quotient of
Two positive numbers is always positive.	Two positive numbers is always positive.
One positive number and one negative number is always negative.	One positive number and one negative number is always negative.
Two negative numbers is always positive.	Two negative numbers is always positive.

Activity 2 How Close Can You Get?

Students choose their path through a gameboard of expressions to practice order of operations and explore the effect of the multiplicative inverse with rational numbers.

1 Launch

Read through the instructions together as a class and let students know the target score they will aim for. Note: Suggestions for target scores: Choose 0 as a target to focus on balancing positive and negative values; Choose $-1,000$ to help kids focus on reasoning about signs; Or let your students choose their own target number.

2 Monitor

Help students get started by modelling how a student might think about choosing which spot to jump to next.
Look for points of confusion:

- Thinking dividing by $\frac{1}{2}$ is the same as dividing by 2 . Help students recall that dividing by a fraction is the same as multiplying by its reciprocal.
- Performing operations from left to right regardless of type. Have students record the order of operations on their paper.

Look for productive strategies:

- Noticing that some expressions can be evaluated by using the properties of operations.

3 Connect

Display the Activity 2 PDF (answers) and discuss any questions students might have.
Have students share how they made their decisions for the route they took. Highlight student reasoning where division by a fraction is rewritten as multiplication by the fraction's reciprocal.

Highlight that when evaluating expressions with multiple operations and groupings, even with negative numbers, the order of operations remains the same.

Define multiplicative inverse as another name for the reciprocal of a number.

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can move across a digital game board, evaluating rational number expressions, sometimes with multiple operations. Using the digital version allows them to efficiently track their path and revise their thinking.

Accessibility: Vary Demands to Optimize Challenge

Have students select a pathway first (in lightly drawn pencil), and then they evaluate the expressions along that path. If they would like to change their path, they can go back and redraw it.

Math Language Development

MLR7: Compare and Connect

During the Connect, as you define the term multiplicative inverse, draw students' attention to how the multiplicative inverse of a number compares to its additive inverse. Consider displaying a table like the following, or add it to the class display

Additive inverse	Multiplicative inverse
The sum of a number and its additive inverse is 0.	The product of a number and its multiplicative inverse is 1.
Also called the opposite of a number.	Also called the reciprocal of a number.
3 and -3 are additive inverses (opposites) of each other.	3 and $\frac{1}{3}$ are multiplicative inverses (reciprocals) of each other.

Summary

Review and synthesize the relationship between multiplication and division to understand the rules for dividing rational numbers.

Summary

In today's lesson ...

You saw that every multiplication equation belongs to a family of equations that includes a division equation. Because of this, every multiplication problem can be rewritten as a division problem:
$6 \div 2=3$ because $2 \cdot 3=6$. $6 \div(-2)=-3$ because $-2 \cdot(-3)=6$
$-6 \div 2=-3$ because $2 \cdot(-3)=-6 . \quad-6 \div(-2)=3$ because $-2 \cdot 3=-6$.
Because you know how to reason about signs when multiplying rational numbers, you also know about the signs when dividing them.

- The sign of the quotient of a positive number divided by a negative number is always negative.
The sign of the quotient of a negative number divided by a positive number is always negative.
The sign of the quotient of a negative number divided by a negative number s always positive
Once you have determined the sign of the quotient, divide the magnitudes of the numbers as you would when dividing two positive numbers

Reflect:

Synthesize

Highlight that students were able to generalize their own rule for dividing rational numbers using what they already knew about multiplication of rational numbers.

Display the Anchor Chart PDF, Rational Numbers (Part 2). Obtain the missing information from your class and complete the chart together.

Formalize vocabulary: multiplicative inverse

Ask:

- "What kind of number do you get when you divide a negative number by a positive number? Use a multiplication equation to explain why this makes sense."
- "What kind of number do you get when you divide a negative number by a negative number? Use a multiplication equation to explain why this makes sense."
- "What is the sign of the quotient of $-3 \div 4$?" Negative
- "What is the magnitude of the quotient of $-3 \div 4$?" 0.75 or $\frac{3}{4}$
- "What is the quotient of $-3 \div 4$?" -0.75 or $-\frac{3}{4}$

Reflect
After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How is dividing rational numbers similar to or different from multiplying rational numbers?"

Extension: Math Around the World, Interdisciplinary Connections

Tell students that, in his writings around 620 CE, Indian mathematician Brahmagupta described the rules for multiplying and dividing with negative values. He again used the idea of "fortunes" as representing positive values and "debts" as representing negative values and stated:

- The product or quotient of two fortunes is one fortune.
- The product or quotient of two debts is one fortune.
- The product or quotient of a debt and a fortune is a debt.
- The product or quotient of a fortune and a debt is a debt.

Ask students to rewrite Brahmagupta's rules using the terms "positive number" and "negative number." Then ask them to provide numerical examples that illustrate Brahmagupta's rules.

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display that you started in this unit. Ask them to review and reflect on the terms and phrases related to the term multiplicative inverse that were added to the display during the lesson. Compare the terms additive inverse and multiplicative inverse and highlight how they are similar and different on the class display.

Exit Ticket

Students demonstrate their understanding of dividing rational numbers.

Success looks like...

- Language Goal: Generalizing a method for determining the quotient of two rational numbers. (Speaking and Listening)
» Dividing two rational numbers in Problems 1-6.
- Goal: Generating a division equation that represents the same relationship as a given multiplication equation with rational numbers.
- Goal: Applying the order of operations while working with rational numbers.

- Suggested next steps

If students use the wrong sign for the quotient in any problem, consider:

- Reviewing the rules in the Summary.

If students have difficulty with Problems 5 or 6, consider:

- Revisiting the Power-up for this lesson.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C. Points to Ponder ...

- What worked and didn't work today? Which groups of students did and didn't have their ideas seen and heard today?
- What was especially satisfying about seeing students create their own rule for division of rational numbers? What might you change for the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	1
Spiral	$\mathbf{2}$	Activity 2	1
Formative 0	$\mathbf{3}$	Activity 2 Unit 2 Lesson 2 Unit 5 Lesson 3 Unit 5 Lesson 14	2

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.
© Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Negative Rates

Let's apply what we know about rational numbers.

Focus

Goals

1. Language Goal: Apply operations with rational numbers to solve problems involving constant rates, and explain the solution method. (Speaking and Listening)
2. Language Goal: Explain how rational numbers can be used to represent situations involving constant rates. (Speaking and Listening, Reading and Writing)
3. Write an equation of the form $y=k x$ to represent a situation that involves descending at a constant rate.

Coherence

- Today

Students are introduced to negative rates of change and their representations in equations and on graphs. They apply their understanding of operating with rational numbers to solve problems in context. The first problem is about drilling a water well. The second problem deals with the famous pearl divers, known as ama, in Japan. Through these real-world contexts, students reason quantitatively about what it means for a rate to be negative.

< Previously

In Unit 2, students encountered writing equations for proportional relationships, almost exclusively with positive values.

Coming Soon

In Lesson 18, students will solve equations with negative coefficients, similar to the equations they formulate in this lesson.

Rigor

- Students build conceptual understanding of proportional relationships that have negative rates.
- Students apply their previous understanding of the constant of proportionality to include rational numbers.

Warm-up

Activity 1

Activity 2

Summary

Exit Ticket
(1) 15 min
ㅇํ Pairs
(1) 15 min
ㅇํㅇ Pairs

(1) 5 min
กำกำ Whole Class

(®) 7 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice

Math Language
 Development

Review words

- constant of proportionality
- proportional relationships
- rate

Amps : Featured Activity

Activity 1
 Interactive Graphs

Students see negative rates in action as they plot the height of a drill over time. The digital environment allows them to plot the points on the graph and notice the direction of the line, which helps them to see what makes these graphs special.

Building Math Identity and Community
 Connecting to Mathematical Practices

Students might be frustrated that the graph of a proportional relationship with a negative rate looks different than a graph of a proportional relationship with a positive rate. To alleviate some of the frustration, have students identify how the graphs are the same before concentrating on the differences. In order to completely understand why the slopes are different, students will need to use the context of the problem to reason quantitatively. By making the connection between the scenario, the numbers, and the shape of the graph, students will become more comfortable with proportional graphs with negative rates.

Warm-up Water Consumption

Students are reacquainted with per language to prepare them for working with rates in this lesson.

1 Launch

Activate students' prior knowledge by asking, "What do you remember about proportional relationships?" Then ask, "What does the lesson title make you think of?"

(7) Power-up

To power up students' ability to reason about proportional relationships, have students complete:

Suppose a car is traveling at 40 mph .

1. Determine the missing values in the ratio table

Hours	1	2	x
Miles	40	80	$40 x$

2. Write an equation representing the number of miles y traveled in x hours. $y=40 x$

Use: Before Activity 2.
Informed by: Performance on Lesson 13, Practice Problem 6 and Pre-Unit Readiness Assessment, Problem 8.

Activity 1 Drilling a Well

Students use their skills of multiplying and dividing rational numbers to represent and solve problems in a new context, involving a decreasing rate.

Amps Featured Activity
Interactive Graphs

Activity 1 Drilling a Well

A water well drilling rig has dug to an elevation of -20 ft after 8 hours of continuous use.
>1. Assuming the rig drilled at a constant rate, what was the elevation of the drill after 5 hours? $-20 \div 8=-2.5$; The rig drills at rate of -2.5 ft per hour. $5 \cdot(-2.5)=-12.5$; The drill is at -12.5 ft after 5 hours.
2. If the rig has been running constantly and is currently at an elevation of -147.5 ft , for how long has the rig been running? $-147.5 \div(-2.5)=59$; The rig has been drilling for 59 hours.

3. Plot and label the points, relating time in hours to the height of the drill, from your solutions to Problems 1 and 2 on the graph shown. Draw a line through the points

\qquad

1. Launch

Activate students' background knowledge by asking what they already know about drilling. Say, "Water wells are dug deep into the earth until the hole reaches the groundwater. Sometimes, it is impossible to know how deep the groundwater lies until you drill." Remind students that they can model positions below the surface with negative values.

(2) Monitor

Help students get started by asking, "How might knowing the unit rate help you to solve Problem 1?"

Look for points of confusion:

- Thinking the drill's rate is $\mathbf{0 . 4} \mathbf{f t}$ per hour. Ask, "If the drill is at -20 ft after 8 hours, is the magnitude of the rate more or less than 1 ft per hour?"
- Using a positive number to represent the rate. Ask, "What equation could you write to find the elevation of the drill after any amount of time?"

Look for productive strategies:

- Writing an equation or using a table to model the relationships between the elevation of the drill and the time elapsed.

3 Connect

Display a graph with the drill's elevation over various times plotted.

Have pairs of students share observations about the graph.

Ask:

- "Does this graph show a proportional relationship? How do you know?"
- "What is the constant of proportionality for this relationship?"

Highlight that, because students can now complete any calculation with any rational number, they can extend constants of proportionality, k, to include negative values.

48

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can see negative rates in action as they plot the height of a drill over time. The digital environment allows them to manipulate the points on the graph and notice the direction of the line, which helps them to see what makes these graphs special.

Accessibility: Guide Processing and Visualization

Suggest that students create a table of values relating the height of the drill for various times to help them respond to Problems 1 and 2, and graph the corresponding values on the graph in Problem 3.

Math Language Development

MLR8: Discussion Supports

During the Connect, as students share their observations, encourage the use of mathematical language by reviewing the terms proportional relationship and constant of proportionality. Remind students of the general equation for a proportional relationship, $y=k x$, and ask:

- "What is the value of k in this context?" -2.5
- "What does it mean, in this context, that the constant of proportionality is negative?" The drill is below the ground.

English Learners

Clarify the meaning of continuous use in the introductory text. Tell students that this means the drilling rig did not stop during these 8 hours.

Activity 2 Diving With the Ama

Students model the rate of a Japanese pearl diver to build on the previous work with proportional relationships and understanding of multiplying and dividing rational numbers.

Activity 2 Diving With the Ama

The ama are Japanese female divers who free dive - without using oxygen tanks - to collect food and pearls from the bottom of the cold sea. Ama typically dive to 30 ft below the surface to reach the seafloor.

1. An ama dives at a rate of -1.9 ft per second.
a Complete the table to find the depths of the ama at different times

Time (seconds), x	0	1	10	15	x
Depth $(\mathrm{ft}), y$	0	$\mathbf{- 1 . 9}$	$\mathbf{- 1 9}$	$\mathbf{- 2 8 . 5}$	$\mathbf{- 1 . 9 x}$

b Write an equation to model the relationship for the depth in feet y of the ama, if you know the time in seconds, x. $y=-1.9$

1 Launch

Activate students' background knowledge by asking, "How deep can you dive? How long can you hold your breath underwater?" Read through the introduction as a class. Let students know that, for the purpose of this activity, they will assume the divers are moving at a constant rate.

Monitor

Help students get started by saying that the ama is at sea level at the start of the dive. Ask, "What number is usually used to represent sea level?"

Look for points of confusion:

- Not knowing how to write an equation. Suggest students use the form $y=k x$, where k is the unit rate.

Look for productive strategies:

- Scaling up from the unit rate to calculate other columns in the table.
- Using the unit rate from the table to help write the equation for the relationship.

Activity 2 continued >

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Have students use the rate -2 ft per second, instead of -1.9 ft per second, to aid their calculations. By doing so, they will still be able to access the targeted goal of the activity.

Extension: Math Enrichment

Ask students to explain how to use the table, graph, and equation to determine the depth of the ama after 6 seconds. Sample response: Scale the table from -1.9 ft at 1 second by multiplying both values by 6 . In the equation, substitute 6 for x. On the graph draw a line to connect the points and estimate the coordinates of a point on the line whose x-coordinate is 6 .

Math Language Development

MLR8: Discussion Supports

During the Connect, as students respond to the Ask questions, demonstrate the use of mathematical language by reviewing the meanings of the word descending. Connect this to the negative unit rate and have students recall that for a proportional relationship, the unit rate has the same value as the constant of proportionality.

English Learners

Use pointing gestures to illustrate where the table, graph, and equation indicate that the ama are descending.

Activity 2 Diving With the Ama (continued)

Students model the rate of a Japanese pearl diver to build on the previous work with proportional relationships and understanding of multiplying and dividing rational numbers.

Activity 2 Diving With the Ama (continued)

C Plot and label the depth of the ama on the graph for 3 different times. Draw a line through the points. Sample responses shown.

d How long did it take the ama to reach the seafloor, located at -30 ft ? Show or explain your thinking.
Sample responses:

- I can tell from the graph that it took a little more than 15 seconds to reach the seafloor.
- $-30 \div-1.9 \approx 15.8$; It took the ama about 15.8 seconds to reach the seafloor

3 Connect

Display the graph with the equation written next to the line on the graph.

Have students share their solutions for part d. Select students who can share strategies that used both the graph and the equation to reason about the solution for part d

Highlight that a graph of a proportional relationship, even where the value of k is negative, will still be a straight line that passes through the origin.

Ask:

- "How can you tell from the graph that the ama are descending?" The graph of the line is moving downward.
- "How can you tell from the equation that the ama are descending?" The equation has a negative sign.
- "Where on the graph can you find the constant of proportionality? $(1,-1.9)$ Where can you find it in the equation?" The number -1.9 in front of x
- "What is different about the graph of a positive proportional relationship from a negative proportional relationship?"

Summary

Review and synthesize how negative rates appear in equations and graphs.

Synthesize

Display the Summary from the Student Edition
Have students share observations about the equations and graphed lines

Ask, "What do the three lines have in common? What makes them different?"

Highlight that velocity is used to represent speed with the added component of direction using rational numbers. This is also true for vertical movement (in fact with any rate). In an equation, this negative value will appear as the constant of proportionality, as it did with positive proportional relationships. When relationships with negative constants of proportionality are represented on graphs, the lines slope downward as the coordinate plane is read from left to right

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What other rates have you encountered where it makes sense to have positive and negative values?"

Exit Ticket

Students demonstrate their understanding of negative rates of change by solving problems involving a vehicle descending at a constant rate.

Success looks like ...

- Language Goal: Applying operations with rational numbers to solve problems involving constant rates, and explaining the solution method. (Speaking and Listening)
» Solving problems about the descent of submarines in Problems 1 and 2.
- Language Goal: Explaining how rational numbers can be used to represent situations involving constant rates. (Speaking and Listening, Reading and Writing)
- Goal: Writing an equation of the form $y=k x$ to represent a situation that involves descending at a constant rate.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

C_{0}. Points to Ponder ...

What worked and didn't work today? When you compare and contrast today's work with work students did earlier this year on proportional reasoning, what similarities and differences do you see?

How was Activity 2 similar to or different from graphing proportional relationships in Unit 2? What might you change for the next time you teach this lesson?

Math Language Development

Language Goal: Explaining how rational numbers can be used to represent situations involving rates.

Reflect on students' language development toward this goal.

- How did using the Discussion Supports routines in Activities 1 and 2 help students use mathematical language, such as proportional relationship, constant of proportionality, and unit rate?
- How did these routines support their understanding of what a negative constant of proportionality or negative unit rate means in context?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 1	2
	2	Activity 2	2
Spiral	$\mathbf{3}$	Activity 2	2
Formative 0	6	Unit 5 Lesson 13	1

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

Four Operations With Rational Numbers

In this Sub-Unit, students apply their understanding of the four operation on rational numbers to solve problems involving more than one operation as well as to solve equations with rational coefficients or addends.

Narrative Connections

Read the narrative aloud as a class or have students read it individually. Students continue to explore connections between rational numbers and hiking or recreational trails in the following places:

- Lesson 17, Activities 1-2:

Energy Supply, Revisited,
Deep Ocean Exploration

- Lesson 19, Activity 2 : Changing Elevation
- Lesson 20, Activities 1-2: Making Preparations, The Summit Attempt

Expressions With Rational Numbers

Let's develop our number sense
with rational numbers.

Focus

Goals

1. Language Goal: Evaluate an expression for given values of the variable, including negative values, and compare the resulting values of the expression. (Speaking and Listening)
2. Language Goal: Generalize about the relationship between additive inverses and about the relationship between multiplicative inverses. (Speaking and Listening)
3. Language Goal: Identify numerical expressions that are equal, and justify that they are equal. (Speaking and Listening)

Coherence

- Today

The purpose of this lesson is to help students make sense of expressions, such as whether a number is positive or negative, which of two numbers is greater, or whether two expressions represent the same number. Students work through common misconceptions that can arise about expressions involving variables, for example the misconception that $-x$ must always be a negative number. When students look at a numerical expression and see without calculation that it must be positive because it is a product of two negative numbers, they are making use of structure.

< Previously

In Lesson 4, students related the lengths of school supplies to algebraic expressions and noticed that certain relationships stayed the same no matter the values of the variables, but found other relationships change.

> Coming Soon

In Lesson 16, students will revisit long division in order to represent fractions as decimals.

Rigor

- Students build conceptual understanding of inverse operations.
- Students develop fluency with operations involving rational numbers.

Activity 1

Activity 2

Summary

Exit Ticket

(1) 5 min	(1) 15 min
ํำ Pairs	คำ Pairs

Amps powered by desmos : Activity and Presentation Slides
For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 1 PDF, pre-cut cards, one set per pair

Math Language

Development

Review words

- additive inverse
- inverse operations
- multiplicative inverse

Building Math Identity and Community
 Connecting to Mathematical Practices

As students have been building understanding of operating with rational numbers, they might not feel completely confident in their ability to do so in Activity 1. In order to gain confidence, students need to focus on the structure of the signs for each operation. The more easily they can verbalize these patterns, the more confident they will feel.

Amps : Featured Activity

Activity 1
 Digital Card Sort

Digital card sorts save set-up time, allowing students to spend more time thinking about and discussing the relationships among the expressions on the cards.

Amps desmos

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 1, Problem 2 may be omitted.
- In Activity 2, Problem 4 may be omitted.

Warm-up True or False?

Students reason about numeric expressions using what they know about operations with negative and positive numbers.

1 Launch

Display one problem at a time. Give students 1 minute of think-time per problem and ask them to give a signal when they have completed each problem. Remind students that sometimes the multiplication dot is not included before parentheses and that it is assumed the operation is multiplication.

(2) Monitor

Help students get started by asking, "How else could you refer to any number that is less than zero?"

Look for points of confusion:

- Not using the order of operations properly in Row 4. Ask, "Which operation - multiplication or subtraction - comes first in the order of operations?"

Look for productive strategies:

- Thinking of the fractions in Row 5 as division problems.

3 Connect

Display the statement in Row 5 for all to see.
Have students share what all the fractional expressions have in common.

Highlight that students can think of any fractional expression as a division problem. If each of these fractions were rewritten as division, they would see that the end result will always be a negative number. Because the magnitude of all the fractions is the same, they are all equivalent.

Ask, "How could you alter each false expression to make it true?"

(7) Power-up

To power up students' ability to divide with fractions, have students complete:

Recall that division expressions can be rewritten as multiplying by the reciprocal. For example, $3 \div \frac{3}{2}=3 \cdot \frac{2}{3}$.
Rewrite each division expression as an equivalent multiplication expression.

1. $8 \div 4=8 \cdot \frac{1}{4}$
2. $9 \div \frac{1}{3}=9 \cdot 3$
3. $\frac{2}{3} \div 3=\frac{2}{3} \cdot \frac{1}{3}$
4. $\frac{1}{8} \div \frac{1}{4}=\frac{1}{8} \cdot 4$

Use: Before Activity 1
Informed by: Performance on Lesson 14, Practice Problem 6.

Activity 1 Card Sort: The Same, but Different

Students match different expressions that have the same value to build fluency operating with signed numbers.

1. Launch

Distribute sets of cards from the Activity 1 PDF to each pair of students. Let students know the sets of matching expressions do not need to be in any particular order in the table.

2 Monitor

Help students get started by having them focus on one set of values first (for example, the cards with 1 and 2 on them).

Look for points of confusion:

- Struggling to determine matches. Encourage them to think of the operations in different ways. Ask, "How else can you think of (addition, subtraction, multiplication, division)?"
Look for productive strategies:
- Grouping cards into sets that have similar values on them.

3 Connect

Display the matching sets of expressions.
Ask, "What patterns do you see in the matched sets of expressions?" One pattern I see is that division problems can be rewritten as multiplication problems by changing the operation to multiplcation and using the multiplicative inverse of the divisor.
Have students share their responses for Problem 2 with a partner. Have them discuss until they agree that all expressions are, in fact, equivalent to the original.
Highlight that students can rewrite a division problem as a multiplication problem if they change the divisor to the multiplicative inverse (or reciprocal). They can also change a subtraction problem into an addition problem if they change the number being subtracted into its additive inverse (or opposite).

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can spend more time thinking about and discussing the relationships among the expressions on the cards. Digital card sorts save set-up time.

Accessibility: Vary Demands to Optimize Challenge

Distribute Cards 1-10 first and have students work with this subset of cards to determine any possible matches. After they have determined all possible matches, distribute the remaining cards.

Math Language Development

MLR7: Compare and Connect

During the Connect, as students share the patterns they see in the matched expressions, highlight the inverse relationships between operations. Display these sentence frames and have students complete them. Add these statements to the class display.

- Subtracting a number is the same as \qquad the \qquad adding; additive inverse (or opposite)
- Dividing by a number is the same as \qquad by that number's \qquad multiplying; multiplicative inverse (or reciprocal)

English Learners

Add examples to the class display and annotate the additive inverse and multiplicative inverse with "additive inverse or opposite" and "multiplicative inverse or reciprocal."

Activity 2 Near and Far From Zero

Students see that when comparing two expressions with the same variable, it is not possible to know which expression is larger or smaller (without knowing the values of the variables).

1. Launch

Display the expressions from the first row of the table. Ask, "Which expression do you think will have the greatest value? Which will have the least? Which will be closest to zero? Is it possible to say if a or $-a$ is greater without knowing the value of a ?"

2 Monitor

Help students get started by having them substitute the original value into the expression first, and then simplifying as a second step.

Look for points of confusion:

- Struggling to find the greatest value, least value, or value closest to zero in the set. Encourage students to create a number line to help them reason about the positions of different expressions.

Look for productive strategies:

- Noticing that the sign of a^{2} will always be positive, but the sign of b^{3} will match the original sign of b.
(3) Connect

Display the completed table.
Have students share their values that are the greatest, least, and closest to zero from each set and explain their reasoning.

Ask:

- "Were you surprised by any of the results? Which ones?"
- "Why is b^{3} not always the greatest value?"

Highlight that when substituting values into algebraic expressions, it is important to pay attention to the signs in both the expression and the number being substituted in. If a negative number is substituted into a variable with a negative sign, the value of the expression will be positive. For example, if $a=-3$, then $-a=-(-3)$, which is 3 .

Accessibility: Guide Processing and Visualization

Suggest that students first focus on substituting the values into the expressions. After they have done so, they can go back and evaluate them.

Extension: Math Enrichment

Have students respond to the following questions.

- When $|a|$ is greater than 1 , which is farther from zero: a or a^{2} ? Why? a^{2} is farther from zero because a^{2} has a greater magnitude than a.
- When $|a|$ is between 0 and 1 , which is farther from zero: a or a^{2} ? Why? a is farther from zero because a has a greater magnitude than a^{2}.

Summary

Review and synthesize the ways in which expressions with various operations can be written to have the same value.

Synthesize

Highlight that addition and subtraction and multiplication and division are considered inverse operations because they are able to undo each other.

Ask, "Can you give an example of a number whose additive inverse is the same as its multiplicative inverse? Why not?"

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What does it mean for something to be the inverse of something else?"

Exit Ticket

Students demonstrate their understanding of performing operations with rational numbers.

Success looks like ...

- Language Goal: Evaluating an expression for given values of the variable, including negative values, and comparing the resulting values of the expression. (Speaking and Listening)

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...

- What worked and didn't work today? What routines enabled all students to do math in today's lesson?
- During the discussion about Activity 1 , how did you encourage each student to listen to one another's strategies? What might you change for the next time you teach this lesson?

4. The price of an ice cream cone is $\$ 3.25$, but it costs $\$ 3.51$ with tax. What is the sales tax rate?
Let x represent the sales tax as a percent.
$3.25 x=3.51$
$3.25 x \div 3.25=3.51 \div 3.25$
5. Which is a scaled copy of Polygon A? Identify a pair of corresponding sides
and a pair of corresponding angles. Compare the areas of the scaled copies.

Polygon D is a scaled copy of Polygon A. The side lengths of Polygon D are
sides in Polygon A. The area of
Polygon D is 4 times greater than the area of Polygon A .
6. Use long division divide each of the following. Show your thinking.

(a) Divide 496 by 4 . | 124 |
| ---: |
| 4496 |
| $-4 \downarrow$ |
| -4 |
| $-8 \downarrow$ |
| $\frac{-86}{16}$ |
| $\frac{-16}{0}$ |

(b) Determine the quotient of 3.8 and 0.004 .
$3.8 \div 0.004=950 ;$

\qquad
\qquad 491

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.
(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Say It With Decimals

Let's represent fractions with decimals.

Focus

Goals

1. Language Goal: Understand and use the term repeating decimal when describing a decimal expansion does not terminate, and represent a repeating decimal expansion with bar notation. (Speaking and Listening, Writing)
2. Language Goal: Use long division to generate a decimal representation of a fraction, and describe the decimal that results. (Writing)
3. Represent a complex fraction as a fraction with integers in simplest form.

Coherence

- Today

Students use long division to express fractions as decimals. They see how the calculations can sometimes be repeated resulting in a repeating decimal. Students also evaluate complex fractions to a single fraction in simplest form.

Previously

In Lesson 15, students performed operations involving rational numbers.

Coming Soon

In Lesson 17, students solve problems with rational numbers.

Rigor

- Students practice procedural skills of long division to represent fractions as decimals, including repeating decimals.
- Students apply their knowledge of operations with fractions to express complex fractions as a single fraction in lowest terms.

Warm-up

Activity 2

Activity 3

Summary
(1) 5 min
\bigcirc Independent
(1) 10 min
$\cap \circ \cap$ Pairs
(1)
10 min
ㅇํㅇ Pairs
(1)
10 min
ㅇํㅇ Pairs
(J) 5 min

คํํํํํ
Whole Class
(๑) 5 min

Amps powered by desmos \quad Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Warm-up PDF, A Different Calculator View (for display)
- Power-up PDF
- Power-up PDF (answers)
- Anchor Chart PDF, Examples of Division Methods (from Grade 6)

Math Language
 Development

New words

- bar notation
- repeating decimal
- terminating decimal

Review words

- integer
- long division
- rational numbers

Amps Featured Activity

Exit Ticket
 Real-Time Exit Ticket

Check in real time if your students can express a fraction as a repeating decimal using a digital Exit Ticket that is automatically scored.

Building Math Identity and Community
 Connecting to Mathematical Practices

In Activity 1, students may not recognize when a decimal begins to repeat. They need to recognize when the process they are using to divide continually will result in the same number(s) as they determine the value of a fraction expressed as a repeated decimal. It might help students to whisper aloud what they are doing in order to hear the repetition of the process. As soon as they can identify the repetition, they can write the decimal using bar notation.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- Omit the Warm-up. Instead, share the definitions for repeating decimals and terminating decimals during the Activity 1 Connect.
- In Activity 2, give students a time limit and allow them to complete as many problems as possible during that time.
- Omit Problem 3 in Activity 3.

Warm-up Notice and Wonder

Students look at decimal expansions of unit fractions to prepare for the upcoming activities involving repeating decimals.

1 Launch

Conduct the Notice and Wonder routine.

(2) Monitor

Help students get started by asking whether they recognize or are familiar with any of the decimals.

Look for points of confusion:

- Trying to find a pattern among the list of decimals. Having a numerator of 1 in common does not yield a pattern among the decimal expansions.

Look for productive strategies:

- Wondering if some of the decimals are rounded.

(3) Connect

Display the Warm-up PDF, A Different Calculator View and ask students if these expanded decimals help answer any of their questions.
Ask, "How did the calculator get these decimal representations? The numbers were divided.

Have students share what they noticed and what they wondered.
Highlight that calculators cannot always show the entire decimal value because it may continue forever. Calculators round; therefore, students will need to be aware there may be repetition even if the last digit is different. If there is a pattern of repeating digits, it is known as a repeating decimal. In the next activity, students will learn how to write those numbers more precisely than a calculator.

Define repeating decimal as a decimal that has the same sequences of non-zero digits that repeat indefinitely. Terminating decimals are decimals that end at a specific place value.

C

Power-up
To power up students' ability to determine the quotient of two values using long division:

Provide students with a copy of the Power-up PDF.
Use: Before Activity 1.
Informed by: Performance on Lesson 15, Practice Problem 6.

Activity 1 Repeating Decimals

Students use long division to rewrite fractions as decimals and use bar notation to represent digits which repeat forever.

1 Launch

Activate prior knowledge and review that fractions represent division between two whole numbers. Discuss the long division example. Consider displaying the Long Division example from the Anchor Chart PDF, Examples of Division Methods from Grade 6.

2 Monitor

Help students get started by reminding them there are infinitely many zeros after a decimal point and they can add as many as they need to expand their number.

Look for points of confusion:

- Setting up their long division with the divisor and dividend in the incorrect places. Prompt them to think about what is being divided and what it is being divided by. Consider writing the fraction as a division problem with the obelus symbol (\div) to help them determine which is the divisor and/or dividend.
- Misaligning their digits. Remind students to be very careful and methodical when performing long division.

Look for productive strategies:

- Recognizing the pattern continues forever when dividing 2 by 3 .

3 Connect

Display any problems or solutions necessary to facilitate class discussion.
Highlight the example in Problem 2 is known as a repeating decimal and can be represented with bar notation, such as $\frac{2}{3}=0.666666 \ldots=0 . \overline{6}$. The bar notation above the 6 represents the 6 repeats forever, as seen in the long division in Problem 2. Also, show how the ellipses (. . .) can be used to show repetition if a few iterations of the pattern are shown.
Ask, "How could you write 0.4545454545 . . . using bar notation? How could you write the decimals in the Warm-up using the bar notation?"

Differentiated Support

Accessibility: Activate Prior Knowledge

Review with students how to write fractions as decimals using long division. Consider walking through the given example, $\frac{7}{8}$. Ask a student volunteer to demonstrate each step, using a think-aloud to illustrate what is happening at each step.

Math Language Development

MLR2: Collect and Display

As students share what patterns they notice, capture and define language related to repeating and terminating decimals and add this to the class display. For example, consider adding the following to the class display:

Repeating decimals	Terminating decimals
The long division results in a repeating, nonzero digit. Bar notation can represent the repeating digit, for example, $0 . \overline{6}$.	The long division results in 0.
English Learners	
Provide examples of fractions that lead to terminating and repeating decimals.	

Activity 2 Practice With Repeating Decimals

Students express rational numbers as decimals to build fluency.

1. Launch

Have students conduct the Think-Pair-Share routine as they work through the problem set.

Use long division to express each fraction as a decimal. If you recognize repetition, stop and write the decimal using repeating bar notation.

Activity 2 Practice With Repeating Decimals
routine as they work through the problem set.

Monitor

Help students get started by having them refer to the example and problems in Activity 1.

Look for points of confusion:

- Writing the repeating bar over both the 8 and the $\mathbf{3}$ in Problem 3. Remind students that the bar only is above the digit or digits which repeat over and over.
- Not stopping when they see repetition. Remind students that these numbers will continue forever, so they will need to stop.

A. Are you ready for more?

As you saw in a previous lesson, $\frac{22}{7}$ is used as an approximation for π. Express this fraction as a decimal. How does this approximation compare to 3.14?
3.142857; When rounded to the hundredths place, the rounded value is equal
to 3.14. to 3.14 .

3 Connect
Display any problems and solutions which will help facilitate class discussion.

Highlight the many patterns of repetition, such as in Problem 1, there was one digit that did not repeat, Problem 4 has two digits that repeat, and Problem 5 has two non-repeating digits with one repeating digit.

Ask:

- "When did you decide to stop the division? Why?"
- "Order the numbers from least to greatest. Did you compare the fractions or the decimals to help you order the numbers?"

Accessibility: Vary Demands to Optimize Challenge

Allow students to choose three of the six problems to complete. Offering them the power of choice can lead to greater engagement and ownership of the task.

Extension: Math Enrichment

Ask students to create a graphic organizer of common fractions and whether their decimal representations are repeating or terminating. Have them consider fractions, such as the following:

- Denominators of $2,4,5,8$, 10 Terminating
- Denominators of 3, 6, 9 Some are repeating, while others are terminating. The ones that terminate can be written in simpler forms, such as $\frac{3}{6}=\frac{1}{2}$.

Activity 3 Complex Fractions

Students use division of fractions to rewrite complex fractions as a single fraction in lowest terms.

1 Launch

Activate background knowledge that when dividing two integers the result will either be a terminating or repeating decimal. Today, students will see what happens when they divide two rational numbers. Remind them that dividing by a fraction is equivalent to multiplying by the reciprocal of that fraction.

2 Monitor

Help students get started by helping them rewrite the complex fractions using the obelus (\div) symbol.

Look for points of confusion:

- Not reciprocating the second fraction in Problem 2. Have students reference an example of how dividing fractions is equivalent to multiplying by the reciprocal.

Look for productive strategies:

- Recognizing $\frac{8}{3}$ is $2 \frac{2}{3}$ and $\frac{2}{3}=0 . \overline{6}$ without having to perform the long division calculations.

3 Connect

Have students share their thinking and solutions to the problems.

Highlight how complex fractions are called complex because they have multiple fraction bars, not because they are complicated. Students already possess the skills necessary to evaluate these numbers. They need to pay attention to where the longest fraction bar is located, because this will represent the division of the two rational numbers.

Ask:

- "How do you evaluate a complex fraction?" Rewrite the division problem as multiplication of the reciprocal of the number in the denominator of the complex fraction.
- "Evaluate $1+\frac{1}{1}+\frac{1}{2}$."

Differentiated Support

Accessibility: Guide Processing and Visualization

Help students make sense of the structure of a complex fraction by having them think of a complex fraction as "a fraction within a fraction." Provide access to colored pencils and have them color code the longest fraction bar in each problem. This indicates the "overall fraction." Then ask them to describe whether the numerator, denominator, or both of each overall fraction are also fractions.

Extension: Math Enrichment

Have students examine the structure of the following complex fractions and evaluate them, without performing long division. Have them explain their thinking.
$\frac{\frac{1}{3}}{\frac{5}{3}} \frac{1}{5}$; One third out of five thirds is the same as one out of five.
$\frac{\frac{3}{8}}{\frac{7}{8}} \frac{3}{7}$; Three eighths out of seven eighths is the same as three out of seven.

Summary

Review and synthesize how to rewrite fractions as terminating or repeating decimals.

Summary

In today's lesson...

You used long division to represent fractions as decimals. Sometimes the decimal
terminates (ends) and sometimes it is a repeating decimal where the decimal is non-terminating and repeats. This can be written using bar notation over the digits which repeat or with the ellipses (\ldots) at the end.
$\frac{1}{3}=0.333 \ldots=0 . \overline{3}$
$\frac{14}{99}=0.14141414 \ldots=0 . \overline{14}$
Remember to put the bar only over the repeating digits.
$\frac{53}{90}=0.5888 \ldots=0.5 \overline{8}$

Reflect:

Synthesize

Display the Summary from the Student Edition.

Formalize vocabulary:

- bar notation
- repeating decimal
- terminating decimal

Highlight rational numbers are numbers which can be expressed as a ratio of two integers which can either be expressed as terminating decimals or repeating decimals.

Ask, "Did you recognize any patterns in what type of fractions produced repeating decimals versus ones that produced terminating decimals?"

(1) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How do you rewrite a fraction as a decimal?"

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display that you started in this unit. Ask them to review and reflect on the terms and phrases related to the terms bar notation, repeating decimal, and terminating decimal that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding by rewriting fractions as repeating decimals using proper notation.

Success looks like ...

- Language Goal: Understanding and using the term repeating decimal when describing a decimal expansion does not terminate, and representing a repeating decimal expansion with bar notation. (Speaking and Listening, Writing)
- Language Goal: Using long division to generate a decimal representation of a fraction, and describing the decimal that results. (Writing)
» Using long division to find the decimal representation of $\frac{5}{9}$ and $\frac{5}{11}$ in Problems 1 and 2.
- Goal: Representing a complex fraction as a fraction with integers in simplest form.

- Suggested next steps

If students write the repeating bar above the incorrect digits, consider:

- Reviewing Activity 2.
- Assigning Practice Problems 1 and 2.

Note: Students will revisit this content in Grade 8.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C. Points to Ponder ...

- What worked and didn't work today? In what ways did things happen that you did not expect?
- The focus of this lesson was rewriting fractions as repeated decimals. How did that go? What might you change for the next time you teach this lesson?

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

4. Bard says that because $4+(-3)$ is equivalent to $(-3)+4$, this means that $4-(-3)$ must be equal to $(-3)-4$. Explain why Bard is incorrect. Use the provided diagrams in your explanation, if helpful.
Sample response: The order does not matter when adding, but when subtracting,
Sample response: The order does not matter when adding,
when you change the order, the differences are opposites.
$4-(-3)$ represents the distance from $-3 \quad-3-4$ represents the distance from 4 to
to 4 which is 7 .

5. Each of the expressions shown has a value of $-\frac{1}{2}$.
$-\frac{1}{4}+\left(-\frac{1}{4}\right)$
$\frac{1}{2}-1$

Write five expressions of your own: a sum, a difference, a product, a quotient. and one using at least two operations that all have the value of $-\frac{3}{4}$
Sample responses:
$-\frac{1}{4}+\left(-\frac{2}{4}\right) \quad \frac{1}{4}-1 \quad-3 \cdot \frac{1}{4} \quad-3 \div 4 \quad-3.1 \div 4$
>6. Evaluate each expression.
a $-5-8=-13$
c $-5 \cdot 8=-40$
d $16=\left(-\frac{1}{2}\right)=-32$
(e) $-3+2 \cdot(-8) \cdot(-10)=157$ f $-6 \div(-2) \cdot(-3)=-9$

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

Solving Problems With Rational Numbers

Let's use all four operations with rational numbers to solve problems.

Focus

Goal

1. Language Goal: Apply operations with rational numbers to solve problems, and present the solution method. (Writing, Speaking and Listening)

Coherence

- Today

Students put together what they have learned about rational number arithmetic and interpretation of negative quantities, such as negative time or rates of change. The problems are designed so that it is natural to solve them by completing tables or making numeral calculations to set the foundation for writing and solving equations with rational numbers.

< Previously

In Lesson 15, students evaluated expressions with rational numbers and all four operations.

> Coming Soon

In Lesson 19, students will write equations with rational numbers to solve problems.

Rigor

- Students apply their understanding of the four operations with rational numbers to solve real-world problems.
(0
Warm-up

Activity 1

Activity 2

Summary

Exit Ticket

(J) 5 min	(10 min	(J) 18 min	() 5 min	(J) 7 min
$\stackrel{\circ}{\circ} \mathrm{O}$ ำ Small Groups	$\bigcirc \bigcirc \bigcirc$	ำคำ Small Groups	ํํํํ คํํํํ Whole Class	\bigcirc ○ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Operations with Rational Numbers, Parts 1-3 (answers, as needed)

Math Language
 Development

Review words

- associate property
- commutative property
- Distributive Property
- rational numbers

Building Math Identity and Community
 Connecting to Mathematical Practices

Students should keep in mind that good relationships are an important part of math practice. Just as they must be precise when working with signed numbers, students must also be precise in their communication. They must clearly communicate when they are contributing to the group task, as well as when they need something from the group.

Amps \vdots Featured Activity

Warm-up
 Poll the Class

Assess, in real-time, which equation(s)
students do not believe belong with the others. Use the results to facilitate a discussion about why each equation might not belong.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- Omit the Warm-up.
- Omit Activity 1. Consider assigning it as Additional Practice.

Warm-up Which One Doesn't Belong?

Students apply their understanding of the four operations on rational numbers to analyze equations representing properties of addition and multiplication.

1 Launch

Conduct the Which One Doesn't Belong? routine.

2 Monitor

Help students get started by asking, "What do you notice about each equation?"

Look for points of confusion:

- Thinking that there is only one correct answer. Remind students that there are multiple correct answers, but they must be able to justify their reasoning.
- Citing a reason that eliminates more than one equation. Ask, "Is this the only equation that has that quality?"

Look for productive strategies:

- Comparing the operations used in each equation.
- Comparing the value of each equation once evaluated on each side.
(3) Connect

Display the four equations.
Have students share which equation they chose and their reasoning. Ask the class whether they agree or disagree and to justify their reasoning.

Ask, "What property of addition or multiplication does each equation model?"

- Equation A: Distributive Property
- Equation B: Commutative Property of Multiplication
- Equation C: Commutative Property of Addition
- Equation D: Associative Property of Addition

Highlight that the associative and commutative properties, as well as the Distributive Property, can be helpful when simplifying expressions that represent problems involving rational numbers.

(7) Power-up

To power up students' ability to evaluate expressions with rational values, have students complete:

Evaluate each expression. Show your thinking.

1. $1-8+2$
2. $-3-9 \cdot(-2)$
$=-7+2$
$=-3-(-18)$
$=-5 \quad=-3+18$
$=15$
Use: Before Activity 2.

Informed by: Performance on Lesson 16, Practice Problem 6.

Activity 1 Energy Supply, Revisited

Students apply their understanding of rational numbers and operations to solve problems involving energy generation.

1. Launch

Activate prior knowledge by asking what students remember about how the cost of energy is calculated for families who have solar panels. Remind students of the work they did in Lesson 5, Activity 2.

(2) Monitor

Help students get started by asking, "How does the energy company determine whether Bard's family is charged or whether they earn a credit?"

Look for points of confusion:

- Forgetting that the balance is not the amount due that month. Remind students that the balance is the running total or the sum of the current month's charges with the previous month's balance.

Look for productive strategies:

- Determining the difference between the kwh used and generated each month and checking that the cost per kwh is consistent from month to month.
(3) Connect

Display the table from the Student Edition.
Have students share how they used the values in the table to determine the missing values and the cost per kwh for energy.

Ask, "For Problem 3, what expression can you write to determine the cost for April?" Sample response: 0.225(484-520)

Highlight that, when working with problems with rational numbers, students must keep in mind the signs of the values, the operations that represent the scenario, and the order for each operation.

Differentiated Support
Accessibility: Activate Prior Knowledge, Guide Processing and Visualization

Ask students to look back at their work from Lesson 5, Activity 2 and ask, "What is similar about these activities? What is different?" Guide them to see that the new rate is not known in this activity, as it was in Lesson 5, Activity 2.

Math Language Development

MLR6: Three Reads

Use this routine to help students make sense of the introductory text.

- Read 1: Students read the problem with the goal of comprehending the situation (e.g., A utility company charges for energy use.)
- Read 2: Ask students to name or highlight the given quantities and relationships, without focusing on specific values. For example, ask, "Was more energy consumed or produced in February? How do you know?"
- Read 3: Ask students to plan their solution strategy as to how they will complete the statement in Problem 1.

English Learners

Clarify the meaning of the terms consumed and produced for students.

Activity 2 Deep Ocean Exploration

Students investigate the location of an automated underwater vehicle to reason about a real-world situation involving the four operations on rational numbers.

1 Launch

Activate students' background knowledge by asking what they know about ocean exploration or automated underwater vehicles (AUVs).

2 Monitor

Help students get started by asking, "How does each given expression in the table represent the situation being described?"

Look for points of confusion:

- Not following the order of operations when simplifying their expressions. Remind students that they should evaluate multiplication prior to addition.
- Confusing the rules for multiplication and addition when they are in the same expression. Have students reference the posted Anchor Chart PDF, Operations on Rational Numbers.
- Struggling to determine the time it took Orpheus to reach 250 m below sea level from the surface (0). Encourage students to apply repeated reasoning to the table in Problem 2.

Look for productive strategies:

- Applying their understanding of the equation $d=r t$ to Problem 3, and dividing - 250 by 30 to determine the time to get to 250 m below sea level from the surface.

Activity 2 continued >

Differentiated Support

Accessibility: Activate Prior Knowledge, Guide Processing and Visualization

Provide students with copies of the Anchor Chart PDFs, Operations with Rational Numbers, Parts 1-3 (answers) to reference throughout the activity.

Math Language Development

MLRT: Compare and Connect

During the Connect, as you display completed tables and have students respond to the Ask questions, draw their attention to the connections between the structure of the expressions. Ask these follow-up questions:

- "Where do you see the change in location in your expression?"
- "How is the time represented in your expression?"
- "How do repeated computations appear in your expression?"
- "Why does the time in the second table start at 1 minute and decrease? What do the negative times mean in this context?"
- "Why do the changes in location become more negative in the first table, but become more positive in the second table?"

Activity 2 Deep Ocean Exploration (continued)

Students investigate the location of an automated underwater vehicle to reason about a real-world situation involving the four operations on rational numbers.

Activity 2 Deep Ocean Exploration (continued)
3. How many minutes was Orpheus descending before the sensor turned on? $8 \frac{1}{3}$ min; Sample response: If I continue the pattern in the table, at -8 minutes the Orpheus would be at -10 m . Because it is traveling at a rate of $30 \mathrm{~m} / \mathrm{minute}$, it will take $\frac{1}{3}$ minutes to travel 10 m , so the Orpheus was at $0 \mathrm{~m} \frac{1}{3}$ minutes before the sensor turned on.
(3) Connect

Display tables completed by students for Problems 1 and 2.

Ask:

- "What do the positive and negative values in each expression represent?"
- "How does each expression match the scenario?"

Have students share their reasoning for Problem 3. If possible, have students share strategies with and without expanding the table from Problem 2.

Highlight that writing expressions can help to see and reason about repeated operations and make sense of problems. When simplifying these expressions, it is important that the order of operations is followed.

Summary

Review and synthesize how to use the four operations with rational numbers to solve problems.

Synthesize

Display the Summary from the Student Edition.
Ask, "How did you determine which operations to use and in what order when solving problems in the activities today?"

Highlight that the order in which computations are completed depends on the scenario. In Activity 1 , students needed to subtract prior to multiplying. However, in Activity 2, they needed to multiply by the rate of change first and then add that to -250 to determine the final location.

D Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How is solving problems with negative rationa numbers similar to or different from solving problems with only non-negative rational numbers?"

Exit Ticket

Students demonstrate their understanding of how to use rational numbers and the four operations to solve problems.

亘 Printable

Exit Ticket 2G
in's sister has a checking account. If the account balance ever falls below zero, the bank charges her a fee of $\$ 5.50$ per day that the account balance is below zero. Today, the balance in Lin's sister's account is $\mathbf{- \$ 2 . 6 0}$.

1. If she does not make any deposits or withdrawals, what will be the balance in her account after 2 days? Show your thinking
$-\$ 13.60$; Sample response: $-2.60+2 \cdot(-5.50)=-2.60+(-11.00)=-13.60$
2. In 14 days, Lin's sister will be paid $\$ 430$ and she will deposit it into her checking
account. If there are no other transactions other than this deposit and the daily fee, will Lin's sister continue to be charged $\$ 5.50$ each day after this deposit is made? Show or explain your reasoning
No; Sample response:
$-2.60+14 \cdot(-5.50)=-2.60+(-77)=-79.60$
$-79.60+430=350.40$
Lin's sister will have $\$ 350.40$ in her account after the deposit, so she will no longer be below zero and no longer be charged a fee.

Success looks like...

- Language Goal: Applying operations with rational numbers to solve problems, and presenting the solution method. (Writing, Speaking and Listening)
» Using rational numbers to solve problems in the context of account balances in Problems 1 and 2.

Suggested next steps

If students struggle to make sense of each problem, consider:

- Asking, "How would you determine how much money is in Lin's account after one day? Two days? Ten days?"
- Reviewing strategies from Activity 2.
- Assigning Practice Problems 1 and 3.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Co. Points to Ponder ...

- What worked and didn't work today? Thinking about the questions you asked students today and what the students said or did as a result of the questions, which question was the most effective?
- This lesson asked students to apply their understanding of operations on rational numbers to solve problems. Where in your students' work today did you see or hear evidence of them doing this? What might you change for the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
On-lesson	$\mathbf{1}$	Activity 2	2
Spiral	$\mathbf{2}$	Activity 1	2
Formative 0	$\mathbf{5}$	Activity 2	Unit 4 Lesson 4

© Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

(8)

Nome
) 3. A large aquarium of water is being filled with a hose. Due to a problem, the senso does not start working until some time into the filling process. The sensor starts its recording at the time zero minutes. The sensor initially detects the tank has 225 liters of water in it.
(a) The hose fills the aquarium at a constant rate of 15 liters per minute. What will the sensor read at the time 5 minutes? 300 liters; Sample response: $225+\mathbf{1 5} \cdot \mathbf{5}=\mathbf{2 2 5}+\mathbf{7 5}=\mathbf{3 0 0}$
(b) Later, someone wants to use the data to find the amount of water at times before he sensor started. What should the sensor have read at the time -7 minutes? 20 liters; Sample response: $225+15 \cdot(-7)=225+(-105)=120$
) 4. A furniture store pays a wholesale price for a mattress. Then the store marks up the retail price to 150% of the wholesale price. Later they put the mattress on sale for 50% off the retail price. A customer just bought the mattress on sale and paid $\$ 1,200$
a) What was the

The retail price was $\$ 2,400$; Sample response: $\$ 1,200$ is 50% of the retail price. $1200 \div 0.50=2400$
b What was the wholesale price, before the markup? Show or explain your thinkin The wholesale price was $\$ 1,600$; Sample response; $\$ 2,400$ is 150% of the
wholesale price. $2400 \div 1.50=1600$
5. Solve each equation. Show your thinking
(a) $2 \frac{1}{2} x=3 \frac{3}{4}$
(b) $1 \frac{3}{4}+y=2 \frac{1}{2}$
$\begin{aligned} 2 \frac{1}{2} x \div 2 \frac{1}{2} & =3 \frac{3}{4} \div 2 \frac{1}{2} & 1 \frac{3}{4}-1 \frac{3}{4}+y & =2 \frac{1}{2}-1 \frac{1}{4} \\ x & =\frac{15}{4} \div \frac{5}{2} & y & =\frac{5}{2}-\frac{7}{4} \\ x & =\frac{3}{2} \text { or } 1 \frac{1}{2} & y & =\frac{3}{4}\end{aligned}$
(c) $8.4=24 b$
$8.4 \div 24=24 b \div 24$
$0.35=b$
(d) $9.03=z+0.82$ $9.03-0.82=z+0.82-0.82$

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

Solving Equations With Rational Numbers

Let's solve equations that include negative numbers.

Focus

Goals

1. Language Goal: Explain how to solve an equation of the form $x+p=q$ or $p x=q$, where p, q, and x are rational numbers. (Speaking and Listening, Writing)
2. Language Goal: Generalize the usefulness of additive inverses and multiplicative inverses for solving equations of the forms $x+p=q$ and $p x=q$. (Speaking and Listening)

Coherence

- Today

Students expand on their understanding of solving equations of the forms $p+x=q$ and $p x=q$, where all values are positive, to solving equations of the same form with rational values. They determine that additive and multiplicative inverses can be used whether the values are positive or negative.

< Previously

In Grade 6, students solved equations of the forms $p+x=q$ and $p x=q$, where p, q, and x were all non-negative values.

>Coming Soon

In Unit 6, students will build on their understanding of solving equations of the forms $p+x=q$ and $p x=q$ with rational values to solve equations of the forms $p x+r=q$ and $p(x+q)=r$.

Rigor

- Students build conceptual understanding of solving equations of the forms $x+p=q$ and $p x=q$ with rational values.

Warm-up

Activity 2

Activity 3

Summary

Exit Ticket

(1) 5 min	(1) 8 min	(1) 13 min	(1) 10 min	(1) 5 min	(1) 5 min
\bigcirc ¢ Independent	กํํ Pairs	กำ Pairs	ㅇำ Small Groups	กัําําว Whole Class	\bigcirc ○ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Anchor chart PDF, Solving Equations (for display)
- Anchor chart PDF, Solving Equations (answers)

Math Language
 Development

Review words

- additive inverse
- inverse operation
- multiplicative inverse
- solution

Building Math Identity and Community
 Connecting to Mathematical Practices

Students might not yet see patterns when solving equations in Activity 3. They should focus on the structures they know that help them keep the equations true throughout the process. They might reach a point where they are unsure what to do, but, if they are organized and have applied the structure of recording each step of the solution process, others can easily see their thinking and guide them to the next steps.

Amps : Featured Activity

Exit Ticket
 Real-Time Exit Ticket

Check in real time that your students understand methods for solving equations with rational numbers by using a digital Exit Ticket that is automatically scored.

Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- The Warm-up may be omitted.
- In Activity 3, have students match the inverse operations without solving the equations. Assign the final column as a practice problem.

Warm-up Number Talk

Students determine the missing value(s) in equations by using their prior knowledge of additive and multiplicative inverses.

1 Launch

Conduct the Number Talk routine, displaying one equation at a time.

2 Monitor

Help students get started by asking, "What does it mean to make an equation true?"

Look for points of confusion:

- Using inverse operations to solve Problems 2 and 5. Ask students to reason about what they notice given the values in each equation.

Look for productive strategies:

- Choosing additive inverses for Problem 3 and multiplicative inverses for Problem 6
(3) Connect

Have students share their reasoning for each problem. Record and display the responses.

Ask:

- "What strategies or relationships did you use to help you to determine the unknown values?"
- "Who can restate __'s reasoning in a different way?"
- "Does anyone want to add on to ___'s strategy?"
- "Do you agree or disagree? Why?"

Highlight that the sum of a number and its opposite is 0 . To determine the number added to a number that will produce 0 as a sum, use its opposite (additive inverse). The product of a number and its reciprocal is 1 . To determine the number multiplied by a value to produce 1 as a product, use its reciprocal (multiplicative inverse).

Math Language Development

MLR3: Critique, Correct, Clarify

During the Connect, display an incorrect statement, such as "The value of e in Problem 1 is 0 because $\frac{3}{5}$ and $\frac{5}{3}$ are inverses." Ask:

- Critique: "Do you agree or disagree with this statement? Explain your thinking." Listen for students who recognize that these fractions are multiplicative inverses (not additive), which means their product is 1 , not 0 .
- Correct: "Write a corrected statement."
- Clarify: "How can you convince someone that your statement is correct? What mathematical language or reasoning can you use?"

(7) Power-up

To power up students' ability to solve equations of the form $x+p=q$ and $p x=q$, have students complete:
For each equation, circle the operation that could be done on both sides to solve it.

1. $6+x=12$	Subtract 12	Subtract 6
2. $0.2 x=5.4$	Subtract 0.2	Divide by 0.2
3. $4=\frac{2}{3} y$	Divide by $\frac{2}{3}$	Multiply by $\frac{2}{3}$
Use: Before the Warm-up.		

Informed by: Performance on Lesson 17, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 7.

Activity 1 Matching Solutions

Students connect their understanding of solving equations of the forms $x+p=q$ and $p x=q$ with rational numbers by determining what value makes each equation true.

1 Launch

Activate students' prior knowledge by asking, "What does it mean for a value to be a solution to an equation?" Explain that students will work in pairs to determine the correct solution to each equation.

2 Monitor

Help students get started by asking what strategies they know for determining the solution to an equation.

Look for points of confusion:

- Adding p to both sides of the equations of the form $p x=q$ where p is a negative value. Ask, "What operation is 'connecting' p and q ?"
- Mixing up the rules of signs for addition and multiplication. Remind students the rules for determining the sign of the sum or product of two rational values.

3 Connect

Display each equation to the class. Conduct the Poll the Class routine to determine the correct solution for each equation.
Have students share their methods for determining the correct solution with the class.
Ask, "Without using substitution, how can you solve equations of the form $x+p=q$? What about equations of the form $p x=q$?"
Highlight that to solve an equation of the form $x+p=q$ using inverse operations, subtract p from both sides. To solve equations of the form $p x=q$ using inverse operations, divide both sides by p. This is the same as multiplying by
$\frac{1}{p}$, the reciprocal. Model the two methods for ${ }_{m}^{p}$ multiplication using the first and last equation in the table.

4 Differentiated Support

Accessibility: Activate Prior Knowledge

Remind students they previously learned to solve one-step equations involving positive numbers in Grade 6. Ask them what strategies they would use to solve the equation $\frac{1}{2} x=5$, and how those strategies can help them solve the similar equation shown in the table, now with negative signs added.

Accessibility: Clarify Vocabulary and Symbols

Provide access to colored pencils and suggest that students color code the equations that are of the form $x+p=q$ in one color and equations of the form $p x=q$ in another color.

Math Language Development

MLR7: Compare and Connect

During the Connect, as students compare the various methods used, consider adding a table similar to the following to the class display.

Solving equations of the forms $x+p=q$ and $p x=q$:

Arithmetic method:

Substitute values for the variable to determine which value makes the equation true.

Algebraic method:
Use inverse operations.

- For equations of the form $x+p=q$, subtract p from each side.
- For equations of the form $p x=q$, divide both sides by p.

Activity 2 Matching Equations

Students match equivalent equations to develop the process for solving equations in the form $x-p=q$.

Activity 2 Matching Equations

Analyze the four equations shown. Match the equations that have the same solution. You should have two pairs of equations.

$$
x+2=8 \quad x-2=8 \quad x+(-2)=8 \quad x-(-2)=8
$$

Sample responses are shown.

1. My first pair of equations with the same solution are

$$
x+2=8 \quad \text { and } \quad x-(-2)=8
$$

a Explain your thinking for why the two equations have the same solution. I know that subtracting a value is the same as adding its additive inverse, so $x-(-2)$ is the same as $x+2$.
b Solve the addition equation. Show your thinking.

$$
x+2=8
$$

$x+2-2=8-2$
$x=6$
c Solve the subtraction equation using the same inverse operation you used in part b. What do you notice?
$x-(-2)=8 \quad-(-2)-2=0$, so subtracting 2 from both $x-(-2)-2=8-2 \quad$ sides of the equation still solves this equation.
$x+2-2=6$
$x=6$
d Are there any other methods for solving this pair of equations? Show or explain your thinking. Yes. Subtracting 2 is the $\quad x-(-2)=8 \quad x+2=8$ $\begin{array}{lrl}\text { Yes. Subtracting 2 is the } & x-(-2)=8 & x+2=8 \\ \text { same as adding -2, so } & x-(-2)+(-2)=8+(-2) & x+2+(-2)=8+(-2)\end{array}$ $\left.\begin{array}{rlrl}\text { same as adding }-2 \text {, so } \\ \text { if } \mathrm{I} \text { add }-2 \text { to both sides } \\ \text { of each equation, it will } & x-(-2)+(-2) & =8+(-2) & x+2+(-2)\end{array}\right)=8+($ also isolate x.

1 Launch

Activate students' prior knowledge by asking, "What is another way you can write the expression $5-(-2)$?" $5+2$ Explain that students will use their understanding of equivalent expressions to match equations with the same solution, prior to solving them.

2 Monitor

Help students get started by asking, "How do you change a subtraction expression to an addition expression?"

Look for points of confusion:

- Matching the equations that have the same operation, not the equations that have the same solution. Ask, "How would you solve $x+2=8$? Is that the same way that you would solve $x+(-2)=8$?"

Look for productive strategies:

- Writing each equation with subtraction as addition in order to determine the equations with the same solution.
- Recognizing that subtracting a value is the same as adding its additive inverse to determine that there are two methods for solving equations of the form $x+p=q$.

Activity 2 continued >

Math Language Development

MLR8: Discussion Supports

During the Connect, display sentence frames to support students as they explain their reasoning for each match. For example:

- "__matches \qquad because. .
- "I know that ___ and ___ are additive inverses because ...

Encourage students to respond to the matches their partner makes using:

- "I agree, because ..."
- "I disagree, because .

Activity 2 Matching Equations (continued)

Students match equivalent equations to develop the process for solving equations in the form $x-p=q$.

3 Connect

Display the two pairs of matching equations to the class.

Have students share how they determined their matches as well as methods for solving each equation.

Highlight that to solve equations of the form $x+p=q$, there are two methods. Students can either subtract p, or add $(-p)$. When p is a negative value, it is generally more efficient to solve the equation $x-(-p)=q$ by adding $(-p)$ to both sides.

Likewise, there are two methods for solving equations of the form $x-p=q$. Students can either add p to both sides, or subtract $(-p)$. When p is a negative value, it is generally more efficient to solve the equation $x+-(-p)=q$ by subtracting $(-p)$ to both sides.

Ask:

- "How can you solve the equation $x-3=6$?" Sample response: Add 3 or subtract (-3) from both sides.
- "How can you solve the equation $x-(-3)=6$?" Sample response: Rewrite the equation as $x+3=6$, then subtract 3 from or add (-3) to both sides.
- "How can you solve the equation $x+(-3)=6$?" Sample response: Add 3 or subtract (-3) from both sides.

Activity 3 Equations and Solutions

Students match equations involving rational numbers to the inverse operations needed to solve them prior to determining the solution.

Activity 3 Equations and Solutions

For each equation, choose the operation that would be used to solve the problem. You should not use the same operation for more than one equation. Not all of the operations will be used.
$+\left(\frac{2}{3}\right) \quad-\left(\frac{2}{3}\right) \quad \cdot\left(\frac{2}{3}\right) \quad \cdot\left(-\frac{2}{3}\right) \quad \cdot\left(\frac{3}{2}\right) \quad \cdot\left(-\frac{3}{2}\right)$

Equation	Operation	Work
$-\frac{2}{3} x=\frac{4}{9}$	$\cdot\left(-\frac{3}{2}\right)$	$\begin{aligned} -\frac{2}{3} x & =\frac{4}{9} \\ -\frac{2}{3} x \cdot-\frac{3}{2} & =\frac{4}{9} \cdot-\frac{3}{2} \\ x & =-\frac{2}{3} \end{aligned}$
$x-\left(-\frac{2}{3}\right)=1 \frac{1}{6}$	$-\left(\frac{2}{3}\right)$	$\begin{aligned} x-\left(-\frac{2}{3}\right) & =1 \frac{1}{6} \\ x+\frac{2}{3} & =1 \frac{1}{6} \\ x+\frac{2}{3}-\frac{2}{3} & =1 \frac{1}{6}-\frac{2}{3} \\ x & =\frac{1}{2} \end{aligned}$
$x+\left(-\frac{2}{3}\right)=-3 \frac{1}{6}$	$+\left(\frac{2}{3}\right)$	$\begin{aligned} x+\left(-\frac{2}{3}\right) & =-3 \frac{1}{6} \\ x-\frac{2}{3} & =-3 \frac{1}{6} \\ x-\frac{2}{3}+\frac{2}{3} & =-3 \frac{1}{6}+\frac{2}{3} \\ x & =-2 \frac{1}{2} \end{aligned}$
$-\frac{3}{2} x=-3 \frac{1}{2}$	- $\left(-\frac{2}{3}\right)$	$\begin{aligned} -\frac{3}{2} x & =-3 \frac{1}{2} \\ -\frac{3}{2} x \cdot\left(-\frac{2}{3}\right) & =-3 \frac{1}{2} \cdot\left(-\frac{2}{3}\right) \\ x & =2 \frac{1}{3} \end{aligned}$

1. Launch

Explain that students will be matching each equation with the inverse operation that can be used to solve it. Clarify that each operation will only be used once, and there will be operations remaining.
(2) Monitor

Help students get started asking, "Are there any equations that you feel confident in solving?" Remind them that they do not need to solve the equations in the order they were written.

Look for points of confusion:

- Forgetting that multiplication equations can be solved by using the multiplicative inverse. Ask, "How would you simplify $6 \div \frac{2}{3}$? How can you apply this strategy to solving equations?"

Look for productive strategies:

- Rewriting the second and third equation using the additive inverse, and then solving.

3 Connect

Display each equation to the class. Use the Poll the Class routine to come to consensus on which operation is used for each equation.

Ask, "How did you determine which operation matched each equation?"

Have students share how they used each operation to solve the equations.
Highlight multiplicative inverses require that the numbers have the same sign in order for the product to be positive. This means that negative numbers require a negative multiplicative inverse and positive numbers require a positive inverse. Contrast this with additive inverses, which must have opposite signs in order for their sum to be 0 .

Differentiated Support

Accessibility: Guide Processing and Visualizatio

Suggest that students focus on the second and third equation first. Ask, "How are these similar? How are they different?" Suggest that it may be more efficient to solve subtraction equations if they first write them using the additive inverse.

Math Language Development

MLR8: Discussion Supports

During the Connect, as you use the Poll the Class routine, encourage students to work through their disagreements until they come to a consensus. Display sentence frames to support students as they explain their reasoning for each operation they chose. For example:

- "I chose the operation __ because . . ."
- The equation is of the form __, so l. . ."
- "To solve an addition/multiplication equation, use the inverse operation, which is.

Encourage students to respond with whether they agree by using:

- "I agree, because . . ."
- "I disagree, because ..

Summary

Review and synthesize that there are two methods for solving equations of the forms $x+p=q$ and $p x=q$ when p, x, and q are rational numbers.

Synthesize

Display each equation from the Anchor Chart PDF, Solving Equations one at a time.

Ask:

- "What is another way to write the first equation?" $x-2=-5$
- "What are the two ways to solve the first equation?" Subtract -2 or add 2 to both sides of the equation.
- "What are the two ways to solve the second equation?" Subtract 3 or add -3 to both sides of the equation.
- "What are the two ways to solve the second equation?" Divide by $-\frac{2}{3}$ or multiply by $-\frac{3}{2}$.
Complete the missing information in the chart as a class.

Highlight that when solving equations with rational numbers, it can be helpful to use the additive inverse or the multiplicative inverse to isolate the variable.

(1) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How is solving problems with rational numbers the same or different from solving problems with non-negative numbers?"

Exit Ticket

Students demonstrate their understanding of how to solve equations with rational numbers.

Success looks like ...

- Language Goal: Explaining how to solve an equation of the form $x+p=q$ or $p x=q$, where p, q, and x are rational numbers. (Speaking and Listening, Writing)
» Selecting the inverse operations that could be used to solve the equation $x-\left(-\frac{1}{2}\right)=\frac{3}{8}$ in Problem 1.
- Language Goal: Generalizing the usefulness of additive inverses and multiplicative inverses for solving equations of the forms $x+p=q$ and $p x=q$. (Speaking and Listening)
- Suggested next steps

If students incorrectly identify the operation that could be used to solve the equation in Problem 1, consider:

- Reviewing the strategies from Activity 2.
- Assigning Practice Problems 1 and 2.

If students incorrectly use their operation to solve the equation in Problem 2, consider:

- Reviewing the strategies from Activity 3.
- Assigning Practice Problems 2 and 3.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.Points to Ponder . . .

- What worked and didn't work today? What did you see in the way some students approached Activity 1 that you would like other students to try?
- How did students attend to precision today? How are you helping students become aware of how they are progressing in this area? What might you change for the next time you teach this lesson?

Practice Problem Analysis			
Type	Problem	Refer to	DOK
	1	Activity 3	1
On-lesson	2	Activity 3	2
	3	Activity 2	2
Spiral	4	Unit 5 Lesson 15	2
	5	Unit 5 Lesson 14	2
Formative 0	6	Unit 5 Lesson 19	2

(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

Representing Contexts With Equations

Let's write equations that represent scenarios.

Focus

Goals

1. Language Goal: Coordinate verbal descriptions, equations, and diagrams that represent the same scenario involving an unknown amount. (Writing, Speaking and Listening)
2. Language Goal: Write equations of the forms $x+p=q$ and $p x=q$ to represent and solve a problem in an unfamiliar context.

Coherence

- Today

Students are encouraged to think critically about equations to determine if the solution would be positive or negative without solving it. They build on the work in the previous lesson to match, write, and solve equations that represent real-world scenarios.

< Previously

In Lesson 18, students solved equations of the forms $x+p=q$ and $p x=q$ with rational values.

© Coming Soon

In Unit 6, students will build on their understanding of solving equations of the forms $p+x=q$ and $p x=q$ with rational values to solve equations of the forms $p x+r=q$ and $p(x+q)=r$.

Rigor

- Students build conceptual understanding of representing real-world scenarios involving rational numbers with equations.
- Students gain fluency in solving equations of the forms $x+p=q$ and $p x=q$ with rational numbers.

Warm-up

Activity 1

Activity 2

Activity 3 (optional)

Summary

응 Small Groups

Exit Ticket
$\stackrel{\circ}{\circ}$ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 1 PDF (as needed, for display)
- Activity 1 PDF (answers)
- Activity 3 PDF, pre-cut cards, one card per group (optional)
- Activity 3 PDF (answers, optional)
- Anchor Chart PDF, Solving Equations With Rational Numbers (answers, as needed)
- materials for creating a poster (optional)

Math Language
 Development

Review words

- additive inverse
- inverse operation
- multiplicative inverse
- solution

Building Math Identity and Community
 Connecting to Mathematical Practices

In Activity 1, students might struggle to find the equations that match the scenario and become frustrated or distracted. Students need to manage their energy to focus on finding them. Discuss strategies that they can use to help them maintain focus. Explain that through the abstract reasoning they can represent the scenario algebraically and by quantitative reasoning they can solve the equations.

Amps Featured Activity

Activity 2
 Digital Arrow Diagrams

Students create digital arrow diagrams to represent real-world scenarios. You can monitor students' creations and display their diagrams during the whole-class discussion.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 1, have students choose two scenarios to complete fully.
- In Activity 2, split the class such that half of the groups model each problem. Display and discuss both scenarios in the Connect.
- Optional Activity 3 may be omitted.

Warm-up Don't Solve It!

Students apply their understanding of rational numbers to reason about whether the solution to an equation is positive or negative.

Unit 5 | Lesson 19
Representing Contexts With Equations

Let's write equations that represent scenarios.

Warm-up Don't Solve It!
Without solving, determine whether the solution of each equation is positive or negative, and place a check mark in the appropriate box. Be prepared to explain your thinking.

Equation	Positive	Negative
$-8.7 a=-1.4$	\square	\square
$-8.7 b=1.4$	\square	\square
$-8.7+c=-1.4$	\square	\square
$-8.7-d=-1.4$	\square	\square

(6)

1) Launch

Conduct the Think-Pair-Share routine.

(2) Monitor

Help students get started by asking, "When is the sign of the product of two rational numbers negative?"

Look for points of confusion:

- Thinking that they need to solve each equation. Remind students that they only need to determine the sign of the solution, not the solution.
- Thinking that the penultimate equation must have a negative solution because the sum of two negatives is negative. Ask, "Can you add two values with different signs and have a negative solution?"

Look for productive strategies:

- Focusing on the signs and magnitudes of the values in each equation to reason about the sign of the missing value.
(3) Connect

Display each equation one at a time. Conduct the Poll the Class routine to determine if each solution is positive or negative.

Have students share how they determined the sign of each variable.

Ask:

- "How did determining the sign of c aid in determining the sign of d ?"
- "How are the values of a and b related?"
- "How are the values of c and d related?"

Highlight that focusing on the signs of the numbers and the relative magnitudes without actually computing is helpful in determining whether the solution calculated is reasonable.

Power-up
To power up students' ability to write and use equations that represent proportional relationships, have students complete:

Write an equation that represents each scenario. Define what the variable represents in each equation. Sample responses shown.

1. Kiran walks at a speed of 2 mph . How far will he travel in 3.5 hours? $2 \cdot 3.5=d$, where d represents distance in miles.
2. Han jogs at a speed of 5 mph . How long will it take him to jog 3 miles? $5 t=3$, where t represent the time in hours.
Use: Before Activity 1.
Informed by: Performance on Lesson 18, Practice Problem 6.

Activity 1 Warmer or Colder Than Before?

Students build on their understanding of solving equations with rational numbers by matching scenarios with equations that represent them.

1 Launch

Invite a student volunteer to read the directions for the activity aloud, while the rest of the class reads along
(2) Monitor

Help students get started by asking, "What operation would model each scenario?"

Look for points of confusion:

- Struggling to find both equations that match the scenario. If they found the equation that matches the scenario exactly, ask, "What would the first step in solving this equation be?"
- Not realizing that $-(-4)$ is the same as +4 . If students are looking for the equation $x=-16-(-4)$ ask, "Is there another way you could represent this equation using addition?"
(3) Connect

Display the Activity 1 PDF. Ask, "How could you represent each scenario on a number line (thermometer)?"

Have students share how they would use the number line to model each scenario. Encourage them to explain how their model matches.

Ask:

- "Which equation in each scenario matches the scenario as written?" Equation 1 in the Activity 1 PDF (answers)
- "Which equation in each scenario represents a strategy for solving?"Equation 2 in the Activity 1 PDF (answers)
- "How did you determine that the two equations could both be used to determine the unknown value?"

Highlight that to determine both equations students must know how to represent the scenario algebraically and also how to use inverse operations to isolate the variable in each equation.

Differentiated Support

Accessibility: Guide Processing and Visualization, Optimize Access to Tools

Provide students with a copy of the Activity 1 PDF and allow them to use the number line to make sense of each scenario.

Math Language Development

MLR6: Three Reads

Use this routine to help students make sense of each scenario.

- Read 1: Students should understand that in each scenario the temperature is either increasing or decreasing.
- Read 2: Ask students to name or highlight the given quantities and relationships, such as in the first scenario, the temperature was dropping 4° per hour.
- Read 3: Ask students to plan their solution strategy as to how they will determine the two equations that could represent each scenario.

English Learners

Clarify the meaning of the words "dropping," "rose," and "had fallen" as they indicate the temperature increasing or decreasing.

Activity 2 Changing Elevation

Students model scenarios on number lines to aid them in writing and solving equations involving rational numbers.

Amps Featured Activity

Digital Arrow Diagrams

Activity 2 Changing Elevation

Hang Son Doong ("Mountain River Cave") in Vietnam, is the largest cave in the world. It is so massive, it can fit an entire Manhattan city block, including 40-story buildings, or have a 747 plane fly through it without the wings touching sides. Not discovered until 1990, and not first explored until 2009, there is much still to be discovered about this incredible wonder.

1. In 2019, multiple members of the diving team were given the opportunity to explore a new underground tunnel in Son Doong Cave. They dove as far as they could below sea level, then dropped a weighted rope 42 m down, reaching 120 m below sea level. How deep was the team when they dropped the rope?
(a) Draw an arrow diagram on the number line that represents the problem. Sample response

Write an equation to represent the scenario. Make sure that you define your variable.
Sample response: Let y represent the depth of the team when they
dropped their rope. dropped their rope.
$y-42=-120$
c Solve your equation to determine the unknown value. Show your thinking Sample response:
$y-42=-120$
$y-42+42=-120+42$
$y=-78$
The team was 78 m below sea level

1. Launch

Activate students' background knowledge by asking what they know about caves. Explain that students will be drawing diagrams and writing equations to solve problems about divers in the world's largest cave (Hang Son Doong).

(2) Monitor

Help students get started by asking them to read the first problem out loud. Ask, "How would you represent each value in your arrow diagram?"

Look for points of confusion:

- Writing an expression to determine the unknown value without writing an equation that represents the scenario. Refer to the Activity 1 PDF. Remind them that the first equation they write should match the scenario before they isolate the unknown value.
- Calculating a negative time for Problem 2. Ask students what velocity represents the divers' rate of descent.

Look for productive strategies:

- In group discussion, recognizing that there is more than one correct method for solving each equation by using inverse operations or by using the additive or multiplicative inverse.

Activity 2 continued >

Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which they can create digital arrow diagrams to represent real-world scenarios. You can monitor students' creations and display their diagrams during the whole-class discussion.

Extension: Activate Prior Knowledge

Provide students with a copy of the Anchor Chart PDF, Solving Equations With Rational Numbers (answers) to use as a reference for solving equations.

Math Language Development

MLR7: Compare and Connect

During the Connect, as students share how their arrow diagrams helped them write an equation, draw their attention to the connections between the arrow diagrams, equations, and scenarios. Sample questions are shown for Problem 1.

- "Where did you begin labeling the number line?"
- "What information was missing that you needed to determine? How is this value represented in your equation?"
- "How did you know where you needed to end up on the number line? How is this value represented in your equation?"

Activity 2 Changing Elevation (continued)

Students model scenarios on number lines to aid them in writing and solving equations involving rational numbers.
Activity 2 Changing Elevation (continued)

```
. If the team of divers descended at a rate of \(20 \mathrm{~m} /\) minute, how long did it take them to reach their maximum depth (the depth at which they dropped their rope)?
a Draw an arrow diagram on the number line that represents the scenario.
```



```
b Write an equation to represent the scenario. Make sure that you define your variable. Sample response: Let \(t\) represent the time it takes to descend. \(-20 t=-78\)
c Solve your equation to determine the unknown value. Show your thinking. Sample response:
\[
-20 t=-78
\]
\(-20 t \div(-20)=-78 \div(-20)\)
\(t=3.9\)
It will take 3.9 minutes to descend to 78 m below sea level.
```


A. Are you ready for more?

To ascend, divers travel at a maximum rate of 9 m per minute. They also need to pause for safety stops to allow for decompression during the ascent. The first safety stop, called a deep stop should be made at 5 of the total deph for 0
What is the minimum time, to the nearest minute, it took the divers to ascend from their dive? Show or explain your thinking.
Sample response
$78=9 t$, where t represents the time swimming during the ascent.
$78 \div 9=9 t \div 9$
$8 \frac{2}{3}=t$
$8 \frac{2}{3}+1+3=12 \frac{2}{3}$
It took the divers at least 13 minutes to make their ascent.

3 Connect
Display student-created examples of the number arrow diagrams for each scenario.

Have students share how they used their arrow diagrams to write an equation to represent each scenario.

Ask:

- "Is this the only equation that could be written to match the scenario?" Sample response: In the first problem we could have written the equation $v-42=-120$ or $v+(-42)=-120$.
- "What are the two ways you could solve each equation?" Sample response: For the first equation add 42 or subtract -42 . For the second equation, divide by -20 or multiply by $-\frac{1}{20}$.
Highlight that writing equations can help students determine unknown values in scenarios involving rational numbers. Drawing an arrow diagram can help in making sense of the problem and aid in writing the equation.

Activity 3 Equations Tell a Story

Students work in small groups to generate an equation to represent a scenario then complete a Gallery Tour to compare and contrast the process for each group's scenario.

Activity 3 Equations Tell a Story

Your teacher will provide your group with a scenario.
Create a visual display about your statement that includes.

- An equation that represents the scenario.
- What your variable and each value in your equation represent.
- How the operation(s) in your equation represent the relationship in the scenario.
- How to use inverse operations to solve for the unknown quantity
- The solution to your equation.

You can use the grid below to help you organize your visual display, if helpful. Sample response for Card 1 shown.

| Card \quad Equation: $\quad \frac{3}{8} t=3 \frac{1}{2}$ |
| :--- | :--- |
| $\frac{3}{8} \quad$ represents \ldots the rate the |\quad| We used multiplication as |
| :--- |
| the operation in our equation |

```
To solve our equation ... we need Solution: It will take 9}9\mathrm{ 支 hours for
to divide both sides by }\frac{3}{8}\mathrm{ or multiply the candle to burn completely.
by }\frac{8}{3}\mathrm{ .
    \frac{3}{8}t=3\frac{1}{2}
8
    t=9\frac{1}{3}
```


1. Launch

Group students homogeneously. Distribute one card to each group from the Activity 3 PDF, as well as materials for creating a poster. Note: The difficulty of representing each scenario increases as the card number increases, (e.g., Card 1 is the least challenging and Card 8 is the most challenging).

(2) Monitor

Help students get started by asking them to read their scenario out loud. Ask, "What operation is described by this scenario?"

Look for points of confusion:

- Difficulty in writing an equation without a visual aid. Suggest that students draw their own diagram on a piece of paper to aid them in making sense of their problem.
(3) Connect

Have students share their scenarios and methods for representing and solving them using the Gallery Tour routine. Have half of the students rotate the room while the other half answers questions about their scenario. Switch and repeat with the other half of the class.

Ask:

- "When writing an equation to represent a situation, how do you decide what your variable represents?"
- "How do you solve the equation?"

Highlight that writing equations can help determine unknown values in scenarios involving rational numbers. The variable represents the value that is unknown in each scenario.

Differentiated Support

Accessibility: Activate Prior Knowledge

Provide students with a copy of the Anchor Chart PDF, Solving Equations With Rational Numbers (answers) to use as a reference for solving equations.

Extension: Activate Prior Knowledge

Provide students with a copy of the Anchor Chart PDF, Solving Equations With Rational Numbers (answers) to use as a reference for solving equations.

Math Language Development

MLR7: Compare and Connect

During the Connect, as students share their scenarios and how they represented them with equations, draw their attention to the connections between the scenarios and the equations. Sample questions are shown for Card 1.

- "What is the rate at which the candle burns? How is this value represented in your equation?"
- "What is the initial height of the candle? How is this value represented in your equation?"
- "What are you asked to determine? How is this value represented in your equation?"

English Learners

Have students circle or underline the questions in each scenario and annotate them with "variable" or "unknown."

Summary

Review and synthesize that writing and solving equations can help to model and determine unknown values in real-world scenarios involving rational numbers.

Synthesize

Display the scenarios and matching arrow diagrams from the student edition one at a time.

Ask:

- "What does the variable represent in this scenario?"
- "What equation could be written to represent the scenario?"
- "How would you solve this equation?"
- "What does the solution represent?"

Highlight that writing and solving equations can help to model and determine unknown values in real-world scenarios involving rational numbers.

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "How can rational numbers be used to represent real-world situations?"

Exit Ticket

Students demonstrate their understanding of how to write and solve equations that represent real-world scenarios including identifying what each term represents.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson,
Q. Points to Ponder ...

- What worked and didn't work today? How did writing and solving equations of the forms $x+p=q$ and $p x=q$ set students up to develop their understanding of solving equations of the forms $p x+q=r$ and $p(x+q)=r$?

Who participated and who didn't participate in Activity 1 today? What trends do you see in participation? What might you change for the next time you teach this lesson?

(9)

5. The tick marks on the number line are evenly spaced. Label the missing values.
$\underset{-2.5}{+}$
2. Diego spends $\$ 4.50$ each day that he buys lunch.
(a) Which value 4.5 or -4.5 represents Diego's change in money each day from lunch?
-4.5 ; Sample response: Diego is spending money which means his total
4.5; Sample response: Diego is spending money which means his total
money is decreasing. This would be represented by a negative value.
money is decreasing. This would be represented by a negative value.
$c=-4.5 \mathrm{~d}$
c If Diego gives himself a budget of $\$ 90$ for lunches this month, how many days will
If Diego gives himself a budget of $\$ 90$ for lunches this mont
he be able to buy his lunch? Show or explain your thinking.
20 days; Sample response:
20 days; Sample respo
$c=-90 ;-90=-4.5 d$
$c=-90 ;-90=-4.5 d$
$20=d$
$\longrightarrow-\longrightarrow$

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

Summiting Everest

Let's play a game to imagine what it's like to prepare to summit Mt. Everest.

Focus

Goals

1. Apply operations with rational numbers while playing a game preparing to climb Mt. Everest.
2. Write expressions and equations to model situations involving rates with rational numbers

Rigor

- Students develop fluency working with negative rates.
- Students apply their understanding of rational number operations and writing expressions with rational number rates to solve a multi-step real-world problem.

Coherence

- Today

Students role play as mountain climbers attempting to summit Mt. Everest. As they make a plan for how to best prepare for this journey, they must consider the values of various rational number rates. Students experience the unpredictable nature of climbing Mt. Everest as they roll number cubes to determine how certain random events impact their climb. They notice how careful preparation helps give a better chance of success, though success is never guaranteed.

\& Previously

In Lesson 14, students saw how to express negative rates with rational numbers. In Lessons 18 and 19, students wrote and solved equations with rational numbers.

Coming Soon

In Unit 6, students will focus on working with expressions and equations, including rational numbers

Activity 1

Activity 2

Summary

Exit Ticket

(1) 5 min	() 15 min	(J) 20 min	(1) 5 min	$\oplus 5 \mathrm{~min}$
กำ Pairs	$\bigcirc \bigcirc \bigcirc{ }^{\circ}$ Independent	ㅇำㅇํ Small Groups	กำำก Whole Class	\bigcirc ○ Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice

\bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- calculators
- number cubes, one pair per small group

Math Language Development

Review word

- rational numbers

Building Math Identity and Community
 Connecting to Mathematical Practices

In Activity 1, students might be timid about sharing why they think they are best prepared to climb the mountain. The diversity of individuals' perspectives should be celebrated. Make sure that groups set a goal to make everyone feel safe to share within the group. Encourage students to listen to each other's reasons. Seek the positive and support each other in it.

Amps Featured Activity

Activity 1
 Making Preparations Digitally

The digital environment allows students to make changes to their preparation calendar quickly and efficiently. Thus, they will be able to spend more time reasoning about their strategies.

Modifications to Pacing

You may want to consider this additional modification if you are short on time.

- The Warm-up may be omitted.

Warm-up Understanding the Route

Students are introduced to a route map for Mt. Everest and consider the distance and difficulty of each section to reason about how long they take to climb.

Unit 5 | Lesson 20 - Capstone

Summiting Everest

Let's play a game to imagine what it's like to prepare to summit Mt. Everest.

Warm-up Understanding the Route
Though there is more than one route to the peak of Mt. Everest, the most common route is along the South face. Climbers hike from camp to camp, spending time at each camp acclimatizing (getting used to the thinner air, which has less oxygen as the elevation increases).
Which section between two camps do you think would take the longest amount of time to climb? Why do you think that? Sample response: I think the section between Camp IV and the Summit will take the longest to climb. Even though it isn't the greatest

elevation change between two camps, it looks
elevation change than from Camp II to 3 II

Historical Moment

Climbing Mt. Everest
Climbing Everest is no easy feat, and no one knows it better than the Sherpas. Almost every expedition up the mountain is led by Sherpas, the Nepalese mountaineers who have lived in and climbed the Himalayas for centuries. Sherpa Tenzing Norgay was one of the first to summit Everest in 1953 (along with Sir Edmund Hillary). Due to the grueling nature of the climb and the amount of careful coordination needed, arranging an expedition led by a Sherpa can cost over $\$ 50,000$ per person today.

1 Launch
Activate students' background knowledge by asking, "Has anyone been hiking before? What factors affect how long a hike will take?" Point out that the measurements shown indicate each camp's elevation. Let students know that each camp has tents for which climbers can rest.

(2) Monitor

Help students get started by suggesting to consider the steepness, distance, and elevation change between each set of camps.

Look for points of confusion:

- Thinking they can determine the distance between camps by comparing the elevations.
Ask, "What does elevation measure?"
Look for productive strategies:
- Finding the difference in elevation for each set of camps.
(3) Connect

Display the route map.
Have students share their answers, and invite other students to respond to or ask questions of each other.

Ask:

- "Why might a climber have to climb in this way -back-and-forth - rather than climbing straight to the top?"
- "What else do you know about climbing Mt. Everest?"
- "Why might strength and perseverance be important attributes for a climber?"

Highlight that students will play a game in Activities 1 and 2 . Activity 1 involves making strategic choices for increasing their readiness to climb. Activity 2 is about attempting to get to the summit - and seeing whether their preparations were sufficient.

(7) Power-up

To power up students' ability to reason about negative rates, have students complete:

Determine whether each rate would be represented by a positive or negative value.

1. Bard loses $\$ 100$ per month. Negative
2. Andre earns $\$ 40$ per hour. Positive
3. Shawn dives 30 m per hour. Negative
4. Priya runs 9 mph . Positive

Use: Before Activity 1.
Informed by: Performance on Lesson 19, Practice Problem 6

Historical Moment

Climbing Mt. Everest

Have students read about The Sherpa people, the Nepalese ethnic group who live in the Himalayas and are famous for their unparalleled climbing abilities.

Activity 1 Making Preparations

Students consider how the length of their climb up Mt. Everest will decrease a climber's physical and mental fitness in order to prepare properly for the climb.

1. Launch

Read through the introduction together as a class. Point out that students have three choices for their type of preparation each day: Physical training, Mental conditioning, or Gear upgrades. Say, "Each type offers different advantages, but you need to consider whether you will have enough Strength and Perseverance to make it all 14 days." Let students know that the rate savings works differently than Strength and Perseverance. Strength and Perseverance affect the total the climber starts with, while rate savings will slow down the speed of losing oxygen and body temperature.

2 Monitor

Help students get started by having them plan one week, and calculating how many points and how much rate savings they have for that one week.

3 Connect

Display work that includes an expression for calculating strength points. If no student used variables in their expression, ask the class to write one together.

Have students share why they think they are prepared to climb the mountain.

Ask:

- "Why do you need more than one variable in the expression?"
- "How has your work with rational numbers in this unit helped you in this activity?"
Highlight that certain factors that will affect students' climb in Activity 2 are out of their control - similar to real life. Let students know they will need to refer back to the values from the end of Activity 1 in Activity 2.

(1) Differentiated Support

Accessibility: Optimize Access to Technology

Have students use the Amps slides for this activity, in which the digital environment allows students to make changes to their preparation calendar quickly and efficiently. Thus, they will be able to spend more time reasoning about their strategies.

Accessibility: Guide Processing and Visualization

Suggest that students try a straightforward pattern for their preparation on the calendar, such as a pattern that repeats for each week. Because they can modify the calendar up through the end of the activity, encourage them to use "firstdraft thinking" as they begin.

Activity 2 The Summit Attempt

Students track the decrease in their resources and reason about negative rates as they roll dice to determine their movement up and down Mt. Everest.

Activity 2 The Summit Attempt
Even for those who are fully prepared, reaching the summit of Mt. Everest is not guaranteed. Weather conditions, time, and your health are all important factors that are not under your control.
You will be given a pair of number cubes.
Your Goal: Reach the summit before your run out time or resources. You will have 14 days to reach the summit.
How to play:

Getting set up:

- Enter your total points from your preparations in your log book. Be sure to adjust your rate for oxygen and body temperature based on the total rate savings from your preparations. Start at Base Camp. Note: You will never go lower than Base Camp.
For each turn:
- Roll both number cubes and determine their sum. (Each roll will affect everyone on your team in the same way.)
- Each roll represents the conditions for 1 day. Follow the directions for your sum.
- In the table, record the new values for yourself.
- Continue taking turns rolling until you have either reached the summit, run out of a resource, have a body temperature of less than 95 degrees, or run out of time. If you roll a sum of:

2-7	8-9	10	11	12
Good weather. Move up one camp.	Poor weather. Remain at current camp.	Extremely bad weather. Move down one camp and lose 1 Strength point.	Extreme cold. Lose $0.2^{\circ} \mathrm{F}$ from body temperature and 1 Perseverance point. Remain at current camp.	Altitude sickness. Lose 2 Strength points and 1 Perseverance point. Move down one camp.

1. Launch

Read through the directions for the game together as a class. Have students go to the second page of the activity to record their values for Strength and Perseverance from Activity 1. If students had oxygen or body temperature rate savings, they should record their new, smaller loss rate for each; model how to represent this in the log book table. Distribute pairs of number cubes to each small group.

2 Monitor

Help students get started by demonstrating how to play a couple of rounds; roll the number cubes and record the updated values in the log book table.

Look for points of confusion:

- Increasing the rate of loss for oxygen or body temperature. Ask, "In your preparations, your physical training will have made your body more efficient using oxygen. Would it make sense for you to be using more or less oxygen?"

Look for productive strategies:

- Completing the table until one of the resources is exhausted, then rolling the number cubes for each day and hoping to reach the summit before the last day.

Accessibility: Guide Processing and Visualization

Consider demonstrating how to play the game for one roll of the number cubes, which represents one day. Show how to record the results of the roll in the table, and whether you can move up or down camps and whether you lose Strength, Temperature, or Perseverance points.

Extension: Math Enrichment

Have students return to their preparation calendar from Activity 1 and choose a different set of preparations. Allow them to replay the game in Activity 2, as time permits, and discuss how their new preparations affected their likelihood of success.

Activity 2 The Summit Attempt (continued)

Students track the decrease in their resources and reason about negative rates as they roll dice to determine their movement up and down Mt. Everest.

3 Connect
Ask, "Did you make it to the summit? If not, what went wrong?"

Have students share what changes they would make to their preparation schedule, if any, based on the outcome of their game.

Display a student's log book table.
Ask:

- "What equation could you write to model how much oxygen is left if you know how many days have passed?"
- "Could you predict how many days you have before any of your resources reach 0 ? How could you do this?"
- "What other situations can you think of where a negative rate would help predict when a certain resource might run out?"

Highlight how understanding rates, especially negative rates, can help plan for a situation involving using up a limited resource.

Unit Summary

Review and synthesize the important concepts related to operations with rational numbers.

Narrative Connections

Read the narrative aloud as a class or have students read it individually.

(4) Synthesize

Display the Unit Summary from the Student Edition. Have students read the summary or have a student volunteer to read it aloud.

Highlight that it is very useful to spend some time reflecting on one's own learning at the conclusion of a unit. This helps to retain information and make connections that students may not have been able to make while focusing on each individual lesson.

Ask students to take a few minutes to recall what they have learned about working with rational numbers within all four operations.

(1) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. To help them engage in meaningful reflection, consider asking:

- "Did anything surprise you while reading the narratives of this unit?"
- "Is there any topic you would like to learn move about? What are some steps you can take to learn more?"

Exit Ticket

Students demonstrate their understanding of the most important concepts in operations with rational numbers by writing a note to their past selves at the beginning of the unit.

Success looks like ...

- Goal: Applying operations with rational numbers while playing a game preparing to climb Mt. Everest.
- Goal: Writing expressions and equations to model situations involving rates with rational numbers.

Suggested next steps

If students cannot recall moments that match the prompts in the Exit Ticket, consider:

- Encouraging them to look back through their work from the unit to jog their memory.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...

- What worked and didn't work today? Did students find Activity 1 or Activity 2 more engaging today? Why do you think that is?
- Which groups of students did and didn't have their ideas seen and heard today? What might you change for the next time you teach this lesson?

UNIT 6

Expressions, Equations, and Inequalities

Students return to the study of algebra and focus on how representation plays such a large role in communicating mathematical ideas. In this unit, the symbols, language, and drawings students use will help them tell the stories they see in the numbers.

Essential Questions

- Which representations best help you make sense of certain mathematical scenarios?
- Which strategies that worked for solving simple equations or inequalities can be put to use when solving more complex ones?
- How can you increase your efficiency when solving mathematical problems?
- (By the way, what does dog walking have to do with mathematics?)

$x \leq 200 \mathrm{ml}$
$x \leq 3.01$

Key Shifts in Mathematics

Focus

- In this unit...

Students incorporate their new awareness of the set of rational numbers into their previous experience with solving equations and inequalities. They interpret and make connections among various representations of the relationship between two quantities, including tape diagrams, hanger diagrams, area models, and algebraic equations.

Coherence

\& Previously...

Two important areas that have been studied in the past come together in this unit: work with expressions and equations from Grade 6 and the set of rational numbers from earlier in Grade 7.

Coming soon . . .

Students will revisit working with expressions and equations in Grade 8 while solving systems of equations. Additionally, their work with manipulating equations will be important when rewriting linear equations in more helpful forms in Grade 8.

Rigor

In this unit, students engage in rich tasks that address one or more of these aspects of rigor. The following are examples of how each pillar is addressed. See each Lesson Brief to learn more about how rigor is balanced throughout the unit.

4
 Conceptual
 Understanding

Hanger diagrams help students make sense of the need for balance when solving equations (Lesson 2). Inequalities are presented as an extension of their work with equations, which helps to ease the transition (Lesson 13).

Procedural Fluency

Students formalize their understanding of solving equations algebraically with activities like the Equation Chain (Lesson 7).

Application

Students make sense of how inequalities can model the relationships between quantities in their world (Lesson 18).

Solving One Step at a Time

SUB-UNIT

Lessons 2-7

Solving Two-Step Equations

Students move to a more formal representation of balance: hanger diagrams. In considering how this concrete representation connects to the abstract algebraic representation, students build schema they can call on throughout the rest of the unit when solving for unknown values.

Narrative: Symbols and diagrams can help you to make sense of equations, and even to solve them.

SUB-UNIT

2
Lessons 8-12

Solving Real-World Problems Using Two-Step Equations

Now understanding how to solve for unknown values in multistep equations, students think about where these equations come from. What, exactly, do they represent? Students interpret situations with various quantitative relationships and see that they can be modeled with algebraic expressions and equations.

Narrative: From ancient Egypt to the modern world, solving equations can help you solve problems.

SUB-UNIT

Inequalities

Students are reacquainted with the equation's close (and beloved) relative: the inequality. They'll notice that the apple doesn't fall too far from the tree. Students experience a similar progression as they did with equations, learning to solve them before learning how they can use them to model situations.

Narrative: Inequalities are more than symbols. And you already have the tools to solve them.

Keeping the Balance

The concept of balance is central to solving equations and inequalities. The dog walker reminds students how there can be many ways to balance the same quantities, all of which are equivalent.

SUB-UNIT

Equivalent

 ExpressionsEquipped with a deeper understanding of solving equations and inequalities, students wade into the water a bit further and begin to consider efficiency. They see that expressions can be simplified into fewer terms, ultimately making their work easier.

Pattern Thinking

This lesson helps students see the expressions they have been manipulating in a new light. Working with visual, growing patterns, students find their own ways of seeing the numbers, variables, and expressions in current and future steps. make life a little easier. So can changing the structure of a mathematical expression.

Unit at a Glance

Spoiler Alert: Solving equations with multiple steps - even with negative numbers and fractions - involves the same reasoning as solving simpler equations. Just perform the same operation with the same number to both sides, like always.

Assessment

Assessment

Sub-Unit 3: Inequalities

12 Solving Percent Problems in New Ways

Represent percent increase and decrease using
tape diagrams and equations.

A
Mid-Unit Assessment

13 Reintroducing Inequalities
Students met them last year. Reintroduce inequalities and how they can be used to represent real-world scenarios.

Key Concepts

Lesson 2: Hanger diagrams can be used to model equations and help with solving them.
Lesson 11: Real-world scenarios can be represented by writing equations. Lesson 14: Meet the equation's beloved relative. Solving inequalities is just like solving equations.

Pacing

23 Lessons: 45 min each Full Unit: 26 days 3 Assessments: 45 min each - Modified Unit: 23 days
Assumes 45-minute class periods per day. For block scheduling or other durations, adjust the number of days accordingly.

3 Reasoning About Solving Equations (Part 1)

Match hanger diagrams with corresponding equations, and use them to reason about solutions.

4 Reasoning About Solving Equations (Part 2)

Connect the Distributive Property with solving equations of the form $p(x+q)=r$, using hanger diagrams to assist.

5 Dealing With Negative Numbers
A new twist. Or is it? Introduce equations that have negative values, showing how the concept of balance still applies.

Sub-Unit 2: Solving Real-World Problems Using Two-Step Equations

9 Reasoning About Equations and Tape Diagrams (Part 1)

Create tape diagrams, write equations, and solve real-world problems, focusing on equations of the form $p x+q=r$.

10

Reasoning About Equations and

 Tape Diagrams (Part 2)Create tape diagrams, write equations, and solve real-world problems, focusing on equations of the form $p(x+q)=r$.

11 Using Equations to Solve Problems

Decide which type of equation, $p x+q=r$ or $p(x+q)=r$, describes the relationships in a real-world story problem.

Solving Inequalities

Equations can help! Write and solve equations to help find the solutions of inequalities, which may include negative values.

Finding Solutions to Inequalities in Context

Solve contextual problems involving inequalities using the strategies from previous lessons.

16
Efficiently Solving Inequalities
Solve inequalities of the forms
$p x+q<r$ and $p(x+q)<r$ by first writing and solving a related equation.

Unit at a Glance

< continued
Spoiler Alert: Solving equations with multiple steps - even with negative numbers and fractions - involves the same reasoning as solving simpler equations. Just perform the same operation with the same number to both sides, like always.

Sub-Unit 4: Equivalent Expressions

17 Interpreting Inequalities
Interpret and solve inequalities that represent real-world situations, while making sense of quantities and their relationships in the problem.

18 Modeling With Inequalities
Focusing on the modeling process, by first proposing a question and then deciding how to represent the situation mathematically.

19 Subtraction in Equivalent Expressions
Highlight common errors when rewriting expressions containing subtraction and/or negative signs.

Capstone Lesson

23 Pattern Thinking •
Make connections between equivalent expressions, non-proportional linear relationships, and pattern growth.

A
End-of-Unit Assessment

Modifications to Pacing

[^3]Lesson 7: This fluency-focused lesson may be omitted Fluency practice for solving equations can be found in the Practice Problems of lessons in Sub-Unit 1 and in the Additional Practice.

Lesson 23: This Capstone lesson challenges students to apply algebraic reasoning to pattern growth, but may be omitted, as it is not directly tied to the major work of the grade.

Key Concepts

Lesson 2: Hanger diagrams can be used to model equations and help with solving them.
Lesson 11: Real-world scenarios can be represented by writing equations.
Lesson 14: Meet the equation's beloved relative. Solving inequalities is just like solving equations.

Pacing

23 Lessons: 45 min each Full Unit: 26 days 3 Assessments: 45 min each \quad Modified Unit: 23 days
Assumes 45-minute class periods per day. For block scheduling or other durations, adjust the number of days accordingly.

20 Expanding and Factoring
Use the Distributive Property to expand and factor expressions that include subtraction and negative values.

21 Combining Like Terms (Part 1)
Use the properties of operations to understand how like terms can be combined to write an equivalent expression with fewer terms.

Combine like terms to write equivalent expressions with fewer terms, now including negative coefficients and parentheses

Unit Supports

Math Language Development	
Lesson	New Vocabulary 5
equivalent equations greater than or equal to less than or equal to	
13	solution to an inequality expand factor
20	like terms

Mathematical Language Routines (MLRs) support students' language development in the context of mathematical sense-making.

Lesson(s)	Mathematical Language Routines		
11	MLR1: Stronger and Clearer Each Time		
$1,5,11,13,16$, 20,21	MLR2: Collect and Display		
$1,13,22$	MLR3: Critique, Correct, Clarify		
18	MLR4: Information Gap		
2,15	MLR5: Co-craft Questions		
$7,11,12,17$	MLR6: Three Reads		
$1-4,5,8-10$, $12-14,18-20$, 23	MLR7: Compare and Connect		
$4,5,9,10,12$,			
$16,20,21$		\quad MLR8: Discussion Supports	
:---			

Materials

Every lesson includes:

Exit Ticket
|0if Additional Practice

Additional required materials include:

Lesson(s)	Materials
8,14	colored pencils, markers, or highlighters
8	glue or tape
15	number lines (optional)
11	sticky notes
tools for creating a visual display (chart paper, markers, etc.)	
$18-20,22$	PDFs are required for these lessons. Refer to each lesson's overview to see which activities require PDFs.

Activities throughout Unit 6 include the following instructional routines:

Lesson(s)	Instructional Routine
4	Algebra Talk
$8,13,20$	Card Sort
9,10	Equation String
11	Gallery Tour
18	Info Gap
1,8	Notice and Wonder
20	Poll the Class
$6,13,18$,	Think-Pair-Share
$20-22$	
$1,2,14,16,20$,	Which One or False
22,23	
14	
11	

Unit Assessments

Each unit includes diagnostic, formative, and summative assessment opportunities to gauge student understanding of the concepts and skills taught in the unit. All assessments are available in print and digital formats.

Assessments

Pre-Unit Readiness Assessment

This diagnostic assessment evaluates students' proficiency with prerequisite concepts and skills they need to feel successful in this unit.

Exit Tickets

Each lesson includes formative assessments to evaluate students' proficiency with the concepts and skills they learned.

Mid-Unit Assessment

This summative assessment provides students the opportunity to demonstrate their proficiency with the concepts and skills they learned in the first part of the unit.

End-of-Unit Assessment

This summative assessment allows students to demonstrate their mastery of the concepts and skills they learned in the lessons preceding this assessment. Additionally, this unit's Performance Task is available in the Assessment Guide.

When to Administer

Prior to Lesson 1

End of each lesson

After Lesson 12
desmos

Social \& Collaborative Digital Moments

Featured Activity

Walking Dogs LIke a Pro

Put on your student hat and work through Lesson 1, Activity 1:Points to Ponder . . .

- What was it like to engage in this activity as a learner?
- How might you pace your students through this activity?
- What best practices might you employ for integrating technology in your classroom?

Other Featured Activities

- Dynamic Hanger Diagrams (Lesson 2)
- The Roller Coaster (Lesson 13)
- Robot Recharge (Lesson 19)
- Pool Border Problem (Lesson 23)

Unit Study
 Professional Learning

This unit study is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can engage in a meaningful professional learning experience to deepen your own understanding of this unit and employ effective pedagogical practices to support your students.

Anticipating the Student Experience With Fawn Nguyen

Sub-Unit 3 introduces students to inequalities by having students continue to solve these as if they were equations initially. They plot the solution on the number line, then check the inequality to see whether the solution is true at that point, and whether it's also true when greater than or less than that point. Students learn to write inequalities from a scenario, define what the variable represents and explain what the solution means in context. Equip yourself to support your students with this concept by engaging in a brief problem-solving exercise to deepen your own learning.

Do the Math

Put on your student hat and tackle these problems from Lesson 17, Activity 2 :

Activity 2 Writing an Inequality for a Scenario

The Chemistry Club is experimenting with different mixtures of water and a chemical called sodium polyacrylate to make fake snow.
Each mixture starts with some amount of water, measured in grams. The amount of the chemical used in the mixture is $\frac{1}{7}$ of the amount of water used, plus 9 more grams of the chemical. The chemical is expensive, so there must be less than 50 g of the chemical in any one mixture. How much water can the students use in the experiment?
21. Describe the unknown amount that the variable x will represent.
2. Write an inequality that represents the scenario, graph the solution, and write an inequality to represent the solution
Solution:
3. Explain what the solution means in terms of the scenario.

Put your teacher hat back on to share your work with one or more colleagues and discuss your approaches.

Points to Ponder . . .

-What was it like to engage in this problem as a learner?

- Sodium polyacrylate is a polymer found in many common products. Have students research this and whether it can be found in their own household.
- What implications might this have for your teaching in this unit?

Focus on Instructional Routines

Information Gap (Info Gap)

Rehearse...

How you'll facilitate student interaction during the Info Gap instructional routine in Lesson 18, Activity 2 :

```
Activity 2 Info Gap: Giving Advice
You will be given either a problem card or a data card. Do not show or read your card to your partner.
\begin{tabular}{|l|l}
\hline Iy you are given a problem cart: & "y you are given a data card: \\
\hline
\end{tabular}
1. Silentyy ready your card, and thnk, about what i. Stertly ready your card
    mitomation you need tobe able tosolve the
```



```
3. Explain how you are usmg the nitomation to 3. Belore sham, the intornition, sek
        Why co you need that infornation?
```



```
4. Syce the Problenciard wad solve the problom
    4. Read theproblencard snd sowe the problem
        ymbespocebelom
$. Read the cata card and discuss. 5. Share the data card and dscuss
Pause here so your teacher can review your work. You will be given a new set of cards and
repeat the activity, trading roles with your partner.
    Problem1

\section*{Point to Ponder}
- Students may need to be patient while their partner processes the information on their card - what thinking job can you give students while they wait?

\section*{This routine . .}
- Encourages socialization and interdependency.
- Positions students as knowledge-givers and knowledge-seekers.
- Models the nonlinear nature of mathematical problem solving.

\section*{Anticipate..}
- Students being confused about the order in which to present their information during their first experience with this routine
- How might your students share discussion time equitably?
- If you haven't used this routine before, what classroom management strategies might you need to put in place to help it run smoothly?
- If you have used this routine before, what went well? What do you want to refine?

\section*{Strengthening Your Effective Teaching Practices}

\section*{Use and connect mathematical representations.}

\section*{This effective teaching practice . . .}
- Deepens student understanding of mathematical concepts and procedures and builds a toolkit for problem solving.
- Facilitates meaningful mathematical discourse by drawing connections between the different representations used and how each one illustrates the same mathematical ideas.

\section*{Math Language Development}

\section*{MLR6: Three Reads}

MLR6 appears in Lessons 7, 11, 12, and 17.
- Encourage students to read introductory text multiple times before jumping into a task. By doing so, they will have more opportunities to understand the task and the quantities and relationships presented. The Three Reads routine asks students to focus on the following for each read:
» Read 1: Make sense of the overall information or scenario, without focusing on specific quantities.
" Read 2: Look for specific quantities and relationships and make note of them.
» Read 3: Brainstorm strategies for how to approach the task.
- English Learners: Annotate or highlight key words and phrases in the introductory text to help students understand the relationships between quantities.

\section*{Point to Ponder ...}
- Some students may resist reading information multiple times. How will you help them see the benefits to doing so before jumping into the actual task?

\section*{Unit Assessments}
- Use the results of the Pre-Unit Readiness Assessment to understand your students' prior knowledge and determine their prerequisite skills.

\section*{Look Ahead...}
- Review and unpack the Mid- and End-of-Unit Assessments, noting the concepts and skills assessed in each.
- With your student hat on, complete each problem.

\section*{Points to Ponder . . .}
- What concepts or skills in this unit might need more emphasis?
- Where might your students need additional scaffolding and support?
- How might you support your students with writing and solving equations and inequalities throughout the unit? Do you think your students will generally:
» Understand how to deal with negative and fractional values?
»Be ready to apply what they have learned about solving equations to solving inequalities?

\section*{Points to Ponder . . .}
- What representations will be presented in this unit?
- Where do you see opportunities to make connections among the different representations used, and when should students be allowed choice of the representation used?

\section*{Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization, Optimize Access to Technology}

Opportunities to provide visual support, guide student processing, or provide the use of technology (through the Amps slides) appear in Lessons 1-19.
- In Lessons 2-4, students can manipulate a digital hanger diagram which animates and provides real-time feedback showing whether the hanger is balanced.
- In Lessons 9 and 10, students can create and edit tape diagrams using digital tools.
- Display or provide copies of the Anchor Chart PDFs, Solving Equations, Solving Inequalities, and Writing Equivalent Expressions, for students to reference throughout the unit.
- Use color coding and annotations to connect key words and phrases from text and verbal descriptions and how they are represented in equations and inequalities.

\section*{Point to Ponder ...}
- As you preview or teach the unit, how will you decide when to display or provide an anchor chart, use color coding, or use the Amps slides to deepen students' understanding of the concepts of the unit?

\section*{Building Math Identity and Community}

Throughout this unit, each lesson includes opportunities to support your students' capacity to build strong mathematical habits of mind.

In this unit, pay particular attention to supporting students in building their relationship skills and self-management.

\section*{O. Points to Ponder ...}
- Are students able to resolve conflict without damaging relationships? Can they effectively communicate their opinion about a mathematical practice? Do they work well as a team, making sure each person is able to offer and seek help when needed?

Are students able to control their stress levels when working on a new skill or task? Do they have the organizational skills required to accomplish their goals? Can they muster enough self-discipline to take the steps necessary to solve equations and inequalities? How do they keep themselves motivated?

\section*{Keeping the Balance}

Let's walk some dogs.


\section*{Focus}

\section*{Goals}
1. Language Goal: Generalize that adjusting the amount of strength equally on each side of a dog walker diagram keeps it balanced. (Speaking)
2. Language Goal: Explain how to use a balanced dog walker model to solve an equation of the form \(p x+q=r\). (Speaking)

\section*{Coherence}

\section*{- Today}

Students learn how a dog walker model can be used to illustrate balance and the concept of equality. This understanding is essential in solving for unknown values in equations.

\section*{< Previously}

In Grade 6, students wrote and solved one-step equations to represent word problems.

\section*{>Coming Soon}

In the next few lessons, students will work with hanger diagrams to expand their toolbox of strategies for solving multi-step equations.

\section*{Rigor}
- Students build conceptual understanding of equality by balancing the pull of dogs on either side of a dog walker.

(J) 5 min
ํํํํ Pairs10 min
กํํํ Pairs10 min
กํํํ Pairs
(ㄱ) 10
10 min
ㅇํㅇ Pairs5 min
กํํำก Whole Class
(1) 5 min
\(\bigcirc\) Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\cap\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice

\section*{Math Language \\ Development}

\section*{Review words}
- Addition Property of Equality
- Division Property of Equality
- equation
- Multiplication Property of Equality
- Subtraction Property of Equality

\section*{Amps ! Featured Activity}

\section*{Activity 1 \\ Dynamic Dog Leashes}

Students can manipulate the position of the dogs on either side of the dog walker, while trying to balance them.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students might not take the naming in Activity 3 seriously. They might impulsively give silly names without any consideration for the quantitative reasoning involved. In order to help students focus, have them prepare to explain their terms to someone else, connecting what they know about the properties to their names.

\section*{Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- The Warm-up may be omitted.

\section*{Warm-up Notice and Wonder}

Students look at two pictures representing the dog walker model to gain a sense of balanced and unbalanced situations.


Unit 6 | Lesson 1 - Launch

\section*{Keeping the Balance}

Let's walk some dogs.


Warm-up Notice and Wonder
Examine these diagrams. What do you notice? What do you wonder?

1. I notice

Sample responses:
- Ace is strong enough to pull Bobby and the dog walker off balance.
- Ace is strong enough to balance evenly with Bobby and Champ pulling together.
2. I wonder .

Sample responses:
- Is Ace the strongest dog?
- How does adding Champ affect the balance?

1 Launch
Conduct the Notice and Wonder routine. Suggest that students share their thinking with their partner before writing their responses.
(2) Monitor

Help students get started by saying, "Tell me about what you see happening in the first picture."

\section*{Look for points of confusion:}
- Thinking the size of the dog matters. Ask, "Can a smaller dog be stronger than a larger dog?"
- Not noticing that Diagram A represents imbalance. Ask, "What does it mean if the dog walker is being pulled in one direction?"
- Saying Champ is the strongest because he is pulling Bobby and Ace. Say, "Bobby is pulling the same direction as Champ. Does that work for or against Champ?"
(3) Connect

Have students share their observations about the diagrams.

Highlight that Diagram B represents a balanced dog walker. Balance and equality will be important themes throughout this unit.

\section*{Ask:}
- "What is an example of something in your own life that you feel you must 'balance'?" Answers will vary, but students may refer to balancing responsibilities, or friendships.
- "How do we represent balance in math?" Using an equal sign.

\section*{Activity 1 Walking Dogs Like a Pro}

Students balance dogs of varying strengths on opposite sides of the dog walker, connecting this model with balance in equations.


\section*{1 Launch}

Conduct the Think-Pair-Share routine. Give students a few minutes to work independently, and then have them compare their work with a partner. Explain that this activity lends itself well to trial and error. Suggest students begin by using rough-draft thinking.

\section*{2 Monitor}

Help students get started by suggesting they write the strengths of the dogs on small pieces of paper and manipulate them by hand.

Look for points of confusion:
- Not using all five dogs. Say, "The question asks to balance all five dogs."
- Finding a combination that is not precisely balanced. Ask, "If this dog walker were on roller skates, what would happen if one side was just a little stronger than the other?"
(3) Connect

Have students share where they placed the dogs. Record student responses so the class can see. Be sure to include a student who reversed the sides of the dogs, which is equally valid.

Display the equality statement that represents each response that students shared.
Highlight by saying "This is also true about equations, if you think of the dog walker as the equal sign. Both sides must be balanced in order for it to be an equation. The equal sign tells you it is balanced."

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can manipulate the position of the dogs on either side of the dog walker, while trying to balance them.

\section*{Math Language Development}

\section*{MLR3: Critique, Correct, Clarify}

During the Connect, present a set of dogs that would not be balanced, such as Dale, Eartha, and Greg on the left and Harriet and Fifi on the right.

Ask:
- Critique: "Do you agree or disagree with this set of dogs? Explain your thinking."
- Correct: "How would you correct this set of dogs? Would you add or subtract dogs to balance both sides? Or both?"
- Clarify: "How can you convince someone that your corrected set of dogs is now balanced?"

\section*{Activity 2 Two New Customers}

Students find the strength of an unknown dog in a balanced dog walker model to reintroduce the concept of variables in equations.


Activity 2 Two New Customers

Congratulations! You have learned how to balance your leashes. But what happens when you do not know the strength of a dog?

Let's figure out the strength of the new dogs in the diagram - whose strengths have not been labeled. Assume that the dog walker feels an equal pull in both directions, and that the dogs who look the same have the same strength.


What is the strength of each new dog? Explain your thinking. Each new dog has a strength of 2.5 ; Sample response: I found out that the left side had a combined strength of 14. I realized the right side already had a strength of 9 , so I knew it needed 5 more to be balanced with the left. Because there are two new dogs of equal strength, I divided 5 by 2 to get 2.5. Each new dog must have a strength of 2.5 to balance the pull in both directions

\section*{Af Ary vel reaty tor mores}

Complete in each box with a single value that makes each equation true. For Problem 3, use the same value for both boxes
1. \(9+14=7+2 \cdot 8\)
2. \(5(4+8)=9.7-3\)
3. \(4+2=3.2\)
1) Launch

Set an expectation for the amount of time students will have to work in pairs on the activity.

\section*{Monitor}

Help students get started by asking, "What is the strength of the dogs on the left? What must be true about the dogs on the right?"

Look for points of confusion:
- Thinking each new dog has a strength of 5 . Say, "Try adding the values on the right side, and make sure they are balanced with the values on the left."

\section*{Look for productive strategies:}
- Using trial and error to find missing values. Note this as Strategy 1.
- Using counting on from 9 to find that the missing combined value is 5 . Note this as Strategy 2.
- Subtracting 9 from 14 to find the difference that accounts for the unknown combined value. Note this as Strategy 3.

\section*{3 Connect}

Have students share the strategies they used. Depending on the strategy most students use, you may choose to share either Strategy 2 or Strategy 3 from above. Strategy 3 is ideal because it will prepare students for the work later on in the unit.

Ask, "What equation could you write to match this diagram?" \(6+8=9+x+x\)

Highlight the connection between the dog walker scenario and equations.

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Cover up the two unknown dogs. Ask, "What must be the strength remaining on the right side of the dog walker?" 5 Then uncover the two unknown dogs and ask, "If the total strength of these two dogs is 5 , what must the strength of each dog be?" 2.5

\section*{Extension: Math Enrichment}

As you highlight how the equation \(6+8=9+x+x\) represents the diagram, ask, "Is there a shorter way to write this equation?" \(6+8=9+2 x\) Some students may be familiar with combining like terms, without necessarily using that terminology. Like terms will be introduced later in this unit.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, display Strategies 1-3. If no student mentioned one of these strategies, still display it and ask students to determine if it is a valid strategy. Have students compare and contrast the strategies by asking:
- "Are all of these strategies valid? Explain your thinking."
- "Do any strategies appear to be more efficient than others? Explain your thinking."

\section*{English Learners}

Annotate the diagram to highlight how the equation \(6+8=9+x+x\) matches the diagram.

\section*{Activity 3 Inventing Your Own Terminology}

Students engage with new vocabulary by using their own language to create new names for the properties of equality.


\section*{1) Launch}

Complete part a as a whole class. Give students 1 minute to brainstorm a new name for the arrangement. Encourage them to use whatever wording they would like. Suggest, "Add the same amount of strength to both sides." as an example for part a.

\section*{2 Monitor}

Help students get started by suggesting they give the dogs names so they can more easily recognize their positioning.

\section*{Look for points of confusion:}
- Trying to use words from the "old name." Cover up the old name. Have students describe the arrangement in their own words.
- Thinking new names need to be short. Say, "Don't be afraid to have multiple drafts of your new names. Shorter is not necessarily better."

\section*{Activity 3 continued >}

\section*{Differentiated Support}

\section*{Accessibility: Activate Prior Knowledge}

Remind students they previously learned the names of the properties given in this activity. Some students may benefit from a quick review of these properties. Consider providing them with these sentence frames shown to complete. Ask students to generate their own examples, such as, if \(a=b\), then \(a+3=b+3\), to illustrate the Additional Property of Equality.
- Addition Property of Equality: If you \(\qquad\) the same quantity to both sides of an equation, the equation remains \(\qquad\)
- Subtraction Property of Equality: If you \(\qquad\) the same quantity from both sides of an equation, the equation remains \(\qquad\) -.
- Multiplication Property of Equality: If you \(\qquad\) both sides of an equation by the same quantity, the equation remains \(\qquad\)
- Division Property of Equality: If you ___ both sides of an equation by the same quantity, the equation remains \(\qquad\) _

\section*{Activity 3 Inventing Your Own Terminology (continued)}

Students engage with new vocabulary by using their own language to create new names for the properties of equality.


\section*{(3) Connect}

Display the pictures on a poster, showing both the "old name" and a "new name" for each property.
Highlight "rough-draft thinking" as a part of the mathematical reasoning process. Say, "You can think of addition and subtraction as similar properties, and multiplication and division as similar properties."

Featured Mathematician

\section*{Emily Riehl}

Have students read about Featured Mathematician Emily Riehl, who writes about complex mathematical theories in a way that can be understood by a wider audience.

\section*{Summary Solving One Step at a Time}

Review and synthesize how dog walkers, just like equations, prefer to stay in balance.


\section*{Narrative Connections}

Read the narrative aloud as a class or have students read it individually.

Synthesize
Display the Summary. Have students read the Summary or have a student volunteer read it aloud.

Ask:
- "Can you think of any other times this year we have used numbers, symbols, operators, and diagrams to represent real-world scenarios mathematically?"
- "How is analyzing dog walkers related to mathematics?"

\section*{(1) Reflect}

After synthesizing the concepts of this unit, allow students a few moments for reflection around the concepts of the unit. To help them engage in meaningful reflection, consider asking:
- "What strategies did you use in order to help balance the dog walker in each scenario?"

\section*{Exit Ticket}

Students demonstrate their understanding by transferring their understanding of the properties of equality to equations.


\section*{Success looks like ...}
- Language Goal: Generalizing that adjusting the amount of strength equally on each side of a dog walker diagram keeps it balanced. (Speaking)
» Explaining whether each arrangement is balanced.
- Language Goal: Explaining how to use a balanced dog walker model to solve an equation of the form \(p x+q=r\). (Speaking)

\section*{Suggested next steps}

\section*{If students struggle to identify which} arrangements work, consider:
- Having them find the total strength on each side, and compare these strengths to determine if the dog walker is balanced.
- Assigning Practice Problem 2.

If students struggle to identify which property of equality applies to Problems 1 and 3, consider:
- Taking another look at the examples in Activity 3 , and seeing if students can use them to identify the properties shown in the Exit Ticket.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\(\omega_{0}\) Points to Ponder ...
What worked and didn't work today? In this lesson, students balanced the Strength of the dogs on both sides of a dog walker. How will that support students' understanding of balancing equations?

Knowing where students need to be by the end of this unit, how did engaging in a discussion about the properties of equality (Activity 3 ) influence that future goal? What might you change for the next time you teach this lesson?

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Practice Problem Analysis} \\
\hline Type & Problem & Refer to & DOK \\
\hline \multirow{3}{*}{On-lesson} & 1 & Activity 1 & 2 \\
\hline & 2 & Activity 2 & 2 \\
\hline & 3 & Activity 2 & 3 \\
\hline \multirow{2}{*}{Spiral} & 4 & Grade 6 & 2 \\
\hline & 5 & Grade 6 & 1 \\
\hline Formative 0 & 6 & \begin{tabular}{l}
Unit 6 \\
Lesson 2
\end{tabular} & 2 \\
\hline
\end{tabular}

\footnotetext{
O Power-up: If students need additional support with the key prerequisite concept or
} skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Solving Two-Step Equations}

In this Sub-Unit, students translate their understanding of hanger diagrams to the more-abstract algebraic representations as they learn to solve equations with more than one step.



\section*{Narrative Connections}

Read the narrative aloud as a class or have students read it individually. Students continue to use diagrams and visual models to model their mathematical thinking in the following places:
- Lesson 2, Activity 1:

Hanging Out
- Lesson 3, Activity 1 :

Matching Hanger Diagrams and Equations
- Lesson 5, Warm-up: Dogs in Different Directions

\section*{UNIT 6 | LESSON 2}

\section*{Balanced and Unbalanced}

Let's see how hanger diagrams can represent balanced relationships.


\section*{Focus}

\section*{Goals}
1. Language Goal: Generalize that performing the same operations to each side of a hanger diagram keeps it balanced. (Speaking)
2. Find a missing weight on a hanger diagram.

\section*{Coherence}

\section*{- Today}

Students find unknown values on balanced hanger diagrams that model two-step equations. They use the properties of equality to manipulate the diagrams, ensuring they remain balanced.

\section*{< Previously}

In Lesson 1, students used a dog walker model to review the properties of equality.

\section*{> Coming Soon}

In Lesson 3, students will use hanger diagrams to solve two-step equations, specifically of the form \(p x+q=r\).

\section*{Rigor}
- Students build conceptual understanding of balancing an equation by analyzing hanger diagrams.


Warm-up


Activity 1


Activity 2


Activity 3


Summary
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) 5 min & ( \() 10 \mathrm{~min}\) & ( \()^{10} \mathrm{~min}\) & (J) 10 min & (1) 5 min & (ִ) 5 min \\
\hline \(\bigcirc\) ○ Independent & กำ Pairs & กำ Pairs & กำ Pairs & กํํํํ กํำกำ Whole Class & \(\bigcirc\) ○ Independent \\
\hline
\end{tabular}

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice}


\section*{Materials}
- Exit Ticket
- Additional Practice

\section*{Math Language \\ Development}

\section*{Review words}
- Addition Property of Equality
- Division Property of Equality
- equation
- hanger diagram
- Multiplication Property of Equality
- Subtraction Property of Equality

\section*{Amps Featured Activity}

\section*{Activities 2 and 3: \\ Dynamic Hanger Diagrams}

When students remove weights from a balanced hanger diagram, the hanger will animate, giving real-time feedback that shows whether the hanger is balanced.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

While using a hanger diagram, students must apply both abstract and quantitative reasoning, but they might lack the organizational skills to keep their explanations accurate. Encourage students to mark up the diagrams with information that they know. By listing what they know for sure, they can proceed to determine what could also be true and what definitely is not true.

\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- The Warm-up may be omitted Instead, discuss during the Activity 1 Launch which hanger diagram is balanced and which is unbalanced.
- In Activities 2 and 3, have students discuss their strategies for Problem 1 orally without writing down their responses.

\section*{Warm-up Carry On}

Students consider whether carrying balanced or unbalanced loads is more stable, as preparation for understanding hanger diagrams.

(1) Launch

Conduct the Think-Pair-Share routine. Give students 1 minute to respond to the problems individually, and 1 minute to discuss their thinking with a partner.

\section*{(2) Monitor}

Help students get started by asking them to imagine themselves as the people in the illustrations, and to consider which load seems easier to carry.

\section*{Look for points of confusion:}
- Not understanding how the carrying pole works. Consider having a broom or meter stick that students can place over their shoulders to better envision the situation.

\section*{(3) Connect}

Display the diagrams showing the balanced and unbalanced loads.

Have students share their thinking about the balanced and unbalanced loads.

Ask, "What, exactly, is being balanced?" weight
Highlight that a carrying pole is another representation of balance. When the weights on both sides are equal, the pole is balanced. When one side is heavier than the other, the pole is unbalanced.

Power-up
To power up students' ability to reason about hanger diagrams, have students complete:

Which equation represents the hanger diagram?


Use: Before Activity 1
Informed by: Performance on Lesson 1, Practice Problem 6 and Pre-Unit Readiness Assessment, Problem 7

\section*{Activity 1 Hanging Out}

Students investigate relationships shown in hanger diagrams, to prepare them for solving for missing weights on a hanger diagram.


\section*{1 Launch}

Conduct the Think-Pair-Share routine. Give students 2 minutes to consider the diagrams and complete the problems individually. Then have them share their thinking with a partner.
Note: For each activity all squares/triangles/ circles and so on weight the same, but the weight can be different from activity to activity.

\section*{2 Monitor}

Help students get started by asking, "Which diagram is balanced? Which diagram is not balanced? What does this tell you about the weights of the shapes?" Consider discussing the meaning of must (always, for any weights), could (sometimes), and cannot (there is no example) in this context.

\section*{Look for productive strategies:}
- Comparing the weights of the shapes (e.g., saying that a triangle is heavier than a square).
(3) Connect

Display the two hanger diagrams.
Have students share what must, could, and cannot be true about the shapes and the diagrams.

Highlight how students justify their conclusions about the diagrams.

Ask, "How do you know that what you stated must/could/cannot be true is correct?"

\section*{Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization}

To demonstrate how the weight of the triangle compares to the weight of the square in Diagram A, consider bringing in two items of differing weights and hold one in each hand. Show how the heavier weight would cause the balance to be lower on that side than the side with the lighter weight.

\section*{Extension: Math Enrichment}

Ask students to assign possible weights to the triangle, square, and circle, based on the relationships shown in the diagram. Sample response: A triangle could weigh 7 g , a square could weigh 2 g , and a circle could weigh \(1 \mathrm{~g} ; 7>2\) and \(7=3(2)+1\).

\section*{Math Language Development}

\section*{MLR5: Co-craft Questions}

During the Launch, display the hanger diagrams and have students work with their partner to write 2-3 mathematical questions they could ask about the hanger diagrams. Sample questions shown.
- Which weighs more, a triangle or a square?
- What does it mean that Diagram \(B\) is balanced?
- How does the weight of a square compare to the weight of a circle?

\section*{English Learners}

To support students in developing metalinguistic awareness, model how to craft a mathematical question. Consider displaying one of the sample questions.

\section*{Activity 2 Manipulating a Hanger Diagram (Part 1)}

Students manipulate a balanced hanger diagram that models an equation of the form \(p x+q=r\) to determine an unknown weight.

Amps Featured Activity Dynamic Hanger Diagrams

Activity 2 Manipulating a Hanger Diagram (Part 1)

The hanger diagram shown is balanced because the weight on both sides is the same.
> Which weights can be removed so that the hanger remains balanced? Determine as many strategies as possible.
Sample responses:
- Remove one or two triangles from both sides.
- Remove half of the shapes on both sides (two squares and one triangle from the left; two triangles from the right)
- Remove a quarter of the shapes from both sides (a square and half a triangle from the left: one may point out that it might not be realistic to remove half a triangle.
>2. If a triangle weighs 4 g , how much does a square weigh? Explain your thinking.
2 g : Answers may vary, but should include reasoning that four squares weigh the same as two triangles or two squares
weigh the same as one triangle.

\section*{A. Are you ready for more?}

If the weight of a square is \(x \mathrm{~g}\) and the weight of a triangle is 4 g , what equation
could represent this hanger diagram?
\(4 x+8=16\)

\section*{1. Launch}

Suggest students mark the hanger diagram (or sketch new ones) when considering Problems 1 and 2.

\section*{(2) Monitor}

Help students get started by asking, "If you remove one triangle from each side, will the hanger stay balanced? What if you remove one triangle from one side and two triangles from the other side?"

\section*{Look for points of confusion:}
- Removing unequal amounts of weight from each side. Remind students that they must perform the same action to each side in order to keep the hanger balanced.

\section*{Look for productive strategies:}
- Marking the diagram or drawing a new one to show the weights being removed.
- Labeling the triangles with 4 (Problem 2).
- Writing and solving the equation \(4 x=8\) to determine the weight of a square.

\section*{3 Connect}

Display the hanger diagram shown in the problem.
Have students share how they removed weights. Ask a student to explain how they found the weight of a square, and see if anyone else used a different strategy.
Highlight the connection between Problem 1 and the properties of equality. For example, removing two triangles from each side is allowed by the Subtraction Property of Equality, while the Division Property of Equality allows the removal of half of the shapes (for each type of shape) from each side.
Ask, "How could you use the Addition and Multiplication Properties of Equality to create new balanced hanger diagrams?"

Differentiated Support
Accessibility: Optimize Access to Technology
Have students use the Amps slides, in which the hanger will animate as they remove weights, providing them with real-time feedback that shows whether the hanger is balanced.

\section*{Accessibility: Vary Demands to Optimize Challenge}

In Problem 1, ask students to determine only one possible response, instead of determining as many as possible.

\section*{Math Language Development}

MLR7: Compare and Connect
During the Connect, as students share their responses to Problem 1, draw their attention to the connections between removing weights and the properties of equality. For example:
\begin{tabular}{|l|l}
\multicolumn{1}{|c|}{ If a student says ... }
\end{tabular}\(\quad\)\begin{tabular}{c}
\multicolumn{1}{c}{ Ask ... } \\
\begin{tabular}{l} 
"I can remove two triangles from \\
both sides."
\end{tabular} \\
\begin{tabular}{l} 
"I can remove half of the shapes from property allows you to do that? How do \\
each side."
\end{tabular} \\
\begin{tabular}{l} 
you know the resulting hanger is balanced?"
\end{tabular} \\
\begin{tabular}{l} 
side? How do you know this is falf of the left \\
shapes'? What property allows you to do this?"
\end{tabular} \\
\hline
\end{tabular}

\section*{Activity 3 Manipulating a Hanger Diagram (Part 2)}

Students manipulate a balanced hanger diagram that models an equation of the form \(p(x+q)=r\) to determine an unknown weight.


\section*{Amps Featured Activity} Name:

Dynamic Hanger Diagrams Date: Period:
Activity 3 Manipulating a Hanger Diagram (Part 2)

The hanger diagram shown is balanced because the weight on both sides is the same.
1. Which weights can be removed so that the hanger diagram remains balanced? Determine as many responses as possible.
Sample responses:
Remove one, two, or three squares from both sides.
Partition both sides into three equal groups, and remove one or two groups (one group: a square and circle on the left, three squares on the right).
Some combination of the previous two responses (remove three squares from both sides, partition both circle on the left and two squares on the right)
```

2. If a square weighs $\frac{1}{2} \mathrm{lb}$, how much does a circle weigh? Explain your thinking.
1 lb ; Answers may vary, but should include reasoning that one circle weighs the same as two squares.
```


\section*{Monitor}

Help students get started by suggesting they consider which moves from Activity 2 will also work with this hanger diagram.

\section*{Look for productive strategies:}
- Removing three squares on each side to see that the weight of three circles is equal to the weight of six squares.
- Partitioning both sides into three equal groups, and then removing all but one group.

\section*{3 Connect}

Display the hanger diagram.
Have students share their strategies for removing weights. Look for examples of students using combinations of moves.

Highlight two distinct strategies for removing weights: 1) removing three squares from each side and partitioning the remaining shapes into three equal groups; 2) partitioning each side into three equal groups, and then removing one square from each group. Discuss the properties of equality that prove these moves keep the hanger balanced. Note that both strategies result in discovering that one circle weighs the same as two squares, and have students use this to complete Problem 2.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides, in which the hanger will animate as they remove weights, providing them with real-time feedback that shows whether the hanger is balanced.

\section*{Accessibility: Vary Demands to Optimize Challenge}

Consider replacing \(\frac{1}{2}\) with 1 in Problem 2, which will still allow students to access the targeted goal for this activity, but remove the added task of reasoning about fractional values.

\section*{Math Language Development}

\section*{MLRT: Compare and Connect}

During the Connect, as you highlight the strategies for removing weights, draw students' attention to the connections between the strategies. Ask:
- "What similarities do you see among these two strategies?" Sample response: Both strategies involve partitioning into equal groups and removing squares.
- "What differences do you see?" The order in which these actions take place. If the partitioning is done first, then only one square is removed (from each group).
- "What properties of equality are illustrated by these strategies?" Division Property of Equality and Subtraction Property of Equality

\section*{English Learners}

Annotate the diagram to show the weights being removed to help students begin to visualize the equation solving process.

\section*{Summary}

Review and synthesize how the properties of equality can be used to manipulate hanger diagrams.


\section*{Synthesize}

Display the diagram from the Summary and give students one minute to compare the two hanger diagrams.

\section*{Ask:}
- "What is the same?" Both diagrams show that eight squares weigh the same as four squares and two triangles.
- "What is different?" The arrangement of the shapes on the right.
- "How could you determine the relationship between the weight of a triangle compared to the weight of the squares?" Use properties of equality to balance both sides of the hanging diagram.
Have students share their thinking with a partner.

Highlight that the arrangement of Diagram A makes it easier to remove four squares from each side (Subtraction Property of Equality) and then divide both sides into two groups (Division Property of Equality), to see that one triangle equals one-and-a-half squares. Meanwhile, the arrangement of Diagram B makes it easier to start by dividing both sides into two groups (Division Property of Equality) and then removing two squares from each side (Subtraction Property of Equality), to see that one triangle equals one-and-a-half squares. Note that both strategies are valid and result in the same equivalency.

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "How is balancing the hanger diagram similar and different than balancing the dog walker from the previous lesson?"

\section*{Exit Ticket}

Students demonstrate their understanding by reasoning about the relationships shown in a hanger diagram.


\section*{Success looks like ...}
- Language Goal: Generalizing that performing the same operations to each side of a hanger diagram keeps it balanced. (Speaking)
- Goal: Finding a missing weight on a hanger diagram.
» Determining the weights of the triangle and the circle in the hanger diagram.

\section*{- Suggested next steps}

If students give a different weight for the square than the circle, consider:
- Reviewing how they reasoned about removing weights in the hanger diagram to arrive at that conclusion.
- Assigning Practice Problems 1 and 2.

If students give only one possible weight for the square and circle, consider:
- Asking whether this is the only possible weight for these shapes. If they say it is, demonstrate why, as long as the square and circle have the same weight, the diagram will be balanced.
- Assigning Practice Problem 3.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder . .
- What worked and didn't work today? In what ways have your students gotten better at reasoning abstractly and quantitatively?
- What did the process of balancing hanger diagrams reveal about your students as learners? What might you change for the next time you teach this lesson?
2. Each hanger diagram from Problem 1 is balanced. Determine the weight of each lettered shape, and explain your thinking. You may draw on the diagrams to help with your thinking. Sample responses shown.
(a) \(z=1 \quad \begin{aligned} & \text { In the final diagram, two units can be removed from both sides, } \\ & \text { leaving two } z \text { 's balanced with two }\end{aligned}\)
eaving, two \(z\) s balanced with two 1 's.
b \(w=1\) The final diagram shows one unit balanced with one \(w\).
c \(y=2\) In the final diagram, one unit can be removed from both sides, leaving two units balancing with one \(y\).
\(\qquad\)
 the car would travel in 1 hour at each given rate.
a 135 miles in 3 hours 45 miles in 1 hour
b 22 miles in \(\frac{1}{2}\) hours 44 miles in 1 hour
C 7.5 miles in \(\frac{1}{4}\) hours 30 miles in 1 hour
a \(\frac{100}{3}\) miles in \(_{3}^{2}\) hours 50 miles in I hour
5. Solve each equation. Show your work or explain your thinking.
\(\begin{array}{ll}\text { a } 21=x+9 & \text { b } 3 x=57 \\ 21-9 & 3 x+9+9-9\end{array}\)
\(\begin{aligned} 21-9 & =x+9-9 \\ 12 & =x\end{aligned} \quad \begin{aligned} & 3 x=57 \\ & 3 x \div 3=57 \div 3 \\ & x=19\end{aligned}\)
(c) \(x-7.5=18.5\)
\(\begin{aligned} x-7.5+7.5 & =18.5+7.5 \\ x & =26\end{aligned}\)
(d) \(15=\frac{5}{8} x\)

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Practice Problem Analysis} \\
\hline Type & Problem & Refer to & DOK \\
\hline & 1 & Activity 2 & 1 \\
\hline On-lesson & 2 & Activity 2 & 2 \\
\hline & 3 & Activity 2 & 2 \\
\hline Spiral & 4 & Unit 2 Lesson 6 & 1 \\
\hline Formative 0 & 5 & Unit 6 Lesson 3 & 1 \\
\hline
\end{tabular}

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.
(O) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Reasoning About Solving Equations (Part 1)}

Let's see how a balanced hanger diagram is like an equation and how moving its weights is like solving an equation.


\section*{Focus}

\section*{Goals}
1. Interpret a balanced hanger diagram, and write an equation of the form \(p x+q=r\) to represent the relationship shown.
2. Language Goal: Explain how to solve an equation of the form \(p x+q=r\). (Speaking and Listening, Writing)

\section*{Rigor}
- Students interpret hanger diagrams to build conceptual understanding of solving equations of the form \(p x+q=r\).
- Students develop procedural fluency in solving equations of the form \(p x+q=r\) with and without the use of hanger diagrams.

\section*{Coherence}

\section*{- Today}

Students connect hanger diagrams and two-step equations of the form \(p x+q=r\). Students match hanger diagrams with corresponding equations, and use them to reason about solutions.

\section*{\(<\) Previously}

In Grade 6, students wrote and solved one-step equations. Students review finding solutions to one-step equations during the Warm-up.

\section*{> Coming Soon}

In Lesson 4, students will continue working with hanger diagrams to understand and solve different two-step equations of the form \(p x+q=r\).


Warm-up


Activity 1


Activity 2


Summary

Exit Ticket
\begin{tabular}{|c|c|c|c|c|}
\hline (1) 7 min & () 15 min & ( \() 13 \mathrm{~min}\) & (1) 5 min & (1) 5 min \\
\hline \(\bigcirc\) ○ Independent & \(\bigcirc \bigcirc \bigcirc 冂(\) Pairs & \(\bigcirc \cap(1)\) Pairs & กำำก Whole Class & \(\bigcirc \bigcirc \bigcirc{ }^{\circ}\) Independent \\
\hline
\end{tabular}

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice

\section*{Math Language \\ Development}

\section*{Review words}
- constant
- coefficient
- equation
- hanger diagram
- properties of equality
- solution to an equation
- variable

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Responsible decision making: As students solve equations using hanger diagrams, they must consider the consequences of each step they take. Working outside the structure that the properties of equality provide, students will solve the equation incorrectly. Compare this to decisions that they make in real life. Have them explain what structures are set for them so that they have positive, instead of negative, consequences.

\section*{Amps Featured Activity}

\section*{Activity 1 \\ Dynamic Hanger Diagrams}

When students enter a weight for a variable in a hanger diagram, the hanger will animate, giving real-time feedback that shows whether the hanger is balanced.


\section*{- Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- In Activity 1, after matching the equations to the hanger diagrams, have students choose only two equations to solve.

\section*{Warm-up Hanger Diagrams and Equations}

Students solve two pairs of one-step equations using hanger diagrams in preparation for solving two-step equations using hanger diagrams.


\section*{1 Launch}

Explain to students that they can write equations to represent hanger diagrams. Suggest that while students complete the problems they consider how the equations represent the hanger diagrams.

Ask, "what \(1, x\), and \(y\) represent in each diagram? What does each equation represent?"

\section*{2 Monitor}

Help students get started by asking, "How can you adjust the hangers while still keeping them balanced? Which values of the variables will make each hanger balanced and each equation true?"

Look for productive strategies:
- Using the guess-and-check strategy to find the unknown weights in the diagrams. Review how to manipulate a hanger diagram to find the unknown weight.
- Using the guess-and-check strategy to solve the equations. Review solving one-step equations using inverse operations.

\section*{(3) Connect}

Have students share how they determined the unknown weight on each diagram, and how they solved each equation.

Highlight how the expressions \(2 y\) and \(x+2\) are represented in the diagrams, and remind students that \(2 y=2 \cdot y=y+y\). Discuss why they subtract to solve an addition equation and divide to solve a multiplication equation, using the diagrams.
Ask, "How is determining the missing weight on the diagram similar to solving the equation?"

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can enter a weight for a variable in a hanger diagram. By doing so, the hanger will animate, providing them with real-time feedback that shows whether the hanger is balanced.

\section*{(7) Power-up}

To power up students' ability to solve one-step equations, have students complete:

Match each equation with the operation that could be used to solve it.
a. \(2 x=8\)
C Add 2
b. \(x+2=8\)
b Subtract 2
c. \(x+(-2)=8\)
d. \(x \div 2=8\)
d Multiply by 2
a Divide by 2

Use: Before the Warm-up.
Informed by: Performance on Lesson 2, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 2.

\section*{Activity 1 Matching Hanger Diagrams and Equations}

Students match equations to diagrams, analyzing the relationship between each pair to find the unknown values.


Activity 1 Matching Hanger Diagrams and Equations
1. Each of these equations represents one of the following hanger diagrams.


Write the equation below its matching hanger diagram.
Replace the box in each equation with either \(w, x, y\), or \(z\).


\section*{1 Launch}

Explain that each equation has a box where the variable will go. Say, "On the diagrams, each shape labeled with a letter has an unknown weight, and shapes labeled with the same letter have the same weight."

\section*{(2) Monitor}

Help students get started by going over the first equation together.

\section*{Look for points of confusion:}
- Confusing which parts of the diagram model addition or multiplication. Refer to the equations and diagrams from the Warm-up.
- Being unsure how to work with the shapes labeled with numbers other than 1 . Demonstrate how to partition these shapes, in order, to remove the same amount from both sides.

\section*{Look for productive strategies:}
- Determining the value of the variables using the guess-and-check strategy. Check that they know how to manipulate the hanger diagram to find the unknown values.
(3) Connect

Have students share strategies for matching the equations and diagrams, and how they found the values of \(w\) and \(x\).

Highlight the structure of these equations ( \(p x+q=r\), where \(p, q\), and \(r\) are specific given numbers), and compare them to the equations in the Warm-up. Referring to the diagram, generalize that, to solve these equations, subtract the constant from each side and then divide each side by the coefficient. Demonstrate how the movements in the diagram can be written algebraically as steps to solve the equation.

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

If students have difficulty working with the rectangles labeled with numbers other than 1 , suggest they draw a related hanger diagram with smaller rectangles, where each rectangle is labeled 1 . For example, in part c, have them draw two smaller rectangles on the left side and three smaller rectangles on the right side.

\section*{Extension: Math Enrichment}

Challenge students to write the steps for solving a two-step equation, based on the relationship between the hanger diagrams and how to solve one-step equations.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, draw students' attention to the connections between the structure of the diagram and the structure of its corresponding equation. Ask:
- "How are these equations different from the one-step equations in the Warm-up?"
- "How is the coefficient of the variable illustrated in the hanger diagram?"
- "Where do you see division in both the hanger diagram and the equation?"

\section*{English Learners}

Use different colors to annotate the corresponding parts of the diagram and equation.

\section*{Activity 2 Solving Equations}

Students use the formal process of solving equations (with hanger diagrams as needed) to solve two-step equations.


\section*{1 Launch}

Let students know that hanger diagrams are not provided, but they may draw their own. However, since not all equations can be easily represented with hanger diagrams, students should be encouraged to practice using the formal solving process.

\section*{2 Monitor}

Help students get started by asking "How can you represent this equation with a hanger diagram? What is the first step for solving this type of equation?"

\section*{Look for productive strategies:}
- Drawing a hanger diagram to solve. Check that they are drawing diagrams correctly.
- Solving the equations algebraically, without a diagram. Check that they are solving correctly. If not, suggest they draw a diagram.
- Writing correct solutions without showing work. Explain that even if they can reason about the answer mentally, they need to show they understand the process for solving equations. This will help with more difficult equations later.

\section*{3 Connect}

Have students share their work for each problem. Include examples where students drew diagrams, and others where they solved the equations without diagrams.

Highlight how to draw a diagram from an equation. Review the steps for solving equations of the form \(p x+q=r\). Say, "For some equations (e.g., Are you ready for more?), drawing a hanger diagram is impractical, which is why the properties of equality are used." Review how to verify that a value is the solution to an equation.

\section*{Differentiated Support}

\section*{Extension: Math Around the World}

Tell students that the Persian mathematician Muḥammad ibn Mūsā al-Khwārizmĩ is considered by many mathematicians to be the Father of Algebra, who lived in the late 8th century to early 9th century in what is modern day Baghdad, Iraq. The term algebra is derived from the title of a book AI-Khwārizmì wrote that described general rules for how to solve problems. He described general rules for "reduction," "completion," and "balancing." Ask students to generate their own examples that illustrate these terms.

Reduction:
Writing expressions in simpler, equivalent forms.

\section*{Completion:}

Moving a negative quantity from one side of an equation to the other, and reversing its sign.

\section*{Balancing:}

Performing the same operations to both sides of an equation, maintaining equivalence.

\section*{Math Language Development}

MLR7: Compare and Connect
During the Connect, draw correspondences between the equations and any hanger diagrams that students draw. Guide them toward using equations, but allow them to draw hanger diagrams, as needed. Ask:
- "What steps, and in what order, did you use to solve each equation?"
- "How are those same steps illustrated by using a hanger diagram?"

\section*{Summary}

Review and synthesize how to solve an equation of the form \(p x+r=q\).

\section*{Summary}

\section*{In today's lesson.}

You showed that two amounts are equal using hanger diagrams and equations. You can use a hanger diagram to reason about how to find an unknown amount in an equation. You can also write the steps for finding an unknown amount in an equation, without using a hanger diagram. For example, you can solve the equation \(2 x+3=7\) using these steps:
Remove 3 from both sides.


Reflect:

\section*{Synthesize}

Highlight each step for solving the equation, both algebraically and using the diagram Highlight the connections between the methods. Review the words constant and coefficient and how to verify that a solution is correct.

Ask, "Compare the two strategies you have used: drawing and reasoning about hanger diagrams, and solving equations algebraically without using diagrams. How are they similar and how are they different?"

\section*{( Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "Which strategies for solving simple equations can be put to use when solving more complex ones?"

\section*{Exit Ticket}

Students demonstrate their understanding by solving an equation of the form \(p x+q=r\), algebraically.


\section*{Success looks like ...}
- Goal: Interpreting a balanced hanger diagram, and writing an equation of the form \(p x+q=r\) to represent the relationship shown.
- Language Goal: Explaining how to solve an equation of the form \(p x+q=r\). (Speaking and Listening, Writing)
» Solving the equation \(5 x+4=61\) and explaining by showing the steps or drawing a hanger diagram.

\section*{Suggested next steps}

If students find an incorrect solution with an incorrect or missing hanger diagram, consider:
- Practicing drawing a hanger diagram to represent the equation. Then check whether students can find the solution using the diagram. Then consider reviewing how to solve an equation of the form \(p x+q=r\) by subtracting the constant from each side and then dividing each side by the coefficient.
- Assigning Practice Problem 3

If students find an incorrect solution with the correct hanger diagram, consider:
- Referring to the hanger diagram for reference, reviewing how to solve an equation of the form \(p x+q=r\) by subtracting the constant from each side, and then dividing each side by the coefficient.
- Assigning Practice Problem 2.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Coints to Ponder ...
- What worked and didn't work today? What different ways did students approach Activity 1? What does that tell you about similarities and differences among your students?
- In what ways in Activity 2 did things happen that you did not expect? What might you change for the next time you teach this lesson?

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\title{
Reasoning About Solving Equations (Part 2)
}

Let's use hangers to understand two different ways of solving equations with parentheses.


\section*{Focus}

\section*{Goals}
1. Language Goal: Compare and contrast (orally) different strategies for solving an equation of the form \(p(x+q)=r\). (Speaking and Listening)
2. Language Goal: Explain how to solve an equation of the form \(p(x+q)=r\). (Speaking and Listening, Writing)

\section*{Coherence}

\section*{- Today}

Students connect the Distributive Property with solving equations and learn how to solve equations of the form \(p(x+q)=r\) using hanger diagrams to assist them in making sense of each equation. Students look for and use the structure of the hanger diagrams and the equations to develop efficient methods of solving equations.

\section*{\(<\) Previously}

In Grade 6, students identified when two expressions were equivalent, simplified expressions involving the Distributive Property, and solved simple equations. So far in this unit, students established the properties of solving equations using hanger diagrams and solved equations of the form \(p x+q=r\).

\section*{>Coming Soon}

In Lesson 5, students will solve equations using negative values. In Lesson 6, students will focus on the structure of the equation and practice solving equations of the form \(p(x+q)=r\), using either the Distributive Property first or dividing by the factor in front of the parentheses first.

\section*{Rigor}
- Students interpret hanger diagrams to build conceptual understanding of solving equations of the form \(p(x+q)=r\).
- Students develop procedural fluency in solving equations of the form \(p(x+q)=r\) with and without the use of hanger diagrams.


Warm-up

Activity 1

Activity 2


Summary

Exit Ticket

Activity 3
(1) 5 min


\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \(\bigcirc\) Independent

\section*{Materials}
- Exit Ticket
- Additional Practice

\section*{Math Language \\ Development}

\section*{Review words}
- coefficient
- constant
- Distributive Property
- equation
- hanger diagram
- properties of equality
- solution to an equation
- variable

\section*{Amps ! Featured Activity}

\section*{Activities 1 and 2 \\ Dynamic Hanger Diagrams}

When students enter a weight for a variable in a hanger diagram, the hanger will animate, giving real-time feedback that shows whether the hanger is balanced.

desmos

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students might find themselves feeling stressed about having to solve equations. Remind them that the hanger diagram represents a structure that they can use to solve the equations correctly. Compare working in structure to working in chaos. Ask students to identify which relieves stress and which causes stress.

\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- Omit the Warm-up. Then, during the Activity 1 Connect, discuss how the Distributive Property could explain the equivalency of the two equations.
- In Activity 2, have groups divide the problems so that half of the group solves each one
- In Activity 3, provide students with a choice, having them solve only two equations. Encourage students who need extra support to choose the first two problems while encouraging students who are comfortable to focus on Problem 3.

\section*{Warm-up Algebra Talk: Seeing Structure}

Students look for structure among a set of equations, noticing that in each subsequent equation, each side has been multiplied by the same value.


\section*{1 Launch}

Conduct the Algebra Talk routine. Prompt students to look for the structure of each subsequent equation and how it compares to the first equation.

\section*{2 Monitor}

Help students get started by asking, "What does it mean to find the solution to an equation?" "In the first equation, can you determine what \(x\) should be to make the statement true? Do you see a connection between the first two equations? What is similar? Different?"

Look for productive strategies:
- Applying the Distributive Property to the second and third equations. Note any students who do this and have them explain their thinking.
- Noticing commonalities among the third and fourth equations. Note any students who notice the similar structure and have them explain their thinking.

\section*{3 Connect}

Display the equations.
Have students share their solutions to each equation. Once the class understands the solutions are the same value, 4 , have select students share their strategies for solving the equations.

Highlight a student's strategy that used the Distributive Property. Then have a student who noticed the left and right sides contained common multiples explain their strategy. If no one solved using this strategy, highlight the similarities in structure of the equations and discuss the efficiency of solving

Ask, "Why does each equation have the same solution?"

\section*{Math Language Development}

\section*{MLR8: Discussion Supports}

During the Connect, as students share their solutions, ask, "How did you use the equation in part a to help you in part b? (Repeat for part c) What was different about part d compared to the others? What do you notice about the values on the right side of the equation?"

\section*{English Learners}

Display these sentence frames to support students as they explain their strategy.
- "First, I \(\qquad\) because
- "I noticed \(\qquad\) , sol.
- "The equation in part a is similar to the equation in part \(\qquad\) , because

\section*{(7) \\ Power-up}

To power up students' ability to apply the Distributive Property to create equivalent expressions, have students complete:

Use the Distributive Property to write an expression equivalent to each given expression
a. \(5(x+2)=5 x+10\)
b. \(3(5-x)=15-3 x\) (or equivalent)

Use: Before Activity 1.
Informed by: Performance on Lesson 3, Practice Problem 6 and Pre-Unit Readiness Assessment, Problem 5.

\section*{Activity 1 Either/Or}

Students develop strategies to solve equations by working with hanger diagrams to show multiple groups representing the terms in parentheses.

Amps Featured Activity
Dynamic Hanger Diagrams

Activity 1 Either/Or

Analyze the following hanger diagram. Be prepared to share your thoughts with a partner.
1. Explain why the equation \(14=2(x+3)\) could represent the hanger diagram.
There are two groups of \(x+3\) balancing with 14 .
2. Explain why the equation \(14=2 x+6\) could represent the hanger diagram.
There are two shapes representing \(x\) and two

representing 3 (or 6 total) balancing with 14 .
3. Determine the value of \(x\). Use the hanger diagram to support your thinking.
\(x=\quad 4\)
Sample response shown


1 Launch
Display the hanger diagram. Have students discuss with a partner what they see in the diagram, before beginning the activity.

\section*{(2) Monitor}

Help students get started by asking, "How do you understand the right side of the balance: two groups of \(x+3\) or \(2 x\) and 6 ?" Depending on their response, have them complete the corresponding problem first, and share responses with their partner.

\section*{Look for productive strategies:}
- Using the guess-and-check strategy. This is a valid strategy; however, encourage students to use the diagram to support their guesses.
- Solving by subtracting 6 from 14 , then dividing the result by 2 . Note students who begin this way.
- Solving by dividing the 14 into 2 groups of 7 , then subtracting 3 . Note students who begin this way.
- Solving the equation without using the diagram Make sure students understand the diagrams in relation to the structure of the equation

\section*{3 Connect}

Have students share their strategies. Select a student who distributed first to share their strategy first, followed by a student who divided first. If one of these strategies is not mentioned, demonstrate it and show how the diagram supports either strategy.

Highlight the proper use of the properties of equality. Both strategies arrive at the same solution and each could be helpful depending on the situation.

Ask, "Which method do you prefer? Why?"

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can enter a weight for a variable in a hanger diagram. By doing so, the hanger will animate, providing them with real-time feedback that shows whether the hanger is balanced.

\section*{Accessibility: Guide Processing and Visualization}

To help students make sense of the equations in Problems 1 and 2 , ask:
- "Which equation shows that 14 is equal to the sum of two groups of \(x\) and 6 ?"
- "Which equation shows that 14 is equal to two groups of the sum of \(x\) and 3 ?"

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students share their strategies, draw their attention to the connections between the various strategies used. For example, display the following, and have students describe how the strategies are similar and different.
\begin{tabular}{|c|c|}
\hline Distribute first. & Divide first. \\
\hline \(14=2(x+3)\) & \(14=2(x+3)\) \\
\hline \(14=2 x+6\) Distributive Property & \(7=x+3 \quad\) Divide by 2 . \\
\hline \(8=2 x \quad\) Subtract 6. & \(4=x \quad\) Subtract 3. \\
\hline \(4=x \quad\) Divide by 2. & \\
\hline
\end{tabular}

\section*{Activity 2 Using Hangers to Solve Equations}

Students formalize the algebraic steps to solving equations by using hanger diagrams to support their reasoning.


\section*{1) Launch}

Encourage students to look back at their work in Activity 1 to help them in this activity.

\section*{Monitor}

Help students get started by asking, "How many groups of \(x+5\) are in the hanger? What does one group of \(x+5\) equal?"

\section*{Look for productive strategies:}
- Using the Distributive Property first. Make sure students write \(2 x+10=16\) for Problem 1 and \(4 z+4.4=20.8\) for Problem 2.
- Dividing by the coefficient first. Make sure students write \(x+5=8\) for Problem 1 and \(z+1.1=5.2\) for Problem 2.

\section*{3 Connect}

Display the hanger diagrams and equations.
Have students share their methods. Select a student who first divided by the factor outside the parentheses to share. Then select a student who first distributed to share.

Highlight that using the Distributive Property is a valid approach. Analyzing the structure of the equation can help make the solution process more efficient. Have students formalize the process for solving by first dividing by the factor outside the parentheses.

Ask, "How does dividing first simplify the equation, especially in Problem 2?"

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can enter a weight for a variable in a hanger diagram. By doing so, the hanger will animate, providing them with real-time feedback that shows whether the hanger is balanced.

\section*{Extension: Math Enrichment}

Challenge students to draw a hanger diagram to represent the equation \(\frac{1}{2}(x+6)=9\). Then have them solve the equation. \(x=12\).

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

While students work, display these questions and have small groups discuss them as they solve the equations.
- "How does the hanger diagram illustrate the equation?"
- "Will you distribute first or divide first? Why?"
- "Solve the equation using the other method. If your solutions are not the same, discuss and resolve any errors."

\section*{English Learners}

Encourage students to annotate their work with the terms or properties that describe each step.

\section*{Activity 3 Now You Try}

Students solidify the algebraic steps of solving equations of the form \(p(x+q)=r\) to become more efficient in the solving process.


Activity 3 Now You Try

Solve each equation. Draw a hanger diagram, if needed.
```

1. 3(x+9) = 30
3(x+9)\div3=30\div
x+9=10
x+9-9=10-9
```
            \(x=1\)
    2. \(3000=3(y+200)\)
    \(3000 \div 3=3(y+200) \div 3\)
        \(1000=y+200\)
    \(1000-200=y+200-200\)
                \(y=800\)
```

>3. }\frac{1}{2}(x+\frac{2}{3})=\frac{20}{3
\frac{1}{2}}(x+\frac{2}{3})\div\frac{1}{2}=\frac{20}{3}\div\frac{1}{2
x+\frac{2}{3}=\frac{40}{3}
x+\frac{2}{3}-\frac{2}{3}=\frac{40}{3}-\frac{2}{3}
x= 年

```
    48 Are you reasy tor mores
        Solve the equation \(\frac{1}{3}(w+4)=\frac{10}{3}\). Show your thinking. \(\quad \frac{1}{3}(w+4) \div \frac{1}{3}=\frac{10}{3} \div \frac{1}{3}\)
        \(w+4=10\)
        \(w+4-4=10-4\)
            \(w=6\)

\section*{1 Launch}

Let students know they can start by drawing a hanger diagram, but the goal is to practice the algebraic steps.

\section*{(2) Monitor}

Help students get started by drawing hanger diagrams and referencing equations from Activity 2.

\section*{Look for points of confusion:}
- Struggling to create hanger diagrams for Problem 3. Have students reference the algebraic steps in Activity 2.
- Dividing fractions incorrectly. Review that dividing fractions is the same as multiplying by the reciprocal.

\section*{Look for productive strategies:}
- Multiplying by the denominator of the factor outside the parentheses in Problem 3. This is a valid technique and will alleviate fractions; however, you may wish to save this technique for a later discussion.

\section*{3 Connect}

Have students share their solutions. If time is limited, discuss solutions to Problems 1 and 3.

Highlight that the Distributive Property can be used first. However, in Problems 2 and 3, students may notice that dividing each side by the factor outside the parentheses simplifies the math. For some equations (e.g., Problem 3), drawing a hanger diagram is impractical, which is why solving the equation algebraically is preferred. Continue to highlight the meaning of the solution to an equation; the value which makes the mathematical statement true

Ask, "How can you check these solutions?"

\section*{Accessibility: Vary Demands to Optimize Challenge}

If students need more processing time, have them focus on solving the equations in Problems 1 and 2. As time permits, they can work on solving the equation in Problem 3.

\section*{Extension: Math Enrichment}

Tell students that another strategy they can use to solve the equation in Problem 3 is to multiply each term by the least common denominator of the fractions. This will eliminate the fractions. Have them use this strategy to solve the equation in Problem 3 and compare the solution to the solution they already determined. They should note it is the same.

Unit 6 Expressions, Equations, and Inequalities

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

While students work, display the following questions (similar to the ones from Activity 2) that students can ask themselves as they solve each equation.
- (If they draw a hanger diagram) "How does the hanger diagram illustrate the equation?"
- "Will you distribute first or divide first? Why?"
- "Solve the equation using the other method. If your solutions are not the same, check your work and resolve any errors."

\section*{English Learners}

Encourage students to annotate their work with the terms or properties that describe each step.

\section*{Summary}

Review and synthesize how to solve an equation of the form \(p(x+q)=r\).


\section*{Synthesize}

Display the equation \(4(x+7)=40\).
Have students share the steps for solving the equation by using the Distributive Property. Have another student explain the steps for solving the equation by dividing both sides by the factor outside the parentheses first. Discuss methods showing the algebraic steps using the properties of equality. Draw hanger diagrams, if needed. The solution is \(x=3\).

Highlight both strategies are valid; however, attending to the structure of the equation will help identify which strategy is more efficient. This idea will be continued in Lesson 6

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "Which representations best help you to make sense of certain mathematical scenarios?"

\section*{Exit Ticket}

Students demonstrate their understanding by solving an equation of the form \(p(x+q)=r\).


\section*{Success looks like ...}
- Language Goal: Comparing and contrasting different strategies for solving an equation of the form \(p(x+q)=r\). (Listening and Speaking)
- Language Goal: Explaining how to solve an equation of the form \(p(x+q)=r\). (Listening and Speaking, Writing)
» Solving the equation \(3(x+4)=36\) and showing the steps or hanger diagram used for solving.

\section*{Suggested next steps}

If the hanger diagram is incorrectly drawn, but the equation is solved correctly, consider:
- Letting students know to only use the hanger diagram if it makes the math more efficient for them.
- Assigning Practice Problem 2.

If the hanger diagram is correct, but the algebraic steps are incorrect, consider:
- Reminding students to use the hanger diagram to support their algebraic reasoning.
- Assigning Practice Problems 2 and 3.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder ...
- What worked and didn't work today? How did students look for and make use of structure today? How are you helping students become aware of how they are progressing in this area?
- What challenges did students encounter as they worked on Activity 2? How did they work through them? What might you change for the next time you teach this lesson?

\begin{tabular}{|lclc|}
\hline Practice Problem Analysis & \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 2 & 1 \\
\hline Spiral & \(\mathbf{2}\) & \begin{tabular}{l} 
Activities \\
1 and 2 \\
Activity 3
\end{tabular} & 2 \\
\hline Formative \(\mathbf{0}\) & \(\mathbf{5}\) & \begin{tabular}{l} 
Unit 5 \\
Lesson 17
\end{tabular} & 1 \\
\hline
\end{tabular}
(6) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Dealing With Negative Numbers}

Let's show that performing the same
operations to each side of an equation also
works for equations with negative numbers.


\section*{Focus}

\section*{Goals}
1. Language Goal: Generalize that performing the same operations to each side of an equation generates an equivalent equation. (Speaking and Listening)
2. Language Goal: Solve equations of the form \(p x+q=r\) or \(p(x+q)=r\) that involve negative numbers, and explain the solution method. (Speaking and Listening, Writing)

\section*{Coherence}

\section*{- Today}

Students are introduced to equations with negative values. They see that the strategies they learned for solving equations with positive values still work now that they are solving equations with negative values but that they need to take extra care with the sign of each value.

\section*{\(<\) Previously}

In Unit 5, students were introduced to solving one-step equations with negative values. In Lessons 3 and 4, students have learned to solve equations by performing the same operation to both sides.

\section*{> Coming Soon}

Students will gain further understanding of valid strategies for solving equations in Lesson 7. Students will build toward making sense of how negative values in equations could represent real-world contexts.

\section*{Rigor}
- Students apply their understanding of inverse operations and equality to solve equations with negative numbers.
- Students develop procedural fluency in solving equations of the form \(p x+q=r\) and \(p(x+q)=r\) with positive and negative values.


Warm-up


Activity 1


Activity 2


Summary

Exit Ticket

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \(\bigcirc\) Independent

\section*{Materials}
- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Solving Equations (for display)
- Anchor Chart PDF, Solving Equations (answers)

\section*{Math Language Development}

\section*{New word}
- equivalent equations

\section*{Review words}
- coefficient
- constant
- equation
- properties of equality
- solution to an equation
- variable

\section*{Amps ! Featured Activity}

\section*{Activity 1 \\ Dynamic Dog Leashes}

Students manipulate the positions of dogs on either side of the dog walker. If the dogs (and the equation they represent) are out of balance, the dog walker is in for a wild ride.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students may struggle with using negative values in an equation in Activity 1. Remind them that the dog-walking diagram can be a source of structure. After discussing the diagram, have students explain how it helps them feel confident in their work. If they are still struggling, encourage a growth mindset where students are able to express that they believe they will understand, but it just hasn't happened yet.

\section*{- Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- In Activity 2, have students identify the equivalent equations but do not have them solve equations. Consider assigning the remainder of the activity as additional practice.

\section*{Warm-up Dogs in Different Directions}

Students make sense of an illustration of the dog walker with a dog walking in the opposite direction to understand the relationship between negative values and balance.

(1) Launch

Introduce students to the illustration, pointing out that Bobby and Champ are pulling in opposite directions.

\section*{(2) Monitor}

Help students get started by asking, "What do you notice is happening in the illustration? What would happen if the walker lets go of Ace? Bobby? Champ?"

\section*{Look for points of confusion:}
- Thinking that Ace is strongest because it seems that Ace (one dog) balances with two dogs. Ask, "Is it important that Bobby is pulling in the same direction as Ace?"

\section*{Look for productive strategies:}
- Thinking that Champ is the strongest. Note students with this response.
(3) Connect

Have students share a response that indicates Champ is the strongest.

Highlight that students haven't seen dog walking illustrations in prior lessons where the dogs on the same side were pulling in opposite directions.

Remind students that the negative sign and the minus sign for the operation look the same and mention the convention of omitting the positive sign. For example, \(a-(+1)\) is written as \(a-1\).

Ask, "What do you think it might mean that Bobby is on the same side as Champ, but is pulling in the opposite direction?" Bobby could represent a negative value.

\section*{Math Language Development}

\section*{MLR8: Discussion Supports}

During the Connect, as students share their responses, use the Poll the Class routine to determine whether more students think Ace, Bobby, or Champ is the strongest dog. Ask students to justify their thinking and display the following sentence frames to help them organize their thoughts
- " \(\qquad\) is the strongest dog because
- "I know that \(\qquad\) is stronger than \(\qquad\) because
- "I know that _____ is the weakest dog because...

\section*{Activity 1 New Solutions, Old Ways}

Students make sense of a negative value in an equation and connect the equation to the dog walking diagram, in order to understand how to solve for the unknown.


\section*{1 Launch}

Set an expectation for the amount of time students will have to work in pairs on the activity.

\section*{2 Monitor}

Help students get started by asking, "What's different about this illustration compared to the Warm-up?" "What do the numbers refer to? What does \(x\) refer to?

\section*{Look for points of confusion:}
- Writing the expression 3-2+x. Ask, "What does the term 'equation' mean?"

\section*{Look for productive strategies:}
-Writing \(3=x-2 ; 3=-2+x ; 3+2=x\) or other equivalent equations. Note students with these responses.

3 Connect
Display the diagram.
Have students share the different equations they generated

Highlight that each of these equations will have the same solution because they describe the same situation.

Define equivalent equations as equations that have the same solution. Say, "We know they have the same solution the same action or operation was performed on each side."

Ask, "What happens to the sign of the number 3 if the dog switches to the other side?" It should switch, too, because he will be adding to the strength on that side.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can manipulate the position of dogs on either side of the dog walker. If the dogs - and the equation they represent - are out of balance, the dog walker is in for a wild ride.

\section*{Extension: Math Enrichment}

Have students complete the following problem: If each dog was exactly twice as strong as they are now, would the dog walker still feel balanced? Explain your thinking. Yes; Sample response: The dog on the left would have a strength of 6 , and the dogs on the right would have a total strength of \(-4+10\), which is 6 .

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

During the Connect, as students describe how their arrangements and equations are similar and different, collect and display the terms and phrases they use to describe equivalent equations. Add these terms along with an example of equivalent equations to the class display. For example, students may say "they have the same solution," "they are generated using properties of equality," or "the same operation was done to each side."

\section*{English Learners}

Provide examples of equivalent equations, such as \(3=x-2\) and \(3+2=x\), to the class display.

\section*{Activity 2 Keeping it True}

Students think strategically about equivalent equations by exploring possible next steps in solving them.


\section*{Activity 2 Keeping it True}

For each of the three equations shown, complete the following.
- Analyze each equation.
- Place a check next to each equation that is equivalent to the given equation for each problem
- Next, circle the equation that you think represents the best next step for finding the value of \(x\) in the original equation.
- Lastly, solve the equation for \(x\).
1. \(-x=10\)

\(x=\quad-10\)
2. \(3-2 x=-5\)

```

3. $19=3(x-2)$
```

1. Launch

Review the directions for this activity with the whole class. Set an expectation for the amount of time students will have in pairs to work on the activity.
(2) Monitor

Help students get started by asking, "Did you perform the same operation to each side? If yes, then the equations are equivalent and still balanced." Consider going over Problem 1 together with the students.

\section*{Look for points of confusion:}
- Only choosing some, but not all correct answers. Ask, "How do you know which equation(s) are equivalent to the original? How can you check to make sure you carefully looked at the others?"
- Not finding any that are equivalent. Have students annotate the new equations to show what changed from the original equation.
- Having difficulty solving for \(x\). Suggest students show a simplified next step. Then they can try substituting values.

\section*{3 Connect}

Have students share in their own words how they chose which equation represented the "best next step."

Highlight that a "next best step" is one that gets students closer to isolating the variable. As they found in previous lessons, sometimes there are multiple steps that are equally helpful.

\section*{Accessibility: Vary Demands to Optimize Challenge}

If students need more processing time, have them focus on completed Problems 1 and 2 , as they are sufficient for developing the core understanding for this activity.

\section*{Extension: Math Enrichment}

Challenge students to generate three different equations that are equivalent to the equation \(p(x+q)=r\). Sample response: \(p x+p q=r, p x=r-p q\), and \(x+q=\frac{r}{p}\).

\section*{Summary}

Review and synthesize the idea that performing the same operations to each side of an equation creates an equivalent equation.


\section*{Synthesize}

\section*{Formalize vocabulary: equivalent equations.}

Display the Anchor Chart PDF, Solving Equations and complete the top section.
Ask, "What would the next best step be in solving this equation."
Highlight the steps for solving the given equation, bringing attention to the fact that each new equation is equivalent to the original equation.

\section*{(1) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "How is solving equations with negative values similar to or different from solving equations with only positive values?"

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in this unit. Ask them to review and reflect on any terms and phrases related to the term equivalent equations to that were added to the display during the lesson.

\section*{Exit Ticket}

Students demonstrate their understanding by showing that they can create equivalent equations strategically.



Exit Ticket
GS
6.05

Write three different equations that are equivalent to the following equation.
\(2 x+9=-15\)
```

1. Sample responses
- 2x+4=-20
2x=-24
-2x-9=15

- -2x-9= 15

2.
``` \(\qquad\)
3.

Choose one of your equations and solve it. Show your thinking
\(x=-12\); Students should show their work, but their steps may
vary according to which equation they chose to solve.

\section*{Success looks like . . .}
- Language Goal: Generalizing that performing the same operations to each side of an equation generates an equivalent equation. (Speaking and Listening)
» Generating three different equivalent equations for the given equation.
- Language Goal: Solving equations of the form \(p x+q=r\) or \(p(x+q)=r\) that involve negative numbers, and explaining the solution method. (Speaking and Listening, Writing)
» Solving one of the equivalent equations.

\section*{- Suggested next steps}

If students have difficulty with the mechanics of solving equations, consider:
- Continuing to practice solving simple twostep equations in the next lessons.

\section*{If students have difficulty writing an equivalent equation, consider:}
- Reviewing the definition of equivalent equations, and revisit Activity 2, Problem 2

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

\section*{O. Points to Ponder ...}
- What worked and didn't work today? During the discussion about Activity 2 how did you encourage each student to share their understandings?
The focus of this lesson was to solve equations of the form \(p x+q=r\) and \(p(x+q)=r\) with negative numbers. How did this focus go? What might you change for the next time you teach this lesson?

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Practice Problem Analysis} \\
\hline Type & Problem & Refer to & DOK \\
\hline \multirow{3}{*}{On-lesson} & 1 & Activity 1 & 1 \\
\hline & 2 & Activity 2 & 2 \\
\hline & 3 & Activity 2 & 1 \\
\hline \multirow[b]{2}{*}{Spiral} & 4 & Unit 2 Lesson 5 & 1 \\
\hline & 5 & \begin{tabular}{l}
Unit 5 \\
Lesson 8
\end{tabular} & 1 \\
\hline Formative 0 & 6 & Unit 6 Lesson 6 & 1 \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.

\title{
Two Ways to Solve One Equation
}

\author{
Let's think about efficient ways to solve equations with parentheses.
}


\section*{Focus}

\section*{Goals}
1. Recognize there are two common approaches for solving an equation of the form \(p(x+q)=r\); (1) expanding using the Distributive Property or (2) dividing each side by \(p\).
2. Language Goal: Critique a given solution method for an equation of the form \(p(x+q)=r\). (Speaking and Listening, Writing)
3. Language Goal: Evaluate the usefulness of different approaches for solving a given equation of the form \(p(x+q)=r\). (Speaking and Listening, Writing)

\section*{Coherence}

\section*{- Today}

Students practice solving equations of the form \(p(x+q)=r\), focusing on the structure of the equation to determine which method; (1) applying the Distributive Property or (2) dividing by the factor outside the parentheses will produce the most efficient strategy.

\section*{< Previously}

In Lesson 3, 4, and 5, students learned how to solve equations of the form \(p x+q=r\) and \(p(x+q)=r\) with rational numbers.

\section*{> Coming Soon}

In Lesson 8, students will use these strategies to solve real-world and mathematical problems.

\section*{Rigor}
- Students analyze and practice multiple methods of solving equations of the form \(p(x+q)=r\) to develop procedural fluency


Warm-up


Activity 1



Summary
(J) 5 min

คํํํํํ Whole Class

Exit Ticket

\(\bigcirc\) Independent

\section*{Amps powered by desmos Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Solving Equations (for display)
- Anchor Chart PDF, Solving Equations (answers)

\section*{Math Language Development}

\section*{Review words}
- coefficient
- constant
- Distributive Property
- equation
- equivalent equations
- properties of equality
- solution to an equation
- substitute
- variable

\section*{Amps : Featured Activity}

\section*{Activity 1 \\ Sketch Box}

Students are able to show their work solving an equation by using the sketch tool.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students might disagree with their partners about which solution method is preferred. Remind students that there is more than one way to solve the equation. There is, however, an incorrect way of handling this disagreement. Students should show respect for their partner, trying to understand why they chose the method that they did.

\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- During the Warm-up, let students know there is an error in the solution and ask them to identify it. Discuss as a class.
- In Activity 1, have partners divide the work so that one student solves using Elena's method and the other student solves using Han's method. Then have partners compare their work.
- In Activity 2, provide students with choice by having them solve only two equations. Then discuss all three as a class.

\section*{Warm-up Error Analysis}

Students analyze another's work to determine an error in distribution (of a negative number) and correct the solution process.

\section*{Unit 6 | Lesson 6}

Two Ways to Solve One Equation

Let's think about efficient ways to solve equations with parentheses.


Warm-up Error Analysis
Noah attempted to solve the equation \(-2(x-7)=32\) and found the solution was \(x=\mathbf{2 3}\). Analyze his work.
\[
\begin{aligned}
-2(x-7) & =32 & & \\
-2 x-14 & =32 & & \text { Distribute }(-2) \text { on the left side. } \\
-2 x-14+14 & =32+14 & & \text { Add } 14 \text { to each side. } \\
-2 x & =46 & & \\
-2 x \div(-2) & =46 \div(-2) & & \text { Divide each side by }(-2) . \\
x & =-23 & &
\end{aligned}
\]
1. Check Noah's solution by substituting it into the original equation Show your work.
2. Is Noah correct? If not, explain his error.

Noah is not correct. A mistake was made in the second step, when ( -2 ) was distributed Noah did not distribute -2 correctly. The second step should be \(-2 x+14=32\).
3. Solve the equation correctly. Show your work.
\[
\begin{array}{rlrl}
-2(x-7) & =32 & -2(x-7) & =32 \\
(-2) x-(-2) \cdot 7 & =32 & \text { or } & -2(x-7) \div(-2) \\
-2 x+14 & =32 \div(-2) \\
x-7 & =-16 \\
-2 x+14-14 & =32-14 & x-7+7 & =-16+7 \\
-2 x & =18 & x & =-9 \\
-2 x \div(-2) & =18 \div(-2) & \\
x & =-9 & &
\end{array}
\]


\[
\begin{array}{r}
-2((-23)-7)=32 \\
-2(-30)=32
\end{array}
\]
\[
60=32 \text { is not true; therefore, } x \neq-23 .
\]

\section*{Activity 1 Analysis of Work}

Students analyze two different solution methods for solving an equation of the form \(p(x+q)=r\) and determine which method they prefer.


\section*{1. Launch}

Let students know they are to analyze each method shown and determine which method they prefer, based on the structure of the equation.

\section*{2 Monitor}

Help students get started by asking, "What would your first step be in solving this equation?" Have students analyze Elena's method first if they want to distribute, or have them analyze Han's method first if they want to divide first.

\section*{Look for points of confusion:}
- Solving the equations incorrectly. Have students check their answers by substituting the value in the original equation.

\section*{3 Connect}

Display Elena's and Han's work.
Have students share and explain Elena's and Han's methods, pointing out the similarities and differences between them. Then have 3-4 students share which method they prefer and why.

Highlight that, when solving equations, both methods work because they produce equivalent equations. However, it may be easier to use one method instead of the other, based on the structure of the equation. Knowing both methods is helpful.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can use a digital sketch tool to show their work solving an equation.

\section*{Extension: Math Enrichment}

Ask students to write an equation in which they would want to distribute first, and have them explain why. Then ask them to write an equation in which they would want to divide by the factor outside the parentheses first, and have them explain why.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students compare and contrast Elena's and Han's methods, draw their attention to how an equation's structure can indicate which strategies will be helpful for solving it. Ask:
- "If the parentheses were not part of this equation and the equation was instead \(2 x-9=10\), could you solve it by dividing both sides by 2 ? Explain your thinking. You could divide both sides by 2 , but that won't necessarily help you solve the equation.
- "Suppose a classmate states that you can solve this equation by thinking 'two times a quantity is 10 , which means that quantity is 5 .' Is this a valid approach? What would 'the quantity' represent in this instance? Yes; this is a valid approach. The quantity is \(x-9\).

\section*{Activity 2 Solution Pathways}

Students solve equations using both methods (distributing first vs. dividing first) to decide which method to use, based on the structure of the equation.


\section*{1. Launch}

Allow students to check their solutions with a partner after solving each equation independently. Point out that while they might choose a different method from their partner, the solutions should be the same. This activity helps students decide which method is more efficient, based on structure.

\section*{(2) Monitor}

Help students get started by asking, "What would the equation look like after applying the Distributive Property?" or "What would the equation look like after dividing by the factor first?"

Look for points of confusion:
- Misunderstanding the directions. Model the expectation of starting both methods and deciding which to finish for Problem 1.
- Incorrectly operating with the fractions. Work with students on these skills.

\section*{3 Connect}

Display the solution to each equation. Conduct the Poll the Class routine to det ermine which method students preferred for each equation.

Have students share which method - distribute first or divide first - they preferred. Discuss any disagreements.

Highlight that there is no right or wrong method for each equation. Some students might prefer to eliminate fractions/decimals as early as possible, while some might want to minimize the number of computations.

\section*{Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

If students need more processing time, have them focus on solving the equations in Problems 1 and 2 first. As time allows, they can solve the equation in Problem 3.

\section*{Extension: Math Enrichment}

Tell students that another strategy they can use to solve the equation in Problems 1 and 2 is to multiply each term by the least common denominator of the fractions. This will eliminate the fractions. Have them use this strategy and compare the solutions to the solutions they already determined. They should note the solutions are the same.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students compare and contrast the strategies, draw their attention to which strategy may be more efficient in each case, and how analyzing the equation can help them determine the more efficient strategy. For example, in Problem 2, ask:
- "Why might dividing both sides of the equation by the factor outside the parentheses be helpful here? What is it about the numbers that indicate this may be a useful strategy?"
- "Dividing both sides by \(\frac{1}{4}\) is the same as multiplying both sides by what number?"

\section*{Summary}

Review and synthesize how equations of the form \(p(x+q)=r\) can be solved using two methods, and how students can choose an efficient method of dividing first or distributing first, based on the structure of the equation.
\(\qquad\)

\section*{Summary}

\section*{In today's lesson..}

You analyzed equations that could be solved in two specific ways: first applying the Distributive Property, or first dividing by the factor in front of the parentheses. In some cases, it can be more efficient to first apply the Distributive Property, and in other cases, it can be more efficient to first divide by the factor in front of the parentheses.
Because you know different ways to solve equations, you have more tools in your toolbox to help you. You can always stop one method if you feel it is not efficient or more challenging, and start using the other method.

\footnotetext{
(Reflect:
}

\section*{Synthesize}

Ask:
- "What are the two main ways you can approach solving equations like the ones you saw today?" Divide first or distribute first.
- "What kinds of things could you look for to decide which approach is more efficient?" Operations that result in whole numbers, moves that will eliminate fractions or decimals, etc.
- "How can you check if your answer is a solution to the equation?" Substitute the answer for the variable and see whether it makes the equation true

Display the Anchor Chart, Solving Equations and complete the bottom section.

Have students share how to solve the equation using each method.

Highlight both methods are valid, useful, and important to know.

\section*{D Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "How can you increase your efficiency in solving mathematical problems?"

\section*{Exit Ticket}

Students demonstrate their understanding by choosing the most efficient method for solving equations of the form \(p(x+q)=r\) and justifying their reasoning.


\section*{Success looks like ...}
- Goal: Recognizing there are two common approaches for solving an equation of the form \(p(x+q)=r\); (1) expanding using the Distributive Property or (2) dividing each side by \(p\).
" Solving each equation either by using the Distributive Property or dividing by the coefficient in front of the parentheses in Problems 1 and 2.
- Language Goal: Critiquing a given solution method for an equation of the form \(p(x+q)=r\). (Speaking and Listening, Writing)
» Explaining why a given solution method was used in Problems 1 and 2.
- Language Goal: Evaluating the usefulness of different approaches for solving a given equation of the form \(p(x+q)=r\). (Speaking and Listening, Writing)
» Explaining how the chosen method is useful in Problems 1 and 2.

\section*{Suggested next steps}

If students do not know which method is more efficient, consider
- Assigning Practice Problem 1, in which students analyze the two methods.

If students need more practice solving similar equations, consider
- Assigning Practice Problem 2.
- Move on to the next lesson, which provides students with additional practice.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\(\mathrm{C}_{0}\). Points to Ponder ...
- What worked and didn't work today? Thinking about the questions you asked students today and what the students said or did as a result of the questions, which question was the most effective?

How did the Error Analysis support students in recognizing that there are two approaches for solving an equation of the form \(p(x+q)=r\) ? What might you change for the next time you teach this lesson?

\section*{Math Language Development}

Language Goal: Evaluating the usefulness of different approaches for solving a given equation of the form \(p(x+q)=r\).
Reflect on students' language development toward this goal.
- How did using the Compare and Connect routine in Activity 2 help students evaluate the usefulness of the two methods (divide first or distribute first)?
- How can you help them explain when they might want to use one method over another?
Sample explanations shown for Problem 2:
\begin{tabular}{|c|l|}
\hline Emerging & \multicolumn{1}{c|}{ Expanding } \\
\hline 5 times \(\frac{2}{5}\) is \(\frac{10}{5}\), or 2. & \begin{tabular}{l} 
Distributing the 5 eliminates \\
the fraction.
\end{tabular} \\
\hline
\end{tabular}
\[
\text { Kiran began by distributing first. Mai began by dividing each side by } 3.3 \text {. }
\]
b Complete the missing steps for each student.
c Which method do you prefer to use for this equation? Why? Answers may vary. Some students may prefer Kiran's method and other students may prefer Mai's method.
2. Solve each equation. Show your thinking. Sample responses shown.
a \(2(x-3)=14\)
(b) \(-5(x-1)=40\)
\(\begin{aligned} x-3 & =7 \\ x-3+3 & =7+3\end{aligned}\)
\(-5(x-1) \div(-5)=40 \div(-5)\)
\(3+3=7+3\)
(d) \(\frac{1}{6}(x+6)=11\)

C \(\frac{5}{7}(x-9)=25\)
\(\begin{aligned} \frac{1}{6}(x+6) \div \frac{1}{6} & =11 \div \frac{1}{6} \\ x+6 & =66\end{aligned}\)
\(\begin{aligned} x+6 & =66 \\ x+6-6 & =66-6\end{aligned}\)
\(x-9=35\)
\(-9+9=35+9\)
\(x=60\)
3. Lin and Noah are each solving the equation \(7(x+2)=91\). Lin begins by using the Distributive Property while Noah begins by dividing each side by 7 .
(a) Show what Lin's and Noah's full solution methods might look like
Lin: \begin{tabular}{rlrl}
\(7(x+2)\) & \(=91\) & Noah: \\
\(7 x+14\) & \(=91\) & \(7(x+2)\) & \(=91\) \\
\(7 x+14-14\) & \(=91-14\) & \(7(x+2) \div 7\) & \(=91 \div 7\) \\
\(7 x\) & \(=77\) & \(x+2\) & \(=13\) \\
\(7 x \div 7\) & \(=77 \div 7\) & \(x+2-2\) & \(=13-2\) \\
\(x\) & \(=11\) & \(x\) & \(=11\)
\end{tabular}
b What is the same and what is different about their methods? Sample response: Both divided each side by 7 (at different steps)
and determined the solution \(x=11\). Lin subtracted 14 from each side and determined the solution \(x=11\). Lin su
while Noah subtracted 2 from each side.
4. Complete the magic square so that the sum of each row,
each column, and each diagonal in the grid are the same.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Practice Problem Analysis} \\
\hline Type & Problem & Refer to & DOK \\
\hline \multirow{3}{*}{On-lesson} & 1 & Activity 1 & 2 \\
\hline & 2 & Activity 2 & 1 \\
\hline & 3 & Activity 1 & 3 \\
\hline \multirow{2}{*}{Spiral} & 4 & Unit 5 & 2 \\
\hline & 5 & Unit 4 & 1 \\
\hline Formative © & 6 & Unit 6 Lesson 7 & 1 \\
\hline
\end{tabular}

Additional Practice Available


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Practice Solving Equations}

Let's practice.


\section*{Focus}

\section*{Goal}
1. Solve equations of the forms \(p x+q=r\) and \(p(x+q)=r\), where \(p\), \(q\), and \(r\) are specific rational numbers.

\section*{Coherence}

\section*{- Today}

In today's lesson, students practice solving equations in an equation chain, where each solution is used to create the next equation. Students need to keep in mind signs and operations and are encouraged to check their solutions to ensure accuracy within the chain. Students also create their own equation for their partner to solve.

\section*{\(<\) Previously}

In Lessons 1-6, students developed the skills of solving equations of the forms \(p x+q=r\) and \(p(x+q)=r\).

\section*{> Coming Soon}

In Lessons 8-11, students continue solving equations of the forms \(p x+q=r\) and \(p(x+q)=r\) in context.

\section*{Rigor}
- Students develop procedural fluency in solving equations of the form \(p x+q=r\) and \(p(x+q)=r\).


Warm-up
() 5 min



Activity 1
(Optional)
\((1) 15 \mathrm{~min}\)
Independent


Activity 2


Summary

\section*{Exit Ticket}
() 5 min
\(\bigcirc\) Independent

\section*{Amps powered by desmos \(\vdots\) Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice}


\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 2 PDF
- Activity 2 PDF (answers)

\section*{Math Language}

Development

\section*{Review words}
- coefficient
- constant
- Distributive Property
- equation
- equivalent equations
- properties of equality
- solution to an equation
- substitute
- variable

\section*{Amps : Featured Activity}

\section*{Activity 1 \\ Digital Equation Chain}

Students' responses from previous screens populate the appropriate spaces on the next screen.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students might feel overly confident as they write an equation with a given solution. They might not even realize that they need help. When working with a partner, it is important that students recognize when to seek and offer help. Create a code word for students to use when they think their partner needs help but does not know it.

\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- Optional Activity 1 might be omitted.
- Have pairs of students swap only one equation in Activity 2. Provide an opportunity for student choice, allowing pairs to decide whether they would rather use Equation 1 or Equation 2.

\section*{Warm-up Mystery Equation}

Students use specific values to create an equation allowing the solution to be the largest possible number. This task helps students further develop their understanding of equations and number sense.

(1) Launch

Be sure students understand that they can only use each digit one time. They may use the space at the bottom of the page to show their thinking.

\section*{(2) Monitor}

Help students get started by saying, "Place the digits in the boxes and solve for \(x\). Once you reach the solution, rearrange the digits to see whether the solution is greater."

\section*{Look for productive strategies:}
- Using the guess-and-check strategy. This is a valid problem solving technique and should be encouraged.

\section*{(3) Connect}

Display the mystery equation.
Have students share their strategies to test equations and/or for knowing when an equation was not going to produce a greater solution.

Highlight the correct arrangement to yield the greatest solution.

Ask, "Is there anything interesting about the arrangement of the digits?" Sample response: The coefficient is the smallest value.

\section*{(7) \\ Power-up}

To power up students' ability to solve equations with more than one step, have students complete:

Match each equation with the most efficient first step for solving it.
C. \(2 x+1=8\)
a. Add 1 to both sides.
b \(\quad 2(x+1)=8\)
b. Divide by 2 both sides.
a... \(2 x-1=8\)
c. Subtract 1 from both sides.
d \(\quad 2 x-2=8\)
d. Add 2 to both sides.

Use: Before the Warm-up
Informed by: Performance on Lesson 6, Practice Problem 6

\section*{Activity 1 Equation Chain}

Students solve equations using the solution from the previous equation to help them solve the next one.


\section*{1 Launch}

Have students check their solutions to each equation before moving on to the next equation.

\section*{Monitor}

Help students get started by asking, "What is the first step in solving the equation in Problem 1?" or saying, "Once you find the solution, check it to make sure it works. Then write it in the box for Problem 2."

\section*{Look for points of confusion:}
- Solving the equations incorrectly. Show students how to check their solution by substituting the value for \(x\) in the original equation and evaluating it. The chain only works if the correct solutions are used.
- Difficulty solving the last equation. Walk through the process step by step, reminding students when they divide by a fraction, they multiply by its reciprocal.

\section*{3 Connect}

Display the solutions to the equations.
Ask, "What are some ways you can make sure you complete the equation chain?"

Have students share their solution methods if another student requests a problem to be shown.

Highlight there are multiple ways to solve equations, such as the ones in Problems 3 and 4. Help them to remember that they can divide first or distribute first. In Problem 4, students might decide to multiply by 9 first to help alleviate the fractions.

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which their responses from previous slides populate the corresponding spaces on the next screen.

\section*{Extension: Math Enrichment}

Have students refer to Problem 4 and ask them how the equation solving process would be different if they first multiplied each side by 9 versus -9 .

\section*{Math Language Development}

\section*{MLR6: Three Reads}

Use this routine to help students make sense of the directions for the Equation Chain.
- Read 1: Students should understand that the solution to each equation goes in the box for the next equation.
- Read 2: Ask students to identify which equations are written in the form \(p x+q=r\) and which are written in the form \(p(x+q)=r\).
- Read 3: Ask students to brainstorm what strategies they can use to solve the equation in Problem 1.

\section*{English Learners}

Have students annotate the box in each of the equations in Problems 2-4 with "solution from Problem \(\qquad\) " to help them understand the Equation Chain directions.

\section*{Activity 2 Trading Equations}

Students continue to practice solving equations, this time by creating equations with a certain solution, and then trading and solve equations with a partner.


\section*{1 Launch}

Distribute the Activity 2 PDF. Review the directions with the whole class, and check for understanding about the order of the steps.

\section*{(2) Monitor}

Help students get started by demonstrating the procedures using your own secret number.

\section*{Look for points of confusion:}
- Evaluating their own expression incorrectly. This will leave them with an incorrect "solution" to their equation. If this happens, encourage students to discuss and prove to their partner where an error was made.
- Taking vastly different times to solve their equations. Suggest partners agree on a set of numbers to use as their solution, e.g. integers, fractions.

\section*{3 Connect}

Have students share with a partner, something they realized about equations after doing this activity.

Display an equation that has a negative solution.
Ask, "What clues do you have that the solution may be a negative number?" You know that a negative times a positive will give a negative value.

Highlight that sometimes an equation can reveal clues about its solution even before students solve it. The signs of numbers can be one of those clues.

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Suggest students choose a secret number that simplifies the equation. For example, ask, "If you chose the number 11, what would the sum inside the parentheses be? What is \(\frac{1}{9}\) of that sum?"

\section*{Extension: Math Enrichment}

Ask students to challenge themselves to use more complicated secret numbers, such as decimals, fractions, or multi-digit numbers.

\section*{Math Language Development}

\section*{MLR6: Three Reads}

Use this routine to help students make sense of the directions for the activity.
- Read 1: Students should understand that they will choose a secret number for the solution and their partner will solve the equation to determine the solution.
- Read 2: Ask students to identify whether the equations are written in the form \(p x+q=r\) or \(p(x+q)=r\).
- Read 3: Ask students to brainstorm what strategies they can use to determine what secret number they will use in Equation 1.

\section*{English Learners}

Consider demonstrating choosing a secret number, such as 1 and show how to substitute it into the equation to determine the number that would go in the box.

\section*{Summary}

Review and synthesize different methods for solving equations of the forms \(p x+q=r\) and \(p(x+q)=r\)


\section*{Synthesize}

Display the equations \(p x+q=r\) and \(p(x+q)=r\).

Have students share with a partner using a turn-and-talk routine. Have one student explain to their partner how to solve the first equation for \(x\). The other student explains how to solve the second equation for \(x\).

Highlight any strategies or statements presented by students which would benefit the class. Discuss options for the second equation: depending on the values of \(p, q\), and \(r\), students may want to divide by \(p\) first or distribute \(p\).

Ask, "Did anyone's partner explain it in a way that made sense to you? Can you share any new ways of explaining which might benefit the whole class?"

\section*{D Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "How can you increase your efficiency in solving mathematical problems?"

\section*{Exit Ticket}

Students demonstrate their understanding by solving two equations, one of the form \(p x+q=r\) and the other of the form \(p(x+q)=r\).



\section*{Exit Ticket}


Solve each equation. Show your thinking and check your solution.
\begin{tabular}{rlrl} 
1. \(3 x+7\) & \(=18\) & & Check: \\
\(3 x+7-7\) & \(=18-7\) & \(3\left(3 \frac{2}{3}\right)+7\) & \(=18\) \\
\(3 x\) & \(=11\) & \(11+7\) & \(=18\) \\
\(3 x \div 3\) & \(=11 \div 3\) & 18 & \(=18\) \\
\(x\) & \(=3 \frac{2}{3}\) &
\end{tabular}
2. \begin{tabular}{rlrl}
\(3(x+7)\) & \(=18\) & & Check: \\
\(3(x+7) \div 3\) & \(=18 \div 3\) & \(3((-1)+7)\) & \(=18\) \\
\(x+7\) & \(=6\) & \(3(6)\) & \(=18\) \\
\(x+7-7\) & \(=6-7\) & 18 & \(=18\) \\
\(x\) & \(=-1\) &
\end{tabular}

Self-Assess

a I can solve an equation and check my solution. 123

\section*{Success looks like . . .}
- Goal: Solving equations of the forms \(p x+q=r\) and \(p(x+q)=r\), where \(p, q\), and \(r\) are specific rational numbers.
» Solving each caution in Problems 1 and 2.

\section*{- Suggested next steps}

If students make computational errors, consider:
- Reminding them to check their solutions as they work to notice errors as soon as possible.
If there are errors in understanding the steps for solving equations of the form \(p x+q=r\), consider:
- Assigning Practice Problem 1.

If there are errors in understanding the steps for solving equations of the form \(p(x+q)=r\), consider:
- Assigning Practice Problem 2.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
©. Points to Ponder ...
- What worked and didn't work today? Which groups of students did and did not have their ideas seen and heard today?
Did students find Activity 1 or Activity 2 more engaging today? Why do you think that is? What might you change for the next time you teach this lesson?

>. What are the missing operations? Complete each equation with,,+- . or \(=\)
(a) \(48 \square(-8)=-6\)
(b) \(-40 \square 8=-5\)
c \(12 \square(-2)=14\)
(d) \(18 \square(-12)=6\)
(e) \(18 \square(-20)=-2\)
(4) \(22 \square(-0.5)=-11\)
( Lin had 5 pencils. She gave some away. Now she has 1 pencil left. Which tape diagram matches this story? Select all that could apply.
A.

(3)

©


Explain your thinking
Diagram B matches the story because \(x\) is the number of pencils Lin gave
away. 1 is the number of pencils that are away, 1 is the number of pencils that are left and 5 is the total.
Diagram C also matches the story because each \(x\) could represent 1 pencil.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Practice Problem Analysis} \\
\hline Type & Problem & Refer to & DOK \\
\hline \multirow{3}{*}{On-lesson} & 1 & Activities 1 and 2 & 1 \\
\hline & 2 & Activities 1 and 2 & 1 \\
\hline & 3 & Activities 1 and 2 & 2 \\
\hline \multirow[b]{2}{*}{Spiral} & 4 & Unit 4 Lesson 3 & 1 \\
\hline & 5 & Unit 5 Lesson 17 & 2 \\
\hline Formative © & 6 & \begin{tabular}{l}
Unit 6 \\
Lesson 8
\end{tabular} & 2 \\
\hline
\end{tabular}

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Solving Real-World Problems Using Two-Step Equations}

In this Sub-Unit, students interpret situations with various quantitative relationships and see that they can be modeled with algebraic expressions and equations.



\section*{Narrative Connections}

Read the narrative aloud as a class or have students read it individually. Students continue to use equations to represent stories (albeit, not in ancient Egypt) in the following places:
- Lesson 8, Activity 1: Every Picture Tells a Story
- Lesson 11, Activity 2 : Science Club
- Lesson 12, Activity 2 :

Selling Shoes

\section*{Reasoning With Tape Diagrams}

Let's use tape diagrams to write equations for different scenarios.


\section*{Focus}

\section*{Goals}
1. Select a tape diagram to represent relationships between quantities in a situation.
2. Coordinate tape diagrams and equations of the form \(p x+q=r\) or \(p(x+q)=r\).
3. Language Goal: Identify equivalent equations and justify that they are equivalent. (Speaking and Listening, Writing)

\section*{Coherence}
- Today

Students use tape diagrams and equations of the form \(p x+q=r\) and \(p(x+q)=r\) to represent relationships in real-world scenarios.

\section*{\(<\) Previously}

In Unit 5, students wrote and solved one-step equations to represent real-world scenarios involving rational numbers.

\section*{>Coming Soon}

In the next few lessons, students will continue to work with tape diagrams and two-step equations to represent and eventually solve real-world problems.

\section*{Rigor}
- Students use tape diagrams to build conceptual understanding of writing equations from verbal descriptions of the form \(p x+q=r\) and \(p(x+q)=r\).


Warm-up

Activity 1
(.) 5 min

กำ Pairs


ํoำ Small Groups

\section*{Activity 2}


Activity 3

\section*{Summary}

Exit Ticket
\(\bigcirc\) Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 2 PDF, pre-cut cards, one per group
- Activity 2 PDF, Are you ready for more?, pre-cut cards, one per group (as needed)
- colored pencils, markers, or highlighters (as needed)
- glue or tape

\section*{Math Language \\ Development}

\section*{Review words}
- equivalent equations
- variable

\section*{Building Math Identity and Community Connecting to Mathematical Practices}

As students try to sort and match tape diagrams in Activities 2-3, they might talk over others in their group, particularly if they are excited about their choice and the justification. Prior to starting the lesson, ask students to set some group rules for how they will communicate clearly and effectively. They also need to determine how they will communicate to someone who is not following those guidelines.

\section*{Amps \(\vdots\) Featured Activity}

\section*{Activity 2 \\ Digital Card Sort}

Students group tape diagrams into two categories of their choosing by dragging and connecting them on screen.


\section*{- Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- Activity 2 may be omitted. Consider assigning the activity as additional practice using the digital card sort.

\section*{Warm-up Notice and Wonder}

Students are re-introduced to tape diagrams as representations of relationships between quantities in preparation for using them to write equations that represent and solve real-world problems.

(1) Launch

Conduct the Notice and Wonder routine. Set an expectation for the amount of time students have to work in pairs on the activity. Provide students some time to think independently before sharing what they notice with their partner.

\section*{(2) Monitor}

Look for points of confusion:
- Choosing values for the variables that don't match what is shown in the tape diagrams. Ask students to be sure that the values they chose describe the relationships shown in the tape diagrams.

\section*{Look for productive strategies:}
- Starting from the total ( \(c\) and \(z\) ) and selecting appropriate values for \(a\) and \(b\) and, \(x\) and \(y\). If students are struggling with this strategy, suggest they choose values for the other variables ( \(a\) and \(b\), and \(x\) and \(y\) ) and use them to calculate the total.

\section*{3 Connect}

Have students share what they noticed and wondered about the tape diagrams. Ask a few students to share the values they chose for the variables in each diagram.

Highlight that sections or parts labeled with the same variable or expression have the same value. Show how to check that the chosen values are valid by substituting them into the diagram and checking that total equals the sum of the parts.

Ask, "How does a tape diagram show that two values are equal? Which values in each diagram are equal?"

Power-up

To power up students' ability to determine when a tape diagram represents a scenario, have students complete:

Determine which scenarios are represented by the tape diagram. Select all that apply.
(A.) Andre had 5 carrot sticks. He gave some away and had 2 left.

B. Diego had 2 stickers. Jada gave him some more stickers and now he has 5 .
C. Noah had 5 erasers. He gave some away and had 3 left.
D. Priya had 2 markers. Han gave her 5 more.

Use: Before the Warm-up
Informed by: Performance on Lesson 7, Practice Problem 6. and Pre-Unit Readiness Assessment, Problem 6

\section*{Activity 1 Every Picture Tells a Story}

Students analyze how a tape diagram can describe a story. Then they use the tape diagram to formulate a question about the story.

\section*{(6)}

\section*{Name:}
\(\qquad\)
\(\qquad\)
Activity 1 Every Picture Tells a Story

Here are two stories. Each story has a tape diagram that represents it. For each story:
- Explain how the diagram represents the story
- Describe the unknown amount in the story.
- Write a question about the story the diagram could help answer.
1. Pashedu ordered 50 limestone blocks for the foundation of a pillar. Among his 5 workers, the first worker was given 18 blocks, while the remaining blocks were divided equally among the other 4 workers.


Explanation:
50 represents the total number of blocks. 18 represents the number of blocks given to the first worker. \(x\) represents the number of blocks given to each of the remaining workers.

Unknown:
The unknown is the number of blocks given to each of the four remaining workers.
Question:
Sample response: How many blocks did each of the four remaining workers get?
2. To decorate the pillar, Pashedu distributed a stack of gold foil sheets equally among his 5 workers. But, then he remembered that he also needed some gold foil to decorate the Pharaoh's palace, so he asked for 2 sheets back from each worker. After they gave him these sheets, the workers had a total of 40 sheets left.


\section*{Explanation:}

40 represents the total number of sheets the workers had after giving the sheets back
\(w-2\) represents the number of sheets each worker had after giving 2 sheets back.
Unknown:
The unknown in the story is the number of sheets of gold foil originally distributed to each worker.

Question:
Sample response: How many sheets were originally distributed to each worker?

\section*{1 Launch}

Read the directions as a class, emphasizing that there are three tasks for each story.

\section*{Monitor}

\section*{Look for points of confusion:}
- Struggling to understand the stories. Discuss each story with students and make sure they know what each of these terms mean: limestone block, pillar, sheet of gold foil.
- Suggesting alternate diagrams to describe the stories. Explain that their task is to understand how these diagrams describe each story.
- Struggling to make connections between the stories and the tape diagrams. Provide students with colored pencils or highlighters and have them color code the connections between each story and the tape diagram that represents it.

\section*{3 Connect}

Have students share their responses for each story. Ask if anyone thought about each diagram a different way (one additional line of reasoning for each diagram is probably sufficient) or came up with a different question.

Highlight how the diagrams represent each story by asking:
- "Where in the diagrams do you see equal parts? How do you know they are equal?"
- "For the first story, where in the diagram do you see the remaining blocks?"
- "Why don't you see the number 4 in the first diagram to show the 4 remaining workers?"
- "In the second diagram, where are the five workers represented?"
- "How did the diagrams help you to determine the value of the unknown quantities?"

Differentiated Support

\section*{Accessibility: Activate Prior Knowledge}

Remind students they worked with tape diagrams and used them to represent one-step equations in Grade 6. Consider showing a tape diagram that would represent the one-step equation \(x+3=10\) and ask students to explain how the tape diagram represents the equation.

\section*{Accessibility: Guide Processing and Visualization}

Provide access to colored pencils and suggest that students color code the quantities in each story and how they are represented in the tape diagram. For example, in Problem 1, they could color code 50 limestone blocks in the story in one color, and use the same color to circle the total of 50 in the tape diagram.
(

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as you highlight how the diagrams represent each story, use color coding to annotate the story and the diagram as students respond to the questions. For example, use one color to draw the outlines for each of the five rectangles labeled \(w-2\) and use the same color to annotate 5 workers in the story.

\section*{English Learners}

Show or draw images of what a pillar looks like, as well as blocks and sheets of gold foil, to help students access the words used in these stories.

\section*{Activity 2 Card Sort: Sorting Tape Diagrams}

Students sort tape diagrams into two categories of their choosing in preparation for identifying the two forms of equations they will use to solve real-world problems.

Amps Featured Activity Digital Card Sort

Activity 2 Card Sort: Sorting Tape Diagrams
You will be given a set of tape diagram cards. Sort the tape diagrams into two categories of your choosing. In the following boxes, explain the criteria for each category. Then place each tape diagram in the box under its corresponding category.

Criteria for Category 1:
Answers may vary, based on student chosen criteria. Some students may create categories based on the constants they see in the diagrams. Some may create categories based on whether there are addition expressions or just numbers and variables in the diagram.

Tape diagrams:

\section*{Criteria for Category 2:}

Answers may vary, based on student chosen criteria. Some students may create categories based on the constants they see in the diagrams. Some may create categories based on whether there are addition expressions or just numbers and variables in the diagram.

Tape diagrams:

At Are you ready for more?
You will be given a set of story cards. Match each story to the tape diagram that it represents. One story may have more than one match.

Story 1 matches with either A or B;
Story 2 matches with D; Story 3 matches with E; Story 4 matches with C .

\section*{1. Launch}

Distributive a set of cards from Activity 2 PDF to each group, along with glue or tape so that students may attach them to the categories on their student page. Conduct the Card Sort routine.

\section*{(2) Monitor}

Help students get started by asking them to identify what is the same and what is different between the tape diagrams.

\section*{Look for productive strategies:}
- Creating categories based on the constants in each diagram. Note who uses this strategy.
- Creating categories distinguishing Diagrams A, B, and C from Diagrams D and E. Note who uses this strategy.
(3) Connect

Display the set of tape diagrams.
Have students share the criteria for each of their categories. If possible, include a student with categories distinguishing Diagrams A, B, and C from Diagrams D and E.

Highlight that Diagrams D and E are each divided into equal parts, and the other diagrams are not divided into equal parts. However, Diagrams \(A\) and \(B\) represent the same relationship between \(x, 5\), and 19. In other words the sum of two \(x\) s and 5 is 19 in each diagram.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can group tape diagrams into two categories of their choosing by dragging and connecting them on screen. By using the digital card sort, you can eliminate the prep work needed for this activity

\section*{Accessibility: Guide Processing and Visualization}

Consider providing some sample categories that students can think about how to sort the tape diagrams. For example, consider suggesting the following categories: Individual rectangles containing single numbers or variables versus the individual rectangles containing a sum of numbers and variables.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as you highlight how the diagrams compare, consider displaying a table similar to the following:
\begin{tabular}{|l|l|}
\hline Divided into equal parts. & Diagrams \(D\) and \(E\) \\
Divided into equal parts. & Diagrams \(A, B, C\) \\
Represent the equation, \(\mathbf{2 x + 5 = 1 9 .}\) & Diagrams A and B
\end{tabular}

\footnotetext{
Ask students to explain why Diagram D does not represent the equation \(2 x+5=19\).
}

\section*{Activity 3 Matching Equations and Tape Diagrams}

Students match equations to tape diagrams to identify equivalent equations and prepare for writing equations from stories.


\section*{1. Launch}

Tell students that they will match equations to the tape diagrams they categorized in Activity 2. Note that more than one equation may match a diagram and that some equations may match more than one diagram.

\section*{2 Monitor}

Help students get started by encouraging them to describe the diagrams and equations in words. For example, the diagram in part d could be described as "two groups of \(x+5\) equal 19," which is represented by the equation \(2(x+5)=19\).

\section*{Look for productive strategies:}
- Matching the same equations to the diagrams in parts a and b. Note students who do this and ask them to explain their thinking during the class discussion.

\section*{3 Connect}

Have students share how they matched the tape diagrams and equations, and ask if others agree or disagree with the matches. Include the equations from the Are you ready for more?, if any students completed those problems.
Highlight why the same equations can be paired with both diagrams in parts \(a\) and \(b\), noting that these diagrams both show that 19 is equal to \(2 x+5\), so the equations are equivalent. Explain when two equations can be written to describe the same tape diagram, those equations are equivalent. Ask students to write additional equivalent equations for each diagram.
Ask, "How do the categories you identified in Activity 2 relate to the different types of equations in this activity?" The diagrams in parts \(a, b\), and \(c\) can all be modeled with equations of the form \(p x+q=r\) and the diagrams in parts d and e can both be modeled with equations of the form \(p(x+q)=r\).

\section*{Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization}

Provide access to colored pencils and suggest that students color code the quantities in each equation and how they are represented in the tape diagram. Consider also suggesting that they circle the equations and tape diagrams that represent adding equal groups of a sum, such as the equation \(2(x+5)=19\).

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students share their matches and you highlight the equivalent equations, draw their attention to how the tape diagrams show equations of the form \(p x+q=r\) or equations of the form \(p(x+q)=r\). Ask:
- "Which tape diagrams show adding equal groups of a sum? How is this illustrated in their corresponding equations?"
- "Which tape diagrams show adding the sum of a number and variables? How is this illustrated in their corresponding equations?"

\section*{Summary}

Review and synthesize how tape diagrams and equivalent equations can represent stories.


\section*{\(>\) Reflect:}
-

\section*{Synthesize}

\section*{Display the Summary.}

Highlight how each tape diagram represents its corresponding story and how the equations match the tape diagrams. Note that these stories/diagrams/equations illustrate two categories. In the first, a portion of the whole is partitioned and the remaining is divided into some number of equal groups. The equations that represent this category are equivalent to an equation of the form \(p x+q=r\). In the second, the whole is partitioned into equal groups and then the same amount is added to/subtracted from each group. The equations that represent this category are equivalent to an equation of the form \(p(x+q)=r\). Note that these are just some of the equivalent equations that represent each diagram. For example, the equation \(48 \div 4=x+11\) also represents the second story.

Ask, "How do you know all the equations in each group are equivalent?"

\section*{(I) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "Which representations best help you to make sense of certain mathematical scenarios?"

\section*{Exit Ticket}

Students demonstrate their understanding by choosing a tape diagram to represents a story and using the diagram to write a corresponding equation.


\section*{Professional Learning}

\section*{Success looks like ...}
- Goal: Selecting a tape diagram to represent relationships between quantities in a situation.
» Selecting the tape diagram that represents the 4 bags of apples after Lin ate 1 apple from each begin Problem 1
- Goal: Coordinating tape diagrams and equations of the form \(p x+q=r\) or \(p(x+q)=r\).
» Writing an equation for Diagram C in Problem 3.
- Language Goal: Identifying equivalent equations and justifying that they are equivalent. (Speaking and Listening, Writing)

\section*{- Suggested next steps}

If students choose an incorrect tape diagram to represent the story, consider:
- Reviewing why choice C best represents the story.
- Assigning Practice Problems 1 and 2.

If students are unable to describe what the variable represents in the story, consider:
- Explaining that each section in the diagram represents a bag of apples and that the "minus one" represents the apple Lin ate from each bag, so the variable represents the original number of apples in each bag.
- Assigning Practice Problem 1 and adding an additional step for them to explain what \(x\) represents in each story.

\section*{If students are unable to write an equation to describe the story, consider:}
- Working together to describe the relationships in the tape diagram (four groups of \(x-1\) equal 28 ) and represent it as an equation.
- Assigning Practice Problem 3, part a.

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

\section*{© 3 . Points to Ponder ...}
- What worked and didn't work today? In Unit 4, students used tape diagrams to understand problems about percentages. How did that support their use of tape diagrams to make sense of writing equations to describe real-world scenarios?

Which students' ideas were you able to highlight during Activity 3? What might you change for the next time you teach this lesson?
represents the diagram and the story.
a Today at doggy daycare, there are 12 dogs. Six of the dogs went outside to plat he tost of the dogs were divided evenly among three inside
 Equation:
\begin{tabular}{|lclc|}
\hline Practice & Problem & Analysis & DOK \\
\hline Type & Problem & Refer to & 2 \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 2 \\
\hline Spiral & \(\mathbf{2}\) & Activity 3 & 3 \\
\hline Formative \(\mathbf{0}\) & \(\mathbf{5}\) & \begin{tabular}{l} 
Activity 3
\end{tabular} & \begin{tabular}{l} 
Unit 5 \\
Lesson 17
\end{tabular} \\
\hline
\end{tabular}

A. \(7 \frac{5}{6}-9 \frac{3}{4}\)
C. \(\left(7 \frac{5}{6}\right) \cdot\left(-9 \frac{3}{4}\right)\)
B. \(\left(-7 \frac{5}{6}\right)+\left(-9 \frac{3}{4}\right)\)
(D.) \(\left(-7 \frac{5}{6}\right) \div\left(-9 \frac{3}{4}\right)\)

The value of Expression \(D\) is the greatest because it is the only expression with a positive value. Positive numbers are always greater than negative numbers.
5. Diego has a total of 30 pieces of clay. He wants to divide it evenly between himself and 5 friends. Write an equation to represent this scenario. Identify what the variable epresents in your equation.
Sample response: \(\mathbf{6 c}=\mathbf{3 0} ; \mathbf{c}\) represent the number of pieces of clay each person gets.

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{UNIT 6 | LESSON 9}

\section*{Reasoning About Equations and Tape Diagrams (Part 1)}

Let's see how tape diagrams can help us answer questions about unknown amounts in stories.


\section*{Focus}

\section*{Goals}
1. Coordinate tape diagrams, equations of the form \(p x+q=r\), and verbal descriptions of the situations.
2. Language Goal: Solve the equation that represents a situation and interpret the solution in the context of the situation. (Writing)

\section*{Coherence}

\section*{- Today}

Students create tape diagrams, write equations, and solve real-world scenarios, particularly focusing on equations of the form \(p x+q=r\). Students also connect the meaning of the equation's solution to the context of the real-world situation.

\section*{< Previously}

Students created tape diagrams to help write equations in Lesson 8.

\section*{> Coming Soon}

In Lesson 10, students will continue to create tape diagrams, write equations, and solve real-world problems, but will focus on equations of the form \(p(x+q)=r\).

\section*{Rigor}
- Students develop procedural fluency in writing equations from verbal descriptions of the form \(p x+q=r\) with and without the use of tape diagrams.
- Students apply their understanding of solving equations of the form \(p(x+q)=r\) to the context of real-world scenarios.


Warm-up


Activity 1


Activity 2


Summary

\section*{Exit Ticket}
\begin{tabular}{|c|c|c|c|c|}
\hline (1) 5 min & (1) 15 min & (1) 15 min & (1) 7 min & (1) 5 min \\
\hline \(\bigcirc\) ○ Independent & กำ Pairs & กำ Pairs &  & \(\bigcirc\) ¢ Independent \\
\hline
\end{tabular}

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\cap\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice

\section*{Math Language \\ Development}

Review words
- equation
- equivalent equations
- solution to an equation
- variable

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

In Activity 2, students might feel unmotivated to put forth the effort with mathematical reasoning to find three different representations of the same thing. Point out that students are reviewing two of the ways, so they should go quickly. Set an academic goal for relating the equation to the other forms.

\section*{Amps : Featured Activity}

\section*{Activity 1 \\ Sketching Tape Diagrams}

Students can create their tape diagrams digitally. They must reason through the scenario to determine the number of segments and how to label them.


\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In the Warm-up, have students only complete the first two columns of equations. Alternatively, the entire Warm-up may be omitted.
- In Activity 1, provide student choice by having them complete any three scenarios. Discuss all scenarios as a class.

\section*{Warm-up Equation String}

Students solve a string of related equations to observe the patterns connecting them.


\section*{1 Launch}

Let students know they should solve each equation mentally, by looking for structure and patterns among the three sets of equations. If they are unable to solve an equation, have them skip it and move to the next equation.

\section*{Monitor}

Help students get started by asking, "What is similar with the equations in the first column?"

Look for points of confusion:
- Not noticing any patterns in the equations. Help students by asking, "What do you notice that stays the same? What do you notice that is changing?"
- Hesitating with the equations in the third column. Have students try the patterns they mentioned in the previous columns.

\section*{Look for productive strategies:}
- Noticing these patterns:
» The equations in each column are similar in structure. Each set is an addition equation where the left side of the equal sign remains the same. The number on the right side increases by 10 .
» The solutions to the equations in each set also increase by 10 .
- Wanting to solve the equations algebraically. Remind students the goal is to notice patterns in the equation string.

\section*{3 Connect}

Display the equation string.
Ask, "What patterns did you notice in the equations, solutions, or both?"

Highlight the similarity between the structure of the equations and the patterns in their solutions.

\section*{Math Language Development}

\section*{MLR8: Discussion Supports}

During the Connect, help students make use of the structure of the equations by asking:
- "In each column, what stayed the same? What changed?"
- "How were the solutions affected by what changed?"
- "What will be the next solution in each column, if the pattern continues? What will be the next equation?"
- "What would have been the previous solution in each column, if the pattern continues? The previous equation?'

\section*{English Learners}

Annotate parts of the equations that are similar and different using different colors.

\section*{(7) Power-up}

To power up students' ability to write equations to represent a real-world situation, have students complete: Match each scenario with the equation that represents it,
a. Elena is collecting bugs. After collecting three a \(x+3=45\) more, she has a total of 45 .
b. Andre is collecting baseball cards. After giving c \(3 x=45\) three away, he has a total of 45 .
c. Noah is collecting shells. After a trip to the beach, b \(x-3=45\) he tripled his collection. He has a total of 45 .
Use: Before Activity 1
Informed by: Performance on Lesson 8, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 1

\section*{Activity 1 Scenarios and Diagrams}

Students draw tape diagrams to represent scenarios, being careful to define variables to represent the unknown quantities.

Amps Featured Activity
Sketching Tape Diagrams

Activity 1 Scenarios and Diagrams

Draw a tape diagram to represent each scenario. For some scenarios, you first need to choose a variable to represent the unknown quantity.

3. A merchant in the market had 7 identical duck eggs, and a small goose egg weighing 9 debens (a deben is about 13.6 ounces). The total weight of the eggs was 30 debens. The variable is \(\quad w\) and it represents
 the weight of one duck egg
4. Two scribes made a trade. The first scribe offered an equal number of cloves of garlic for each of the 7 eggs he received plus an additional 9 cloves to seal the deal. In total, he traded 30 cloves of garlic for the 7 eggs. The variable is \(g\) and represents the number of garlic cloves for each egg
5. A baker baked 9 large loaves of bread. He kept 7 for his shop, then divided the remaining loaves into 30 identical slices to sell at the market.
The variable is \(x\) and represents the portion of a loaf in each slice.

\(\qquad\)

\section*{1 Launch}

Be sure students understand that their task is to draw a tape diagram representing each scenario. Let them know there is no requirement to write or solve an equation.

\section*{Monitor}

Help students get started by asking, "What do you know in each scenario?" and "What do you want to know in each scenario?"

Look for points of confusion:
- Thinking because all the scenarios use the same quantities, they all have the same tape diagrams. Have students check their tape diagram with the scenario to check whether it is reasonable.
- Struggling to represent Scenario 5 with a tape diagram. Explain that students will look for more efficient ways to represent these types of scenarios.
(3) Connect

Have students share their tape diagrams for each scenario.

\section*{Ask:}
- "For the situations with no variable, how did you decide what quantity to represent with a variable?"
- "Did any situations have the same diagrams?"
- "How could you tell from the stories that the diagrams would be the same?"
- "How is the last scenario different from the others?"

Highlight how all the scenarios use the same values, but do not all have the same tape diagrams. Note, however, there are some scenarios which use the same tape diagram.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can create and edit their tape diagrams using digital tools.

\section*{Accessibility: Guide Processing and Visualization}

Have students complete Problems 1, 3, and 4 first, as they can be represented by the same tape diagrams. Then have them complete Problems 2 and 5 and ask, "How are these scenarios different from the scenarios in Problems 1, 3, and 4?"

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students respond to the Ask questions, press for details in their reasoning by asking these follow-up questions:
"Which scenario(s) show that there are .
- 7 groups of the variable?" Scenarios 1,3 , and 4
- 9 groups of the variable?" Scenario 2
- 30 groups of the variable?" Scenario 5

\section*{English Learners}

Annotate key words in the text that indicate the number of equal groups of the variable, such as 9 equal lengths of \(x\) cubits each.

\section*{Activity 2 Scenarios, Diagrams, and Equations}

Students make connections between the scenarios, tape diagrams, equations, variables, and solutions to build an understanding between the different representations.


\section*{1 Launch}

Students may reference their responses from Activity 1. Point out that not all the equations from Activity 1 are present in Activity 2. However, the scenarios come from two of the scenarios in Activity 1.

\section*{Monitor}

Help students get started by asking, "What similarities and differences do you notice between the equations?"

\section*{Look for points of confusion:}
- Matching the equations incorrectly. Say, "I notice the numbers from the equation match your scenario, but can you show me where each quantity is seen in the equation? For example, how did you represent, ' 9 additional stones are delivered'?" Have students refer to their tape diagrams from Activity 1.

3 Connect
Have students share their work for the most challenging tasks of the activity. If matching the equations was the most challenging, discuss in detail how to represent each quantity in an equation. If solving the equations was the most challenging, discuss strategies for solving the equations.

Highlight students who use precise language to describe the variable ( \(x\) represents the number of stones vs. \(x\) represents stones). Reinforce the difference between finding the solution and describing the meaning of the solution.

Ask, "What does each number and letter in the equation represent?"

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Suggest that students refer to the tape diagrams they matched with each scenario from Activity 1 to assist them with this activity.

\section*{Extension: Math Enrichment}

Ask students to choose one of the two scenarios in this activity and explain how the scenario would be altered if each of the other two equations correctly represented it. For example, in Problem 1, the equation \(9 x+7=30\) would represent the scenario if a builder has 9 equal sets of large stones for building a pyramid and 7 additional stones are delivered to the builder.

\section*{Summary}

Review and synthesize the connections between scenarios, tape diagrams, and corresponding equations, and how tape diagrams and equations can help you reason about unknown quantities in the scenarios.

\section*{Summary}

\section*{In today's lesson.}

You used tape diagrams to help you to write equations of the form \(p x+q=r\). Writing an equation to represent a scenario can help you express how quantities in the scenario are related to each other. Writing an equation can also help you reason about unknown quantities whose values you want to find.
In the next lesson, you will work with equations of the form \(p(x+q)=r\).

\section*{Synthesize}

Display the problem, "An architect is drafting plans for a new supermarket. There will be a dedicated space that is 144 in . long for rows of nested shopping carts. The first cart is 34 in. long and each nested cart adds another 10 in. The architect wants to know how many shopping carts will fit in each row."

Have students share what the tape diagram would look like and their strategies for solving the corresponding equation \(10 x+34=144\).

\section*{Ask:}
- "What does each number and variable in the tape diagram or equation represent in the scenario?"
- "What is the reason for the operations addition and multiplication used in the equation?"
- "What is the solution to the equation?" \(x=11\)
- "What does it mean to be a solution to an equation?"
- "What does the solution represent in the scenario?"

Highlight the entire process for determining what the variable represents, drawing a tape diagram, writing an equation, solving the equation, and explaining the meaning of the solution in context.

\section*{(I) Reflect}

After synthesizing the concepts of the lesson allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition To help them engage in meaningful reflection, consider asking:
- "Which representations best help you to make sense of certain mathematical scenarios?"

\section*{Exit Ticket}

Students demonstrate their understanding by writing and solving an equation of the form \(p x+r=q\) to match a scenario that involves an unknown quantity.


\section*{Success looks like ...}
- Goal: Coordinating tape diagrams, equations of the form \(p x+q=r\), and verbal descriptions of the situations.
» Writing the equation to determine how much flour is in each loaf in part b.
- Language Goal: Solving the equation that represents a situation and interpreting the solution in the context of the situation. (Writing)
»Solving the equation and describing how the solution represents the amount of flour in each loaf of bread in parts c and d .

\section*{- Suggested next steps}

If errors with tape diagrams are present, consider:
- Assigning Practice Problem 2.

If errors with defining the variable are present, consider:
- Continuing to model defining the variable for every problem.
If errors occur with writing the equation, Consider:
- Assigning Practice Problem 3.

If errors with solving the equation and/ or describing the meaning of the solution, consider:
- Assigning Practice Problem 1.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder . .

What worked and didn't work today? What did you see in the way some students approached Activity 1 that you would like other students to try?
- The instructional goal for this lesson was for students to coordinate tape diagrams, equations, and verbal scenarios to represent and interpret solutions in the context of real-world scenarios. How well did students accomplish this? What did you specifically do to help students accomplish it? What might you change for the next time you teach this lesson?
 this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{UNIT 6 | LESSON 10}

\section*{Reasoning About Equations and Tape Diagrams (Part 2)}

Let's see how tape diagrams can help us answer questions about unknown amounts in stories.


\section*{Focus}

\section*{Goals}
1. Coordinate tape diagrams, equations of the form \(p(x+q)=r\), and verbal descriptions of the situations.
2. Language Goal: Solve the equation that represents a situation and interpret the solution in the context of the situation. (Writing)

\section*{Coherence}

\section*{- Today}

Students use tape diagrams and equations of the form \(p(x+q)=r\) to describe relationships in real-world story problems and solve them algebraically. Students connect the meaning of the equation's solution to the context of the story.

\section*{< Previously}

In Lesson 9, students used tape diagrams and equations of the form \(p x+q=r\) to describe relationships in real-world problems.

\section*{Coming Soon}

In Lesson 11, students will use tape diagrams and reasoning to decide which type of equation, \(p x+q=r\) or \(p(x+q)=r\), describes the relationships in a real-world story problem. Then they will write and solve the equation algebraically.

\section*{Rigor}
- Students develop procedural fluency in writing equations from verbal descriptions of the form \(p(x+q)=r\) with and without the use of tape diagrams.
- Students apply their understanding of solving equations of the form \(p(x+q)=r\) to the context of real-world scenarios.

\section*{Activity 1}
\(\Delta\)
Activity 2
(1)
Summary


Exit Ticket
(-) 5 min
\(\bigcirc\) Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice

\section*{Math Language \\ Development}

\section*{Review words}
- equation
- equivalent equations
- solution to an equation
- variable

\section*{Amps Featured Activity}

\section*{Activity 1 \\ Dynamic Tape Diagrams}

Students can create digital tape diagrams, and you can overlay them all to see similarities and differences at a glance.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Because Activity 2 looks familiar, students might lack the self-discipline to exercise the mental reasoning required to achieve the best results. Since students are working in pairs, ask them to work together to encourage each other to show focus and determination throughout the task.

\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In the Warm-up, have students only complete the first two columns of equations. Alternatively, the entire Warm-up may be omitted.
- In Activity 1, provide student choice by allowing students to create diagrams for any three scenarios. Discuss all scenarios as a class.

\section*{Warm-up Equation String}

Students solve a string of related equations to build fluency and pattern recognition.


\section*{1 Launch}

Let students know they should solve each equation mentally, by looking for structure and patterns among the three sets of equations. If they are unable to solve an equation, have them skip it and move to the next equation.

\section*{2 Monitor}

Help students get started by saying, "Think of the variable as a mystery number. What number should go in place of the variable to make the left side equal to the right side?"

\section*{Look for points of confusion:}
- Not noticing any patterns in the equations:. Ask, "What do you notice that stays the same? What do you notice that is changing?"
- Getting stuck trying to solve algebraically. Have them solve the equation using any strategy. The goal is to notice patterns and structure.

\section*{Look for productive strategies:}
- Noticing these patterns:
"As the right side value increases, the value of the variable increases by half of that amount.
» Corresponding solutions in each set are two less than solutions in the previous set.

\section*{3 Connect}

Display the list of equations and their solutions.
Ask, "What patterns did you notice in the equations, solutions, or both?"
I used the same solution steps for equations that were grouped together.
Have students share their individual observations of patterns.
Highlight the similarity in the structure of the equations and the patterns in their solutions.

\section*{Math Language Development}

\section*{MLR8: Discussion Supports}

During the Connect, help students make use of the structure of the equations by asking:
- "In each column, what stayed the same? What changed?"
- "How were the solutions affected by what changed?"
- "What will be the next solution in each column, if the pattern continues? What will be the next equation?"
- "What would have been the previous solution in each column, if the pattern continues? The previous equation?"

\section*{English Learners}

Annotate parts of the equations that are similar and different using different colors.

Power-up
To power up students' ability to identify equations that match tape diagrams which involve grouping, have students complete:

Determine which equation does not represent the tape diagram.
\begin{tabular}{|l|l|l|l|l|}
\hline\(x-4\) & \(x-4\) & \(x-4\) & \(x-4\) & \(x-4\) \\
\hline
\end{tabular}
A. \(5(x-4)=25\)
B. \(5 x-4=25\)
C. \(5 x-20=25\)
D. \(x-4=5\)

Use: Before Activity 1.
Informed by: Performance on Lesson 9, Practice Problem 6.

\section*{Activity 1 Connecting Scenarios and Diagrams}

Students draw tape diagrams to represent scenarios, being careful to define variables to represent the unknown quantities.


Amps Featured Activity
Dynamic Tape Diagrams

Activity 1 Connecting Scenarios and Diagrams

Draw a tape diagram to represent each scenario. For some scenarios, you will need to choose a variable to represent an unknown quantity.

1. A Pharoah's tomb has 5 baskets with \(x\) pieces of fruit in each. A priest adds 3 more pieces of fruit to each basket. Altogether, the baskets contain \begin{tabular}{l|l|l|l|l|}
\(x+3\) & \(x+3\) & \(x+3\) & \(x+3\) & \(x+3\) \\
\hline
\end{tabular} 20 pieces of fruit.
2. Noah draws a model of a pyramid where the face is an equilateral triangle with sides that are 5 in . long. He wants to increase the length of each side by \(x\) in., so the triangle is still equilateral, but has a perimeter of 20 in.
3. An art class charges each student \(\$ 3\) to attend, plus a fee for supplies. Today, \(\$ 20\) was collected for the 5 students attending the class.
The variable is \(f\) and represents \begin{tabular}{|l|l|l|l|l|}
\hline \(3+f\) & \(3+f\) & \(3+f\) & \(3+f\) & \(3+f\) \\
\hline
\end{tabular}
the amount of the fee.
4. The northern division of the Pharoah's
army marched 20 miles. This was 3 times as far as the southern division marched. The southern division marched 5 more miles than the western division.
\begin{tabular}{|l|l|l|}
\hline\(m+5\) & \(m+5\) & \(m+5\) \\
\hline
\end{tabular}

The variable is \(\quad m\) and represents the number of miles the western division marched.

\section*{1 Launch}

Be sure students understand that their task is to define the variable and draw a tape diagram representing each scenario. Let them know there is no requirement to write or solve an equation.

\section*{(2) Monitor}

Help students get started by asking, "What do you know in each scenario? What do you want to know in each scenario?"

\section*{Look for points of confusion:}
- Thinking because all the scenarios use the same quantities, they all have the same tape diagrams. Have students check their tape diagram with the scenario to see if it makes sense.
(3) Connect

Have students share their correct diagrams.
Ask:
- "For the situations with no variable, how did you decide what quantity to represent with a variable?" I thought about which number is not known.
- "Did any scenarios have the same diagrams?"
- "How could you tell from the scenarios that the diagrams would be the same?"
Highlight how the equal groups of sums in the scenarios are shown in the tape diagrams.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can create tape diagrams using digital tools. You can overlay them all to see similarities and differences at a glance.

\section*{Accessibility: Guide Processing and Visualization}

Have students complete Problems 1 and 3 first, as they can be represented by the same tape diagrams. Then have students complete Problems 2 and 4 , as they can be represented by the same diagram. Ask, "What do you notice about the tape diagrams you drew?"

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students respond to the Ask questions, press for details in their reasoning by asking these follow-up questions:
"Which scenario(s) show that there are
- 5 equal groups of a sum? What key words indicate this?" Scenarios 1 and 3
- 3 equal groups of a sum? What key words indicate this?" Scenarios 2 and 4

\section*{English Learners}

Annotate key words in the text that indicate adding equal groups of a sum, such as 5 baskets with \(x\) pieces of fruit in each and adds 3 more pieces of fruit to each basket

Activity 2 More Scenarios, Diagrams, and Equations
Students make connections between the scenarios, tape diagrams, and equations to deepen understanding of their relationships.


\section*{1 Launch}

Have students reference their answers from Activity 1. Point out that this activity uses two of the scenarios from Activity 1.

\section*{2 Monitor}

Help students get started by asking, "What similarities and differences do you notice between the equations?"

\section*{Look for points of confusion:}
- Not matching equations appropriately. Say, "The numbers from the equations seem to match your scenario. How is each quantity in the scenario represented by the equation? For example, how did you represent a priest adds 3 more pencils to each basket?"
- Struggling to solve the equations. Refer students to strategies used to solve the Warm-up equations

3 Connect
Have students share their work for the two most challenging tasks for your class. If your class had difficulty identifying the variable, ask students what they think the unknown quantity is for each scenario.

Highlight the use of precise language to describe the variable (e.g. " \(x\) represents the number of pieces of fruit vs. \(x\) represents fruit.") and what the solution represents in terms of the scenario.

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Suggest that students refer to the tape diagrams they matched with each scenario from Activity 1 to assist them with this activity.

\section*{Extension: Math Enrichment}

Ask students to choose one of the two scenarios in this activity and explain how the scenario would be altered if the other equation correctly represented it. For example, in Problem 1, the equation \(3(x+5)\) would represent the scenario if there were 3 baskets with each containing \(x\) pieces of fruit and the priest adding 5 more pieces of fruit to each basket.

\section*{Summary}

Review and synthesize the connections between scenarios, tape diagrams, and corresponding equations of the form \(p(x+q)=r\), and how these connections can help students reason about unknown quantities in the scenarios.

\section*{Summary}

\section*{In today's lesson.}

You spent time representing, writing, and solving equations of the form \(p(x+q)=r\) For example, consider the scenario:

Elena ran 20 miles this week, which was 3 times as far as Clare ran this week. Clare ran 5 more miles this week than she did last week.

If \(x\) represents the number of miles Clare ran last week, this scenario can be modeled using a tape diagram:


It can also be represented by the equation \(3(x+5)=20\).
Using a tape diagram helps to make sense of a scenario in order to be able to write an algebraic representation.

\section*{Reflect:}

\section*{Synthesize}

Display the Summary from the Student Edition.

\section*{Ask:}
- What does each number and variable in the equation represent in the situation?"
- "What is the reason for the operations of multiplication or addition used in the equation?"
- "What is the solution to the equation?"
- "What does it mean to be a solution to an equation?"
- "What does the solution represent in the situation?"

Highlight that the total value always represents the entire sum of all the sections of the tape diagram. Remind students to look carefully at what the unknown value is, which values are grouped together, and how many times they are grouped together.

\section*{(I) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "Which representations best help you to make sense of certain mathematical scenarios?"

\section*{Exit Ticket}

Students demonstrate their understanding by writing a scenario to match a given tape diagram.


\section*{Success looks like ...}
- Goal: Coordinating tape diagrams, equations of the form \(p(x+q)=r\), and verbal descriptions of the situations.
» Writing a verbal description to represent the given tape diagram in Problem 1.
- Language Goal: Solving the equation that represents a situation and interpreting the solution in the context of the situation. (Writing)
» Solving the equation that represents the tape diagram in Problem 2.

\section*{Suggested next steps}

\section*{If students struggle to write a scenario, consider:}
- Having students review Activity 1. Encourage them to simply substitute numbers while they get comfortable with the structure of these scenarios.
- Assigning Practice Problem 2.

If students forget to distribute the number 6 to all terms inside parentheses, consider:
- Reviewing Lesson 6.
- Assigning Practice Problem 3

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ..
What worked and didn't work today? What surprised you as your students worked on Activity 1?
- How were the activities from today's lesson similar to or different from the activities students completed in the previous lesson? What might you change for the next time you teach this lesson?
 this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.

\title{
Using Equations to Solve Problems
}

\section*{Let's use equations with and without parentheses to solve problems.}


\section*{Focus}

\section*{Goals}
1. Language Goal: Interpret a written description of a situation and write and solve an equation of the form \(p x+q=r\) or \(p(x+q)=r\) to represent it. (Reading)
2. Write an equation of the form \(p x+q=r\) or \(p(x+q)=r\) to represent a situation involving signed numbers.

\section*{Coherence}

\section*{- Today}

Students use tape diagrams and reasoning to decide whether \(p x+q=r\) or \(p(x+q)=r\) describes the relationships in a real-world story problem. Then they write and solve the equation algebraically.

\section*{\(<\) Previously}

In Lesson 9, students used tape diagrams and equations of the form \(p x+q=r\) to describe relationships in real-world problems. In Lesson 10,
they did the same with equations of the form \(p(x+q)=r\).

\section*{> Coming Soon}

In Lessons 16, 17, and 18, students will write inequalities of the form \(p x+q<r\) and \(p(x+q)<r\) to describe relationships in real-world problems and solve them algebraically.

\section*{Rigor}
- Students use tape diagrams to build conceptual understanding of writing equations from verbal descriptions of the form \(p x+q=r\) and \(p(x+q)=r\) involving negative numbers.
- Students develop procedural fluency in writing and solving equations from verbal descriptions of the form \(p x+q=r\) and \(p(x+q)=r\) with negative numbers.


Warm-up


Activity 1


Activity 2


Summary


Exit Ticket
(J) 8 min
\(\bigcirc\) Independent

\section*{\begin{tabular}{l|l} 
Amps powered sy yesmos & Activity and Presentation Slides \\
\hline
\end{tabular}}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \\ O Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- sticky notes
- tools for creating a visual display (chart paper, markers, etc)

\section*{Math Language \\ Development}

\section*{Review words}
- equation
- equivalent equations
- solution to an equation
- variable

\section*{Amps : Featured Activity}

\section*{Warm-up \\ See Student Thinking}

Students are asked to explain their thinking behind choosing an equation that doesn't belong, and these explanations are passed to you.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Before starting the solution process in Activity 2, students must take time to define the variable. Defining the variable is similar to identifying the problem in a situation. When students understand what problem they are trying to solve or what variable they are trying to solve for, they can make better decisions about how to approach the task.

\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- The Warm-up may be omitted.
- For Problems 2 and 3 in Activity 1, have students choose one scenario.
- In Activity 2, have half of each group complete each problem and then compare their strategies as a group.

\section*{Warm-up Which One Doesn't Belong?}

Students analyze four equations to determine which one doesn't belong.


\section*{1 Launch}

Conduct the Which One Doesn't Belong routine.

\section*{2 Monitor}

Look for points of confusion:
- Thinking that there is only one correct answer. Challenge students who claim they are finished after finding one reason why one equation doesn't belong, and challenge them to find reasons why other equations don't belong.

\section*{3 Connect}

Display the four equations.
Have students share one reason why a particular equation doesn't belong. Ask the rest of the class whether they agree or disagree. Since there is no single correct answer, attend to students' explanations and ensure the reasons they give are correct. Students should explain the meaning of any mathematical terminology they use, such as coefficient or solution.

Highlight that Equation B is the only one that is not equivalent to the others by asking:
- "Imagine a group of students wrote these equations to match a story. Which equation doesn't describe the same story as the others? Why not?"
Equation B; because it is not equivalent to the others.
- "Imagine a student started with Equation A, distributed, and ended up with Equation B. What mistake did they make?" They forgot to multiply 4 by both terms in the expression.

\section*{(1R) Math Language Development}

\section*{MLR2: Collect and Display}

During the Connect, as students share their reasons for why a particular equation does not belong, collect and display the language they use, such as parentheses, equivalent, expressions, variable term, multiplication dot, and constant term. Add these terms and phrases to the class display.

\section*{English Learners}

Annotate the equations with the language used to describe them.

\section*{(7) Power-up}

To power up students' ability to reason about how tape diagrams model equations, have students complete:

Write each equation under the tape diagram that matches it.
\(4(x+3)=9\)
\[
4 x+3=9
\]
9
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|c|}{} \\
\hline\(x\) & \(x\) & \(x\) & \(x\) & 3 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline\(x+3\) & \(x+3\) & \(x+3\) & \(x+3\) \\
\hline
\end{tabular}

Use: Before Activity 1
Informed by: Performance on Lesson 10, Practice Problem 6

\section*{Activity 1 Scenarios, Diagrams, and Equations}

Students make connections between tape diagrams, equations, and real-world story problems to contrast the two main types of equations studied in this unit.

Activity 1 Scenarios, Diagrams, and Equations

Lin is learning about the difference between thermal energy and temperature in science class. She learns if two different amounts of liquids - like a small cup of water and a large bathtub of water - have the same temperature - they will have different amounts of thermal energy. This is because the bathtub has more hot water than the cup, and so it has more thermal energy.
She is conducting experiments with three cups of water that all start out with 12 units of thermal energy.

Use the tape diagrams and scenarios to complete the following problems.


Scenario 1: In the first experiment, Lin adds three identical immersion heaters to one small cup of water, and the amount of thermal energy in the cup increases to 90 units. How many units of thermal energy did each heater add to the water?

Scenario 2: In the second experiment, Lin heats three small cups of water on three identical hot plates, and then mixes the cups of water all together. The total amount of thermal energy in the mixture is 90 units. How many units of thermal energy did each hot plate add to each small cup of water?
1. Which tape diagram represents each scenario? Explain your thinking.

Tape diagram A represents Scenario 1, because the three heaters are added to one cup with 12 units of thermal energy, equaling 90 units in total. Tape diagram B represents Scenario 2, because each group of \(y+12\) represents one cup of water - each cup starts with 12 units, and each hot plate adds another \(y\) units. The amount of thermal energy in
all three cups equals 90 units.
2. In each tape diagram, what part of the scenario does the variable represent?

Tape diagram A: \(x\) represents the amount of thermal energy added by each immersion heater.
Tape diagram B: y represents the amount of thermal energy added by each hot plate.
1. Launch

Read and discuss the passage as a class to ensure students understand the situation before working. Then give students a few minutes of individual work time before discussing the problems with their group.

\section*{(2) Monitor}

Help students get started by asking, "How are the tape diagrams alike? How are they different? How are the scenarios alike/different?"

\section*{Look for points of confusion:}
- Struggling to explain what the variables represent. Suggest students ask themselves what the unknown variable is in each situation.

\section*{Look for productive strategies:}
- Solving the second equation using the Distributive Property. Note students who use this strategy.

Activity 1 continued >

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Present the two tape diagrams and before students read the scenarios, ask the following questions to help students make sense of the tape diagrams.
- "Which tape diagram shows adding equal groups of a sum?" Tape diagram B
- "Which tape diagram shows adding equal groups of a variable plus one number?" Tape diagram A

\section*{Math Language Development}

\section*{MLR6: Three Reads}

Use this routine to help students make sense of each scenario.
- Read 1: Students should understand the basics of each experiment, without paying attention to the quantities.
- Read 2: Ask students to identify the important quantities of the problem, such as Lin adding three identical heaters to one cup of water in Scenario 1.
- Read 3: Ask students to brainstorm strategies for how they can use key words from the text to determine which tape diagram represents each scenario.

\section*{English Learners}

Have students annotate key words and phrases, such as three heaters, one cup in Scenario 1, and three hot plates, three cups in Scenario 2.

\section*{Activity 1 Scenarios, Diagrams, and Equations (continued)}

Students make connections between tape diagrams, equations, and real-world story problems to contrast the two main types of equations studied in this unit.


\section*{3 Connect}

Have students share how they matched each tape diagram to each scenario, and have them share the equations they wrote to represent them.

Highlight the aspects of each scenario that result in it being represented by one equation rather than another. Note the difference between the solution to the equation and the answer to the question in the scenario.

Ask, "What parts of the story made you think that one of the two diagrams represented it?"

\section*{Activity 2 Science Club}

Students write and solve equations that include subtraction and negative numbers to represent real-world scenarios.

\begin{abstract}
Activity 2 Science Club

Read each scenario. Define a variable to represent the unknown, and use it to write an equation that represents the scenario. Then solve your equation to answer the question and describe what the solution represents in the scenario. Draw a tape diagram to help, if needed.
\end{abstract}

Stronger and Clearer: You will create a visual display
of one of these problems and participate in a Gallery Tour at the end of this activity. Us any feedback you receive to improve your display.

\section*{1. Launch}

Alert students that the equations they write for this activity may include subtraction or negative numbers. Suggest they annotate the text and draw a tape diagram to describe each scenario. If time allows, have students create a visual display of one of the problems and and conduct the Gallery Tour routine.

\section*{(2) Monitor}

Help students get started by suggesting they draw a tape diagram to represent each situation.

\section*{Look for points of confusion:}
- Making errors in calculations. Remind students to check if their solutions are reasonable as a strategy to catch calculation errors.

\section*{Look for productive strategies:}
- Determining the solution without writing an equation. Suggest students think about the steps they took to find the solution and consider an equation that could be solved using the same steps.

\section*{3 Connect}

Display students' visual displays.
Have students share their work through a Gallery Tour. Provide sticky notes. Have students silently view their classmates' work and leave comments about what they see. Then give each group time to review the notes left on their work and discuss with, or ask for clarification from, the class. If time allows, each group can also give a short presentation about their work.

Highlight that, despite the fact the first equation uses subtraction instead of addition and the second equation uses negative numbers, the equations in this activity still fit the forms \(p x+q=r\) and \(p(x+q)=r\) because the variables \(p, q\), and \(r\) can have negative or positive values and students can rewrite subtraction as addition of a negative number.

\section*{Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization}

Provide access to colored pencils and suggest that students color code or annotate the quantities and relationships in the text that help them write an equation or draw a tape diagram. For example, in Problem 1, they could color code 5 days in one color and 19 km in another color.

\section*{Extension: Math Enrichment}

Have students explain how the equation, tape diagram (if they drew one), and solution would be altered for Problem 1 if Priya's group hiked half of the distance each day that Elena's group hiked, but everything else remained the same. The equation would become \(19=5(0.5 \mathrm{r})\) and the solution would be 7.6 km .

\section*{Math Language Development}

\section*{MLR1: Stronger and Clearer Each Time}

During the Connect, as students participate in the Gallery Tour, give them time to discuss the sticky notes their classmates added to their work. Have them ask each other clarifying questions. Then have groups of students revise and improve their displays before presenting to the class.

\section*{English Learners}

Provide samples of clarifying questions students could ask each other, such as:
- "How did you define the variable?"
- "How did you solve the equation? What strategy did you use?"
- "What clues from the scenario helped you interpret the meaning of the solution?"

\section*{Summary}

Review and synthesize how equations of the form \(p x+q=r\) represents " ( \(p\) groups of \(x\) ) added to \(q\) equals \(r\)," and equations of the form \(p(x+q)=r\) represents " \(p\) groups of the quantity \((x+q)\) equals \(r\)."


\section*{Synthesize}

Display the Summary from the Student Edition.
Highlight the connection between the equations and word problems by annotating each scenario and its accompanying equation to show how the equation represents the scenario. Discuss which aspects of each scenario result in an equation of the form \(p x+q=r\) or \(p(x+q)=r\). Note that the first equation fits the form \(p x+q=r\) even though the operation is subtraction instead of addition. This can be shown by rewriting the equation as \(4 t+(-5)=27\).

If time allows, challenge students to edit each scenario so that it would be modeled with the other type of equation. For example, in the first problem, if the science club sold five of each size of the t-shirt, instead of five t-shirts, then the equation representing the problem would be of the other form.

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What did you notice during your Gallery Tour? Did any other students use the same strategies as you? Did anyone use a different strategy?"

\section*{Exit Ticket}

Students demonstrate their understanding by writing and solving an equation to answer a question about a real-world scenario.


\section*{Exit Ticket}

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder ...
- What worked and didn't work today? During the discussion about Activity 1 , how did you encourage each student to listen to one another's strategies?

What routines enabled all students to do math in today's lesson? What might you change for the next time you teach this lesson?

Date:
Period: ES

Write an equation for each scenario. Then determine the number of problems originally assigned to each student. Draw a tape diagram to help, if needed.
1. Five students came for after-school tutoring. Lin's teacher assigned each of them the same number of problems to complete. Then the teacher assigned each student 5 more problems. 30 problems were assigned in all.

Equation: \(\quad 5(p+5)=30\) \(\begin{array}{rlrl}5(p+5) \div 5 & =30 \div 5 & & p \text { represents the number of problems } \\ p+5 & =6 & & \text { Sample tape diagram (not required): } \\ p+5-5 & =6-5 & & p+5 p+5 p+5 p+5 p+5 \\ & & \end{array}\)
\(p=1\)
30
Solution: Lin's teacher originally assigned each student 1 problem.
2. Five students came for after-school tutoring. Priya's teacher assigned each of them the same number of problems to complete. A sixth student came late, so the teacher only assigned them 2 problems. 27 problems were assigned in all.


Solution: Priya's teacher originally assigned each student 5 problems.
    123

\section*{Success looks like . . .}
- Language Goal: Interpreting a written description of a situation and writing and solving an equation of the form \(p x+q=r\) or \(p(x+q)=r\) to represent it. (Reading)
» Solving the written equation and interpreting the solution in Problems 1 and 2.
- Goal: Writing an equation of the form \(p x+q=r\) or \(p(x+q)=r\) to represent a situation involving signed numbers.
» Writing equations to represent both scenarios in Problems 1 and 2.

\section*{Suggested next steps}

If students write the same form of equation for both problems, consider:
- Having them reread the scenarios and identify the difference between them. Then they can draw a tape diagram for each scenario, considering the differences they identified, and write an equation for each diagram.
- Assigning Practice Problem 1.

If students solve the problem, but neglect to write an equation, consider:
- Having them draw a tape diagram for each problem and write the equation based on their diagram.
- Assigning Practice Problem 1.


\section*{(2)}

Name
3. Diego scored 9 points less than Andre in the basketball game

Noah scored twice as many points as Diego. If Noah scored
10 points, how many points did Andre score?
(a) Equation: \(2(p-9)=10\)
\[
\begin{aligned}
2(p-9) \div 2 & =10 \div 2 \\
p-9 & =5 \\
p-9+9 & =5+9
\end{aligned}
\]
\(p=14\)
b Description: Andre scored 14 points.
4. In football, the team that has possession of the ball has four chances, called downs, to gain at least ten yards. If they do not gain at least ten yards, the other team gets the ball. Select all of the sequences of plays that result in the team keeping possession of the ball. (Positive numbers represent a gain of yards and negative numbers represent a loss.)
(A.) \(8,-3,4,21\)
(D.) \(5,-2,20,-1\)
B. \(6,-7,10,-12\)
E. \(7,-3,-13,2\)
C. \(2,16,-5,-3\)
5. Select all of the expressions that represent \(75 \%\) of \(x\).
(A.) \(0.75 x\)
(F.) \(\frac{75}{100} x\)
B. \(75 x\)
(G.) \((1-0.25) x\)
C. \(0.50 x+0.25 x\)
D. \(1-0.25 x\)
(E.) \(x-0.25 x\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Practice Problem Analysis} \\
\hline Type & Problem & Refer to & DOK \\
\hline & 1 & Activity 1 & 2 \\
\hline On-lesson & 2 & Activity 2 & 2 \\
\hline & 3 & Activity 2 & 2 \\
\hline Spiral & 4 & Unit 5 Lesson 4 & 2 \\
\hline Formative 0 & 5 & Unit 6 Lesson 12 & 2 \\
\hline
\end{tabular}

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Solving Percent Problems in New Ways}

Let's use tape diagrams, equations, and reasoning to solve problems


\section*{Focus}

\section*{Goals}
1. Language Goal: Solve word problems leading to equations of the form \(p x+q=r\) or \(p(x+q)=r\). (Reading)
2. Language Goal: Solve word problems involving percentages leading to equations of the form \(p x+q=r\) or \(p(x+q)=r\). (Reading)

\section*{Coherence}

\section*{- Today}

Today students learn to represent multi-step percent increase and decrease problems using tape diagrams and equations. They then use these representations to solve problems.

\section*{< Previously}

In Lesson 11, students used tape diagrams to represent scenarios leading to equations of the form \(p x+q=r\) and \(p(x+q)=r\). In Unit 4, students used tape diagrams and equations to solve percent problems.

\section*{>Coming Soon}

In Sub-Unit 3, students will apply their understanding of solving equations to solving inequalities.

\section*{Rigor}
- Students apply their understanding of solving equations of the form \(p x+q=r\) and \(p(x+q)=r\) to problems involving percent increase and decrease.


Warm-up

Activity 1
(d) 10 min

คํํํ Pairs


Activity 2


Summary


Exit Ticket
\(\bigcirc 10 \mathrm{~min}\)


\(\bigcirc\) Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \\ }

\section*{Materials}
- Exit Ticket
- Additional Practice

\section*{Math Language Development}

\section*{Review words}
- discount
- equation
- equivalent equations
- percent
- solution to an equation
- variable

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students might feel bored with learning about another tool that they can use to help better understand equations. Remind students that they will be better equipped to solve any problem with more tools in the mathematical toolbox. Encourage them to look for similarities and differences, and while they might have a particular favorite, stress that they should not discount any of the tools, for they can all serve a good purpose.

\section*{Amps : Featured Activity}

\section*{Exit Ticket \\ Choose Your Own Adventure}

Students choose their preferred solution strategy for the Exit Ticket and are guided appropriately.


\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- During the Warm-up, instead of having students write their response to Problem 2, discuss the question during the Connect.
- Have students choose one problem to complete in Activity 2.

\section*{Warm-up Locating Expressions}

Students place expressions on a number line in order to identify equivalent expressions and make connections with percents.

(1) Launch

Ensure students notice that the number line has 0 on the left and \(x\) on the right.

\section*{(2) Monitor}

Help students get started by saying, " \(x\) could have any value, but it may help to give it a value of your choice to understand where the other expressions should be placed in relationship to \(x\)."

\section*{Look for points of confusion:}
- Getting stuck on computations. Ask, "What if you substitute a friendly value for \(x\). How about 10 ?"
- Having difficulty understanding the values on the number line. Ask, "If you think of this like a percent bar, where would \(\frac{1}{2} x\) be placed?"
- Disregarding the difference between \(0.80 x\) and \(80 x\). Ask, "What if you thought about those numbers as money? Would they have the same value?"
- Equating " \(20 \%\) of" a price with " \(20 \%\) off." Ask, "What does it mean to take 'money off' of a price?"

\section*{Connect}

Have students share reasoning for why the expressions \((1-0.20) x, x-\frac{20}{100} x, 0.80 x\), and \(\frac{100-20}{100} x\) are equivalent.
Ask, "How is this number line similar to a percent bar? Where would \(0 \%\) be placed? Where would \(100 \%\) be placed? What percentages could you write about each group of expressions?"

Highlight that there are multiple expressions that can represent the same amount. When dealing with percents, the percent can be expressed in different ways.

\section*{Math Language Development}

\section*{MLR8: Discussion Supports-Press for Reasoning}

During the Connect, as students share their reasoning for why the expressions they determined in Problem 2 are equivalent, press for details in their reasoning. For example:
\begin{tabular}{|c|c} 
If a student says ... & \multicolumn{1}{c}{ Ask ... } \\
"They have the same value." & \begin{tabular}{l} 
"How do you know they have \\
the same value? What property \\
or operations allow you to \\
make this claim?"
\end{tabular}
\end{tabular}

\section*{Power-up}

To power up students' ability to identify equivalent expressions involving percents, have students complete:

Recall that percent means out of 100 and can be represented as a fraction or a decimal. For example, \(40 \%\) can also be represented as \(\frac{40}{100}\) and 0.40 .
Identify all of the expressions that are equivalent to \(20 \%\) of \(p\).
(A.) \(0.20 p\)
(D. \(\frac{1}{5} p\)
(.) \(p-0.80 p\)
(B.) \(\frac{20}{100} p\)
(E.) \(p(1-0.80)\)
(H.) \(\frac{p}{5}\)
C. \(20 p\)
F. \(1-0.80 p\)

Use: Before the Warm-up Informed by: Performance on Lesson 11, Practice Problem 5

\section*{Activity 1 Training More Each Day}

Students interpret a diagram that is similar to the tape diagrams they have seen, preparing them to consider representing percent change in equation form.


\section*{1) Launch}

Read the scenario aloud and be sure students understand how the tape diagram represents the scenario. Activate prior knowledge by asking, "How are these tape diagrams similar to or different from the tape diagrams you created to represent percent change earlier this year?"

\section*{2 Monitor}

Help students get started by asking, "For which day do you have the most information?"

\section*{Look for points of confusion:}
- Trying to estimate the value of \(x\). Say, "That is a good place to start. Can you be more precise?"
- Not noticing that Day 3 is modeling a percent increase. Ask, "What do you notice about the bar for Day 3? How are the values on the top of the bar related to the values on the bottom of the bar?"

\section*{Look for productive strategies:}
- Writing an equation or reasoning about the tape diagram. Note which students use each strategy.

\section*{3 Connect}

Have students share their strategies for solving the problem. Bring attention to the connection between the tape diagram, equations, and the original scenario.

Ask, "What similarities do you see when you compare an equation with the values in the diagram?"

Highlight the connections between the diagrams. Point out that by comparing the diagrams for Days 2 and 3, students can assign the Day 2 diagram as representing \(100 \%\).

\section*{Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization}

Help students brainstorm a checklist that they can use to solve this problem. A sample checklist for writing and solving an equation is shown.
\(\square\) Decide on a variable and explain what it represents.
\(\square\) How does the number of push-ups on Day 2 compare to Day 1? Represent this in your equation.
\(\square\) How does the number of push-ups on Day 3 compare to Day 2? Represent this in your equation.
\(\square\) What was the total number of push-ups she completed on Day 3? Represent this in your equation.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as you highlight the connections between the tape diagrams, ask these questions to help students understand how the diagram represents a percent increase scenario.
- "What happened between Days 1 and 2? How is this illustrated on the diagram for Day 2?"
- "What happened between Days 2 and 3? How is this illustrated on the diagram for Day 3?"
- "Why is \(20 \%\) added to the diagram for Day 3 ?"
- "Why does 42 represent \(120 \%\) of the length \(d+5\) and not \(100 \%\) of the length \(d+5\) ?

\section*{Activity 2 Selling Shoes}

Students solve percent problems in context without any visual models provided. This helps students think strategically about their choice of representation.


Activity 2 Selling Shoes

Solve these problems using any strategy you find helpful.
1. A store is having a sale in which all shoes are discounted by \(20 \%\).

Diego has a coupon for \(\$ 3\) off the regular price for one pair of shoes.
The store first applies this coupon, and then takes \(20 \%\) off the
reduced price. If Diego pays \(\$ 18.40\) for a pair of shoes, what was
the original price before the sale and without the coupon?
The original price of the shoes was \(\$ 26\); Sample response:
Let \(s\) represent the original price
of the shoes.

2. Before the sale, the store had 100 pairs of flip-flops in stock. After selling some, they notice that \(\frac{3}{5}\) of the pairs they have left are blue. If the store has 39 pairs of blue pairs left, how many pairs of flip-flops (of any color) have they sold?
The store sold 35 flip-flops; Sample response:
Let \(x\) represent the amount of
flip-flops sold
flip-flops sold.
\(\frac{3}{5}(100-x)=39\)
\(\frac{3}{5}(100-x) \div \frac{3}{5}=39 \div \frac{3}{5}\)
\(\begin{aligned} 100-x & =65 \\ -x-100 & =65\end{aligned}\)
\(\begin{aligned} 100-x-100 & =65-100\end{aligned}\)
\(\begin{aligned}-x & =-35 \\ x & =35\end{aligned}\)

\section*{AB Are you ready for more?}

A coffee shop offers a special: receive \(\mathbf{3 3 \%}\) more coffee for free, or receive \(33 \%\) off the regular price. Which offer is a better deal? Explain your thinking.
It depends on whether you would prefer to have more coffee or more money left over. However, if you compare the rates for each special, 33\% off the regular price is a better deal.

\section*{1. Launch}

Have students refer back to Activity 1 for support as they complete this activity.

\section*{Monitor}

Help students get started by asking, "What is the unknown quantity in each problem? How will you represent that quantity?"

\section*{Look for points of confusion:}
- Not knowing which operation to do first. Say, "Reread the whole scenario. Are there any clues about what operation happens first?"
- Struggling to write the equations, using a particular form. Encourage students to try the other form of the equation to see if it helps them to make more sense of the problem.

\section*{Look for productive strategies:}
- Using a tape diagram. Invite students who use this strategy to share during the Connect.

3 Connect
Display a solved equation and corresponding tape diagram for each problem.

Have students share their equations and tape diagrams, and explain how each represents the information in the problem. Have students explain how they chose to use a particular strategy or tool.

Highlight how each representation (words, equation, and tape diagram) illustrates the same information. Annotate these representations as students share.

Differentiated Support

\section*{Accessibility: Vary Demands to} Optimize Challenge

If students need more processing time, have them choose to complete either Problem 1 or Problem 2. Allowing them to choose which problem to complete can increase their engagement and ownership of the task.

\section*{Math Language Development}

\section*{MLR6: Three Reads}

Use this routine to help students make sense of each scenario.
- Read 1: Students should understand the context of each scenario, without paying attention to the quantities or relationships. For example, in Problem 1, they should understand that Diego is buying a pair of shoes with a coupon and the store is also having a sale.
- Read 2: Ask students to name the important quantities in each scenario, such as the shoes are discounted by \(\$ 20 \%\) in Problem 1.
- Read 3: Ask students to brainstorm possible strategies for solving the problems, such as using a tape diagram or solving an equation.

\section*{English Learners}

Suggest that students annotate or highlight key words and phrases in the text, such as "the store first applies the coupon" before the discount is applied.

\section*{Summary}

Review and synthesize how to solve problems with percents using visual representations and equations.


\section*{Synthesize}

Display these questions and ask:
- "What strategies have you learned so far in this unit?"
- "What kinds of problems can you solve now that you were not able to solve previously?"

Have students share their responses to these questions with a partner.

Highlight student responses. Select three students to share what their partner said. Record their answers so that the whole class can see.

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "Which representations best help you to make sense of certain mathematical scenarios?"

\section*{Exit Ticket}

Students demonstrate their understanding by solving a problem either with a tape diagram or an equation.


\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\(\mathrm{O}_{0}\). Points to Ponder ...
What worked and didn't work today? What resources did students use as they worked on Activity 2? Which resources were especially helpful?
When you compare and contrast today's work with work students did earlier this year on solving problems involving percentages, what similarities and differences do you see? What might you change for the next time you teach this lesson?

4. Determine each product.
(9) \(\frac{2}{5} \cdot(-10)=-4\)
(e) \(-8 \cdot\left(-\frac{3}{2}\right)=12\)
- \(\frac{10}{6} \cdot 0.6=1\)
(a) \(\left(-\frac{100}{37}\right) \cdot(-0.37)=1\)
5. Complete each sentence with the word discount deposit ons whither A word may be used more than once.
a Clare took \(\$ 20\) out of her bank account.
She made a withdrawal
b Kiran used a coupon when he bought a pair of shoes. He received a discount

C Priya added \(\$ 20\) into her bank account.
She made a deposit
d Lin paid less than usual for a pack of gum because it was on sale. She received a discount

\section*{6. Determine if each value is a possible solution given the scenario or} inequality.

\begin{tabular}{|lclc|}
\hline Practice Problem Analysis \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Warm-up & 2 \\
\hline & 2 & Activity 1 & 2 \\
\hline Spiral & \(\mathbf{3}\) & Activity 2 & 2 \\
\hline Formative 0 & 6 & \begin{tabular}{l} 
Unit 5 \\
Lesson 11
\end{tabular} & 1 \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.

In this Sub-Unit, students are reintroduced to inequalities, and they learn to write and solve inequalities in a similar way as with equations.



\section*{Narrative Connections}

Read the narrative aloud as a class or have students read it individually. Students continue to think carefully about how the inequality symbol connects to the mathematics in the following places:
- Lesson 13, Activity 1: The Roller Coaster

\section*{- Lesson 13, Activity 2 :} Understanding Inequalities
- Lesson 16, Activity 1 :

Which Side Has the
Solutions?
- Lesson 18, Activity 1 :

Loading an Elevator

\section*{UNIT 6 | LESSON 13}

\section*{Reintroducing Inequalities}

Let's work with inequalities.


\section*{Focus}

\section*{Goals}
1. Language Goal: Comprehend the terms less than or equal to and greater than or equal to and the symbols \(\leq\) and \(\geq\). (Speaking and Listening, Reading and Writing)
2. Represent solutions to an inequality on a number line.
3. Recognize that more than one value for a variable makes the same inequality true.

\section*{Coherence}

\section*{- Today}

Students write inequalities to represent scenarios, test values to determine whether they are solutions, and reason about solving one-step inequalities. The inequalities of less than or equal to and greater than or equal to are introduced.

\section*{< Previously}

In Grade 6, students reasoned about and represented solutions to inequalities of the forms \(x>a\) and \(x<a\).

\section*{> Coming Soon}

In Lessons 14-18, students will formalize the process to solve inequalities and notice similarities to solving equations.

\section*{Rigor}
- Students discuss real-world scenarios to build conceptual understanding of less than or equal to and greater than or equal to


Warm-up

Activity 1

Activity 2


Activity 3


Summary

Exit Ticket
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) 5 min & (1) 10 min & (1) 10 min & (1) 10 min & (1) 5 min & (1) 5 min \\
\hline \(\bigcirc\) Independent & กํํ Pairs & กำ Pairs & กำ Pairs & กั่กักำ Whole Class & \(\bigcirc\) ○ Independent \\
\hline Amps powered by desmos & \multicolumn{3}{|l|}{} & & \\
\hline
\end{tabular}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 3 PDF, pre-cut cards, one set per pair
- Anchor Chart PDF, Solving Inequalities (for display)
- Anchor Chart PDF, Solving Inequalities (answers)

\section*{Math Language Development}

\section*{New words}
- greater than or equal to
- less than or equal to
- solution to an inequality

\section*{Review words}
- greater than
- inequality
- less than
- solution to an equation

\section*{Building Math Identity and Community}

Connecting to Mathematical Practices
Students might not spend enough time analyzing the inequalities in Activity 3. Ask students to list some steps that they should take in their analysis in order to match inequalities to their graphed solutions. Ask them to explain which steps are absolutely necessary for solving the problem correctly and which steps could be beneficial, but might not be critical.

\section*{Amps Featured Activity}

\section*{Warm-up \\ Dynamic Dog Walking Diagrams}

Dog walking diagrams and measures of strength will automatically update as students change their input values.

desmos

\section*{Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- Activity 3 may be omitted. Consider assigning the activity as Additional Practice using the Digital Card Sort.

\section*{Warm-up Greater Than One}

Students make connections between a dog walking diagram and all possible solutions that satisfy a given criteria, as an introduction to writing and solving inequalities.


Amps Featured Activity Dynamic Dog Walking Diagrams

\section*{Unit 6 | Lesson 13 \\ Reintroducing Inequalities}

Let's work with inequalities.


Warm-up Greater Than One
Study the diagram.

1. Select all the values that could represent \(x\) so that the dog walker is pulled to the left.
(A.) 3
C. -3
(®.) 5
B. 0.6
D. 1
©. 1.05
G. 0

\section*{Activity 1 The Roller Coaster}

Students review the meanings of the symbols \(<\) and \(>\) and then read a scenario which facilitates the necessity for the new inequality symbols \(\leq\) and \(\geq\).


\section*{1 Launch}

Activate background knowledge by asking students whether they have been on a roller coaster or a ride at the fair and whether they experienced being with someone who was not able to ride because of their height.

\section*{2 Monitor}

Help students get started by asking, "If Noah is
\(\qquad\) inches tall, can he ride?" Continue with similar examples until students can continue on their own.

\section*{Look for points of confusion:}
- Not knowing they can pick two options for Problem 1. Discuss why Noah can either be greater than 60 or equal to 60 .
- Struggling to represent their responses to Problems 1-3. Have them use the number line to help identify solutions.
- Not knowing how to show that 58 is included. Ask students how they would plot the point 58 on a number line. Discuss that a closed circle is used because it represents shading the values that make the inequality true.

3 Connect
Have students share possible heights for Noah's friend and mark the solutions on the number line. Ask students to share their responses to Problem 5. Students may write, " \(y=58\) or \(y>58\)."

Highlight that there is a symbol meaning greater than or equal to and introduce the notation \(\geq\). Since Noah's friend can be 58 in. tall, have students mark 58 with a closed circle on the number line.

\section*{Define:}
- greater than or equal to
- less than or equal to

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Before students begin the activity, ask them to generate possible heights for Noah that would allow him to ride the roller coaster. Then ask them to generate 1 or 2 heights for Noah that would mean he would not be allowed to ride the roller coaster.

\section*{Extension: Math Enrichment}

Have students complete the following problem:
Suppose Noah's sister will be allowed to ride the roller coaster when her height increases by at least 8 in . Define a variable and write an inequality that represents Noah's sister's current height. Sample response: Let \(z\) represent Noah's sister's current height; \(z+8 \geq 60\).

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as you introduce the \(\geq\) and \(\leq\) symbols, add them to the class display, along with common words and phrases that can indicate them. For example, consider displaying the following table.


\section*{English Learners}

Provide examples of phrases, such as "I own at least 4 baseball hats, which means the number of baseball hats I own is greater than or equal to 4 ."

\section*{Activity 2 Understanding Inequalities}

Students solve one-step inequalities by reasoning about the solutions. They are not expected to formally solve inequalities in this activity.


Activity 2 Understanding Inequalities

Clare wants to buy her mother a gift which costs at least \(\mathbf{\$ 2 0}\). Let \(x\) represent the amount of money Clare will need.
1. This scenario is represented by the inequality \(x \geq 20\). Graph the solutions to \(x \geq 20\) on the number line.

2. If Clare drives to the mall, she must spend \(\$ 5\) on parking. The scenario is now represented by the inequality \(x-5 \geq 20\). Graph the solutions on the number line. How did the solutions change from \(x \geq 20\) ?

3. If Clare's father gives her \(\$ 5\) and drops her off at the mall, the scenario is now represented by \(x+5 \geq 20\). Graph the solutions for the inequality. How did the solutions change from \(x \geq 20\) ?

4. Clare's siblings want to help by dividing the cost of the gift among themselves. Assume her father does not give her \(\$ 5\). There are 5 siblings altogether, so the inequality \(5 x \geq 20\) can be used to represent this scenario. Graph the solutions for the inequality. Scale your own number line. How did the inequality and the solutions change from \(x \geq 20\) ?


The solutions are now greater than or equal to 4 .

\section*{1. Launch}

Be sure students understand what the symbols \(<,>, \leq\), and \(\geq\) represent.

Help students get started by asking, "What does \(\geq\) mean?" or "Is \(\qquad\) greater than or equal to 20?"

\section*{Look for points of confusion:}
- Wanting to shade the direction in which the inequality points (i.e., < shades left because the arrow points in that direction). Encourage students to test values in the inequality to determine in which direction to shade. To further emphasize this point, show an inequality such as \(3<x\), and discuss the solutions.

\section*{Look for productive strategies:}
- Wanting to solve the inequalities algebraically. Although this is not the goal of this lesson, encourage students to test values before shading the number line. This process will be formalized in the next lesson.

\section*{Connect}

Highlight that students can test values to determine whether the inequality is true. Students are not expected to solve inequalities during this lesson.

Ask, "Why is the boundary point shaded?"
It makes the inequality true and is a solution.

Differentiated Support

\section*{Accessibility: Vary Demands to Optimize Challenge}

If students need more processing time, have them focus on completing Problems 1-3. As time allows, they can work on Problem 4

\section*{Accessibility: Guide Processing and Visualization}

Test possible solutions from Problem 1 into the inequality in Problem 2, starting with values that are true for both inequalities, such as 25 and 30 . Then test a value that is only a solution to Problem 1 , such as 20 or 24 . Ask students why these values are not solutions to the inequality in Problem 2.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, display the four inequalities and ask students how the inequalities represent each scenario. Ask them to look for the key words and phrases that indicate why the inequality symbol is always \(\geq\), and what operation(s) are performed on the variable. Ask:
- "What does \(x\) represent in these scenarios? What does the phrase 'at least' \$20 tell you?"
- "If Clare spends \(\$ 5\) on parking, what does this mean for the amount of money she will need? Why is 5 subtracted from \(x\) ?"
Ask similar questions for the two remaining scenarios.

\section*{Activity 3 Card Sort: Inequalities}

Students sort cards to match inequalities with solutions on number lines. This will help further their understanding of testing values to determine whether inequalities are true.


\section*{1 Launch}

Distribute one set of cards from Activity 3 PDF to each pair of students. Conduct the Card Sort routine.

\section*{Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

Distribute the cards with addition or subtraction inequalities and their solutions first. After these are matched, distribute the cards with multiplication inequalities and their solutions.

\section*{Extension: Interdisciplinary Connections}

Ask students, "Have you ever wondered where the symbols for =, >, or < came from?" Tell them that the first use of the equal sign, \(=\), is attributed to Robert Recorde who was a Welsh physician and mathematician. He intentionally used two parallel lines to represent equality because they are always the same distance apart. The works of British mathematician Thomas Harriot included the first inequality symbols. These were actually introduced by his book's editor, who altered the original triangular symbols Harriot used. Ask students to think of and create their own symbols they would use to indicate equality, greater than, or less than, and explain why they chose the symbols they did. (History)

Featured Mathematician

\section*{Giuseppe Peano}

Have students read about Featured Mathematician Giuseppe Peano, the creator of several symbols for mathematical logic.

\section*{Summary}

Review and synthesize how inequalities can be used to represent real-world situations, and how testing values can help determine whether inequalities are true.

\section*{Summary}

\section*{In today's lesson.}

You explored inequalities. The solutions to an inequality are numbers that can replace the variable to make an inequality true. Because inequalities have more than one solution, a number line is used to show all the solutions.

Remember, each symbol has its own purpose.

\(>\) Reflect:
-
- greater than or equal to
- solution to an inequality.

Reflect
After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What does it mean to be a solution to an inequality?"
- "Does it make sense that an inequality can have more than one solution? Why or why not?"

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in this unit. Ask them to review and reflect on any terms and phrases related to the terms solution to an inequality, less than, greater than, less than or equal to, and greater than or equal to that were added to the display during the lesson.

\section*{Exit Ticket}

Students demonstrate their understanding by giving solutions to an inequality and determining how solutions change when the term equal to is added to an inequality.
1. Students might recognize they can solve inequalities like equations.
\(2 x \div 2 \leq 10 \div 2\)
\(x \leq 5\)
2. Some students might show the solutions on number lines to explain the differences.

Self-Assess ? < <lol
Self-Assess ? < <lol
a I can explain what the symbols
a I can explain what the symbols
        and }\geq\mathrm{ mean.
        and }\geq\mathrm{ mean.
        1 2 3
        1 2 3
    c I understand what it means for a
    c I understand what it means for a
        number to make an inequality true.
        number to make an inequality true.
        1 2 3
        1 2 3

\section*{Success looks like ...}
- Language Goal: Comprehending the terms less than or equal to and greater than or equal to, and the symbols \(\leq\) and \(\geq\). (Speaking and Listening, Reading and Writing)
» Explaining how the solutions to the inequality \(2 x<10\) are different from the solutions to \(2 x \leq 10\) in Problem 2.
- Goal: Representing solutions to an inequality on a number line.
- Goal: Recognizing that more than one value for a variable makes the same inequality true.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Cor Points to Ponder ...
What worked and didn't work today? How did the Card Sort set up students to develop understanding of solutions of inequalities?
In what ways did the Warm-up go as planned? What might you change for the next time you teach this lesson?
\begin{tabular}{|lclc|}
\hline Practice Problem Analysis & \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 1 \\
\hline Spiral & \(\mathbf{2}\) & Activity 1 & 1 \\
\hline Formative 0 & \(\mathbf{3}\) & \begin{tabular}{l} 
Activity 2 \\
Unit 6 \\
Lesson 8 \\
Unit 4 \\
Lesson 9 \\
Unit 6 \\
Lesson 14
\end{tabular} & 2 \\
\hline
\end{tabular}

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Solving Inequalities}


\section*{Focus}

\section*{Goals}
1. Use substitution to determine whether a given value for a variable makes an inequality true.
2. Generalize that it is possible to solve an inequality of the form \(x+q>r\) or \(x+q<r\) by solving the equation \(x+q=r\) and then testing a value to determine the direction of the inequality in the solution.
3. Generalize that it is possible to solve an inequality of the form \(q x>r\) or \(q x<r\) by solving the equation \(q x=r\) and then testing a value to determine the direction of the inequality in the solution.

\section*{Coherence}

\section*{- Today}

Students write and solve equations and use those solutions to help them determine the solutions of corresponding one-step inequalities that may include negative values.

\section*{< Previously}

In Lesson 13, students wrote one-step inequalities to represent realworld scenarios and tested values to determine if they were solutions.

\section*{> Coming Soon}

In Lesson 15, students will write and solve two-step inequalities.

\section*{Rigor}
- Students use substitution to build conceptual understanding of what is meant by a solution to an inequality.
- Students use tables of values to build their conceptual understanding of solution sets of one-step inequalities.


For a digitally interactive experience of this lesson, Iog in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 1 PDF (for display)
- two colors of colored pencils, markers, or highlighters for each group

\section*{Math Language \\ Development}

\section*{Review words}
- greater than
- greater than or equal to
- inequality
- less than
- less than or equal to
- solution to an equation
- solutions to an inequality

\section*{Amps \(\vdots\) Featured Activity}

\section*{Activity 1 \\ Overlay Student Work}

Students individually plot points on a number line and can then see all their classmates' data shown together on one number line.

powered by desmos

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

In Activity 3, students write possible inequalities that have given solutions and then check their work with a partner. Remind them to communicate clearly and precisely as they share the inequalities they wrote, and why they believe they are correct.

\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- During the Warm-up, choose only one row for the class to complete
- In Activity 1, Problem 3 may be omitted
- Optional Activity 3 may be omitted, or students may choose one problem to complete.

\section*{Warm-up True and False Inequalities}

Students complete a table by determining which values make an inequality true or false to practice identifying solutions to inequalities.


\section*{1 Launch}

Conduct the Think-Pair-Share routine. Give students 2 minutes of silent work time. Then give them 2 minutes to compare their work with a partner.

\section*{2 Monitor}

Help students get started by modeling how to reason about one of the inequalities in the table. Choose an inequality and model for students how to substitute each value into the inequality to determine if the inequality is true or false.

Look for points of confusion:
- Misinterpreting inequalities with the variable on the right (e.g., assuming \(100<4 x\) is equivalent to \(x<\mathbf{2 5}\) ). Suggest substituting values for \(x\) to see the difference between " \(x\) is less than 25 " and " 25 is less than \(x\)."
- Forgetting that inequalities with \(\geq\) and \(\leq\) signs are true when both sides are equal. Ask students to explain the difference between \(</>\) and \(\leq / \geq\).

\section*{3 Connect}

Have students share their entries for each row of the table and the strategies they used.

Highlight the differences between substituting 25 for \(x\) in \(100<4 x\) and \(10 \geq 35-x\). Note that inequalities using the symbols \(\leq\) and \(\geq\) are considered true when both sides are equal, whereas < and > inequalities are considered false when both sides are equal. Emphasize that substituting a value for \(x\) and checking if the resulting inequality is true is the most direct way to check whether the value is a solution.

\section*{(7) Power-up}

\section*{To power up students' ability to determine whether a given value makes an equation true, have students complete:}

Match each equation with the value that makes it true.
a. \(x+0=25\)
a, c \(\quad x=25\)
b. \(x+25=25\)
d \(\quad x=-25\)
c. \(100=4 x\).
b \(\quad x=0\)
d. \(10=x+35\)

\section*{Activity 1 Inequalities with Tables (Part 1)}

Students complete and analyze a table of values in order to better understand the relationship between inequalities and their solutions.

Amps Featured Activity Overlay Student Work

Activity 1 Inequalities With Tables (Part 1)
1. Complete the table.

2. Refer to the number line and the values of \(x\) in the table from Problem 1 . Sample responses shown.

a Which value of \(x\) makes \(x-3=-2\) true? Mark it on the number line \(x=1\)
b Which values of \(x\) make \(x-3\) greater than -2 ? Mark them in one color on the number line
\(x=2,3,4\)
c Which values of \(x\) make \(x-3\) less than -2 ? Mark them in another color on the number line.
\(x=0,-1,-2,-3,-4\)
d Find a value of \(x\) between -4 and 4 not listed in the table that makes \(x-3\) greater than -2 . Plot and label it on the number line. Mark it in the same color you used for part b. Answers may vary, but must be non-whole numbers between 1 and 4
e Find a value of \(x\) between -4 and 4 not listed in the table that makes \(x-3\) less than -2 . Plot and label it on the number line. Mark it in the
same color you used for part c.
Answers may vary, but must be non-whole numbers between -4 and 1 .

\section*{1 Launch}

Display the Activity 1 PDF. Ask, "How are the numbers in the top row and bottom row related? Think about the equation \(x+2=-2\). What value of \(x\) makes this true? Where do you see that in the table? How about the inequality \(x+2>3\) ?" Distribute two different colored pencils, markers, or highlighters to each group.

\section*{(2) Monitor}

Look for points of confusion:
- Struggling to identify values not listed in the table for Problem 2, parts d and e. Suggest students consider non-integer values.
- Saying the solution of \(x-3>-2\) is \(x>2\), based on the integer values. Suggest they check whether any values between 1 and 2 make the inequality true.
- Making mistakes in Problem 3 when deciding if the circle on each graph is open or closed. Ask them to consider if each inequality is true when \(x=1\).

Activity 1 continued >

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can individually plot points on a digital number line and then see all of their classmate's data shown together on one number line.

\section*{Extension: Math Enrichment}

Ask students to explain how the solutions to the following inequalities are similar to and different from the solutions to the inequalities in Problem 3.
\(x+1>-2\)
\(x+1 \geq-2\)
\(x+1<-2\)
\(x+1 \leq-2\)
Sample response: The direction in which the inequality is shaded will remain the same. Whether the boundary value is an open or closed circle will remain the same. The boundary values will change to be 4 less than they were in Problem 3; the boundary values will now be -3 .

\section*{Activity 1 Inequalities with Tables (Part 1) (continued)}

Students complete and analyze a table of values in order to better understand the relationship between inequalities and their solutions.

Activity 1 Inequalities With Tables (Part 1) (continued)
>3. Use the number line from Problem 2 to help you think about which values of \(x\) will make each of the following inequalities true. Graph the solution to each inequality on the number line, and write an inequality to represent the solution that has \(x\) by itself on one side.
\begin{tabular}{|c|c|c|}
\hline Inequality & Graph & Solution \\
\hline (a) \(x-3>-2\) &  & \(x>1\) \\
\hline (b) \(x-3 \geq-2\) &  & \(x \geq 1\) \\
\hline c \(x-3<-2\) &  & \(x<1\) \\
\hline d \(x-3 \leq-2\) & \(\left\langle\begin{array}{ccccccccc}4 & + & + & +1 & 1 & 1 & 1 \\ -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4\end{array}\right.\) & \(x \leq 1\) \\
\hline
\end{tabular}

\section*{3 Connect}

Display the number line from Problem 2, marked according to the instructions in parts a-c.

Have students share their points from Problem 2, parts \(d\) and \(e\). Ask each group to plot them on the number line.

Highlight how to use the number line in Problem 2 to find the solution to the inequalities in Problem 3. Referring to the number line displayed, discuss which parts are included in the solution to each inequality and write an inequality to describe each solution. Note the inequalities for which the solution \(x=1\) is or is not included in the solution.

Ask, "How does the equation relate to the inequalities? Why does it make sense that the solution to an inequality is also an inequality?"

\section*{Activity 2 Inequalities With Tables (Part 2)}

Students use tables and numbers lines to reason about the solutions of inequalities, including those with negative coefficients, in preparation for solving two-step inequalities.


Activity 2 Inequalities With Tables (Part 2)
1. Consider the inequality \(2 x<6\).
(a) Predict which values of \(x\) will make the inequality \(2 x<6\) true, and show them on the number line.

(b) Complete the table. Compare the values of \(x\) in the table with your graph to check your prediction.


C Write an inequality to represent the solutions to the inequality \(2 x<6\). \(x<3\)
2. Consider the inequality \(-2 x<6\)
a Predict which values of \(x\) will make the inequality \(-2 x<6\) true, and show them on the number line
Sample response shown. This sample response is inaccurate but reflects the anticipated prediction that students will make.

b Complete the table. Compare the values of \(x\) in the table with your graph to check your prediction.

c Write an inequality to represent the solutions to \(-2 x<6\). \(x>-3\)
3. How are the solutions to \(2 x<6\) different from the solutions to \(-2 x<6\) ? The solutions to \(2 x<6\) are numbers less than 3 . The solutions to \(-2 x<6\) are numbers greater than \(\mathbf{- 3}\).

\section*{1 Launch}

Explain that students will be making and checking predictions about the solutions to inequalities. Suggest that they use strategies discussed in the last activity, such as solving a related equation, to help them predict.

\section*{2 Monitor}

Look for points of confusion:
- Predicting the arrows point to the left on both graphs because they have the same inequality sign. Encourage them to check their predictions with the table.

\section*{Look for productive strategies:}
- Writing and solving a related equation for each inequality. Note students who use this method.
(3) Connect

Have students share their solutions for each inequality and explain how they are different.

Highlight that solving the equation related to the inequality gives the boundary value between solutions and non-solutions. Demonstrate that a table isn't necessary to check values on either side of the boundary value. Instead, test one number greater than the boundary value and one number less than the boundary value. Whichever number makes the inequality true is on the same side of the boundary value as all the points that make the inequality true.

Ask, "How can you use a related equation to help you solve an inequality? How would the solutions to these inequalities change if the sign was \(\leq\) instead of <?"

Differentiated Support

\section*{Accessibility: Vary Demands to Optimize Challenge}

Provide pre-completed tables for students to use for Problems 1b and 2b to check their predictions. This will allow students to spend more time comparing the two inequalities.

\section*{Math Language Development}

\section*{MLRT: Compare and Connect}

During the Connect, display the two inequalities and their solutions. Draw students' attention to how the inequalities and their solutions are similar and different. Ask:
- "How are the inequalities \(2 x<6\) and \(-2 x<6\) similar? How are they different?"
- "How are the solutions \(x<3\) and \(x>-3\) similar? How are they different?"
- "Why do you think the solutions to \(-2 x<6\) aren't represented by the inequality \(x<-3\) ?"

\section*{English Learners}

Annotate and/or color code the inequalities with their similarities and differences.

\section*{Optional}

\section*{Activity 3 Inequality Jeopardy}

Students write inequalities that have a given solution and trade with a partner to check their work to practice reasoning about and solving inequalities.


\section*{1. Launch}

Have a student read the directions to the class. Explain that students should swap with their partner after Problem 1 and again after Problem 2.

\section*{2 Monitor}

Help students get started by suggesting they write an inequality to represent the solution. Then tell them to consider how they could use what they know about creating equivalent equations to create a one-step inequality.

\section*{Look for points of confusion:}
- Writing incorrect inequalities. Monitor pairs to make sure they are really checking each other's work.
- Disagreeing with each other about whether an inequality has the given solution. Urge students to use mathematical reasoning and precise language to defend their positions.

\section*{3 Connect}

Display the two number lines.
Have students share an inequality they wrote for each number line. Select a few students to share how they checked that their partner's inequality was correct.

Highlight how to check that the solution of an inequality is correct.

\section*{Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

If students need more processing time, have them write just one inequality for each number line. This will provide each student with additional time to reason about the solution before checking their partner's work.

\section*{Extension: Math Enrichment}

Have students explain why the third inequality in each problem must include a negative coefficient on the variable. Sample response: The inequality sign changed directions. In Problem 1, for example, in order for the product of the variable and a number to be less than another number, the number multiplied by the variable must be negative.

\section*{Summary}

Review and synthesize how solving an inequality can be thought of as solving a related equation and then checking values greater and less than the solution.


\section*{Summary}

\section*{In today's lesson.}

You tested values to determine what values make an inequality true. You used tables to organize your work and to help you write and graph the solutions to inequalities that involve addition, subtraction, or multiplication.

You noticed that in an inequality involving multiplication, the sign of the coefficient affected the direction of the solution. For example, consider the solutions to \(3 x \geq 9\) and \(-3 x \geq 9\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(3 x \geq 9\)} & \multicolumn{6}{|c|}{\(-3 x \geq 9\)} \\
\hline \(x\) & 0 & 1 & 2 & 3 & 4 & \(x\) & 0 & -1 & -2 & -3 & -4 \\
\hline \(3 x\) & 0 & 3 & 6 & 9 & 12 & \(-3 x\) & 0 & 3 & 6 & 9 & 12 \\
\hline \multicolumn{6}{|l|}{Solution: \(x \geq 3\)} & \multicolumn{6}{|l|}{Solution: \(x \leq-3\)} \\
\hline \multicolumn{6}{|l|}{\(\xrightarrow[-1]{1} \mathbf{1}\)} & \multicolumn{6}{|l|}{} \\
\hline
\end{tabular}

Reflect:

\section*{Synthesize}

Display the inequality \(5 x<-15\) and a blank number line.

Highlight the process for solving an inequality. Write the related equation \(5 x=-15\). Solve for \(x\). Discuss whether the solution makes the equation true. Then have students choose one value greater than the solution and one value less than the solution. Check which of the values makes the inequality true. Then write the solution and review how to graph it.

Ask, "Why is there an open circle on the graph instead of a closed circle? How do you know that the solution is less than -3 , instead of greater than?"

\section*{D. Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "Which strategies that worked for solving simple equations or inequalities can be put to use when solving more complex ones?"

\section*{Exit Ticket}

Students demonstrate their understanding by matching solutions to inequalities and explaining their choice.


\section*{Success looks like ...}
- Goal: Using substitution to determine whether a given value for a variable makes an inequality true.
» Substituting values on either side of the boundary value to determine which side makes the inequality true in Problems 1 and 2.
- Goal: Generalizing that it is possible to solve an inequality of the form \(x+q>r\) or \(x+q<\) \(r\) by solving the equation \(x+q=r\) and then testing a value to determine the direction of the inequality in the solution.
- Goal: Generalizing that it is possible to solve an inequality of the form \(q x>r\) or \(q x<r\) by solving the equation \(q x=r\) and then testing a value to determine the direction of the inequality in the solution.
» Solving the inequalities \(4 x>10\) and \(-4 x>-10\) in Problems 1 and 2.

\section*{Suggested next steps}

If students say \(x>2.5\) is the solution for both inequalities because they both use the greater than sign, consider:
- Suggesting they check a value greater than 2.5 to see whether it makes both inequalities true.
- Assigning Practice Problem 2.

If students choose solutions for each inequality without providing any explanation for their choice, consider:
- Reviewing the process of checking values greater than or less than the boundary value to find the solution to an inequality.
- Assigning Practice Problem 3.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Coints to Ponder ...
What worked and didn't work today? Which students' ideas were you able to highlight during Activity 1 ?
- Have you changed any ideas you used to have about solving and understanding inequalities as a result of today's lesson? What might you change for the next time you teach this lesson?
\begin{tabular}{|lclc|}
\hline Practice Problem Analysis & \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 1 \\
\hline Spiral & \(\mathbf{2}\) & Activity 2 & 2 \\
\hline Formative \(\mathbf{3}\) & \(\mathbf{4}\) & \begin{tabular}{l} 
Activity 2 \\
Unit 5 \\
Lesson 18 \\
Unit 4 \\
Lesson 5 \\
Unit 6 \\
Lesson 15
\end{tabular} & 2 \\
\hline
\end{tabular}
(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.

\title{
Finding Solutions to Inequalities in Context
}

Let's solve more complicated inequalities.


\section*{Focus}

\section*{Goals}
1. Interpret inequalities representing situations with a constraint.
2. Solve an equation of the form \(p x+q=r\) to determine the boundary value for an inequality of the form \(p x+q>r\) or \(p x+q<r\).
3. Language Goal: Use substitution or reasoning about the context to justify whether the values making an inequality true are greater than or less than the boundary value. (Speaking and Listening)

\section*{Coherence}

\section*{- Today}

Students solve contextual problems involving inequalities using the strategies from previous lessons. After solving for the boundary value, students determine the direction of the inequality. Students reason about the context, substitute values on either side of the boundary value, or reason about the number lines. These techniques exemplify making the problem more concrete and visual by asking, "Does this make sense?".

\section*{< Previously}

Students wrote and solved equations from scenarios in Lessons 9-11. In Lesson 14, students wrote related equations and solved them to help find the solutions to the inequality.

\section*{> Coming Soon}

Students will continue to solve problems involving inequalities in Lessons 16-18.

\section*{Rigor}
- Students analyze real-world scenarios to develop procedural fluency in determining boundary values and direction of inequalities.
- Students apply their understanding of writing equations of the form \(p x+q=y\) to write inequalities of the form \(p x+q<y\) and \(p x+q>y\).


Warm-up


Activity 1


Activity 2


Summary

Exit Ticket
\((10\) min
\(\cap\) Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- number lines (optional)

\section*{Math Language Development}

\section*{Review words}
- at least
- at most
- inequality
- greater than or equal to
- less than or equal to
- solution to an inequality

\section*{Amps \(\vdots\) Featured Activity}

\section*{Activities 1 and 2 \\ See Student Thinking}

As students solve equations step by step, see their thinking in real time.


\section*{Building Math Identity and Community Connecting to Mathematical Practices}

Students tend to get concerned when new skills are being applied in realworld situations, but, to alleviate that concern, remind them that they have all of the skills they need to make sense of the problem. Ask students to give examples of self-talk that they use to build their self confidence. Ask students to choose one new way that they will encourage themselves during an internal dialog.

\section*{Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- The Warm-up may be omitted.

\section*{Warm-up One Solution or Many Solutions?}

Students see the link between an inequality and its related equation, while recognizing equations with the same solution do not imply the inequalities have the same solutions.


\section*{1 Launch}

Set an expectation for the amount of time students will have to work independently on the activity.

\section*{2 Monitor}

Help students get started by reminding students \(-x\) can be written as \(-1 x\).

Look for points of confusion:
- Needing a number line to help visualize the boundary value. Print several copies of a line with unlabeled, evenly-spaced tick marks, and place these in sheet protectors. Students can write on these with dry erase markers and wipe them off.
- Having difficulty substituting negative values into the inequality. Remind students that \(-x\) can be written as \(-(x)\) or \(-1 \cdot x\).

\section*{3 Connect}

Display two number lines centered at -10
Have students share their responses to Problems 1 and 2, marking them on the number line while gauging the class for agreement. Repeat this with Problems 3 and 4.

Highlight that the equations in Problem 1 have the same solution. The inequalities in Problem 3 have the same structure as the equations, yet they do not have the same solutions. Reinforce that it is important to test values to know the direction of the solutions to an inequality.

\section*{(7) Power-up}

To power up students' ability to determine whether a value makes an inequality which has a negative coefficient true, have students complete:

Recall that \(-x\) is equivalent to \(-1 x\) or \(-1 \cdot x\).
Select all values that make the inequality \(-x<6\) true
(A.) 6
C. 5
(E.) 0
B. -6
(D. -5
(F.) 12

Use: Before the Warm-up
Informed by: Performance on Lesson 14, Practice Problem 6

\section*{Activity 1 Earning Money for Soccer Apparel}

Students solve an inequality (whole-number solutions only) by writing a related equation first to answer questions about a real-world scenario.

\section*{Amps Featured Activity See Student Thinking}

\section*{Activity 1 Earning Money for Soccer Apparel}

Han was hired for a summer job selling magazine subscriptions. He will earn \(\$ 25\) per week, plus \(\$ 3\) for every subscription he sells. Han hopes to make enough money this week to buy a new pair of soccer cleats.
1. Let \(n\) represent the number of magazine subscriptions Han will sell this week. Write an expression for the amount of money he will make. \(25+3 n\)
2. The most affordable cleats in the store will cost Han \(\$ 67\). Write and solve an equation to determine how many magazine subscriptions he will need to sell to earn \(\$ 67\). Show your thinking.
\[
25+3 n=67
\]
\(25+3 n-25=67-25\)
\(3 n=42\)
\(3 n \div 3=42 \div 3\)
\(n=14\)
Han would need to sell 14 subscriptions to earn \(\$ 67\)
3. If Han sells 16 subscriptions this week, will he reach his goal and be able to buy the new cleats? Explain your thinking. Yes, because \(25+3 \cdot 16=73\). If he sold 16 subscriptions, he would earn \(\$ 73\).
4. What are some other numbers of subscriptions Han could sell to reach his goal?
Answers may vary, but must be whole numbers greater than or equal to 14 .
5. Write an inequality expressing how much Han will have to earn to afford at least \(\$ 67\) for the cleats.
\(25+3 n \geq 67\)
6. Write an inequality describing the number of subscriptions Han must sell to reach his goal.
\(n \geq 14\)

\section*{1 Launch}

Set an expectation for the amount of time students have to work in pairs, or small groups, on the activity.

\section*{(2) Monitor}

Help students get started by asking, "If Han sells one subscription, how much money will he have? If he sells two subscriptions, how much money will he have?" Asking questions like these helps students develop the expression \(3 n+25\).

\section*{Look for points of confusion:}
- Thinking at least means "less than or equal to." Give examples of possible amounts Han needs. Ask, "Would Han be able to afford his soccer cleats with \(\$ 45\) or with \(\$ 70\) ?"

3 Connect
Have students share their solutions and strategies on how to determine which inequality to use.

Highlight that solving the related equation helps find the boundary value, but to determine the solutions to the inequality, students should test values and/or use the context of the scenario to help.

\section*{Ask:}
- "How does solving the related equation help you solve the inequality?"
- "Are there restrictions to the types of numbers that are solutions?" Han can only sell whole-number subscriptions.
- "Is this always the case or just with some scenarios?" Only some scenarios are restricted to specific values. A common occurence of this is when the scenario requires the counting of a certain item.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can see their classmate's responses after they submit their own response.

\section*{Extension: Math Enrichment}

Have students complete the following problem:
If Han can sell subscriptions for two weeks, how would the inequality and solution change? The inequality would become \(50+3 n \geq 67\) and the solution would be \(n \geq 5 \frac{2}{3}\), which means that Han needs to sell at least 6 subscriptions.

\section*{Math Language Development}

\section*{MLR5: Co-craft Questions}

During the Launch, reveal the introductory text and ask students to work with their partner and to write 2-3 mathematical questions they could ask about this situation. Have volunteers share their questions with the class. Listen for and amplify questions students write that use the phrase at least. Sample questions shown.
- How much do the soccer cleats cost?
- If Han sells 10 subscriptions this week, how much will he earn?
- Does Han need to earn exactly the same amount as the cost of the soccer cleats, at most this amount, or at least this amount?

\section*{English Learners}

Consider showing an image of soccer cleats to help students understand what this term means.

\section*{Activity 2 Earning More Money for Soccer Apparel}

Students solve an inequality (rational solutions) by writing a related equation first to answer questions about a real-world scenario.



Activity 2 Earning More Money for Soccer Apparel

Elena has budgeted \(\$ \mathbf{3 5}\) from her summer job for new shorts and socks for the upcoming soccer season. She needs 5 pairs of socks and a pair of shorts. The socks cost different amounts in different stores. The shorts she needs cost \(\$ 19.95\).
\(>1\). Let \(x\) represent the price of one pair of socks. Write an expression for the total cost of the socks and shorts.
\(5 x+19.95\)
2. Write an inequality showing the total cost should be at most \(\$ 35\). \(5 x+19.95 \leq 35\)
3. Write and solve an equation showing Elena spent exactly \(\$ 35\) on the socks and shorts. What does the solution mean in this scenario?
\[
5 x+19.95=35
\]
\(5 x+19.95-19.95=35-19.95\)
\(5 x=15.05\)
\(5 x \div 5=15.05 \div 5\) \(x=3.01\)
Elena can spend \(\$ 3.01\) per pair of socks to spend exactly \(\$ 35\).
4. Remember, Elena has \(\$ 35\) to spend on soccer apparel. What are some other sock prices that will keep Elena within her budget? Answers may vary, but must be less than or equal to \(\$ 3.01\).
5. Write an inequality to represent the amount Elena can spend on a single pair of socks.
\(x \leq 3.01\)
2. The price of shorts just went up to \(\$ 22\). Should Elena buy more expensive socks or less expensive socks to stay within her \(\$ 35\) budget? Explain your thinking.
She should buy less expensive socks because more of her budget is She should buy less expensive socks because more of her budget
going to buying shorts, so she has less money to spend on socks.

\section*{1 Launch}

Set an expectation for the amount of time students will have to work in pairs, or small groups, on the activity.

\section*{2 Monitor}

Help students get started by asking, "What do you know about Elena?" and "What do you need to know?"

\section*{Look for points of confusion:}
- Thinking at most means greater than or equal to. Ask, "Would Elena be within budget if she spent \(\$ 4\) per pair or \(\$ 2\) per pair?"

\section*{3 Connect}

Have students share their solutions and strategies on which inequality to use.
Highlight similarities and differences among Han's and Elena's scenarios. Testing values will always help determine what the solutions are, but students can also reason about the scenario. If Elena wants to spend less money, she should spend less on each pair of socks.

\section*{Ask:}
- "Can Elena spend exactly \(\$ 3.01\) on a pair of socks?"
- "Are there restrictions to these values like there were with Han's subscriptions?" No. In this situation, the variable represents money, which can be decimals to the hundredths place. In Han's situation, the variable represented the number of magazine subscriptions, which are restricted to whole numbers.

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can see their classmate's responses after they submit their own response.

\section*{Extension: Math Enrichment}

Have students complete the following problem:
If Elena selects socks that cost \(\$ 4\) per pair, how much can she spend on the pair of shorts, if her budget remains the same? At most \(\$ 15\); Let \(s\) represent the cost of the pair of shorts; \(5(4)+s \leq 35 ; s \leq 15\).

\section*{Math Language Development}

\section*{MLR5: Co-craft Questions}

During the Launch, reveal the introductory text and ask students to work with their partner and to write \(2-3\) mathematical questions they could ask about this situation. Have volunteers share their questions with the class. Listen for and amplify questions students write that use the phrase at most. Sample questions shown.
- How much do the pairs of socks cost?
- Can Elena spend exactly \(\$ 35\), at least \(\$ 35\), or at most \(\$ 35\) ?
- How much can Elean spend on each pair of socks?

\section*{English Learners}

Be sure students understand that a "pair of shorts" represents one quantity, not two.

\section*{Summary}

Review and synthesize how to interpret and solve inequalities that represent real-world situations.


\section*{Summary}

\section*{In today's lesson.}

You wrote and solved some more complicated inequalities. Writing inequalities is similar to writing equations, but you must also pay attention to the words that ompare the two expressions.

The table shows words that are represented by each equality or inequality symbol.
\begin{tabular}{|c|c|c|c|c|}
\hline = & \(<\) & > & \(\leq\) & \(\geq\) \\
\hline equal is the same as & less than fewer than below lower than & greater than more than above higher than exceeds & \begin{tabular}{l}
less than or equal to \\
at most \\
at a maximum \\
no more than \\
does not \\
exceed
\end{tabular} & \begin{tabular}{l}
greater than or equal to \\
at least at a minimum no less than
\end{tabular} \\
\hline
\end{tabular}

Reflect:

\section*{Synthesize}

Display the inequality symbols on the board and write common phrases used for each.

Have students share strategies they use to determine which inequality symbol to use.

Highlight that substituting values into the inequality will always tell students the direction of the solutions to the inequality, and that reasoning through the language of the problem is a way to ensure that the solutions in context make sense.

Ask, "Which phrases do you find most challenging to understand?" Address any concerns presented by the students.

\section*{(1) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "Which strategies that worked for solving simple equations or inequalities can be put to use when solving more complex ones?"

\section*{Exit Ticket}

Students demonstrate their understanding of solving an inequality by first solving a related equation, and then testing values on either side of the boundary value.


\section*{Success looks like ...}
- Goal: Interpreting inequalities representing situations with a constraint.
» Interpreting the inequality \(20-3 h<0\) in the context of temperature in Problem 3.
- Goal: Solving an equation of the form \(p x+q=r\) to determine the boundary value for an inequality of the form \(p x+q>r\) or \(p x+q<r\).
» Determining the boundary value \(h\) that makes the equation true in Problem 2.
- Language Goal: Using substitution or reasoning about the context to justify whether the values making an inequality true are greater than or less than the boundary value. (Speaking and Listening)

\section*{Suggested next steps}

If students solve the equation correctly but solve the inequality incorrectly, consider:
- Reminding them to test values on either side of the boundary value. The side where the values make the inequality true is the solution.
- Assigning Practice Problems 1 and 2.

If students have difficulty with the process of solving a related equation, consider:
- Assigning Practice Problem 3

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

\section*{Points to Ponder ...}
- What worked and didn't work today? In this lesson, students wrote and solved inequalities of the form \(p x+q>r\) and \(p x+q<r\). How did that build on the earlier work students did with writing and solving equations of the form \(p x+q=r\) ?
- 7.EE.B.4.b asks students to interpret the solution set of an inequality in the context of a problem. Where in your students' work today did you see or hear evidence of them doing this? What might you change for the next time you teach this lesson?

(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Efficiently Solving Inequalities}

\section*{Let's solve more complicated inequalities.}


\section*{Focus}

\section*{Goals}
1. Language Goal: Compare and contrast solutions to equations and solutions to inequalities. (Speaking and Listening)
2. Draw and label a graph on the number line that represents all the solutions to an inequality.
3. Language Goal: Generalize the solutions of an inequality of the form \(p x+q>r\) or \(p x+q<r\) by solving the equation \(p x+q=r\) and then testing a value to determine the direction of the inequality in the solution. (Speaking and Listening)

\section*{Coherence}

\section*{- Today}

Students solve inequalities of the forms \(p x+q<r\) and \(p(x+q)<r\) by first writing and solving a related equation. Then they test values to determine the direction of the inequality in the solution.

\section*{< Previously}

In Lesson 14, students solved inequalities of the forms \(p x<q\) and \(x+p<q\) by writing and solving a related equation and testing values to determine the direction of the inequality in the solution.

\section*{> Coming Soon}

In Lesson 17, students will solve word problems by writing inequalities of the forms \(p x+q<r\) and \(p(x+q)<r\) and solving them using the methods addressed in today's lesson.

\section*{Rigor}
- Students solve inequalities and test solutions to develop their conceptual understanding of graphing the solutions of an inequality on a number line.
- Students develop procedural fluency in solving and graphing the solutions of an inequality.


Warm-up


Activity 1


Activity 2


Summary


Exit Ticket


\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\cap\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Inequalities (for display, as needed)
- Anchor Chart PDF, Inequalities (answers)

\section*{Math Language \\ Development}

Review words
- inequality
- solution to an equation
- solutions to an inequality

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students might impulsively solve an inequality just like they would solve an equation but without considering the special cases required of inequalities with signed numbers. Encourage students to write anything extra that they need to remember when solving an inequality at the top of the page. After they have solved all of the inequalities, they need to persevere and go back to look at each case making sure that they did not forget to apply the additional steps.

\section*{Amps ! Featured Activity}

\section*{Activity 1}

Dynamic Number Lines
Students can represent solutions to inequalities on digital numbers lines. You can view their responses in real time.


\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In Activity 1, Problem 2 may be omitted.
- In Activity 2, Problem 1 may be omitted.

\section*{Warm-up Predict the Solution}

Students make a prediction about an inequality with a negative coefficient and then test values to check their prediction. This helps prepare them for thinking about solving inequalities with negative coefficients.


\section*{1 Launch}

Set an expectation for the amount of time students have to work independently on the activity.

\section*{2 Monitor}

Help students get started by asking, "How do you represent solutions to inequalities on the number line? and How can you test if a value is a solution to an inequality?"

Look for points of confusion:
- Ignoring the negative sign on the variable when selecting values that are solutions. Remind students that \(-x\) is the same as \(-1 \cdot x\) or \(-1 x\). Have students substitute the given values of \(x\) into the inequality and check if it is still true.

\section*{3 Connect}

Have students share which of the given values they predicted were solutions. Select some students to explain their thinking for each value and others to share how their predictions differed from their final solutions.

Highlight how negative values in the inequality can make it difficult to predict the solutions. Review the strategy of first determining the value for which both sides are equal, and then testing values to determine the direction of the solutions to the inequality.

Ask, "How are the solutions to \(-x \geq-4\) different from the solutions to \(x \geq 4\) ?"

\section*{(7) Power-up}

To power up students' ability to determine what value make more complex inequalities true, have students complete:

Select all values that make the inequality \(2 x+8>6\) true
(A.) 1
(C.) 1.5
E. -1
B. 0
(D.) 2
(F.) 12

Use: Before Activity 1
Informed by: Performance on Lesson 15, Practice Problem 6

\section*{Activity 1 Which Side Has the Solutions?}

Students solve inequalities by solving related equations and testing solutions and by formalizing a process for solving inequalities.


Amps Featured Activity
Dynamic Number Lines

Activity 1 Which Side Has the Solutions?
```

1. Let's investigate the inequality -4x+5\geq25.
```
    a Solve the equation \(-4 x+5=25\), and place an open circle at the solution on the number line below.
\[
\begin{aligned}
-4 x+5-5 & =25-5 \\
-4 x & =20 \\
-4 x \div(-4) & =20 \div(-4) \\
x & =-5
\end{aligned}
\]
b Is the inequality \(-4 x+5 \geq 25\) true when:
- \(x\) equals the solution to the equation \(-4 x+5=25\) ? Explain your thinking. Yes; The solution is \(x=-5\), and \(x=-5\) makes the inequality true.
- \(x\) is greater than the solution to the equation? Explain your thinking. No; 0 is greater than the solution, and \(x=0\) doesn't make the inequality true.
- \(x\) is less than the solution to the equation? Explain your thinking. Yes; -10 is less than the solution, and \(x=-10\) makes the inequality true.

Complete the graph to show the solutions to the inequality \(-4 x+5 \geq 25\) on the number line. Then write an inequality to represent the solution.


Solution: \(x \leq-5\)

\section*{1. Launch}

Conduct the Think-Pair-Share routine. Give students 5 minutes of independent work time. Then give pairs of students time to share their responses and reasoning with each other.
(2) Monitor

Help students get started solving the related equations by reviewing the process of subtracting the constant from both sides and dividing by the coefficient.

\section*{Look for points of confusion:}
- Struggling to select values greater than or less than the solutions in Problem 1b. Rephrase the problem and ask students to select a number to the left and to the right on the number line.
- Struggling to use their responses to part b to help them complete part c. Remind students of their work in Lesson 14 and have them consider which values will make the inequality true.
- Making errors in labeling the number line when graphing the solution. Suggest they start in the middle with the boundary value and then label the tick marks to the left and right of this value.

Activity 1 continued >

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can represent solutions to inequalities on digital numbers lines. You can view their responses in real time.

\section*{Accessibility: Vary Demands to Optimize Challenge}

Have students focus on Problem 1 and then review their responses together before they move on to Problem 2.

\section*{Math Language Development}

MLR8: Discussion Supports—Press for Details
During the Connect, as you discuss how students chose the values to test for each inequality, press them for details in their reasoning. For example:
\begin{tabular}{|c|c|}
\hline If a student says \(\ldots\) & \multicolumn{1}{c}{ Press for detail by asking .... } \\
\begin{tabular}{l} 
"I chose to test the values 1.7 and \\
1.9." (Problem 2)
\end{tabular} & \begin{tabular}{c} 
"Why did you choose these values? Are there different \\
values you could have chosen? Are some values less \\
challenging to use than others?"
\end{tabular}
\end{tabular}

\section*{English Learners}

Annotate the number lines with how they illustrate whether the boundary value is/is not a solution and whether values on each side of the boundary value are/are not solutions.

\section*{Activity 1 Which Side Has the Solutions? (continued)}

Students solve inequalities by solving related equations and testing solutions and by formalizing a process for solving inequalities.

Activity 1 Which Side Has the Solutions? (continued)
```

2. Let's investigate the inequality 3(x+4)<17.4.
a)Solve the equation 3(x+4)=17.4, and place an open circle at the
solution on the number line below.
3(x+4)=17.4
(x+4)\div3=1.4\div
x+4-4=5.8-
-4=5.8
b
the inequality 3(x+4)<17.4 true when
- }\quadx\mathrm{ equals the solution to the equation }3(x+4)=17.4\mathrm{ ?
No
- x is greater than the solution to the equation?
No
- x is less than the solution to the equation?
Yes
c Complete the graph to show the solutions to the inequality
3(x+4)<17.4 on the number line. Then write an inequality
(arepresent the solution.
```

```

Solution: $x<1.8$

```

\section*{Activity 2 Solving Inequalities}

Students practice solving inequalities by solving related equations and testing solutions.


Activity 2 Solving Inequalities
>1. Consider the inequality \(\frac{23}{3}<\frac{4}{3} x+3\).
Solve the related equation and test values less than and greater than the solution. Then graph the solution on the number line and write an inequality to represent the solution.
\(\frac{23}{3}=\frac{4}{3} x+3\)
\(\frac{23}{3}-3=\frac{4}{3} x+3-3 \quad\) Sample response


Solution: \(x>\frac{7}{2}\)
2. Consider the inequality \(-3\left(x-\frac{4}{3}\right) \leq 6\).

Solve the related equation and test values less than and greater than the solution. Then graph the solution on the number line and write an inequality to represent the solution.


Solution: \(x \geq-\frac{2}{3}\)

\section*{Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization}

Help students create a checklist that documents the steps for solving an inequality. A sample checklist is shown. Alternatively, provide students with a copy of the Anchor Chart PDF, Inequalities.

Write a related equation and solve the equation. The solution is the boundary value.Determine if the boundary value is a solution to the inequality. This will tell you whether to use the \(>/<\) or \(\geq / \leq\).est values on either side of the inequality to determine if they are solutions. This will tell you whether to use the symbols \(>/ \geq\) or \(</ \leq\)Write and graph the solution.

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

During the Connect, as students respond to the Ask question, "How would you describe to someone how to solve any inequality?," ask them to consider how multiplying or dividing by a negative coefficient affects the solution to an inequality. Collect and display language students use in their response and connect their language to number line diagrams.

\section*{English Learners}

Provide students time to record their ideas individually and then share with a partner before sharing with the whole class.

\section*{Summary}

Review and synthesize how to solve a more complicated inequality using the same reasoning used for solving simpler inequalities.


\section*{Synthesize}

Display the Anchor Chart PDF, Solving Inequalities and complete the bottom section as a class.

Highlight the steps for solving an inequality by writing and solving a related equation and then checking whether values less than or greater than the equation's solution make the inequality true. Demonstrate how to graph the solution and write an inequality to represent the solution.

\section*{Ask:}
- "How does the equation relate to the inequality?"
- "How do you use the solution to the equation to help you solve the inequality?
- "What are you looking for when you test values less than and greater than the solution to the equation?"
- "What will the graph of the solution look like?"
- "How do you know whether 7 is included in the solution?"
- "How do you determine the inequality you write for the solution?"

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "Which strategies that worked for solving simple equations or inequalities can be put to use when solving more complex ones?"

\section*{Exit Ticket}

Students demonstrate their understanding by determining which of two similar solutions solves each of two inequalities.


```

whether the solution your thinking.

1. $-4 x+5>-5$
Solution: $x<2.5$
Explanation: Answers may vary, but should mention testing values greater and less
``` than 2.5 to determine which makes the inequality true
2. \(-25>-5(x+2.5)\)

Solution: \(x>2.5\)
Explanation: Answers may vary, but should include some mention of testing values Answers may vary, but should include some mention of testing values
greater and less than 2.5 to determine which makes the inequality true

Self-Assess

a I can write and solve an equation to find the solution to an inequality. 123
can draw and label a graph on the number line that represents all the solutions to an inequality.
123
c I can write an inequality to represent the solution to a more complex nequality 123

\section*{Success looks like ...}
- Language Goal: Comparing and contrasting solutions to equations and solutions to inequalities. (Speaking and Listening)
- Goal: Drawing and labeling a graph on the number line that represents all the solutions to an inequality.
- Language Goal: Generalizing the solutions of an inequality of the form \(p x+q>r\) or \(p x+q<r\) by solving the equation \(p x+q=r\) and then testing a value to determine the direction of the inequality in the solution. (Speaking and Listening)
» Deciding whether \(x<2.5\) or \(x>2.5\) is a solution to the inequalities by testing values in Problems 1 and 2.
- Suggested next steps

If students choose \(x>2.5\) as the solution for both inequalities, consider:
- Double checking that they aren't matching the inequality sign in the solution to the direction of the sign in the given inequality.
- Having them check values to find the correct solutions.
- Assigning Practice Problems 1 and 2.

If students write answers with no work shown or explanation given, consider:
- Having them show work or explain their answers.
- Assigning Practice Problem 3.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

\section*{Points to Ponder ...}
- What worked and didn't work today? Who participated and who not participate in Activity 1 today? What trends do you see in participation?
What did students find frustrating about Activity 1? What helped them work through this frustration? What might you change for the next time you teach this lesson?


\section*{(2) \\ ,}
4. The price of a pair of earrings is \(\$ 22\), but Priya buys them on sale for \(\$ 13.20\)
a How much, in dollars, was the price discounted?

The price was discounted \(\$ 8.80\); Sample response: \(22-13.20=8.80\)
b What was the percent of the discount? Show or explain your thinking. The percent of the discount was \(40 \%\); Sample response: \(\frac{8.80}{22} \cdot 100=0.40\)
5. Complete the magic square so that the sums of each row, column, and diagonal in the grid are equal.

( 6. You are building a tower with 2 -in. tall blocks on top of a 10 -in. tall base. Your tower will topple when it is taller than 48 in. Which inequality represents the number of blocks you can use to build your tower?
A. \(2 x-10<48\)
B. \(2 x+10<48\)
C. \(2 x-10 \leq 48\)
(D.) \(2 x+10 \leq 48\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Practice Problem Analysis} \\
\hline Type & Problem & Refer to & DOK \\
\hline \multirow{3}{*}{On-lesson} & 1 & Warm-up & 2 \\
\hline & 2 & Activity 1 & 1 \\
\hline & 3 & Activity 2 & 2 \\
\hline \multirow[b]{2}{*}{Spiral} & 4 & Unit 6 Lesson 12 & 2 \\
\hline & 5 & \begin{tabular}{l}
Unit 5 \\
Lesson 4
\end{tabular} & 2 \\
\hline Formative 0 & 6 & Unit 6 Lesson 17 & 1 \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Interpreting Inequalities}

Let's write some inequalities.


\section*{Focus}

\section*{Goals}
1. Language Goal: Identify the inequality that represents a situation, and justify the choice. (Writing)
2. Language Goal: Present (using multiple representations) the solution method for a problem involving an inequality and interpret the solution. (Speaking and Listening, Writing)

\section*{Coherence}

\section*{- Today}

Students interpret and solve inequalities that represent real-world situations, making sense of quantities and their relationships in the problem.

\section*{< Previously}

Students wrote and solved equations from scenarios in Lesson 9-11. In Lesson 14, students wrote related equations and solved them to help find the solutions to the inequality.

\section*{> Coming Soon}

In Lesson 18, students will begin to focus on the modeling process, starting with a question they want to answer and then independently deciding how they will represent the situation mathematically.

\section*{Rigor}
- Students build their procedural fluency in solving and graphing the solutions of inequalities.


Warm-up


Activity 1


Activity 2


Summary

Exit Ticket
\(\stackrel{\circ}{\circ} \mathrm{P}\) min

(J) 7 min
\(\bigcirc\) Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent | Slides \(x-x\)}

\section*{Materials}
- Exit Ticket
- Additional Practice

\section*{Math Language}

Development

\section*{Review words}
- at least
- at most
- inequality
- solution to an inequality

\section*{Building Math Identity and Community}

Connecting to Mathematical Practices
Students might become distracted as they try to match inequalities and scenarios in Activity 1. They might not put forth the needed focus to approach the problem with both abstract and quantitative reasoning. While working in pairs, have students help each other stay focused. Encourage them to explain their thinking to their partner so that they can make sure their reasoning is sound.

\section*{Amps : Featured Activity}

\section*{Warm-up \\ Interactive Inequalities}

Students drag and drop values to test whether their inequality works and receive instant feedback.


\section*{- Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- The Warm-up may be omitted.

\section*{Warm-up Mystery Inequalities}

Students create their own inequality following certain rules. This helps students reason about the components of an inequality in an abstract way.


\section*{1. Launch}

Read the directions aloud, to ensure that students understand the expectations for this problem. It may be helpful to give one example of an inequality that satisfies the prompt, such as \(2 x-1 \leq 3\).

\section*{(2) Monitor}

Help students get started by suggesting they try different numbers and check which work.

\section*{Look for points of confusion:}
- Using a number more than once. Ask, "Have you noticed that you've broken one of the rules?"
- Trying to place the 2 to the right of the \(\leq\) symbol. Say, "The solution needs to only have an \(x\) on the left side. How can you do that?"

\section*{Look for productive strategies:}
- Finding a pattern in the solutions. Say, "Explain to me what you are noticing. How has it helped you?"
(3) Connect

Display the problem and a blank chart to be filled in with possible answers.

Have students share their process for selecting numbers with a partner.

Highlight a student that substituted 2 for \(x\) in order to make sense of the problem.

Ask, "Once you found one solution, was there a pattern you could use to find other solutions?"

Differentiated Support
(7) Power-up

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they drag and drop values to test whether their inequality works and receive instant feedback.

To power up students' ability to write expressions to represent real-world scenarios, have students complete:
1. It costs \(\$ 0.25\) to play each game at a fair. Admission is \(\$ 4\). Write an expression to show the total cost of playing \(x\) games at the fair. \(0.25 x+4\)
2. It costs \(\$ 0.25\) to play each game at a new arcade. Today, in honor of opening day, the arcade is giving away \(\$ 4\) of free tokens. Write an expression to show the total cost of playing \(x\) games at the arcade today. \(0.25 x-4\)

Use: Before Activity 1
Informed by: Performance on Lesson 16, Practice Problem 6

\section*{Activity 1 Matching an Inequality to a Scenario}

Students interpret a scenario that leads to an inequality. This activity helps students make sense of the quantities and their relationships.

\section*{(4)}

\section*{Name}

Activity 1 Matching an Inequality to a Scenario

The Science Club is investigating the effect of a liquid's density on the height of an object floating within that liquid. They place an egg in a \(\mathbf{2 5 - c m}\) tall beaker filled with salt water. It floats 5 cm above the bottom. They notice that each time they add a spoonful of salt, the egg rises \(\frac{1}{2} \mathrm{~cm}\). How many spoonfuls of salt can be added without the egg reaching the top of the cup?
1. Choose the inequality that best matches the scenario.
A. \(25 x+5<\frac{1}{2}\)
(B.) \(\frac{1}{2} x+5<25\)
C. \(\frac{1}{2} x+25<5\)
D. \(5 x+\frac{1}{2}<25\)
2. Explain what each part of the inequality represents.
\(x\) represents the number of spoonfuls of salt, \(\frac{1}{2}\) is the height in centimeters that the egg rises for each additional spoonful of salt, the egg started at 5 cm from the bottom of the beaker, and 25 is the maximum height in centimeters.
3. Solve for \(x\), graph the solution, and write an inequality to represent the solution. Show your work.
\(\frac{1}{2} x+5<25\)
Sample response:
\(\frac{1}{2} x+5=25 \quad\) Check values less than and greater than 40.
\(\frac{1}{2} x+5-5=25-5 \quad x=30 \quad x=50\)
\(\frac{1}{2} x=20 \quad \frac{1}{2} \cdot 30+5<25 \quad \frac{1}{2} \cdot 50+5<25\)
\(\frac{1}{2} x \div \frac{1}{2}=20 \div \frac{1}{2}\)
\(\frac{1}{2} \cdot 50+5<25\)
\(30<25\) is not tru

Solution: \(x<40\)

4. Explain what the solution means in terms of the scenario

The solution of \(x<40\) means that as long as less than 40 spoonfuls of
The solution of \(x<40\) means that as long as less than 40
salt are added, the egg will not reach the top of the cup.

\section*{1 Launch}

Activate students' background knowledge by asking, "Has anyone noticed that it is easier to float in the ocean than in a pool? Why do you think that is?" The salt in the ocean makes it easier for objects (and people) to float.

\section*{2 Monitor}

Help students get started by asking, "What quantity could be represented by the variable in this scenario?"

\section*{Look for points of confusion:}
- Assuming one quantity will always be on the opposite side of the variable. Allow for this conjecture and ask students to re-evaluate their thinking at the end of the lesson.

\section*{Look for productive strategies:}
- Expressing the solution in words or by graphing on a number line. Applaud student use of these representations while encouraging them to express the solution using the efficient algebraic notation.

\section*{3 Connect}

Display one student's solution to Problem 3.
Have students share what each quantity and variable represent in the original inequality. Annotate the inequality as the student explains.

Highlight what the solution to the inequality represents in the scenario.

Ask, "What does it mean for \(x\) to be less than 40?"

Differentiated Support

\section*{Accessibility: Vary Demands to Optimize Challenge, Guide Processing and Visualization}

Instead of asking students to select the correct inequality for Problem 1, provide them with the correct inequality and ask them to explain how it matches the scenario. Provide access to colored pencils and suggest students color code key words and phrases from the text and how they are represented in the inequality.

\section*{Math Language Development}

\section*{MLR6: Three Reads}

Use this routine to help students make sense of the introductory text.
- Read 1: Students should understand that an egg is floating in a beaker of salt water
- Read 2: Ask students to name or highlight the given quantities and relationships, such as each time a spoonful of salt is added, the height of the egg in the water increases by \(\frac{1}{2} \mathrm{~cm}\).
- Read 3: Ask students to identify what the unknown amount should represent in this context.

\section*{English Learners}

Draw a picture representing this context showing an egg floating in a beaker. Then draw a new picture showing as salt is added, the egg rises.

\section*{Activity 2 Writing an Inequality for a Scenario}

Students are now asked to write and solve their own inequality to match a scenario. This is a gradual release of support from Activity 1 to prepare students for the Exit Ticket.


\section*{1. Launch}

Have the students in each pair take turns reading the scenario to each other. Then ask students to each write their inequality independently before comparing with their partner.

The Chemistry Club is experimenting with different mixtures of water and a chemical called sodium polyacrylate to make fake snow.

Each mixture starts with some amount of water measured in grams. The amount of the chemical used in the mixture is \(\frac{1}{7}\) of the amount of water used, plus 9 more grams of the chemical. The chemical is expensive, so
there must be less than 50 g of the chemical in any one mixture. How much water can the students use in the experiment?
\(>\) 1. Describe the unknown amount that the variable \(x\) will represent.
\(x\) represents the amount of water, measured in grams.
2. Write an inequality that represents the scenario, graph the solution, and write an inequality to represent the solution.
\(\frac{1}{7} x+9<50\)
Sample response:
\(\frac{1}{7} x+9=50 \quad\) Check values less than and greater than 287.
\(\frac{1}{7} x+9-9=50-9\)
\(x=0 \quad x=700\)
\(\frac{1}{7} \cdot 0+9<50 \quad \frac{1}{7} \cdot 700+9<50\) \(\frac{1}{7} x \div \frac{1}{7}=41 \div \frac{1}{7}\) \(x=287\)

Solution: \(x<287\)

3. Explain what the solution means in terms of the scenario.

The solution \(x<287\) means that the students can use any amount of water that is less than 287 g in the experiment.

Three Reads: Read the introductory information three times.
1. Make sens

Mcenario.
What mathematic
What mathematical
2. quantities are given? to solve the problem.
(2) Monitor

Help students get started by suggesting they read the scenario backwards, starting with the last sentence and finishing with the first.

\section*{Look for points of confusion:}
- Representing the scenario with \(\frac{1}{7}+9 x<50\). Ask, "What does it mean to have \(\frac{1}{7}\) of an amount? Do we know what that amount is?"
- Using " \(\leq\) ". Ask, "Can the Chemistry Club use exactly 50 grams of the chemical? How do you know?"
- Thinking that the solution represents the amount of chemical in the mixture. Ask, "What did you say the variable represented when you read the scenario?"

\section*{Connect}

Display one student's solution to Problem 2.
Have students share what each quantity and variable represent in their original inequality. Annotate the inequality as the student explains.

Highlight how the inequality and solution relate to the scenario.

Ask:
- "How did you determine what the \(\frac{1}{7}\) term represents?"
- "How did you decide on the direction of the inequality for the solution?"
- "What does it mean that \(x\) is less than 287 ?"

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization, Activate} Prior Knowledge

Before students begin, ask them to explain in their own words what it means that the amount of the chemical is \(\frac{1}{7}\) the amount of the water. Connect this relationship to their prior understanding of ratios. Have them complete the following statements.
- For every 1 gram of water, there are __ grams of the chemica
- For 7 grams of water, there are \(\qquad\) grams of the chemical.
- For 14 grams of water, there are grams of the chemical.
- For \(x\) grams of water, there are _ grams of the chemical.

\section*{Math Language Development}

\section*{MLR6: Three Reads}

Use this routine to help students make sense of the introductory text.
- Read 1: Students should understand that water is mixed with a chemical to make fake snow. Tell them they do not need to worry about how to pronounce the chemical name.
- Read 2: Ask students to name or highlight the given quantities and relationships, such as the amount of the chemical used is \(\frac{1}{7}\) of the amount water used plus 9 more grams of the chemical.
- Read 3: Ask students to identify what the unknown amount should represent in this context.

\section*{Summary}

Review and synthesize how inequalities can represent and help solve real-world problems.


\section*{Synthesize}

Display the following, "Suppose your friend asks you to write some practice problems for solving inequalities. You want to write an inequality that has a solution of \(x \leq-8 \frac{2}{3}\). Describe how to write such an inequality."

Have students share with a partner how they would write such an inequality. Circulate and note the different strategies students use.

Highlight that there are many approaches to writing such an inequality. As students share different approaches, pause the class and highlight each one.

Ask, "How many different inequalities can be written with this solution?" An infinite number.

\section*{D. Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "How is writing and solving inequalities the same or different from writing and solving equations?"
- "What strategies did you use when determining how to graph the solutions of an inequality?

\section*{Exit Ticket}

Students demonstrate their understanding by explaining how each of the each of the terms, and the solution to, a given inequality relate to a scenario.

冝 Printable


Andre is making paper cranes to decorate for a party. He plans to make one larger paper crane as a centerpiece and several smaller ones to place around the table. It takes Andre 10 minutes to make the centerpiece and 3 minutes to make each small crane. He will only have 30 minutes to make them once he gets home.
1. Andre wrote the inequality \(3 x+10 \leq 30\) to plan his time.

Describe what \(x, 3 x, 10\), and 30 represent in this inequality.
\(x\) represents the number of small cranes Andre can make and \(3 x\) represents the total time it takes to make the small cranes. 10 represents the number of minutes it takes鲑 \(\mathbf{3 0}\) represents the maximum amount of time Andre has to make his cranes.
2. Solve Andre's inequality, graph the solution, and explain what the solution means in terms of the scenario.
\[
3 x+10 \leq 30 \quad \text { Sample response: }
\]
\(3 x+10=30 \quad\) Check values less than and greater than \(6 \frac{2}{3}\).
\(3 x+10-10=30-10 \quad x=6 \quad x=7\)
\(\mathbf{3 x}=\mathbf{2 0} \quad \mathbf{3 \cdot 6}+\mathbf{1 0} \leq \mathbf{3 0} \quad 3 \cdot 7+10 \leq 30\)
\(3 x \div 3=20 \div 3 \quad 28 \leq 30\) is true. \(\quad 31 \leq 30\) is not true.
\(x=6 \frac{2}{3}\)
Solution: \(x \leq 6 \frac{2}{3}\)


Explanation: Andre has enough time to make at most \(6 \frac{2}{3}\) small cranes. Because \(\frac{2}{3}\) of a crane would not be useful, Andrew really only has enough time to make 6 small cranes.


\section*{Success looks like . . .}
- Language Goal: Identifying the inequality that represents a situation, and justifying the choice. (Writing)
- Language Goal: Presenting (using multiple representations) the solution method for a problem involving an inequality, and interpreting the solution. (Speaking and Listening, Writing)
» Solving Andre's inequality and graphing and interpreting the solution in Problem 2.

\section*{- Suggested next steps}

If students struggle to describe terms accurately, consider:
- Giving students practice reading scenarios and identifying the inequality with multiple choice answers.
- Assigning Practice Problem 2.

If students struggle to solve the inequality, consider:
- Giving students practice starting with simpler inequalities and working up to two-step inequalities with rational-number values.
- Assigning Practice Problem 3.

If students misinterpret the fractional solution, consider:
- Checking in throughout Lesson 18 to see that they are making sense of the solutions to inequalities.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

\section*{13. Points to Ponder ...}

What worked and didn't work today? How was Activity 2 similar to or different from the work students did with writing and solving equations previously in this unit?

What routines enabled all students to do math in today's lesson? What might you change for the next time you teach this lesson?

Math Language Development
Language Goal: Presenting (using multiple representations) the solution method for a problem involving an inequality, and interpreting the solution.
Reflect on students' language development toward this goal
- How have students progressed in this unit toward
- Making sense of real-world problems that involve equations or inequalities?
- Defining variables to represent the unknown quantities?
- Interpreting the solutions to their equations or inequalities within the context of the problem?

\begin{tabular}{|lclc|}
\hline Practice Problem Analysis \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 2 \\
\hline Spiral & \(\mathbf{2}\) & Activity 2 & 1 \\
\hline Formative \(\mathbf{0}\) & \(\mathbf{6}\) & Activity 2 & 2 \\
\hline & \(\mathbf{4}\) & \begin{tabular}{l} 
Unit 4 \\
Lesson 9 \\
Unit 6 \\
Lesson 15
\end{tabular} & 1 \\
\hline Unit 6 \\
Lesson 18
\end{tabular}
(6) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Modeling With Inequalities}

Let's look at solutions to inequalities.


\section*{Focus}

\section*{Goals}
1. Language Goal: Critique the solution to an inequality, including whether fractional or negative values are reasonable. (Speaking and Listening)
2. Determine what information is needed to solve a problem involving a quantity constrained by a maximum or minimum acceptable value.
3. Write and solve an inequality of the form \(p x+q>r\) or \(p x+q<r\) to solve a problem about a situation with a constraint.

\section*{Coherence}

\section*{- Today}

In this lesson, students determine if their solutions are reasonable within context of the scenarios they represent. This lesson focuses on the modeling process, in which students start with a question they want to answer and independently decide how they will represent the situation mathematically.

\section*{\(<\) Previously}

In Lesson 16 and 17, students wrote and solved inequalities of the form \(p x+q>r\) and \(p(x+q)<r\).

\section*{> Coming Soon}

Students will continue their work with inequalities in Grade 8 when they solve linear inequalities.

\section*{Rigor}
- Students continue to build conceptual understanding of solutions to inequalities by analyzing real-world scenarios.
- Students develop procedural fluency in solving and graphing solutions to inequalities through an Info Gap routine.


Warm-up


Activity 1


Activity 2


Summary


Exit Ticket


กำ Pairs

(J) 5 min
\(\bigcirc\) Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc \bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 1 PDF (for display)
- Activity 1 PDF (answers)
- Activity 2 PDF, pre-cut cards, one set per pair

\section*{Math Language \\ Development}

\section*{Review words}
- inequality
- solution to an inequality

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

When working with mathematical models, students must make sure that they are appropriate for the scenario, otherwise, the model is completely ineffective. The effectiveness of the model is evaluated after it has been applied by considering whether the solution is discrete or continuous and whether the answer needs to be rounded. Discuss how students evaluate their life decisions and why the reflection process is important.

\section*{Amps : Featured Activity}

\section*{Exit Ticket \\ Real-time Exit Ticket}

Check in real time if your students can correct errors in an inequality using a digital Exit Ticket.


\section*{- Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- In Activity 2, have students only complete Problem 1 from the Info Gap.

\section*{Warm-up Possible Values}

Students read a real-world scenario and determine which solutions are possible based on the context. This will begin a discussion about realistic solutions.


\section*{1 Launch}

Set an expectation for the amount of time students have to work in pairs on the activity.

\section*{(2) Monitor}

Help students get started by asking, "Can a fraction of a sandwich be ordered? Can the stage manager order a negative number of sandwiches?"
Look for points of confusion:
- Thinking that the value 14 is a solution because 13.86 rounds up. Model how to substitute 14 into the inequality showing that it is not a solution.

\section*{Connect}

Have students share their thinking for each value. Conduct the Poll the Class routine for agreement and discuss any disagreements.

Highlight that the values 13.86 and -4 satisfy the inequality. Emphasize, however, they do not make sense in the context of sandwiches. The value 9.5 also satisfies the inequality, but may or may not be reasonable or possible, depending on what the class decides.

Power-up
To power up students' ability to determine appropriate solutions based on the context of a scenario, have students complete:

Noah needs to buy at least 3 packs of pencils at the store to have enough to last the school year.

Select all of the possible numbers of packs of pencils he could buy at the store
(A.) 3 packs
B. 3.5 packs
C. 4 packs
D. \(5 \frac{1}{3}\) packs

Use: Before the Warm-up
Informed by: Performance on Lesson 17, Practice Problem 6

\section*{Activity 1 Loading an Elevator}

Students write and solve an inequality to represent a real-world problem, and consider what solutions are realistic in context.


\section*{1 Launch}

Ask students to close their books and display the Activity 1 PDF. Give pairs of students a few moments to brainstorm what information they need in order to answer the question. After students share what missing information is needed, have them open their books and read the scenario for the Activity.

\section*{2 Monitor}

Help students get started by asking, "Can the mover put one box on the elevator? Would that be efficient?"
Look for points of confusion:
- Thinking it is possible to have 38 boxes in the elevator. Have students substitute the value into the inequality and determine it is not a solution.

\section*{3 Connect}

Have students share strategies for solving the inequality.
Highlight modeling the scenario with the inequality and how the related equation helps solve the inequality.

\section*{Ask:}
- "How can you represent the solution on a number line? Is 5.5 a solution?" Sample response: It is not a solution in the context of this problem because it doesn't make sense to have half a box.
- "Do you want to change the number line somehow to show this?" Sample response: I could plot points or I could simply leave it as is, but just know that for a problem with this context, I will only use integer solutions.
- "How did you know which way to round?" Sample response: I should round down, otherwise the mover has gone over the weight limit.
- "What other limitations do the contexts place on the solutions?" Sample response: There must be a positive number of boxes.

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

To help students make sense of the introductory text, ask these questions before they begin the activity. Then distribute the Activity 1 PDF for students to record all of the possibilities.
- "Can the mover take all 48 boxes in one load? Why or why not?"
- "Can the mover take 10 boxes in one load? More than 10?"
- "Can the mover take 24 boxes in one load? More than 10 ?"

\section*{Extension: Math Enrichment}

Have students complete the following problem: If there were 140 boxes to move, how many trips would it take? 4 trips; 140 divided by 37 is about 3.7 , which means 4 trips are needed.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as you highlight how the inequality models the scenario, display the scenario and its related inequality. Ask the following questions. As students respond, annotate or color code the key words and phrases in the text with how they are represented in the inequality.
Ask, "Where do you see . . .
- "The unknown? What does it represent?"
- "The weight constraint of the elevator in the text and in the inequality? Why was this particular inequality symbol used?"
- "The weight of the mover in each representation? Why is it added?"
- "The weight of each box? Why is it multiplied by the unknown?"

\section*{Activity 2 Info Gap: Giving Advice}

Students set up and solve inequalities representing real-world scenarios. They use the context of the scenario to interpret the solutions.


Activity 2 Info Gap: Giving Advice

You will be given either a problem card or a data card.
Do not show or read your card to your partner.
\begin{tabular}{|l|l|}
\hline If you are given a problem card: & If you are given a data card: \\
\hline 1. Silently read your card and think about \\
what information you need to be able to \\
solve the problem.
\end{tabular} 1. Silently read your card.

Pause here so your teacher can review your work. You will be given a new set of cards and repeat the activity, trading roles with your partner.
\begin{tabular}{|c|c|}
\hline Problem 1 & Problem 2 \\
\hline \begin{tabular}{l}
Let \(x\) be the number of loads. \\
Then \(-1.65 x+50 \geq 15\).
\[
\begin{aligned}
-1.65 x+50 & =15 \\
-1.65 x+50-50 & =15-50 \\
-1.65 x & =-35 \\
-1.65 x \div(-1.65) & =-35 \div(-1.65) \\
x & \approx 21.21
\end{aligned}
\] \\
For \(x=0\), the inequality \(-1.65 \cdot 0+50 \geq 15\) is true. \\
Solution: \(x \leq 21.21\) \\
They can do at most 21.21 loads; however, it is unrealistic to do a fraction of a load. Therefore, they can do a whole number of loads between 0 and 21.
\end{tabular} & \begin{tabular}{l}
Let \(w\) be the width. Then \(2 w+14 \leq 65\).
\[
\begin{aligned}
2 w+14 & =65 \\
2 w+14-14 & =65-14 \\
2 w & =51 \\
2 w \div 2 & =51 \div 2 \\
w & =25.5
\end{aligned}
\] \\
For \(x=\mathbf{0}\), the inequality is true. \\
Solution: \(x \leq 25.5\) \\
The width can be no longer than 25.5 cm ; however, it is unrealistic to have a negative width. Therefore, the width can be between 0 and 25.5 cm .
\end{tabular} \\
\hline
\end{tabular}

\section*{1. Launch}

Distribute a set of cards from Activity 2 PDF to each pair of students. Conduct the Info Gap routine.

\section*{(2) Monitor}

Help students get started by reminding students they can represent their situation using words, an inequality, and a graph. They also need to determine what the variable represents.

\section*{Look for points of confusion:}
- Calculating the area instead of perimeter for Problem Card 2. Remind students that the term border implies a distance (length) around the outside.
- Not remembering how to determine the perimeter or not remembering there are two lengths. Have them draw a picture of a rectangle and label the length as 7 cm and the width as the unknown quantity.
(3) Connect

Highlight that some scenarios can only have discrete solutions. For instance, Noah cannot do 2.5 loads of laundry; he can only do whole numbers of loads. Some scenarios will have continuous solutions. For instance, Elena can make the width any amount between 0 and 25.5 cm .

\section*{Ask:}
- "In Noah's problem, should you round up or down? Why?" Down; Noah does not have enough money to do 3 loads
- "Do you need to round for Elena's problem? Why or why not?" No; the width does not have to be a whole-number value

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Display Problem Card 1. Use a think-aloud to model Steps 1 and 2 as if you were the recipient of that card. Consider using the following during the think-aloud.
- "I know the family wants to keep a minimum balance on the card, but I don't know what that is. I will ask for this amount."
- "I need to determine how many loads of laundry Noah's family can do before needing to add money to the card, but I don't know how much money is already on the card. I will ask for this amount."

\section*{Math Language Development}

\section*{MLR4: Information Gap}

Display prompts for students who benefit from a starting point, such as:
- "Can you tell me . . . (specific piece of information)?"
- "Why do you need to know . . (that piece of information)?"

\section*{English Learners}

Consider providing sample questions students could ask, such as the following for Problem Card 1:
- "How much does a load of laundry cost?"
- "How much money is currently on the card?"

\section*{Summary}

Review and synthesize how to model real-world situations with inequalities.


\section*{Synthesize}

Display the scenario, "Andre is saving money to purchase something and needs at least \(\$ 100\). He already has \(\$ 20\) in his piggy bank and earns \(\$ 7\) each week in allowance."

Ask students what information needs to be decided or what steps need to be completed. For example, students need to define a variable, write an inequality, solve the inequality, and interpret the solution within the context of the scenario.

Highlight that possible solutions to a scenario are different than the mathematical solutions. For instance, some solutions may only be positive whole-number values (number of people). Other scenarios may have continuous solutions (length of a rope).

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "When it was your turn for the "Problem" card, how did you decide which questions to ask?"
- "When it was your turn for the "Data" card, how did you decide what information you should share with your partner?"

\section*{Exit Ticket}

Students demonstrate their understanding by critiquing Elena's inequality and solution to a real-world problem.


\section*{Success looks like ...}
- Language Goal: Critiquing the solution to an inequality, including whether fractional or negative values are reasonable. (Speaking and Listening)
» Explaining why Elena's solution is not correct in Problem 1.
- Goal: Determining what information is needed to solve a problem involving a quantity constrained by a maximum or minimum acceptable value.
- Goal: Writing and solving an inequality of the form \(p x+q>r\) or \(p x+q<r\) to solve a problem about a situation with a constraint.
» Correcting Elena's solution to the inequality in Problem 2.

\section*{Suggested next steps}

\section*{If students do not find Elena's mistake with the inequality, consider:}
- Reviewing the Summary for Lesson 15.
- Discussing examples of inequality phrases.

If students cannot explain the meaning of the parts of the inequality, consider:
- Having students identifying the meaning of the parts of the inequalities in Practice Problems 1, 2, and 3.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\(0_{0}\) Points to Ponder...
What worked and didn't work today? How did students model with mathematics today? How are you helping students become aware of how they are progressing in this area?
Thinking about the questions you asked students today and what the students said or did as a result of the questions, which question was the most effective? What might you change for the next time you teach this lesson?

\begin{tabular}{|lclc|}
\hline \multicolumn{3}{|c|}{ Practice Problem } & Analysis \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 2 \\
& 2 & Activity 2 & 2 \\
Spiral & \(\mathbf{3}\) & Activity 2 & 2 \\
\hline Formative & \(\mathbf{4}\) & \begin{tabular}{l} 
Unit 6 \\
Lesson 6
\end{tabular} & 1 \\
\hline
\end{tabular}
(6) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Equivalent Expressions}

In this Sub-Unit, students see that expressions can be rewritten using fewer terms, while taking extra care when dealing with negative terms.


\section*{皆}

\section*{Narrative Connections}

Read the narrative aloud as a class or have students read it individually. Students continue to make use of structure in expressions, and even look at a few more robots, in the following places:
- Lesson 19, Activity 1 : Robot Recharge
- Lesson 21, Activity 1 : A's and B's
- Lesson 22, Activity 2 : Grouping Differently

\title{
Subtraction in Equivalent Expressions
}

Let's find ways to work with subtraction in expressions.


\section*{Focus}

\section*{Goals}
1. Language Goal: Explain (using multiple representations) how the Distributive and commutative properties apply to expressions with negative coefficients. (Speaking and Listening, Writing)
2. Identify whether expressions are equivalent, including rewriting subtraction as adding the opposite.

\section*{Coherence}

\section*{- Today}

This lesson prepares students for working with more complicated expressions and rewriting those expressions in a more helpful form. It is meant to guide students against making errors involving subtraction and negative signs when rewriting those expressions.

\section*{\(<\) Previously}

Earlier this unit, in Lessons 3-7, students solved equations of the forms \(p x+q=r\) and \(p(x+q)=r\).

\section*{> Coming Soon}

In Lessons 20 and 21, students will work with factoring and expanding expressions that include subtraction and negative terms.

\section*{Rigor}
- Students build conceptual understanding of the Commutative Property of Addition and Distributive Property with negative values by comparing them to similar expressions with positive values.


Activity 2


Activity 3


Summary

Exit Ticket
(1) 5 min

กำ Pairs


() 10 min


\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 1 PDF (as needed)

\section*{Math Language \\ Development}

\section*{Review words}
- additive inverse
- Commutative Property of Addition
- Distributive Property
- equivalent expressions
- terms

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Because each activity in this lesson reviews a skill students learned in the past, they might impulsively rush through, without putting forth much thought. Prior to beginning each activity, have students explain why the topic is important enough to spend some time reviewing. Explain that each provides a structure in which students can work to be successful.

\section*{Amps ! Featured Activity}

\section*{Activity 3}

\section*{Digital Card Sort}

Students use a digital sorting activity to make sense of area models that include negative values. You can eliminate the prep work needed for this activity.


\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- During Activity 1, set a time limit and have students write as many number sentences as they can during that time.
- Activity 3 may be omitted. Consider assigning the Activity as Additional Practice.

\section*{Warm-up Which One Doesn't Belong?}

Students compare four expressions involving negative values to prepare students for similar algebraic expressions in this lesson.

(1) Launch

Set an expectation for the amount of time students will have to work in pairs on the activity. Conduct the Which One Doesn't Belong? routine

\section*{(2) Monitor}

Help students get started by suggesting they find one difference between two expressions first, and then check if the difference exists in the other expressions.

\section*{Look for points of confusion:}
- Stopping after finding one reason. Encourage students to find as many reasons as they can.

\section*{Look for points of confusion:}
- Finding these possible reasons: A is the only one with parentheses. \(B\) is the only one where 3 is not the middle term. C has a different value than the others. D begins with a negative value.

\section*{(3) Connect}

Display the four expressions.
Have students share at least one reason for each expression as to why it does not belong, starting with A, B, and D. Discuss C last. After each reason, ask the class if they agree or disagree.

Ask students to identify what causes the terms in Expression C to have a different value.

Highlight that Expression C is the only Expression with a different value. Notice that Expressions A, B, and D all preserve the signs of the terms, if not mentioned already.

Power-up
To power up students' ability to recognize equivalent expressions that represent an area model, have students complete:
1. Determine the missing area of each rectangle in the area model shown.
2. Which expressions represent the entire area of the model in 2 Problem 1? Select all that apply.

(A.) \(2 x+6\)
B. \(2+x+3\)
C. \(2(x+3)\)
D. \(12 x\)

Use: Before Activity 2
Informed by: Performance on Lesson 18, Practice Problem 6

\section*{Activity 1 Robot Recharge}

Students recall that subtracting is the same as adding the inverse. This activity reinforces the idea that the subtraction sign must stay with the term that follows it.


\section*{1. Launch}

Suggest to students they may want to mark important points on the number line before thinking about the moves.

\section*{2 Monitor}

Help students get started by saying, "Try three moves in the same direction. Where does that get you?"

\section*{Look for points of confusion:}
- Struggling with the fractional values. Refer to the Differentiated Support: Accessibility section.
- Always starting with a move to the right. Ask, "Is it possible to get to the outlet if the robot moves left first?"
- Writing a number sentence that doesn't get the robot to the outlet. Say, "Show me these moves on the number line."

\section*{3 Connect}

Display the diagram and empty lines to fill in with the expressions that students share.

Have students share each of the number sentences they found to get the robot to the outlet.

Ask:
- "What do these expressions have in common?" All have a value of 3 . All have the \(2 \frac{1}{2}\) subtracted or represented as a negative.
- "Can you explain on the model why the equation \(1 \frac{1}{2}+4-2 \frac{1}{2}=1 \frac{1}{2}+\left(-2 \frac{1}{2}\right)+4\) is true?"
Highlight that we can treat subtracting \(2 \frac{1}{2}\) as adding \(-2 \frac{1}{2}\). The Commutative Property of Addition tells that the order of these values can change and still have an equivalent expression. All of the expressions are equivalent.

\section*{4 Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

Consider simplifying the values in this activity to whole numbers, such as 1,2 , and 4 . This will still allow students to access the targeted goal of the activity, which is to reinforce how subtracting is the same as adding the inverse, paying careful attention to negative signs.

\section*{Accessibility: Vary Demands to Optimize Challenge}

Provide access to copies of the Activity 1 PDF for students to use these blank number lines to help them represent the robot's moves as number sentences.

\section*{Extension: Math Enrichment}

Tell students that the robot must move in opposite directions each time. Ask them to determine which number sentence(s) satisfy this new condition. Sample responses: \(4-2 \frac{1}{2}+1 \frac{1}{2}=3,1 \frac{1}{2}-2 \frac{1}{2}+4=3,4+\left(-2 \frac{1}{2}\right)+1 \frac{1}{2}=3\), \(1 \frac{1}{2}+\left(-2 \frac{1}{2}\right)+4=3\)

\section*{Activity 2 The Distributive Property, Revisited}

Students write different expressions to represent an area model with whole-number values before moving to negative terms in the following activity.

Activity 2 The Distributive Property, Revisited

Write at least three different expressions that represent the area of the largest rectangle shown.


Expression 1:

Expression 2:

Expression 3:

Sample responses:
- \(2(5+3)\)
- \(2 \cdot 5+2 \cdot 3\)
- \(10+6\)
- \(2 \cdot 8\)
- 16

1 Launch
Display the image and give students \(2-3\) minutes to write an expression for the area of the rectangle in at least three different ways.

\section*{(2) Monitor}

Help students get started by asking, "How can you find the area of the rectangle?"

Look for points of confusion:
- Providing a response of \(\mathbf{1 6}\). Ask students to show how they got to 16 .
- Not seeing \(2(5+3)\) is modeled by the diagram. Annotate the length that represents \(5+3\).
(3) Connect

Display the completed area model.
Have students share the expressions, including addition in \(2 \cdot 5+2 \cdot 3\) and \(2(5+3)\), and their explanation for how they got them.

Highlight that using the Distributive Property creates equivalent expressions. The area model helps students organize what they need to multiply when using the Distributive Property.

\section*{Ask:}
- "How does thinking about area give you a way to understand the Distributive Property?" Thinking about the area of a divided rectangle helps to see the different expressions.
- "How do you know that the different expressions are equivalent?" The area model shows that I am thinking about the same area in different ways.

\section*{Accessibility: Activate Prior Knowledge, Guide Processing and}

\section*{Visualization}

Remind students they have previously learned and applied the Distributive Property. Ask a student volunteer to provide an example of a numerical expression that illustrates the Distributive Property. Sample response: \(4(6+1)=4(6)+4(1)\)

\section*{Extension: Math Enrichment}

Have students draw an area model that has a total area of \(2 x+\frac{2}{3} y\). Students' drawings may vary, but should show how the factor \(\frac{2}{3}\) is common to both terms; \(\frac{2}{3}(3 x+y)\)

\section*{Activity 3 Including Negatives in Area Models}

Students match area model diagrams with expressions that include negatives and subtraction to help them pay attention to the signs.


\section*{1. Launch}

Explain to students that they will be matching each expression with one of the area model diagrams. Clarify that students will use all expressions and each diagram will have more than one expression that represents it.

\section*{Monitor}

Help students get started by suggesting they write the area of each of the small rectangles on the models. This should help them find at least one matching expression for each area model.

\section*{Look for points of confusion:}
- Getting stuck on the fractional values. Give students a separate space to work out the multiplication of the coefficients. They should notice these values are consistent in all the expressions.

\section*{3 Connect}

Display the properly matched area models and expressions. Write or have a student write the expression for the area of each small rectangle on the diagram.

\section*{Ask:}
- "Is there a pattern you can use to determine which of these expressions are equivalent?" Sample response: I can look at the signs in the expression and match it with the signs in the area model.
- "What is an example of one expression that did not follow the pattern?" Sample response: \(\frac{x}{5}+\frac{8}{5} y+\left(-\frac{12}{5}\right)\), because the \(x\) term is first.

Highlight that anytime students see subtraction, they know that it can also be represented as adding the additive inverse.

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can use a digital sorting activity to make sense of area models that include negative values. You can eliminate the prep work needed for this activity.

\section*{Accessibility: Guide Processing and Visualization}

Suggest that students examine the area diagrams before beginning, noticing how they are similar and different. For example, all of the diagrams have \(8 y\), but the sign of \(x\) is positive in the third diagram and the sign of 12 is negative in the second and third diagrams.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students respond to the Ask questions, draw their attention to the signs of the terms in the area model and the signs of the terms in the expressions at the beginning of the activity. Ask students to complete these statements, as needed, to drive home the connections.
- "The expressions that include adding a positive \(x\) term and either subtracting positive 12 or adding negative 12 match with the area model in part because..."
- "The expressions that include adding a positive 12 term and either adding a negative \(x\) term or subtracting a positive \(x\) term match with the area model in part \(\qquad\) , because ..."

\section*{Summary}

Review and synthesize how to represent subtraction and signed numbers in area models.


\section*{Synthesize}

Display the two expressions \(x+2-3 x-10\) and \(x+3 x-2-10\). Ask students to think about why these expressions are not equivalent and explain their reasoning to a partner.

\section*{Highlight:}
- Subtraction is not commutative. \(2-3 x\) and \(3 x-2\) are not equivalent; terms cannot just simply be switched around a subtraction sign.
- Because subtracting \(3 x\) is the same as adding \((-3 x)\), the term \((-3 x)\) keeps its negative sign as it is moved around when using the commutative property

Ask, "How can you alter the second expression to make it equivalent to the first?" There are many ways to do this. Recognize students using precise language when describing how they would change signs and/or operations.

\section*{(1) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "Which representations best help you to make sense of certain mathematical scenarios?"

\section*{Exit Ticket}

Students demonstrate their understanding by identifying and writing equivalent expressions involving negative terms.


\section*{Success looks like ...}
- Language Goal: Explaining (using multiple representations) how the Distributive and commutative properties apply to expressions with negative coefficients. (Speaking and Listening, Writing)
- Goal: Identifying whether expressions are equivalent, including rewriting subtraction as adding the opposite.
» Selecting all equivalent expression to \(4-x\) in Problem 1.

\section*{- Suggested next steps}

If students have errors in Problem 1, consider:
- Revisiting appropriate lessons from Unit 5 where students worked with adding and subtracting rational numbers. Help students understand that substituting a variable in place of a number does not change the properties of the operation.
- Reminding students that \(-x\) can be rewritten as \(-1 x\). Encourage them to rewrite each expression adding the coefficient to each \(x\).
If students have errors in Problem 2, consider:
- Giving them opportunities to continue their work with factoring and expanding expressions using the Distributive Property in Lesson 20.
- Assigning Practice Problem 2.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\(\bigcirc\) Points to Ponder ...
- What worked and didn't work today? What did you see in the way some students approached Activity 1 that you would like other students to try?
- Knowing where students need to be by the end of this unit, how did using area models to simplify expressions influence that future goal? What might you change for the next time you teach this lesson?
\begin{tabular}{|lclc|}
\hline Practice Problem Analysis & \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 2 \\
\hline Spiral & \(\mathbf{2}\) & Activity 3 & 1 \\
\hline & \(\mathbf{3}\) & \begin{tabular}{l} 
Activity 3 \\
Unit 4 \\
Lesson 3
\end{tabular} \\
\hline Formative \(\mathbf{0}\) & 6 & \begin{tabular}{l} 
Unit 6 \\
Lesson 13 \\
Unit 6 \\
Lesson 20
\end{tabular} & 2 \\
\hline
\end{tabular}
(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Expanding and Factoring}

Let's use the Distributive Property to write expressions in different ways.


\section*{Focus}

\section*{Goals}
1. Language Goal: Comprehend the terms expand and factor in relation to the Distributive Property. (Speaking and Listening)
2. Language Goal: Apply the Distributive Property to expand or factor an expression that includes negative coefficients and explain (using multiple representations) the reasoning. (Speaking and Listening)

\section*{Coherence}
- Today

Students use the Distributive Property to expand and factor expressions that include subtraction and negative values.

\section*{\(<\) Previously}

In Lesson 19, students wrote equivalent expressions with subtraction using the Distributive and commutative properties.

\section*{>Coming Soon}

In Lessons 21 and 22, students will use properties, including the Distributive Property, to write equivalent expressions with fewer terms.

\section*{Rigor}
- Students use area models to build their conceptual understanding of expanding and factoring expressions.
- Students apply their understanding of negative values and the Distributive Property to expand and factor expressions.


\section*{Building Math Identity and Community Connecting to Mathematical Practices}

Much precision must be taken by students as they write equivalent expressions, and some students might make careless mistakes throughout the process. Remind students that, when working with a partner they have an obligation to help the other person learn from their mistakes. Have students identify approaches that they think will result in effective communication when someone needs to pay more attention.

\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- Omit the Warm-up.
- In Activity 2, have students complete the card sort and discuss their matches orally.
- In Activity 3, may be omitted. Consider assigning the Activity as Additional Practice.

\section*{Warm-up Number Talk}

Students mentally evaluate expressions in order to review the order of operations and see how the position of parentheses may change the value of the expression.


\section*{1 Launch}

Conduct the Number Talk routine. Instruct students to consider one problem at a time. Give students 30 seconds for each problem and ask them to give a signal when they have an answer and a strategy.

\section*{Monitor}

\section*{Look for points of confusion:}
- Evaluating the expressions from left to right instead of following the order of operations. Review the order of operations and remind students that operations are not necessarily performed in order from left to right.

\section*{3 Connect}

Display the expressions.
Have students share their strategies for evaluating each expression.

Highlight that a number immediately preceding or following a set of parentheses signals multiplication. Discuss how the expressions could be rewritten using the Distributive Property. Bring attention to the effect of a negative on the outside of parenthesis, explaining that \(2-(3+4)\) can also be written as \(2-3-4\).

\section*{Ask:}
- "Who evaluated the expressions a different way?"
- "Do you agree or disagree with ___'s strategy? What are your reasons?"
- "Who can restate __'s reasoning in a different way?"

\section*{Power-up}

\section*{MLR8: Discussion Supports—Press for Details}

During the Connect, as students share their responses and strategies for evaluating each expression, press them for detail in their reasoning by asking these probing questions:
- "Why is the value of Problem 2 greater than the value of Problem 1 , when they use the same numbers? What do the parentheses indicate?"
- "In Problems 1 and 3, there are no parentheses. How did you know which operation to do first?"

To power up students' ability to determine common factors between two values, have students complete:

Recall that a factor is a number that divides evenly into a given whole number A common factor is a factor that two or more numbers share. For example 4 is a common factor of 12 and 16 . Determine common factors of each pair of values:
1. 8 and \(201,2,4\)
2. 12 and \(361,2,3,4,6,12\)
3. \(4 y\) and \(6 y 1,2, y, 2 y\)

Use: Before Activity 1
Informed by: Performance on Lesson 19, Practice Problem 6

\section*{Activity 1 Factoring and Expanding With Area Model Diagrams}

Students fill in the missing labels on area model diagrams and use them to write equivalent expressions.


Amps Featured Activity
Dynamic Area Models

Activity 1 Factoring and Expanding With Area Model Diagrams
1. Fill in the boxes to complete each area model.

2. Use the diagrams to write an equivalent expression for each expression.
\[
\text { (a) } 5(a-6)=5 a-30
\]
(b) \(6 a-2 b=2(3 a-b)\)

\section*{At Are you ready for more?}
to describe the model.


Expression 1: Answers may vary, but the entries in the boxes must result Expression 2: accurately describe the relationship shown in the diagram.

1 Launch
Display a completed area model diagram modeling the relationship between the expressions \(-3(5-2 y)\) and \(-15+6 y\). Discuss how the diagram demonstrates the Distributive Property and shows the expressions are equivalent.

\section*{(2) Monitor}

Help students get started by asking "How do you determine the area of a rectangle? What do you need to multiply 2 by to get \(6 a\) ?"

\section*{Look for points of confusion:}
- Not making the connection between subtraction and adding the opposite. Ask, "If you add -6 , how can you write that as subtraction?"

\section*{Connect}

Have students share how they completed each diagram and how they used the diagrams to write equivalent expressions.

Define the term expand as using the Distributive Property to rewrite a product as a sum and the term factor as using the Distributive Property to rewrite a sum as a product.

Highlight that when expanding and factoring, the original and resulting expressions are equivalent.

\section*{Ask:}
- "How does the diagram model the Distributive Property?"
- "Which expressions are in factored form and which are in expanded form?"
- "Where do you see the factored and expanded forms in the area model diagram?"
- "Why is 2 the number outside the box on the second diagram? Could you have 3 or \(2 a\) there instead?"

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can create digital area models to represent the Distributive Property.

\section*{Extension: Math Enrichment}

Have students complete the following problems:
- Write the expression \(\frac{3}{4}\left(8 x-2 y+\frac{1}{3} z\right)\) in expanded form. \(6 x-\frac{3}{2} y+\frac{1}{4} z\)
- Write the expression \(\frac{3}{5} m n-\frac{2}{5} m p+\frac{1}{5} m\) in factored form. \(\frac{1}{5} m(3 n-2 p+1)\)

\section*{Math Language Development}

\section*{MLR8: Discussion Supports-Press for Details}

During the Connect, as you define the terms expand and factor, and as students respond to the Ask questions, press for more detail in their reasoning. For example:

\section*{If a student says ...}
"The expression 5( \(a-6\) ) is in factored form."
"The expression \(6 a-2 b\) is in expanded form."

Press for detail by asking.
"Why is the expression \(5(a-6)\) in factored form? What does it mean for an expression to be in factored form?" "Why is the expression \(6 a-2 b\) in expanded form? What does it mean for an expression to be in expanded form?"

\section*{Activity 2 Card Sort: Matching Equivalent Expressions}

Students match equivalent expressions in factored and expanded form to prepare for writing their own equivalent expressions.


\section*{1 Launch}

Distribute one set of cards to each pair from the Activity 2 PDF. Conduct the Card Sort routine. Encourage students to use the area model diagrams to check their matches.

\section*{2 Monitor}

Help students get started by asking, "How can you represent the expressions in an area model?"
Look for points of confusion:
- Matching expressions based on coefficients and ignoring signs. Have students use the area models to prove their matches are correct.
- Being confused by a negative sign immediately preceding parentheses (e.g., \(-(3 w+4 z)\) ). Explain that the expression is the same as \(-1(3 w+4 z)\).

\section*{3 Connect}

Have students share the matches they found and conduct the Poll the Class routine to reach consensus. Students can show an area model for any disputed matches. Have students identify which expression in each pair is factored and which is expanded.

Highlight that the expressions in each pair are equivalent. To factor expressions, divide each term by their common factor. Look at each pair of expressions and see if there are any other common factors of the terms. Discuss the other ways the expanded expression could be factored, e.g., 4 is the greatest common factor of the terms in \(-4 w-24 z\), so \(-4(w+6 z)\) is also equivalent. Note that when factoring, it is more efficient to factor out the greatest common factor.

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can create digital area models to represent the Distributive Property.

\section*{Accessibility: Guide Processing and Visualization}

Provide students with an example of an area model diagram and corresponding equivalent expressions labeled expanded and factored. For example, provide students with an area model diagram and these corresponding expressions.
Expanded: \(-18 x+12 y\)
Factored: \(-6(3 x-2 y)\)

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, display Cards 2, 4, 7, and 8. Ask students to respond to these questions to encourage the use of their developing vocabulary around factored and expanded form.
- "For which expanded form expression(s) could you factor out a negative sign? Why?" The expression on Card 4, because both terms contain a negative sign.
- "For which factored form expression(s) would result in both terms being negative when written in expanded form? Why?" The expression on Card 7 , because the negative sign will be distributed to both positive terms on the inside of the parentheses, making them both now negative.

\section*{Activity 3 Factor and Expand}

Students complete a table by writing equivalent expressions to solidify the relationship between factoring and expanding.

Activity 3 Factor and Expand

Complete the table by writing an equivalent expression in each row.
\begin{tabular}{|c|c|}
\hline Factored & Expanded \\
\hline \(6(2 x-3 a)\) & \(12 x-18 a\) \\
\hline\(-2(4 a-5 b)\) & \(-8 a+10 b\) \\
\hline\(a(10-13)\) & \(10 a-13 a\) \\
\hline \(4 b(a-1)\) & \(4 a b-4 b\) \\
\hline\(\frac{2}{3}(-6 a-x)\) & \(-4 a-\frac{2}{3} x\) \\
\hline\(-(x-2 b)\) & \(-x+2 b\) \\
\hline
\end{tabular}

Note: Students are not required to completely factor the expressions. Partially factored expressions are acceptable as long as they are equivalent. For example, in
Row 4, \(4(a b-b)\) and \(b(4 a-4)\) are also valid responses.

\section*{AB Are you ready for more?}

Complete the table by writing an equivalent expression in each row.


\section*{3 Connect}

Display the completed table.
Have students share how they found the equivalent expression in each row.
Highlight the first and fourth rows and note that while factoring out any common factor will result in an equivalent expression, it is more efficient to factor out as much as possible at once. Compare the expressions \(7 x-7 a\) and \(10 a-13 a\). Explain that the terms in \(7 x-7 a\) have the same coefficient (except for the sign) and the terms in \(10 a-13 a\) have the same variable part. Discuss how \(a(10-13)\) can be written as \(-3 a\) and why this isn't the case with \(7(x-a)\).
Ask, "What processes can you use to factor an expanded expression, and to expand a factored expression?"

Differentiated Support

\section*{Accessibility: Vary Demands to Optimize Challenge, Guide Processing} and Visualization

If students need more processing time, allow them to choose three of the six rows to complete and provide them with a template for drawing an area model. Allowing them to choose which rows to complete can increase engagement and ownership of the task.

\section*{Summary}

\section*{Review and synthesize how to use the Distributive Property to factor and expand expressions.}


\section*{Synthesize}

Display the expression \(12 x-8\) and a partiallycompleted area model with the expanded expression entered.

Highlight how to factor and expand expressions. Mentally solve the problem aloud while demonstrating how to complete the area model and write the factored expression. Say, "You have seen how to use the Distributive Property to expand an expression. Now you can also use the Distributive Property backwards to factor an expression."

\section*{Formalize vocabulary:}
- expand
- factor

\section*{Ask:}
- "Is \(12 x-8\) in factored or expanded form?"
- "What factor do \(12 x\) and -8 have in common?"
- "4 times what is \(12 x\) ?"

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "Which representations best help you to make sense of certain mathematical scenarios?"

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in this unit. Ask them to review and reflect on any terms and phrases related to the terms expand and factor that were added to the display during the lesson.

\section*{Exit Ticket}

Students demonstrate their understanding of factoring and expanding by writing equivalent expressions.


\section*{Success looks like ...}
- Language Goal: Comprehending the terms expand and factor in relation to the Distributive Property. (Speaking and Listening, Writing)
- Language Goal: Applying the Distributive Property to expand or factor an expression that includes negative coefficients and explaining (using multiple representations) the reasoning. (Speaking and Listening)
» Expanding or factoring an expression using the Distributive Property in Problems 1 and 2.

\section*{Suggested next steps}

If students arrive at an incorrect answer with a missing or incorrect diagram, consider:
- Reviewing how to draw a diagram for each problem.
- Assigning Practice Problem 1, reviewing the solution, and then having students draw diagrams to complete Practice Problem 2.

If students arrive at an incorrect answer with a correct diagram, consider:
- Reviewing how to use the diagram to write the equivalent expressions.
- Assigning Practice Problem 1, reviewing the solution, and then having students complete Practice Problem 3, part b.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

0 . Points to Ponder ...
- What worked and didn't work today? Which groups of students did and didn't have their ideas seen and heard today?
The instructional goal for this lesson was for students to comprehend the terms expand and factor in relation to the Distributive Property. How well did students accomplish this? What did you specifically do to help students accomplish it? What might you change for the next time you teach this lesson?
```

Name:

```

\(>1\).
Complete each area model diagram. Then write two equivalent
expressions to describe each diagram.
Area model

Factored
expression
Expanded
expression
\[
-\frac{\overline{2}}{}(2 x-2 y)
\]
\(-\frac{1}{2}(2 x-2 y)\)
\(3 b(-3 a+5)\)
Note: Some students may factor out 3 instead of \(3 b\), or just \(b\). Accept all
mathematically correct responses.
2. Write equivalent expressions for each expression. Draw an area model diagram to help, if needed.
a Expand to write an equivalent expression: \(-\frac{1}{4}(-8 x+12 y)=2 x-3 y\)
b Factor to write an equivalent expression: 36a-16 \(=4(9 a-4)\)

Elena can make \(6 \frac{2}{3}\) cups of purple paint; \(4+2+\frac{2}{3}=6 \frac{2}{3}\)
5. Select all the inequalities that have the same solution as \(-4 x<20\).
(A.) \(-x<5\)
D. \(x<-5\)
(B.) \(4 x>-20\)
E. \(x>5\)
C. \(4 x<-20\)
(F.) \(x>-5\)
>6. Name the property represented by each set of equivalent expressions.
a \(4+3+(-2)\) and \(4+(3+(-2))\)
\(5+(-6)+7\) and \(5+7+(-6)\) Associative Property of Addition Commutative Property of Ad
(C) \(5+0=5\)
d) \(3(2+6)=6+18\) Additive Identity Distributive Property

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Combining Like Terms (Part 1)}

Let's see how we can tell expressions are equivalent.


\section*{Focus}

\section*{Goals}
1. Language Goal: Apply properties of operations to justify that expressions are equivalent. (Speaking and Listening, Writing)
2. Generate an equivalent expression with fewer terms.
3. Language Goal: Interpret different methods for determining whether expressions are equivalent and evaluate their usefulness. (Speaking and Listening)

\section*{Coherence}

\section*{- Today}

Students use the properties of operations they previously studied to understand how to properly write an equivalent expression using fewer terms. Students consider complicated expressions made of several parts.
\(<\) Previously
In Lesson 20, students wrote equivalent expressions by expanding and factoring expressions.

\section*{> Coming Soon}

In Lesson 22, students will continue their work writing equivalent expressions using properties of operations.

\section*{Rigor}
- Students build conceptual understanding of simplifying expressions with like terms.
- Students develop procedural fluency in combining like terms by determining the missing like term in equations.


Warm-up


Activity 1


Activity 2


Summary

\section*{Exit Ticket}
() 5 min
\(\bigcirc \circ\) Pairs


(1) 5 min
\(\bigcirc\) Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \\ Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice

\section*{Math Language Development}

\section*{New word}
- like terms

Review words
- associative property
- commutative property
- Distributive Property
- equivalent expressions
- identity property
- terms

\section*{Amps \(\vdots\) Featured Activity}

\section*{Activity 1}

Using Work From Previous Slides

Students can use their responses from previous slides to make a comparison between the values.


\section*{Building Math Identity and Community}

Connecting to Mathematical Practices
Seeing expressions that contain only variables and symbols might cause some students' stress levels to increase. Ask them to brainstorm ways to monitor and manage their stress levels. Explain that the very structure that mathematics provides should help alleviate some of their concerns. The same properties that applied to expressions with numbers apply to expressions with variables.

\section*{Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- In Activity 2, have students only complete either the even or the odd problems.

\section*{Warm-up What Does It Equal?}

Students evaluate an expression that they will see later in Activity 1 to begin the discussion of equivalent expressions.


\section*{1 Launch}

Set an expectation for the amount of time students will have to work in pairs on the activity.

\section*{Connect}

Display the expression.
Have students share strategies for evaluating the expression.

Highlight the correct use of precise, mathematical language and give students opportunities to revise their responses to be more precise. Review the properties of operations if any students use them during their computations. Explain that substituting numbers for the variables several times can be tedious and, in Activity 1, a more efficient method will be used.

Power-up
To power up students' ability to recognize properties of operations, have students complete:

Match each equation to the property it models.
a. \(6+x+3=x+6+3\)
c... Additive Identity
b. \(6 x+12=6(x+2)\)
a .... Commutative Property of Addition
c. \(y+0=y\)
b ... Distributive Property
d. \((4+x)+2 x=4+(x+2 x)\)
a Associative Property of Addition
Use: Before Activity 1
Informed by: Performance on Lesson 20, Practice Problem 6

\section*{Activity 1 A's and B's}

Students compare two expressions to determine which property makes them equivalent. They also evaluate expressions and discuss combining like terms to simplify expressions.


Name: Date: \(\qquad\) Period:
Activity 1 A's and B's
1. The expression from the Warm-up, \(a+a+a+b+a-c-c+b-a-b-b\),
is equivalent to \(a+a+a+b+a+(-c)+(-c)+b+(-a)+(-b)+(-b)\).
How was the second expression rearranged? Why can that be done?
Subtraction was rewritten as addition of a negative, because adding a negative is the same as subtracting.
2. The expression \(a+a+a+b+a+(-c)+(-c)+b+(-a)+(-b)+(-b)\) is equivalent to \(a+a+a+a+(-a)+b+b+(-b)+(-b)+(-c)+(-c)\). How was the second expression rearranged? Why can that be done? Like terms were grouped together, because the Commutative Property of Addition allows addition to be rearranged.
3. The expression \(a+a+a+a+(-a)+b+b+(-b)+(-b)+(-c)+(-c)\) is equivalent to \((a+a+a+a+(-a))+(b+b+(-b)+(-b))+((-c)+(-c))\). How was the second expression rearranged? Why can that be done? Parentheses were placed around like variables, because the Associative Property of Addition allows terms to be grouped together.
4. The expression \((a+a+a+a+(-a))+(b+b+(-b)+(-b))+((-c)+(-c))\) is equivalent to \(3 a+0 b+(-2 c)\). How was the second expression rearranged? Why can that be done?
The \(a s\) were added together, the \(b s\) were added together, and the \(c s\) were added together, because like terms were combined.
5. The expression \(3 a+0 b+(-2 c)\) is equivalent to \(3 a+(-2 c)\)

How was the second expression rearranged? Why can that be done?
The \(0 b\) term was removed (not written). \(0 b\) is equivalent to 0 , so the expressions are equivalent because of the Additive Identity

\section*{1) Launch}

Keep the Warm-up visible for students, as this expression is simplified during Activity 1. Display a list of the properties of operations with examples of each on the board for students to reference throughout the lesson.

\section*{2 Monitor}

Help students get started by asking, "What changed between the two expressions?" and "Why can that change be made and still have equivalent expressions?"

\section*{Look for points of confusion:}
- Thinking the expressions are equivalent because they evaluated the expressions for \(a=3\),
\(b=-\mathbf{4}\), and \(c=\mathbf{2}\). Remind students that equivalent expressions must be equal for every possible value of the variables.
- Not remembering the formal names of the properties. The goal is for students to understand the concept of equivalent expressions and explain the process from one expression to another. Encourage the general understanding of the properties by having students reference the example you posted on the board.

Activity 1 continued \(>\)

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can use their responses from previous slides to make a comparison between the values.

\section*{Accessibility: Guide Processing and Visualization}

Distribute colored pencils and suggest that students color code the \(a\) terms in one color, the \(b\) terms in a second color, and the \(c\) terms in a third color to help them visualize how the terms in the expressions were rearranged.

\section*{Math Language Development}

\section*{MLR8: Discussion Supports-Press for Details}

During the Connect, as students share their responses for why the expressions can be rearranged and still be equivalent, press for details in their reasoning. For example:

\section*{If a student says..}
"The terms were rearranged so that all of the terms with the same letter are next to each other." (Problem 2)
"Term \(0 b\) is removed." (Problem 5)

Press for detail by asking . .
"Why would this be beneficial to do? How does it help us further simplify the expression? What property allows us to move the terms around?"
"Why was this term removed? What property allows us to do so?"

\section*{Activity 1 A's and B's (continued)}

Students compare two expressions to determine which property makes them equivalent. They also evaluate expressions and discuss combining like terms to simplify expressions.

Activity 1 A's and B's (continued)
6. The expression \(3 a+(-2 c)\) is equivalent to \(3 a-2 c\).

How was the second expression rearranged? Why can that be done?
Addition of a negative was rewritten as subtraction because addition and subtraction are inverse operations.
7. Evaluate \(3 a-2 c\) when \(a=3\) and \(c=2\).
\(3 \cdot 3-2 \cdot 2=5\)
8. Why are the final solutions for the Warm-up and Problem 7 the same? Which expression is more efficient to evaluate? Why?
Sample response: The final solutions are the same because the expressions
are equivalent. I think the expression \(3 a-2 c\) is more efficient to evaluate
because there are fewer terms. because there are fewer terms

\section*{3 Connect}

Have students share their reasoning of why each statement is true.

Highlight the the correct use of precise, mathematical language. Give students opportunities to revise their responses to be more precise. Review the properties of operations.

\section*{Ask:}
- "Why are these expressions called equivalent expressions?" Sample response: I used the properties of operations to rewrite each expression so I know they are equal for all possible values of the variables.
- "The expression \(3 a-2 c\) is known as 'simplest form.' Why?" It is written with the fewest number of terms.

\section*{Activity 2 Making Sides Equal}

Students determine which terms can be combined to make an expression with fewer terms in order to solidify the concepts of like terms and equivalent expressions.


\section*{1. Launch}

Let students know there are multiple correct responses, but that they should check that, when the like terms are combined on the left side of the equation, the resulting expression equals the right side of the equation.

\section*{Monitor}

Help students get started by asking, "What added to 6 will equal 10?" What added to 6 apples will give 10 apples?" To further solidify their understanding, give students the expression \(3 b+4 c\) and ask if it can be combined to one term. Use the example of 3 bees plus 4 cows does not equal 7 bee-cows.

Look for points of confusion:
- Needing many examples to understand. Take time to give as many examples as needed and highlight how all expressions replacing the box in each question are equivalent. For example, in Problem 1, both of the expressions \(4 x\) and \(5 x-1 x\) could work.

\section*{3 Connect}

Have students share their solutions and strategies for each problem. Encourage them to be creative. Conduct the Poll the Class routine as students give suggestions to determine if there is agreement.

Highlight alternative strategies and/or expressions. Encourage students to think of additional expressions which will yield the same result. For example, on Problem 1, students may write out the sum of \(6 x\) 's on the left side and \(10 x\) 's on the right side and reason \(4 x\) 's are needed to make the sides equal. Another student might reason with the Distributive Property, and rewrite the question as \(x(6+\square)=10 x\).

\section*{Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

If students need more processing time, have them complete the first column of problems (Problems 1, 3, 5, 7).

\section*{Accessibility: Guide Processing and Visualization}

Provide a bank of possible expressions that students can select from for this activity. Include both variable terms and numerical terms to help students discern between them. For example:
\begin{tabular}{c:c|c|c:c:c}
\(5 x\) & \(4 x\) & \(-4 x\) & \(8 x\) & \(-6 x\) & \(6 x\) \\
\hline\(-16 x\) & \(10 x\) & \(12 x\) & \(-8 x\) & 4 & -4 \\
\hline 5 & 8 & -6 & -16 & 10 & 6 \\
\hline
\end{tabular}

\section*{Math Language Development}

\section*{MLR8: Discussion Supports}

During the Connect, display these sentence frames to help students state whether they agree with each other's solutions and strategies.
- "I agree because . .."
- "I disagree because

Encourage them to connect the properties with the processes they used to confirm equivalent expressions. For example, Problem 5 illustrates the Additive Identity. Display the property names and have students use the property names in their responses.

\section*{English Learners}

Encourage students to draw pictures of shapes and/or algebra tiles to model the equations.

\section*{Summary}

Review and synthesize how to combine like terms.

\section*{Summary}

\section*{In today's lesson.}

You explored how some equivalent expressions have fewer terms than other equivalent expressions. There are many ways to write equivalent expressions, some of which may look very different from each other. You have several tools for determining whether two expressions are equivalent.
- Two expressions are not equivalent if they have different values when you substitute the same number for the variable.
- If two expressions are equal for many different values of the variable, then the expressions may be equivalent. You do not know for sure, because it is impossible to compare expressions for all values.

To determine whether two expressions are equivalent, you can use properties of operations to write them with fewer terms. You can also combine like terms parts of an expression that have the same variable and can be added together, such as \(7 x\) and \(9 x\). If both expressions can be written as the same expression, then they are equivalent.
\(>\) Reflect:

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit. Ask them to review and reflect on any terms and phrases related to the term like terms that were added to the display during the lesson. Add examples and counterexamples of like terms to the display. For example, add the expression \(3 x+2-4 x+1+2 x y\) along with the following:
Like terms: \(3 x\) and \(-4 x ; 2\) and 1
\(2 x y\) and \(3 x\) are not like terms.

\section*{Exit Ticket}

Students demonstrate their understanding by combining like terms and simplifying expressions.


\section*{Success looks like...}
- Language Goal: Applying properties of operations to justify that expressions are equivalent. (Speaking and Listening, Writing)
- Goal: Generating an equivalent expression with fewer terms.
» Writing equivalent expressions with fewer terms in Problems 1 and 2.
- Language Goal: Interpreting different methods for determining whether expressions are equivalent and evaluating their usefulness. (Speaking and Listening)

\section*{- Suggested next steps}

If students expand the expression, instead of simplifying, consider:
- Reminding them of the difference between expanding and writing fewer terms.
- Assigning Practice Problem 2.

If students combine the \(y\) term with the \(x\) terms in Problem 2, consider:
- Reminding them that like terms have the same variables.
- Assigning Practice Problem 1.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...
- What worked and didn't work today? What different ways did students approach the Warm-up? What does that tell you about similarities and differences among your students?
- In what ways in Activity 1 did things happen that you did not expect? What might you change for the next time you teach this lesson?
\begin{tabular}{|lclc|}
\hline Practice Problem Analysis & DOK \\
\hline Type & Problem & Refer to & 2 \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 2 \\
\hline Spiral & \(\mathbf{2}\) & Activity 2 & Activity 2 \\
\hline Formative \(\mathbf{0}\) & \(\mathbf{4}\) & \begin{tabular}{l} 
Unit 6 \\
Lesson 13 \\
Unit 2 \\
Lesson 10 \\
Unit 6 \\
Lesson 22
\end{tabular} & 1 \\
\hline
\end{tabular}

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.
(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{UNIT 6 | LESSON 22}

\section*{Combining Like Terms (Part 2)}

Let's see how to write equivalent expressions with parentheses and negative numbers.


\section*{Focus}

\section*{Goals}
1. Language Goal: Identify expressions that are not equivalent, but differ only in the placement of parentheses, and justify that they are not equivalent. (Speaking and Listening, Writing)
2. Write expressions with fewer terms that are equivalent to given expressions that include negative coefficients and parentheses.

\section*{Coherence}

\section*{- Today}

Students combine like terms to write expressions with fewer terms that are equivalent to expressions with negative coefficients and parentheses. Special attention is given to the effect of negative values on the values within a set of parentheses.

\section*{< Previously}

In Lesson 21, students combined like terms to write equivalent expressions with fewer terms.

\section*{> Coming Soon}

In Lesson 23, the culminating lesson of the unit, students will make connections between equivalent expressions, non-proportional linear relationships, and pattern growth.

\section*{Rigor}
- Students deepen their conceptual understanding of equivalent expressions by comparing and contrasting expressions with and without parentheses.
- Students continue to build procedural fluency in simplifying expressions by combining like terms with and without the Distributive Property.


Warm-up


Activity 1


Activity 2


Summary


Exit Ticket
\(( \lrcorner) 5\) min
กํํํํㅇํ Whole Class

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Writing Equivalent Expressions (for display)
- Anchor Chart PDF, Writing Equivalent Expressions (answers)

\section*{Math Language Development}

\section*{Review words}
- equivalent expressions
- like terms
- term

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

In Activity 1, students have to decide whether they agree with each strategy and identify errors that were made. During this debate, students might find themselves in greater conflict than expected with their partner. Encourage students to work through that conflict and resolve it in a way that builds the relationship rather than destroying it.

\section*{Amps ! Featured Activity}

\section*{Activity 1}

\section*{See Student Thinking}

Students are asked to explain their thinking when determining whether they agree or disagree with strategies for writing equivalent expressions.


\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- The Warm-up may be omitted.
- In Activity 1, have students discuss the strategies orally without writing down their thinking.
- In Activity 2, Problem 1 may be omitted.

\section*{Warm-up Make the Equation True}

Students place parentheses in an equation to make the equation true.


\section*{1 Launch}

Set an expectation for the amount of time students have to work independently on the activity.

\section*{2 Monitor}

Help students get started by demonstrating how to place the parentheses in an incorrect location and evaluating the expression to show the equation is not true. Then tell students to try to place the parentheses somewhere else to make it true.

\section*{Look for points of confusion:}
- Placing parentheses incorrectly. Ask them to evaluate the expression to be sure the equation is true.
- Failing to follow the order of operations when evaluating the expression to check that the equation is true. Ask students which operation should be done first after they place the parentheses.

\section*{3 Connect}

Have students share their equations. Choose a few that are incorrect. Conduct the Poll the Class routine to see whether they agree or disagree with their classmates' responses.

Highlight that an equation is true when both sides are equivalent. Review the order of operations by evaluating the given expression on the left side of the equal sign and each student-generated expression.

\section*{c \\ Power-up}

To power up students' ability to identify equivalent number expressions, have students complete:
Recall that subtraction can be rewritten as adding the opposite. For example, \(6-1\) can be rewritten as \(6+(-1)\). Determine all expressions that are equivalent to \(6-1(3+2)\).
(A. \(6+(-1)(3+2)\)
C. \(6-1 \cdot 3+1 \cdot 2\)
(B.) \(6+(-1) \cdot 3+(-1) \cdot 2\)
(D.) \(6-1 \cdot 3-1 \cdot 2\)

Use: Before Activity 1
Informed by: Performance on Lesson 21, Practice Problem 6

\section*{Activity 1 Seeing It Differently}

Students identify typical errors with signed numbers, operations, and properties to help them develop strategies for writing equivalent expressions.


Amps Featured Activity
See Student Thinking

Activity 1 Seeing It Differently

Some students are trying to write an expression with fewer terms that is equivalent to the expression \(8-3(4-9 x)\). Their responses are shown.
Review each student's response. Then complete the problems.

Noah: "I worked the problem from left to right and ended up with \(20-45 x\)."
\(8-3(4-9 x)\)
\(=5(4-9 x)\)
\(=20-45 x\)
Noah didn't follow the order of operations,
he subtracted before multiplying.

Jada: "I used the Distributive Property and ended up with \(27 x-4\)."
\(8-3(4-9 x)\)
\(=8-(12-27 x)\)
\(=8-12-(-27 x)\)
\(=27 x-4\)
Jada wrote a correct expression.

Lin: "I started inside the parentheses and ended up with \(23 x\)."
\(8-3(4-9 x)\)
\(=8-3(-5 x)\)
\(=8+15 x\)
\(=23 x\)
Lin combined unlike terms.

Andre: "I also used the Distributive
Property, but I ended up with \(-4-27 x\)."
\(8-3(4-9 x)\)
\(=8-12-27 x\)
\(=-4-27 x\)
Andre made a mistake with his signs when
distributing, so his second line should
have been \(8-12+27 x\).
1. Do you agree with any of the students? Explain your thinking.

Jada; Sample response: Jada distributed the 3 then subtracted each term in the parentheses, so her strategy is correct.
2. For each strategy you disagree with, identify and describe the errors Sample responses shown under each student's work.

\section*{1. Launch}

Ensure students understand that the task has two parts. First they need to decide whether they agree with each person's strategy, then they need to describe the errors that were made if they disagree.

\section*{2 Monitor}

Help students get started by asking them, "How is the expression changing from one step to the next? Are the expressions on each step equivalent?"

\section*{Look for points of confusion:}
- Misidentifying incorrect work as correct. Suggest substituting the same value for \(x\) in each expression and evaluating to see if the results are the same value This will not prove the expressions are equivalent, but it can prove that they are not equivalent.

\section*{3 Connect}

Display each student's work given in the problems.
Have students share their thinking. For each work sample, conduct the Poll the Class routine to assess classwide agreement with each sample student's work. Have students explain where they see errors in the work with which they disagree.
Highlight the common misconceptions demonstrated by the errors in each work sample; Noah: evaluating from left to right instead of following the order of operations; Lin: combining unlike terms; Andre: forgetting to distribute the negative sign to both terms in the parentheses. Identify each step Jada took to write the expression in fewer terms. Note that Jada's result is the equivalent expression with the fewest terms possible.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can explain their thinking when determining whether they agree or disagree with the given strategies for writing equivalent expressions. Their explanations are available to you digitally, in real time.

\section*{Accessibility: Guide Processing and Visualization}

Have students examine the work sample for one student at a time, pausing for a brief class discussion between work samples.

\section*{Math Language Development}

\section*{MLR3: Critique, Correct, Clarify}

The entirety of this activity is designed similarly to the routine Critique, Correct, Clarify. During the Connect, as students share where they see errors in the work samples with which they disagree, ask them to work with their partner to either write a few sentences or verbally share an explanation directed to that student as to what error was made and how they could correct their work. Ask student volunteers to share their explanations with the class.

\section*{English Learners}

Pair students together who speak the same primary language. This will support students in giving and receiving feedback on their explanations.

\section*{Activity 2 Grouping Differently}

Students compare expressions that are identical except in the placement of parentheses to explore how the placement of parentheses affects expressions.


\section*{1 Launch}

Conduct the Think-Pair-Share routine. Have students complete the first problem independently before comparing their equivalent expression with their partner. Then have partners work on the second problem together.

\section*{Monitor}

Help students get started by asking, "Which terms in the expression are like terms?"

Look for points of confusion:
- Making errors writing an expression equivalent to the given expression. Have students review their work with their partner to see whether they can identify their error.

\section*{Look for productive strategies:}
- Writing an equivalent expression in factored form \(-4(x+1)\) or \(4(-x-1)\). Note students who do this, and mention it in the class discussion.

\section*{3 Connect}

Display each expression given in the problem, as it is discussed.

Have students share their equivalent expressions for Problem 1. Conduct the Poll the Class routine to see which expressions with parentheses they thought were or were not equivalent to the original. Select students to share their thinking about each expression.

Highlight that, while there are a variety of equivalent expressions with fewer terms students could have written for Problem 1, \(-4 x-4\) has the fewest terms. Note that equivalent expressions will be identical when written with the fewest terms. Demonstrate this with the expressions in Problem 2.

\section*{Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

Consider removing one or two of the expressions in Problem 2 and have students focus on analyzing the remaining expressions.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, display the expressions from Problem 2. Use color coding to annotate where the parentheses are placed in each expression and whether or not the placement altered the value of the expression. Draw students' attention to the signs or coefficients in front of the parentheses that would result in a different evaluation. Remind them that a negative sign in front of the parentheses indicates a coefficient of -1 .

Equivalent to \(-4 x-4\)
\(5+(8 x-9)-12 x\)
\((5+8 x)-9-12 x\)
\(5+(8 x-9-12 x)\)

Not equivalent to \(-4 x-4\)
\[
5+8 x-(9-12 x)
\]
\[
5+8(x-9)-12 x
\]

\section*{Summary}

Review and synthesize how combining like terms and using the properties of operations can help write equivalent expressions with fewer terms.

\section*{Summary}

\section*{In today's lesson ..}

You furthered your understanding of writing equivalent expressions with fewer terms, which is called combining like terms. Combining like terms can be tricky with long expressions, parentheses, and negatives.

You should always follow the order of operations when combining like terms and remember that only like terms can be combined using addition and subtraction. Also, remember to carefully consider the sign of terms when distributing with negative values or subtraction.

\section*{Reflect:}

Display the Anchor Chart PDF, Writing Equivalent Expressions and complete as a class.

Have students share the equivalent expression that should be written in each row of the table that matches the given step.

Ask, "What are some strategies for preventing mistakes while writing expressions in fewer terms?" Rewriting subtraction as adding the opposite; following the order of operations; being careful to only add and subtract like terms.

Highlight how to write the expression as an equivalent expression with the fewest terms.

\section*{(1) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition To help them engage in meaningful reflection, consider asking:
- "What does it mean for two or more expressions to be equivalent?"
- "What strategies did you use to determine if two or more expressions were equivalent?"

\section*{Exit Ticket}

Students demonstrate their understanding by determining which expression in a set of expressions is equivalent to a given expression.


\section*{Professional Learning}

\section*{Success looks like ...}
- Language Goal: Identifying expressions that are not equivalent, but differ only in the placement of parentheses, and justifying that they are not equivalent. (Speaking and Listening, Writing)
- Goal: Writing expressions with fewer terms that are equivalent to given expressions that include negative coefficients and parentheses.
» Determining that the expression \(4+16 x-12\) \((1+2 x)\) is equivalent to the expression \(16 x-\) \(12-24 x+4\) in Problem 1 .

\section*{Suggested next steps}

If students say the first expression is not equivalent because it has parentheses, consider:
- Having them expand the expression to show that it is equivalent to the original expression.
- Assigning Practice Problem 2.

If students say the third expression is equivalent because the numbers are the same as in the original expression, consider:
- Having them write each expression as an equivalent expression with the fewest terms to determine that they are not equivalent.
- Assigning Practice Problem 2.

If students misidentify whether the second and fourth expressions are equivalent, consider:
- Having them rewrite the subtraction in the original expression as adding the opposite. Then have them combine like terms to determine that the fourth expression is equivalent and the second expression is not equivalent.
- Assigning Practice Problem 1.

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder . .
- What worked and didn't work today? During the discussion about Activity 1 how did you encourage each student to share their understandings?
- What challenges did students encounter as they worked on Activity 2? How did they work through them? What might you change for the next time you teach this lesson?

\begin{tabular}{|lclc|}
\hline Practice Problem Analysis & \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 2 \\
\hline Spiral & \(\mathbf{2}\) & Activity 1 & 2 \\
\hline Formative 0 & \(\mathbf{3}\) & \begin{tabular}{l} 
Activity 2 \\
Unit 6 \\
Lesson 17 \\
Unit 2 \\
Lesson 2 \\
Unit 6 \\
Lesson 23
\end{tabular} & 2 \\
\hline
\end{tabular}

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.

O Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Pattern Thinking}

\section*{Let's write expressions to describe patterns of growth.}

\section*{Focus}

\section*{Goals}
1. Write an algebraic expression to describe a linear relationship.
2. Language Goal: Justify whether algebraic expressions are equivalent. (Speaking and Listening, Writing)

\section*{Coherence}

\section*{- Today}

This culminating lesson of the unit helps students make connections between equivalent expressions, non-proportional linear relationships, and pattern growth.

\section*{< Previously}

In Unit 2, students became familiar with multiple representations of proportional relationships, using tables, graphs, and equations. Throughout Unit 6, students expanded on their work with proportional relationships to write expressions and equations to represent nonproportional, linear relationships.

\section*{> Coming Soon}

Students will continue to work with solving equations in new contexts, such as angle relationships, in Unit 7.

\section*{Rigor}
- Students apply their understanding of writing and solving equations and expressions to study patterns and predict the values in nonproportional relationships.


Warm-up

Activity 1

Activity 2


Activity 3


Summary

Exit Ticket
\(\square\) 5 min


\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice

\section*{Math Language Development}

Review words
- commutative property
- Distributive Property
- equivalent expressions

\section*{Building Math Identity and Community Connecting to Mathematical Practices}

As students look for and use the structure in the growth pattern in Activity 1, they might not think that there is a purpose for the task. Have students speculate on why this task is important. Have them explain what they think they will learn and how they will use it in the future. Ask them to explain how it relates to what they have learned before. With a better understanding of this trajectory, students will be able to approach the activity with a spirit of optimism.

\section*{Amps : Featured Activity}

\section*{Activity 2}

Students Test Expressions Instantly

After writing their expression to find the number of tiles for the border, students can see their thinking instantly tested for various sizes of pools and have the opportunity to revise their expression, if needed.

desmos

\section*{- Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- The Warm-up may be omitted.
- In Activity 2, have one partner complete each each problem, and then compare their methods.

\section*{Warm-up Predicting the Future}

Students analyze a pattern to prepare for representing pattern growth using expressions in the upcoming activities.


\section*{1 Launch}

Conduct the Think-Pair-Share routine for Problem 1. Have students work together to answer Problems 2 and 3.

\section*{Monitor}

Help students get started by asking students to draw what they think Figure 4 will look like.

\section*{Look for points of confusion:}
- Multiplying the step number by two. Ask students to test this strategy by relating the step number with the number of faces.

\section*{Look for productive strategies:}
- Noticing that the number of happy faces increases by two each step, but that the total number is always one more than double the step number.

\section*{(3) Connect}

Have students share their descriptions of how the pattern is growing.

Ask, "Is the number of faces in each figure proportional to the figure number? How do you know?" No; Sample response: I can tell because the ratio of the number of faces to the step number is not equivalent for all steps.
Highlight that even though this relationship is not proportional, it is still a special type of relationship because the amount of change from figure to figure stays constant. This is called a linear relationship, and will be explored further in Grade 8.

\section*{(7) Power-up}

To power up students' ability to use a pattern to determine the number of items in a figure, have students complete:
Determine whether each statement is true or false.
a. The first figure has 5 blocks and each figure adds 5 additional blocks. False
b. The first figure has 5 blocks and each figure adds 4 additional blocks. True

c. The next figure in the pattern will have 17 blocks. True
d. The tenth figure in the pattern will have 41 blocks. True

Use: Before the Warm-up
Informed by: Performance on Lesson 22, Practice Problem 6

\section*{Activity 1 Tiling the Border}

Students look for and make use of structure in the growth of a pattern. This will prepare them for writing an expression to represent an unknown step in the pattern.

\section*{Activity 1 Tiling the Border}

Suppose your job is to buy the right number of tiles for the border of different swimming pools.
a The first pool measures 3 -by-3. How many tiles are needed for the border?


16 tiles
b The second pool measures 4 -by-4. How many tiles are needed for the border?


20 tiles
c How does the number of border tiles relate to the size of the pool? Explain your thinking.
Sample response: I noticed that when the pool increased
by one tile on each side, the number of border tiles
increased by 4 .

Compare and Connect: Be prepared to convince a
friend how you know how many border tiles are needed for a a-by-5 pool, based on the patterns you discovered.

\section*{1 Launch}

Ask students to try to determine the number of tiles, without counting each one.

Monitor
Help students get started by asking, "Do you notice any relationship between the number of tiles in the border and the number of tiles in the inside?" Students may notice that each tile on the sides of the interior square matches with one square tile in the border plus four additional square tiles for the corners.

\section*{Look for points of confusion:}
- Counting each tile. Ask students to try the next problem without counting, or ask about a 5-by-5 pool.

\section*{Look for productive strategies:}
- Noticing possible relationships. Sample relationships:
» 4(side length +1 )
» side length + side length + side length + side length +4
» \(4 \cdot\) side length +4

\section*{3 Connect}

Have students share different descriptions of the relationship between the pool size and the amount of border tiles.

Display a diagram of the 4 -by- 4 pool and annotate it as they share.

Highlight that there are different ways to think about the relationship between pool size and border tiles. Each of these ways could be represented by a different expression.

Ask, "How many border tiles will be needed for a 5-by-5 pool?" 24 tiles; You should encourage students to explain their thinking.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can see their thinking instantly tested for various sizes of pools and have the opportunity to revise their expression, if needed.

\section*{Extension: Math Enrichment}

Have students complete the following problem: Imagine the image shown in part a is a side view of one side of a cube. Assume the colors of the cubes remain the same throughout the cube as shown in the side view. How many of the smaller cubes are on the outer border? How many are in the interior? 45 outer border cubes; 80 interior cubes

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, ask students to share their responses for the task posed to them in their Student Edition, "Be prepared to convince a friend how you know how many border tiles are needed for a 5 -by- 5 pool, based on the patterns you discovered." Have volunteers share their arguments with the class and consider these questions as they share:
- "Does your argument not include counting the number of tiles?"
- "Does your argument build upon the number of tiles used for a 3-by-3 or 4-by-4 pool?"
- "Can you extend your argument to determine how many border tiles are needed for an 8 -by- 8 pool?" 36 tiles

\section*{Activity 2 Bigger Borders}

Students extend their understanding of the pool border relationship to greater numbers to foster algebraic thinking.


\section*{1 Launch}

Encourage students to write numerical expressions to find the number of tiles for each border.

\section*{2 Monitor}

Help students get started by having them represent each grouping of tiles with a number next to the diagram of each pool before writing their expressions.

\section*{Look for points of confusion:}
- Counting each tile. Have students cover the pool, except for the information about the side length of the pool, and ask them to use this information to determine the number of tiles.

\section*{Look for productive strategies:}
- Generating valid expressions. Possible expressions: \(4(10)+4,4(10+1),(10+2)^{2}-10^{2}\).

\section*{3 Connect}

Have students share expressions of the same form for each of the pools. Display the expressions underneath each other.

Highlight that the form of the expressions is exactly the same, and the only difference is the value of the side length, e.g., \(4(10)+4\) and \(4(24)+4\). If time permits, show this for other forms of the expression, e.g., \(4(10+1)\) and \(4(24+1)\).

Ask, "What would the expressions look like if the pool had a side length of 1,000 ?" Substitute the number 1,000 in place of the number 10 or 24 .

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can see their thinking instantly tested for various sizes of pools and have the opportunity to revise their expression, if needed.

\section*{Accessibility: Vary Demands to Optimize Challenge}

After students complete Problem 1, have them pause for a brief discussion before moving on to Problem 2. Ask:
- "What expressions can you write to represent the number of border tiles in Problem 1?"
- "What patterns do you notice between Activity 1 and this activity so far?"

\section*{Extension: Math Enrichment}

Have students complete the following problem:
If the side length of the pool doubles, does the length of the border also double? Why or why not? No; Sample response: When the side length was 3, the total border was 16 tiles. If the side length is now 6 , the total border is actually 28 tiles, which is not double 16 . There are always 4 corner tiles shared by adjacent sides.

\section*{Activity 3 Booming Business}

Students write a formula to describe the pool border relationship for any size pool. This helps them reason abstractly about the pattern.

\section*{1. Launch}

Remind students that a rule is an equation relating two variables. One of the variables will take a value (the side length) and allow you to solve for the other variable (the number of border tiles).

\section*{(2) Monitor}

Help students get started by saying, "Look back at the previous activity. What did your expression look like? Which numbers changed and which stayed the same?"

\section*{Look for points of confusion:}
- Writing a rule that works for only one of the pools. Say, "Your rule needs to work for all sizes of the pool."

\section*{Look for productive strategies:}
- First counting the border tiles to know what values they are aiming for when writing their equation.

\section*{3 Connect}

Display a list of all the different student-created rules to the whole class.

Have students share which rules they think are equivalent to each other. Have them first discuss with a partner for one minute and then share their ideas with the class.

Highlight that all the rules are equivalent to each other because they all describe the same relationship between the size of the pool and the number of border tiles.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can see their thinking instantly tested for various sizes of pools and have the opportunity to revise their expression, if needed.

\section*{Extension: Math Enrichment}

Have students use their rule to determine the length of a square pool if the number of border tiles going around the pool is 132 . The pool has a side length of 32 tiles.

\section*{Math Language Development}

\section*{MLRT: Compare and Connect}

During the Connect, after displaying the different student-created rules to the whole class, ask students to share with a partner what they notice about the rules. Encourage students to compare the different rules and identify which rules they think are equivalent and why

Highlight connections students make, such as, "they are equivalent because they describe the same relationship between the size and the number of border tiles."

\section*{Unit Summary}

Review and synthesize the main concepts of the unit.


\section*{Narrative Connections}

Read the narrative aloud as a class or have students read it individually.

Synthesize
Display the Summary. Have students read the Summary or have a student volunteer read it aloud.

Highlight that it is very useful to spend some time reflecting on one's own learning at the conclusion of a unit. This helps to retain information and make connections that students may not have been able to make while focusing on each individual lesson.

Ask students to take a few minutes to recall what they have learned about expressions, equations, and inequalities throughout this unit

After synthesizing the concepts of this unit, allow students a few moments for reflection around the concepts of the unit. To help them engage in meaningful reflection, consider asking:
- Did anything surprise you while reading the narratives of this unit?
- Is there anything you would like to learn more about these topics? What are some steps you can take to learn more?

\section*{Exit Ticket}

Students demonstrate their understanding by analyzing a growing pattern and identifying the expression that models the pattern's growth.


\section*{Success looks like ...}
- Goal: Writing an algebraic expression to describe a linear relationship.
» Selecting the correct expression for the total number of squares in Figure \(n\).
- Language Goal: Justifying whether algebraic expressions are equivalent (Speaking and Listening, Writing)

\section*{Suggested next steps}

If students choose all expressions with \(4 n\), consider:
- Reviewing how to represent constant terms in expressions. These students likely understood how to represent a growth of 4 diamonds in each step, but don't understand how to represent a constant term in the expression.
- Asking, "Are \(4 n+1,4 n+4\), and \(4(n+1)\) all equivalent expressions?"
- Assigning Practice Problems 1 and 3

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder ...

What worked and didn't work today? In what ways have your students gotten better at looking for and making use of structure?
In earlier lessons, students use proportional reasoning to model and make sense of patterns. How did that support students in writing algebraic expressions to describe patterns? What might you change for the next time you teach this lesson?

\begin{tabular}{|lclc|}
\hline \multicolumn{3}{|c|}{ Practice Problem Analysis } \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 3 & 2 \\
& \(\mathbf{2}\) & Warm-up & 2 \\
Spiral & \(\mathbf{3}\) & Activity 3 & 3 \\
\hline & \(\mathbf{4}\) & \begin{tabular}{l} 
Unit 6 \\
Lesson 10 \\
Unit 6
\end{tabular} & 1 \\
& 5 & \begin{tabular}{l} 
Lesson 10
\end{tabular} & 1 \\
\hline
\end{tabular}

\section*{Additional Practice Available}


For students that need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{UNIT 7}

\section*{Angles, Triangles, and Prisms}

This unit is about the math of what can be seen and what can be held. Through constructing and drawing, students explore relationships among angles, lines, surfaces, and solids.

\section*{Essential Questions}
- When do combinations of angles form special angles?
- Given certain segments and angles, how many unique polygons can be made?
- What shapes can be seen when you slice through solid figures?
- (By the way, why are triangles stronger than squares?)



\section*{Key Shifts in Mathematics}

\section*{Focus}
- In this unit...

Students study and apply angle relationships, learning to understand and use the terms complementary, supplementary, vertical angles, and unique. This work gives them practice with rational numbers and equations that represent angle relationships. Students also investigate whether sets of angle and side length measurements determine unique triangles, multiple triangles, or fail to form any triangles. Students analyze and describe cross sections of prisms, pyramids, and other polyhedra. They extend their understanding of finding the volume of a right rectangular prism to any prism, and solve problems involving area, surface area, and volume.

\section*{Coherence}

\section*{< Previously ...}

Students last worked with angles in Grade 4, where they measured, composed, and decomposed angles. In Grade 5, students classified two-dimensional figures based on their properties. In Grade 6, they found the volume of right rectangular prisms and the surface area of three-dimensional figures.

\section*{Coming soon ...}

Students will explore congruence and similarity in Grade 8 by transforming two-dimensional figures. They will continue their work with volumes, discussing volumes of cones and cylinders. Constructions and cross sections will reappear in high school geometry.

\section*{Rigor}

In this unit, students engage in rich tasks that address one or more of these aspects of rigor. The following are examples of how each pillar is addressed. See each Lesson Brief to learn more about how rigor is balanced throughout the unit.

Students construct various shapes given certain conditions, and build understanding about the properties of those shapes through exploration (Lessons 8 and 9).

\section*{Application}

Students apply their understanding of what surface area and volume measure for a solid and make decisions about which is most appropriate for solving a particular problem (Lesson 17).

\title{
Journey to the Third Dimension
}

\section*{SUB-UNIT}

\section*{1}

Lessons 2-7

\section*{Angle Relationships}

Students notice that some angles can join forces to form complementary, supplementary, or vertical angles - and that these relationships play important roles in certain polygons. Students synthesize their understanding of new angle relationships and solving equations to find the measure of unknown angles.


Narrative: Whether you plan to sail across an ocean or not, using some angles to calculate unknown angles can be a powerful tool.

\section*{SUB-UNIT}


\section*{Lessons 8-12}

\section*{Drawing Polygons With Given} Conditions

Euclid, the straightedge, and a compass. Students join the mathematical tradition of constructing geometric figures. Given certain conditions, they notice that sometimes many figures can be constructed, while at other times, no figure can be constructed. And while it may appear that many figures can be constructed, they could just be identical copies of the same figure.


Narrative: Triangles are an important part of construction. So what are the important parts of triangles?

\section*{Shaping Up}

A social and physical activity kicks off the unit. Students reacquaint themselves with a few common two-dimensional figures as they team up to construct the figures using a length of string and use precise language to defend their constructions.

SUB-UNIT

Lessons 13-17

\section*{Solid Geometry}

Students slice, dice, unfold, wrap, and fill threedimensionsional figures to discover relationships between their sizes and shapes. To conclude, students design and construct an office building, given building specifications and cost constraints.


Narrative: Volume and surface area are important measures of solids. When peering inside, cross sections are another great tool.

\section*{Capstone}

\section*{Applying Volume and Surface Area}

Students design and construct an office building, given certain specifications and cost constraints. As they consider the factors that affect cost, they experience how tradeoffs are often a necessary part of any planning process.

\section*{Unit at a Glance}

Spoiler Alert: Once you notice the relationship between a prism's base, height, and volume, you'll never need to memorize a formula for its volume ever again.

\section*{Assessment}


A Pre-Unit Readiness Assessment

\section*{Launch Lesson}


1 Shaping Up
Reintroduce working with polygons and attempt to construct them according to their properties.


2 Relationships of Angles \({ }^{-}\)
Compose, decompose, and measure angles.


3 Supplementary and Complementary Angles (Part 1)

Determine the measure of an unknown angle, given the measure of a supplementary or complementary angle.

\section*{Sub-Unit 2: Drawing Polygons With Given Conditions}


8 Building Polygons (Part 1)
Experiment with making polygons with various orders and combinations of side lengths, using linkage strips.


9 Building Polygons (Part 2)
Experiment with constructing triangles, given two or three side lengths, and notice that some lengths cannot form a triangle.


10 Triangles With Three Common Measures
Examine and compare sets of triangles that share three common angle measures or side lengths.


11 Drawing Triangles (Part 1)
Use various tools to draw triangles, noticing that certain conditions determine the number of unique triangles that can be drawn.


16 Surface Area of Right Prisms

Determine the surface area of prisms and see that a prism's structure lends itself to multiple strategies for finding the surface area.


17 Distinguishing Surface Area and Volume

Distinguish between surface area and volume, and choose which is appropriate for solving different real-world problems.

Capstone Lesson


18 Applying Volume and Surface Area

Explore how adjusting the dimensions of a fixed-volume prism changes its surface area.

\section*{Key Concepts}

Lesson 6: Equations can be used to model angle relationships and find unknown angles.
Lesson 11: Determine how many triangles can be constructed given certain conditions.
Lesson 14: Extend understanding of the volume of a right rectangular prism to any prism.

\section*{Pacing}

\section*{18 Lessons: 45 min each Full Unit: 21 days \\ 3 Assessments: 45 min each - Modified Unit: 17 days}

Assumes 45-minute class periods per day. For block scheduling or other durations, adjust the number of days accordingly.


4 Supplementary and Complementary Angles (Part 2)

Determine the measures of non-adjacent supplementary and complementary angles and draw conclusions about the angle relationships of polygons.

\section*{5 Vertical Angles}

Notice that vertical angles have equal measures and use this and other angle relationships to solve multi-step problems.

6 Using Equations to Solve for Unknown Angles

Write and solve equations of the form \(p x+q=r\) and \(p(x+q)=r\) to represent angle relationships shown in diagrams


\section*{7 Like Clockwork}

Explore the close relationship between how time is measured on an analog clock and how rotation is measured using degrees.

\section*{Assessment}


A Mid-Unit Assessment

\section*{13 Slicing Solids}

Introduce the idea that slicing a three-dimensional figure with a plane results in a two-dimensional cross section.

\section*{Sub-Unit 3: Solid Geometry}


14 Volume of Right Prisms
Calculate the volume of any right prism by multiplying the area of its base by its height.

\section*{Assessment}


\footnotetext{
A End-of-Unit Assessment
}

\section*{- Modifications to Pacing}

Lesson 2: This lesson reviews angle relationships from earlier grades, and may be omitted.

Lesson 7: This lesson serves as an exploration into how geometry and equations can work together, but may be omitted.
Lesson 8-9: These two lessons focus on constructing polygons given certain side lengths. You might choose to combine these two lessons, or omit one of them.

Lesson 18: This Capstone lesson has students grapple with the literal costs of maximizing volume or surface area, but may be omitted, as no new standards are introduced.

\section*{Unit Supports}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Math Language Development} \\
\hline Lesson & New Vocabulary \\
\hline 2 & adjacent angles \\
\hline 3 & complementary angles supplementary angles \\
\hline 5 & vertical angles \\
\hline 13 & cross section \\
\hline \multicolumn{2}{|l|}{Mathematical Language Routines (MLRs) support students' language development in the context of mathematical sense-making.} \\
\hline Lesson(s) & Mathematical Language Routines \\
\hline 3,12, 14, 16 & MLR1: Stronger and Clearer Each Time \\
\hline \[
\begin{aligned}
& 1-3,5,8,10, \\
& 13,17
\end{aligned}
\] & MLR2: Collect and Display \\
\hline 3, 10, 14, 15 & MLR3: Critique, Correct, Clarify \\
\hline 12,15 & MLR5: Co-craft Questions \\
\hline 18 & MLR6: Three Reads \\
\hline \[
\begin{aligned}
& 6,8,9,11,13, \\
& 17
\end{aligned}
\] & MLR7: Compare and Connect \\
\hline \[
\begin{aligned}
& 2,4-6,8,11, \\
& 14,16
\end{aligned}
\] & MLR8: Discussion Supports \\
\hline
\end{tabular}

\section*{Materials}

\section*{Every lesson includes:}

Exit Ticket
|0. Additional Practice

Additional required materials include:
\begin{tabular}{|l|l|}
\hline Lesson & Materials \\
\hline 2 & analog clock (or picture of one) \\
\hline \(1,3-5,7-12\) & geometry toolkits \\
\hline 1 & \begin{tabular}{l} 
PDFs are required for these lessons. Refer to \\
each lesson's overview to see which activities \\
require PDFs.
\end{tabular} \\
\hline \(1-3,5,7-9\), & rulers marked with centimeters \\
\hline \(12-18\) & snap cubes \\
\hline 14 & sticky notes \\
\hline 14 & \\
\hline 8 & \\
\hline Instructional Routines \\
\hline
\end{tabular}

Activities throughout this unit include the following instructional routines:
\begin{tabular}{|l|l|}
\hline Lesson(s) & Instructional Routines \\
\hline 13 & Card Sort \\
\hline \(7,13,18\) & Gallery Tour \\
\hline 5 & Notice and Wonder \\
\hline 4 & Partner Problems \\
\hline \(3,4,7,14,17\) & Poll the Class \\
\hline \(1,3,4,15\) & Think-Pair-Share \\
\hline 9 & True or False? \\
\hline 1,7 & Which One Doesn't Belong? \\
\hline
\end{tabular}

\section*{Unit Assessments}

\section*{Assessments}

\section*{Pre-Unit Readiness Assessment}

This diagnostic assessment evaluates students' proficiency with prerequisite concepts and skills they need to feel successful in this unit.

\section*{Exit Tickets}

Each lesson includes formative assessments to evaluate students' proficiency with the concepts and skills they learned.

\section*{Mid-Unit Assessment}

This summative assessment provides students the opportunity to demonstrate their proficiency with the concepts and skills they learned in the first part of the unit.

\section*{End-of-Unit Assessment}

This summative assessment allows students to demonstrate their mastery of the concepts and skills they learned in the lessons preceding this assessment. Additionally, this unit's Performance Task is available in the Assessment Guide.

\section*{When to Administer}

Prior to Lesson 1

End of each lesson

After Lesson 12

\section*{powered by desmos}

\section*{Social \& Collaborative Digital Moments}

\section*{Featured Activity}

\section*{Two Sides and One Angle}

Put on your student hat and work through Lesson 10, Activity 2 :

\section*{Points to Ponder . . .}
- What was it like to engage in this activity as a learner?
- How might you pace your students through this activity?
- What best practices might you employ for integrating technology in your classroom?

\section*{Other Featured Activities:}
- Precision Timekeeping (Lesson 7)
- Is it Identical? (Lesson 8)
- What's the Cross Section? (Lesson 13)
- Multifaceted (Lesson 16)

\section*{Unit Study \\ Professional Learning}

This unit study is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can engage in a meaningful professional learning experience to deepen your own understanding of this unit and employ effective pedagogical practices to support your students.

\section*{Anticipating the Student Experience With Fawn Nguyen}

Sub-Unit 2 introduces the idea of building different polygons with specific side lengths. Equip yourself to support your students with this concept by engaging in a brief problem-solving exercise to deepen your own learning.

\section*{Do the Math}

Put on your student hat and tackle these problems from Lesson 9, Activity 2 :

\section*{Activity 2 Swinging the Sides Around}

You will be given the materials for this activity. You will explore a method for building a triangle that has three specified side lengths. Follow these directions carefully.
\(>\) 1. Draw a 4 -in. line segment using the space on the next page, and mark the endpoints \(A\) and \(B\),
2. Segment \(B C\) is 2 in. long. Use your compass to mark all the possible locations for point \(C\).
(a) What shape have you drawn while finding all the possible locations for point \(C\) ? Why is this the correct shape?
b Use your drawing to build two unique triangles, each with a base length of 4 in and a side length of 2 in . Use a different color for each triangle. Record the side lengths of each of your triangles.
3. Segment \(A C\) is 3 in. long. Use your compass to mark all the possible locations for point \(C\).
a Using a third color. draw a point where the two circles intersect. Using this third color, draw a triangle with side lengths of 4 in . 2 in . and 3 in.
b What is represented by the points of intersection of the two circles?

Put your teacher hat back on to share your work with one or more colleagues and discuss your approaches.

\section*{Points to Ponder ...}
-What was it like to engage in this problem as a learner?
- Do any approaches reveal a misconception or difficulty that might arise for students?
- What implications might this have for your teaching in this unit?

\section*{Focus on Instructional Routines}

\section*{Which One Doesn't Belong?}

\section*{Rehearse...}

How you'll facilitate the Which One Doesn't Belong? instructional routine in Lesson 1, Warm-up:

Warm-up Which One Doesn't Belong?
Study the figures. Which one doesn't belong? Explain your thinking.


Figure B


Figure C


Figure D


\section*{Points to Ponder .. .}
- Which answer choice is the low-floor choice that will allow all students to contribute?
- Which answer choice will lead you to the next activity? How could you steer the conversation in that direction if no students suggest it?
- How will you sequence answer choices during the discussion so that everyone has a chance to share ideas, but the discussion still moves in the right direction?

\section*{This routine . . .}
- Encourages students to think creatively about math.
- Asks students to identify patterns and decide what features or elements stand out from those patterns.
- Engages several learning styles.
- Offers a low-floor, high-ceiling task.

\section*{Anticipate...}
- Students thinking there is only one "correct answer."
- If you haven't used this routine before, what classroom management strategies might you need to put in place to help it run smoothly?
- If you have used this routine before, what went well? What would you want to refine?

\section*{Strengthening Your Effective Teaching Practices}

\section*{Support Productive Struggle in Learning Mathematics}

\section*{This effective teaching practice . . .}
- Provides students with the opportunity to wrestle with mathematical concepts and relationships before you intervene, which builds student confidence and perseverance.
- Allows you greater opportunities to monitor student progress, probe for student understanding, and offer differentiated support.

\section*{Math Language Development}

\section*{MLR1: Stronger and Clearer Each Time}

MLR1 appears in Lessons 3, 12, 14, and 16.
- In these lessons, opportunities are provided to have students first craft an initial draft of their response to a particular problem. Students then share their responses with 2-3 partners to receive feedback and then revise or refine their original response.
- Often, specific suggestions are provided to help reviewing partners look for clarity in the responses. For example:
» In Lesson 14, display the suggested questions so that reviewers look for whether the responses indicate how students know the given figure is a prism and what each layer must look like when the figure is a prism.
") In Lesson 16, reviewers are encouraged to ask how students can add more detail to their responses or draw a picture to support their explanations.

O Point to Ponder ..
- How can you help your students grow in both giving and receiving feedback? How will you structure your classroom culture so that there is an expected norm in which your students feel supported, not criticized?

\section*{Unit Assessments}
- Use the results of the Pre-Unit Readiness Assessment to understand your students' prior knowledge and determine their prerequisite skills.

\section*{Look Ahead}
- Review and unpack the Mid- and End-of-Unit Assessments, noting the concepts and skills assessed in each.
- With your student hat on, complete each problem

\section*{O Points to Ponder ...}
- What concepts or skills in this unit might need more emphasis?
- Where might your students need additional scaffolding and support?
- How might you support your students to better visualize all the major concepts? Do you think your students will generally:
» Struggle to visualize cross sections or specific faces of three-dimensional figures?
» Have trouble organizing their work and, as a result, skip steps or fail to finish problems?
» Not have enough geometric intuition and, as a result, struggle with creating multiple figures matching the same criteria?

\section*{Points to Ponder .. .}
- How comfortable are you with allowing students the time to wrestle with mathematical ideas before you intervene?
- When is the right moment to intervene? What can you look for as you monitor student work and student conversations to know when they are engaging in productive struggle vs. unproductive struggle?

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Tools, Optimize Access to Technology}

Opportunities to provide physical manipulatives, the use of technology (through the Amps slides), or other tools appear in Lessons 2-9, 11-14, 17, and 18.
- In Lessons 11 and 12, students can use an interactive digital tool to create triangles with given conditions.
- In Lesson 13, students can use technology to manipulate a twodimensional plane in three dimensions to view highlighted cross sections.
- In Lesson 14, students can use digital blocks to build layers of a prism to better understand how volume is related to slices.
- In Lesson 18, pre-assemble the nets from the Warm-up PDF to form three-dimensional solids that students can physically hold and examine.

\section*{Point to Ponder . . .}
- As you preview or teach the unit, how will you decide when to use technology, physical manipulatives, or other tools to deepen student understanding?

\section*{Building Math Identity and Community}

Throughout this unit, each lesson includes opportunities to support your students' capacity to build strong mathematical habits of mind.

In this unit, pay particular attention to supporting students in building their social awareness and self-awareness skills.

\section*{Points to Ponder . . .}
- Are students able to take on other students' perspectives, recognizing the possible validity of their responses even though their solution process follows a different path?
- Are students able to reflect on their own answers, accurately assessing the effectiveness of their solution strategies well as the reasonableness of their results?

\section*{Shaping Up}

Let's reacquaint ourselves with polygons.


\section*{Focus}

\section*{Goals}
1. Language Goal: Recognize and classify polygons according to their geometric properties. (Speaking and Listening, Reading and Writing)
2. Language Goal: Reason about geometric properties that are shared by or are unique to certain polygons. (Speaking and Listening, Reading and Writing)

\section*{Coherence}

\section*{- Today}

Students are reintroduced to working with polygons and informally constructing them according to their properties. Students are exposed to their geometry toolkit and experiment with how to use the tools to measure and construct. They justify their conclusions, communicate them to others, and respond to the arguments of others.

\section*{< Previously}

Students classified polygons in Grade 5 and studied angles in Grade 4.

\section*{> Coming Soon}

Students will study angles more closely. They will review right angles, straight angles, and angles which compose a full circle. Students will use pattern blocks and simple equations to determine the measurements of angles.

\section*{Rigor}
- Students use visual models to develop conceptual understanding of polygons.
- Students use geometry toolkits to build conceptual understanding of the properties of polygons.

Warm-up
\(\oplus 7 \mathrm{~min}\)


Activity 1
(1) 25 min

ㅇํำ Small Groups


Summary
5 min
Whole Class

Exit Ticket
\[
\text { () } 10 \mathrm{~min}
\]


\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 1 PDF, pre-cut and folded, one set of cards per group
- geometry toolkits: compasses, protractors, rulers
- lengths of string, one per group (about 5 ft each) plus a few short ones for students to work on the Are you ready for more?

\section*{Amps ! Featured Activity}

\section*{Activity 1}

See Student Thinking
Students are asked to explain what they already know about several shapes, giving you insight into what vocabulary students recall and what needs to be added or
reviewed.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students might feel nervous about defending their construction in Activity 1. Remind students that the purpose of sharing is to seek and offer help when needed, but that respect should be the overarching guide for all discussion. Students should negotiate conflict positively and constructively to increase understanding, not to make another student feel bad because of an error.

\section*{Math Language \\ Development}

\section*{Review words}
- hexagon
- polygon

You may want to consider this additional modification if you are short on time.
- The Warm-up may be omitted.

\section*{Warm-up Which One Doesn't Belong?}

Students compare four figures - each with six vertices - to reason about the properties of polygons.


1 Launch
Conduct the Which One Doesn't Belong routine. Have students share their explanation with a partner prior to them recording their response.
(2) Monitor

Help students get started by having them find one difference between two shapes first, and then checking whether the same difference exists between other shapes.

Look for points of confusion:
- Stopping after finding one reason for one shape. Encourage students to find as many reasons for as many shapes as they can.

Look for productive strategies:
- Finding these possible reasons: Figure A is the only one that has a non-straight side. Figure B is the only one with "pushed-in" sides. Figure \(C\) is the only one where the angles appear to have equal measure. Figure D is the only one where two sides appear to intersect each other.

\section*{3 Connect}

Display the four figures to the whole class.
Have students share at least one reason why each figure might not belong, starting with Figures A and D. Discuss Figures B and C last After each reason, ask the class whether they agree or disagree.

Ask, "You may have called shapes hexagons if they have six vertices. Which shapes here would you say are actually hexagons?"

Highlight that a polygon is a closed, twodimensional shape with straight sides that do not cross each other. Have students discuss which shapes in the Warm-up are polygons.

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Suggest that students compare two figures at a time to look for similarities and differences. For example, comparing Figures B and C will reveal that they both consist of straight line segments, but Figure B's sides are "pushed in."

\section*{Activity 1 Team Building}

In teams, students use string to build polygons and orally defend their constructions, in order to reacquaint themselves with the properties of polygons.


\section*{1 Launch}

Activate students' prior knowledge by asking them to recall the properties of polygons they learned in prior grades. Conduct the Think-Pair-Share routine. Distribute the strings and envelopes with pre-cut, folded cards from the Activity 1 PDF. Be sure all students in each group participate in the activity and can defend their construction.

\section*{2 Monitor}

Help students get started by reading the shape's properties on the second section of the card together. Stop and correct groups if their polygons are not closed.

\section*{Look for points of confusion:}
- Difficulty forming segments of the same length. Suggest students use folding to match the side lengths.
- Difficulty forming a right angle. Have students explore the room to find an object that may help them form a right angle.
- Difficulty forming a regular hexagon. Ask students if they can find a way to informally mark the measures of their angles.

\section*{Look for productive strategies:}
- Using precise vocabulary to discuss aspects of their constructed shape.
- Using a square, rhombus or a rectangle to show a parallelogram.

\section*{Differentiated Support}

\section*{Accessibility: Activate Prior Knowledge}

Before students complete Part 1, draw - or ask a student volunteer to draw - examples of each type of polygon listed in the table. Display the following questions that students can ask themselves as they think about the properties of each type of polygon.
- How many sides are there? How many angles are there?
- Are all the sides the same length? Are some of the sides the same length?
- What is true about the angle measures?
- Are any sides parallel?

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

While students complete Part 2, circulate and listen to their conversations. Record the words and phrases used that show a developing understanding of the vocabulary needed to describe the shapes. Listen for phrases such as, "All squares are rectangles, but not every rectangle is a square." Display the language collected for the whole class to use as a reference during further discussions in the lesson and unit.

\section*{English Learners}

Display a visual representation of the shapes next to the collected words and phrases related to the shape.

\section*{Activity 1 Team Building (continued)}

In teams, students use string to build polygons and orally defend their constructions, to reacquaint themselves with the properties of polygons.

Activity 1 Team Building (continued)

Part 2
Indigenous peoples around the world have made shapes and patterns by looping strings around their hands for millennia. Mathematicians, including Thomas Storer, have studied these string game sequences to better learn the complex mathematical ideas embedded in each of them. You will be given a set of cards in an envelope and a length of string.
1. With your group, choose one card from the envelope, looking only at the name of the shape.

2. Use the string to build that shape
3. Be ready to explain to the class how you know your built shape has the specific properties needed to define it.


Featured Mathematician

\footnotetext{
Thomas Storer
Have students read about featured mathematician Thomas Storer, who studied string figures - handmade patterns woven from a loop of string.
}

\section*{Summary Journey to the Third Dimension}

Review and synthesize how the properties of polygons play a role when honeybees - and humans - select shapes to use when building.


\section*{Narrative Connections}

Read the narrative aloud as a class or have students read it individually.

\section*{C Synthesize}

Display the Summary. Have students read the Summary or have a student volunteer read it aloud. Call attention to the honeycomb pattern behind the text.

Have students share what they notice about the honeycomb.

Ask students whether humans have chosen a common shape, like the honeybee has, when building. There is no right answer, of course, but the discussion may take interesting directions. Some students may suggest that squares, rectangles, and triangles may be most often used by humans. Other students may point out that humans have also used circles for dwellings or other buildings.

\section*{(I) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. To help them engage in meaningful reflection, consider asking:
- "What strategies or tools did you find helpful today in classifying polygons? How were they helpful?"
- "What characteristics or properties did you discuss today when describing and building polygons?"

\section*{Exit Ticket}

Students demonstrate their understanding by determining whether a certain hexagon is a regular hexagon, using their geometry toolkits.


\section*{Exit Ticket} GS

Use your geometry toolkit to verify if the hexagon shown is a regular hexagon. Explain your thinking.


Sample response: I verified that this hexagon is a regular hexagon by testing if all of the side lengths are equivalent, using a ruler. I then tested if all of the angle measures of the hexagon are equivalent using my protractor. Because
the side lengths and the angle measures are equivalent, and the polygon has six sides, I know this is a regular hexagon.


Lesson 1 Shaping Up

\section*{Success looks like ...}
- Language Goal: Recognizing and classifying polygons according to their geometric properties. (Speaking and Listening, Reading and Writing)
- Language Goal: Reasoning about geometric properties that are shared by or are unique to certain polygons. (Speaking and Listening, Reading and Writing)
» Verifying that the hexagon is a regular hexagon.

\section*{Suggested next steps}

If students think they need to measure all segments, including the radii, consider:
- Having them trace the outline of the hexagon and ask them to review the properties of a regular hexagon.
- You might also consider extending this line of thinking by asking them whether, for a regular hexagon, these radii will always have the same measure as the side lengths.
If students do not understand that all the angles must have the same measure, consider:
- Referring them back to Activity 1 to identify what made the regular hexagon special.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder . . .
- What worked and didn't work today? What did students find frustrating about Activity 1 ? What helped them work through this frustration?
- During the discussion about the constructed polygons, how did you encourage each student to listen to one another's strategies? What might you change for the next time you teach this lesson?

\begin{tabular}{|lclc|}
\hline Practice Problem Analysis \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 2 \\
\hline Spiral & \(\mathbf{2}\) & Activity 1 & 3 \\
\hline Formative 0 & \(\mathbf{5}\) & \begin{tabular}{l} 
Unit 2 \\
Lesson 2
\end{tabular} & 2 \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.


\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Angle Relationships}

In this Sub-Unit, students notice that some angles can join forces to form complementary, supplementary, or vertical angles - and that these relationships play important roles in certain polygons.


\section*{Relationships of Angles}

Let's investigate some special angles.


\section*{Focus}

\section*{Goals}
1. Language Goal: Comprehend and use the word degrees and the symbol \({ }^{\circ}\) to refer to the amount of turn between two different directions. (Speaking and Listening, Writing)
2. Recognize \(180^{\circ}\) and \(360^{\circ}\) angles, and identify when adjacent angle measures have these sums.
3. Language Goal: Use reasoning about adjacent angles to determine the angle measures of pattern blocks, and justify the reasoning. (Speaking and Listening)

\section*{Coherence}

\section*{- Today}

Students compose, decompose, and measure angles. They review right angles, straight angles, and angles which compose a full circle. They use pattern blocks and simple equations to find the measurements of angles. Students make plausible arguments, justify their conclusions, and communicate them to others.

\section*{< Previously}

Students were introduced to angles in Grade 4. Earlier in Unit 1, they briefly discussed angles during their work with scale drawings.

\section*{>Coming Soon}

In Lessons 3-4, students will continue their work with angles focusing on complementary and supplementary angle pairs.

\section*{Rigor}
- Students use pattern blocks to develop conceptual understanding of composing, decomposing, and measuring angles.


Warm-up


Activity 1


Activity 2


Summary


Exit Ticket
\begin{tabular}{l|l}
\((\perp 8\) min & \(( \lrcorner) 12\) min \\
\(\circ \circ \circ\) Pairs & \(\circ \circ \circ\) Pairs
\end{tabular}
(1) 15 min
\(\circ \circ\) Pairs
(J) 5 min
ㅇํㅇ Whole Class
(1) 7 min


\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Angle Relationships
- Anchor Chart PDF, Angle Relationships (answers)
- analog clock or a picture of one
- pattern blocks, or the Activity 1 PDF, pre-cut cards, one set per pair
» at least 3 hexagons
») at least 6 of each of the other shapes

\section*{Math Language \\ Development}

\section*{New word}
- adjacent angles

\section*{Review words}
- degree*
- right angle
- straight angle
*Students may confuse the mathematical meaning of the term degree with its meaning in other contexts, such as with temperature or diplomas. Be ready to address the differences.

\section*{Amps ! Featured Activity}

\section*{Activity 1 \\ Digital Pattern Blocks}

Students use digital pattern blocks to create designs to determine the measures of angles.


\section*{Building Math Identity and Community Connecting to Mathematical Practices}

Students might assume that there is only one strategy to use to find the correct answers in Activity 1. Help students to take the perspective of others when discussing solution strategies, trying to think like the other person and understand their reasoning. Once students clearly understand the other person's argument, they can respectfully disagree, if needed.

\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- The Warm-up may be omitted.
- Omit Activity 2. Instead, during the Connect in Activity 1, highlight how other shapes can also be arranged to create angles that sum to \(180^{\circ}\) and \(360^{\circ}\).

\section*{Warm-up 3 O'Clock}

Students analyze the relative position of objects based on their relation to the hands on a clock to review the concept of angles.


\section*{Unit 7 | Lesson 2 \\ Relationships of Angles}

Let's investigate some special angles.


\section*{Warm-up 3 O'Clock}

While his teacher reads a fiction story aloud, a student visualizes the characters from the story in his mind. Study the diagram that shows some of the characters he is thinking about and their location in the classroom.
1. Which object is at the student's 3 o'clock? What angle is formed by this object the student, and the board? The ghost, \(90^{\circ}\)
2. Which object is at the student's 6 o'clock? What angle is formed by this object, the student, and the board? The dragon, \(180^{\circ}\)
3. What angle is formed by the board, the student, and the teacher? What "time" would this be? \(30^{\circ}, 1\) o'clock


1. Launch

Display an analog clock or an image of one. Activate students' background knowledge by asking them where they have seen analog clocks used and if they are familiar with how to read them.

\section*{(2) Monitor}

Help students get started by having them draw a clock on top of the diagram or write the clock numbers around the diagram.

Look for points of confusion:
- Struggling to determine the angle representing 6 o'clock. Remind students that an angle measures the amount of rotation between two rays.

\section*{Look for productive strategies:}
- Listing "quarter turn" or "half turn" in their responses. Note students who respond in this manner.

3 Connect
Display the diagram from the Warm-up.
Have students share their responses and strategies.

Highlight that a full circle, "all the way around," measures \(360^{\circ}\). If any students responded with "quarter turn" or "half turn", have them use these phrases to determine the angle measures. Write student responses using the \(\angle\) symbol to represent angle and \(\mathrm{m} \angle\) to represent the measurement of an angle.

Ask, "Has anyone used, or heard someone else use, these clock phrases when talking about the location of objects?"

Differentiated Support

\section*{Accessibility: Guide Processing and} Visualization

Provide students with a copy of an analog clock that they can use as a reference of where 3 o'clock and 6 o'clock are \(^{\prime}\) located on the analog clock and what type of angle they may form.

\section*{(7) Power-up}

To power up students' ability to identify acute, right, and obtuse angles, have students complete:

Recall that a right angle measures \(90^{\circ}\) while an acute angle is less than \(90^{\circ}\) and an obtuse angle is greater than \(90^{\circ}\). For each angle, determine whether it is acute, right, or obtuse.
Use: Before the Warm-up.


Informed by: Performance on Lesson 1, Practice Problem 5 and Pre-Unit Readiness Assessment, Problems 1 and 5.

\section*{Activity 1 Pattern Block Angles}

Students explore how arranging pattern blocks to form angles measuring \(360^{\circ}\) can help them find the measures of the angles in each pattern block.


\section*{1 Launch}

Remind students that \(360^{\circ}\) represents a full turn around a point. Distribute pattern blocks or one set of cards from the Activity 1 PDF.

\section*{2 Monitor}

Help students get started by saying, "If you place two of the same blocks on top of each other, do the angles match up? Rotate or flip the pattern blocks to see if this holds true for all the angles."

\section*{Look for points of confusion:}
- Misunderstanding what unique means in this context. Explain that unique means one and only one. Although there are six angles in the hexagon, the angles are the same size, so there is one and only one angle measure of \(120^{\circ}\).

\section*{Look for productive strategies:}
- Writing simple equations to determine the angle measures. Note students who use this strategy.

\section*{3 Connect}

Display digital pattern blocks or use a document camera to display the physical pattern blocks.

Highlight strategies involving the use of equations. If students did not use equations, listen to their descriptions and have them write an equation to match their thinking. Encourage them to explain and critique the reasoning of others.

Define the term adjacent angles as angles which share a common side and common vertex. Show an example of adjacent angles using the arrangement in Problem 2.

Ask, "How are adjacent angles helpful in determining the angle measures of the pattern blocks?" By using adjacent blocks to form a straight angle or an angle measuring \(360^{\circ}\), simple division can be used to determine the angle measures, if the angles have the same measure.

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can interact with digital pattern blocks to determine the measures of angles.

\section*{Accessibility: Vary Demands to Optimize Challenge}

If students need more processing time, have them focus on Problems 2 and 3.

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

While students work, circulate and record words, phrases, drawings, and writings they use to explain their strategies for determining the angle measures. Display collected language and invite students to borrow from, and add to, the display.

\section*{English Learners}

Encourage the use of physical and/or digital manipulatives as they explain strategies for determining the angle measures.

\section*{Activity 2 More Pattern Block Angles}

Students arrange pattern blocks to see how some shapes can be arranged to form angles measuring \(180^{\circ}\), and others can be arranged to form angles measuring \(360^{\circ}\).
(2)

Activity 2 More Pattern Block Angles

Use the pattern blocks from Activity 1.
1. Determine which shapes have a sum of \(180^{\circ}\) for all of its angles. Show your thinking, including a sketch of your pattern block arrangement.


A triangle has three angles. When three triangles are arranged at one vertex the three angles form a straight angle ( \(\mathbf{1 8 0}^{\circ}\) ).
2. Determine which shapes have a sum of \(360^{\circ}\) for all of its angles. Show your thinking, including a sketch of your pattern block arrangement. Sample response:


The square, trapezoid, blue rhombus, and brown rhombus all have angle measures with a sum of \(360^{\circ}\).


\section*{1 Launch}

Explain that the unique angles of the shapes must meet at a common vertex for this activity.

\section*{(2) Monitor}

Help students get started by displaying responses to the Are you ready for more? problem from Activity 1.

\section*{Look for points of confusion:}
- Thinking only the square has angle measures with a sum of \(\mathbf{3 6 0}\). Ask students to arrange the unique angles of the trapezoids at a common vertex.
- Using only some of the angles when arranging the trapezoids and rhombuses. Remind students that every unique angle needs to be present at the vertex.
- Interpreting non-congruent angles as congruent. For example, an arrangement of four copies of the blue rhombus forms a \(360^{\circ}\) angle, but it does not mean each angle measures one fourth of \(360^{\circ}\). Have students place the square block on top of the blue rhombus to show the angles of the rhombus are not \(90^{\circ}\).

\section*{Look for productive strategies:}
- Forming multiple arrangements to show sums of \(180^{\circ}\) or \(360^{\circ}\). Note these patterns for displaying to the class during the Connect.

\section*{3 Connect}

Display student arrangements of the pattern blocks

Ask:
- "If you know that all the angle measures in a shape have a sum of \(180^{\circ}\) or \(360^{\circ}\), can you determine a single angle measure?" For shapes that have equal angle measures (equilateral triangle and square), yes. For the shapes that do not have equal angle measures (rhombus and trapezoid), it is not possible.
- "Does anyone notice similarities between the shapes whose angle measures have a sum of \(360^{\circ}\) ?" They are quadrilaterals.

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Regardless of whether students completed the Are you ready for more? from Activity 1, display the degree measures of each interior angle for the pattern blocks.
\begin{tabular}{|c|c|c|c|c|c|} 
Hexagon & Trapezoid & \begin{tabular}{c} 
Blue \\
rhombus
\end{tabular} & Square & Triangle & \begin{tabular}{c} 
Brown \\
rhombus
\end{tabular} \\
\hline \(120^{\circ}\) & \begin{tabular}{c}
\(60^{\circ}\) and \\
\(120^{\circ}\)
\end{tabular} & \begin{tabular}{c}
\(120^{\circ}\) and \\
\(60^{\circ}\)
\end{tabular} & \(90^{\circ}\) & \(60^{\circ}\) & \begin{tabular}{c}
\(30^{\circ}\) and \\
\(150^{\circ}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Math Language Development}

\section*{MLR8: Discussion Supports}

Use a Think-Write-Pair-Share to unpack this question from the Connect. Ask, "If you know all the angle measures in a shape have a sum of \(180^{\circ}\) or \(360^{\circ}\), can you determine a single angle measure?"

\section*{English Learners}

Provide a visual representation of an isosceles and a right triangle and ask students whether they can determine a single angle measure in either triangle.

\section*{Summary}

Review and synthesize how adjacent angles can be used to compose angles of \(90^{\circ}, 180^{\circ}\), and \(360^{\circ}\). By doing so, some of the unique angle measures of the shapes formed by these angles can be determined.


\section*{Synthesize}

Display the Anchor Chart PDF, Angle Relationships and complete the information for right, straight, "all the way around", and adjacent angles during the discussion.

Highlight that the measures of adjacent angles can be added to determine the measure of a larger angle. The measure of the larger angle can be used to determine the measures of the smaller angles, if they have equal measures.

Formalize vocabulary: adjacent angles
Ask:
- "What are the three main types of angles you studied in this lesson, and what are their measures?" right: \(90^{\circ}\), straight: \(180^{\circ}\), "all the way around": \(360^{\circ}\)
- "What does it look like when angles are adjacent, and what can you say about their measures?" Adjacent angles share a common side and vertex. Their angle measures can be added together forming a new angle. If they form a straight angle, the sum of their measures if \(180^{\circ}\). If they form a right angle, the sum of their measures is \(90^{\circ}\)

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What strategies in combining pattern blocks did you try that were successful? What made them successful?"
- "What strategies were not successful? Why not?"

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in Lesson 1. Ask them to review and reflect on any terms and phrases related to the term adjacent angles that were added to the display during the lesson.

\section*{Exit Ticket}

Students demonstrate their understanding by decomposing a \(360^{\circ}\) angle to determine an unknown angle measure.


Lesson 2 Relationships of Angles

\section*{Success looks like...}
- Language Goal: Comprehending and using the word degrees and the symbol \({ }^{\circ}\) to refer to the amount of turn between two different directions. (Speaking and Listening, Writing)
- Goal: Recognizing \(180^{\circ}\) and \(360^{\circ}\) angles, and identifying when adjacent angle measures have these sums.
- Language Goal: Using reasoning about adjacent angles to determine the angle measures of pattern blocks, and justifying the reasoning. (Speaking and Listening)
» Reasoning that the five congruent angles in the center of the pattern give a measure of 360 degrees and that dividing by 5 gives the measure of \(x\)

If students cannot not determine the value of \(x\), consider:
- Reviewing the angle measure of a full circle is \(360^{\circ}\) and that simple division can determine the value of one of the angles, assuming the smaller angles have the same measure.
- Assigning Practice Problem 2.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\(0_{0}\) Points to Ponder ...
- What worked and didn't work today? What different ways did students approach Activity 1 today? What does that tell you about similarities and differences among your students?
- In this lesson, students used pattern blocks to compose, decompose, and measure angles. How will that support their work with supplementary, complementary, and vertical angles in the next three lessons? What might you change for the next time you teach this lesson?
hape in the center is a square. Determine the measure of one of the angles inside one of the octagons. Explain your thinking.
\(135^{\circ}\) : Sample response: Two octagor's angles
and one square's angle together can form a \(360^{\circ}\) angle. So, each angle in a regular octagon measures \(135^{\circ}\), because \(360-90=270\) and
\(270 \div 2=135\). Can you arrange copies of an
angle? Explain your thinking. angle? Explain your thinking. No; Sample response: Two \(60^{\circ}\) angles arranged to share a common
vertex will form an angle that measures \(120^{\prime}\), which is larger than a right angle.
c Can you arrange copies of an equilateral triangle together to form a 360 angle? Explain your thinking. Yes: Sample response: Six \(60^{\circ}\) angles arranged to share a common
vertex will form an angle that measures \(360^{\circ}\).

706 Unit7 Angles. Triangles, and Prism \(\qquad\)
\begin{tabular}{|lclc|}
\hline Practice Problem Analysis \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 1 \\
\hline Spiral & 2 & Activity 2 & 1 \\
\hline Formative 0 & 6 & Activity 2 & 2 \\
\hline & \(\mathbf{4}\) & \begin{tabular}{l} 
Unit 6 \\
Lesson 19
\end{tabular} & 1 \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{(3)}
\(1)\)
> 4. Write an equivalent expression using the Distributive Property.
(a) \(-3(2 x-4)=-6 x+12\)
(b) \(0.1(-90+50 a)=-9+5 a\)
c \(-7(-x-9)=7 x+63\)
(d) \(\frac{4}{5}[10 y+(-x)+(-15)]=8 y-\frac{4}{5} x-12\)
5. Lin's puppy is gaining weight at a rate of 0.125 lb per day. Describe the weight gain in days per pound
8 days per pound
6. Select all the angles that have measures less than \(90^{\circ}\). Verify your responses by measuring each angle.

B.

\(\qquad\)

Additional Practice Available


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Supplementary and Complementary Angles (Part 1)}

\section*{Let's investigate some special pairs of angles.}


\section*{Focus}

\section*{Goals}
1. Language Goal: Comprehend the terms complementary and supplementary as they describe pairs of angles. (Speaking and Listening, Writing)
2. Language Goal: Explain how to find an unknown angle measure, given adjacent complementary or supplementary angles. (Speaking and Listening, Writing)
3. Language Goal: Generalize that, when a straight angle or a right angle is decomposed, the measures of the resulting angles add up to \(180^{\circ}\) or \(90^{\circ}\), respectively. (Speaking and Listening)

\section*{Coherence}

\section*{- Today}

Students are introduced to the terms complementary angles and supplementary angles. They practice finding an unknown angle given the measure of another angle that is complementary or supplementary and justifying their methods. Many of the angles in this lesson share the same vertex as another angle, so students need to be careful when naming each angle in addition to describing the relationship between pairs of angles.

\section*{< Previously}

In Lesson 2, students reviewed angle relationships using pattern blocks and used simple equations to solve for missing angle measures.

\section*{Coming Soon}

In Lesson 4, students will build on their understanding of complementary and supplementary angles to describe the relationships between angle measures in polygons.

\section*{Rigor}
- Students use compasses and visual models to build conceptual understanding of complementary and supplementary angles.
- Students strengthen their fluency in composing, decomposing, and measuring angles.

\section*{©}

Warm-up

Activity 1


Activity 2


Activity 3


Summary

Exit Ticket
(J) 10 min

으ํ Small Groups


\section*{Amps powered by desmos \(\quad\) Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Angle Relationships
- Anchor Chart PDF, Angle Relationships (answers)
- geometry toolkits: protractors, scissors, rulers, plain sheets of paper (two sheets per student)

\section*{Math Language \\ Development}

\section*{New words}
- complementary angles*
- supplementary angles

\section*{Review words}
- adjacent angles
- protractor
- right angle
- straight angle
*Students may confuse the term complementary with the terms compliment or complimentary. Be ready to address the differences.

\section*{Amps \(\quad\) Featured Activity}

\section*{Activities 1 and 2 \\ Dynamic Angle Measures}

Students can adjust the position of a ray to change the size of two complementary or supplementary angles. They see the resulting angle measurements change in real time.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students might resist learning new definitions of angles and rely on the previously-learned skill of measuring angles with a protractor to find the measures in Activity 3. Ask students to make efficiency a goal for this activity. Have them identify what they can do to meet that goal.

\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- Omit the Warm-up.
- Half the class should complete Activity 1, while the other half completes Activity 2. Have both groups share their findings with the class.

\section*{Warm-up Measuring Like This or Like That?}

Students critique another student's reasoning to address the common error of reading a protractor from the wrong end.

Unit 7 | Lesson 3

\section*{Supplementary and Complementary Angles (Part 1)}

Let's investigate some special pairs of angles.


Warm-up Measuring Like This or Like That?
Tyler and Priya are both measuring angle TUS.


Priya thinks the angle measures \(40^{\circ}\). Tyler thinks the angle measures \(140^{\circ}\). Do you agree with either of them? Explain your thinking.
Priya is correct; Sample response: There are two scales on the protractor, but in order to measure an angle, I need to use the scale that has \(0^{\circ}\) aligned to one of the angle's sides. In this case, I need to use the outermost scale, so \(\mathrm{m} \angle T U S=40^{\circ}\).

Stronger and Clearer: Meet with a partner to give Meet with a partner to giv
and receive feedback on your explanation. Revise stronger and clearer.

1 Launch
Distribute the geometry toolkits for students to use throughout this lesson. Activate students' background knowledge by asking them whether they have used a protractor in prior math classes or outside of school. Consider using the Think-Pair-Share routine.

\section*{(2) Monitor}

Help students get started by suggesting they mark the angle being measured and consider what they think the correct measure is.
Look for points of confusion:
- Measuring the wrong angle. Make sure students can correctly identify which angle is being measured.
Look for productive strategies:
- Matching up \(0^{\circ}\) on the protractor with one ray of the angle and using that to choose the correct scale.
- Considering whether the angle is greater or less than \(90^{\circ}\) and using that information to choose the correct scale.

\section*{Connect}

Display the image given in the problem. Conduct the Poll the Class routine to assess student thinking.
Have students share which student they agree with and why.

Highlight how Tyler could know that his answer of \(140^{\circ}\) is unreasonable. Review how to use a protractor. Note that one segment of the angle should align horizontally with \(0^{\circ}\) on the protractor. The angle should be measured with the scale that includes this segment.

Ask, "Is angle TUS acute, right, or obtuse?" Acute "Can you see an angle that measures \(140^{\circ}\) in this figure?" The angle adjacent to angle TUS formed by ray US and the other side of the protractor

\section*{Math Language Development}

\section*{MLR1: Stronger and Clearer Each Time}

Before the Connect, have students meet with 1-2 partners to give and receive feedback on their explanations for whether they agree with either Tyler or Priya. Display these prompts that reviewers can use to press for details as they discuss their responses.
- "Does the response include how to read a protractor?"
- "Does the response include making sense of the size of the angle to know whether it is more reasonable to measure \(40^{\circ}\) or \(140^{\circ}\) ?"

\section*{Power-up}

To power up students' ability to use a protractor to measure angles, have students complete:
1. Is the given angle greater than or less than \(90^{\circ}\) ? Greater than \(90^{\circ}\)
2. Use a protractor to determine the measure of the angle.

Use: Before the Warm-up
Informed by: Performance on Lesson 2, Practice Problem 6 and Pre-Unit Readiness Assessment, Problems 2 and 3.

\section*{Activity 1 Cutting Rectangles One Way}

Students use paper and scissors to create two supplementary angles to see that the measures of any two supplementary angles have a sum of \(180^{\circ}\).


\section*{1. Launch}

Provide each student a sheet of paper, a pair of scissors, and a protractor. Review the instructions and emphasize students should use the straight edge of their protractor to draw the line they will cut, before using the scissors. Instruct students to each make their own cuts and measurements, and then compare their work with their group members.

\section*{2 Monitor}

Look for points of confusion:
- Struggling to correctly position the protractor to measure their angles. Ensure students are positioning the center of the protractor with the vertex of their angle, lining up one side of the angle with \(0^{\circ}\), and using the correct scale.
- Not ending up with two angles whose measures have a sum of \(\mathbf{1 8 0 ^ { \circ }}\). If the sum is close, allow this for now and discuss during the Connect. If the sum is not close, ask students to show you how they measured their angles.
Look for productive strategies:
- Noticing that the angle measures have a sum of \(180^{\circ}\).

\section*{3 Connect}

Display the pairs of angle measurements students found.

Have students share the measurements for the pair of angles they cut and what they noticed about the angle measures.

Highlight that the angle measures add up to about \(180^{\circ}\). This is because they started with a straight angle and cut it, to create two angles. Note that measuring errors or inaccuracies account for any angle pairs whose measures do not have a sum of \(180^{\circ}\).

Define the term supplementary angles as two angles whose measures have a sum of \(180^{\circ}\).

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can adjust the position of a ray to change the size of two supplementary angles. They can see the resulting angle measurements change in real time.

\section*{Accessibility: Vary Demands to Optimize Challenge}

Provide 2-3 pairs of pre-cut angles. Ask students to measure the angles and describe what they notice. This will still allow them to access the goal of the activity without having to physically cut the materials.

\section*{Math Language Development}

\section*{MLR3: Critique, Correct, Clarify}

During the Connect, display a potential student misconception illustrating improper placement of the protractor that results in incorrect measures. Ask:
- Critique: "Do you agree or disagree with these measures? Can you think of how these measures were determined and whether they were measured correctly?"
- Correct: "Show me how to correctly determine the measures."
- Clarify: "How do you know that these measures are correct? Other than using the protractor, how else could you confirm your results?"

\section*{Activity 2 Cutting Rectangles Another Way}

Students use paper and scissors to create two complementary angles to see that the measures of any two complementary angles have a sum of \(90^{\circ}\).

Amps Featured Activity
Dynamic Angle Measures

Activity 2 Cutting Rectangles Another Way

You will be given a sheet of paper.
1. Draw a small quarter-circle in one of the corners as shown.

2. Cut a straight line, starting from the corner with the half-circle, all the way across the paper to make two separate pieces. The pieces do not have to be the same size.
3. On each of these two pieces, measure the angle that is marked by part of the circle. Label the angle measures on the pieces and record them here.
Answers may vary, but the sum of the measurements should be \(90^{\circ}\).
4. Compare angle measures with your group members. What do you notice about the measures of each pair of angles? Answers may vary, but the intention is that students will realize the two angle measures add up to \(90^{\circ}\)
A. Are you ready for more?

Priya measured \(47^{\circ}\) on one of her pieces. Predict the angle measure of
\(43^{\circ}\)

1 Launch
Note the difference between this activity and the previous one. Instruct students to each make their own cuts and measurements, and then compare their work with their group members.

Monitor
Look for points of confusion:
- Struggling to correctly position the protractor to measure their angles. Ensure students are positioning the center of the protractor with the vertex of their angle, lining up one side of the angle with \(0^{\circ}\), and using the correct scale.
- Not ending up with two angles whose measures have a sum of \(90^{\circ}\). If the sum is close, allow this for now and discuss during the Connect. If the sum is not close, ask students to show you how they measured their angles.

\section*{Look for productive strategies:}
- Noticing that the angle measures have a sum of \(90^{\circ}\).

3 Connect
Display the pairs of angle measurements students found.

Have students share the measurements for the pair of angles they cut and what they noticed about the angle measures.
Highlight that the angle measures add up to about \(90^{\circ}\). This is because they cut a right angle to create two angles. Note that measuring errors or inaccuracies account for any angle pairs whose measures do not have a sum of \(90^{\circ}\).

Define the term complementary angles as two angles whose measures have a sum of \(90^{\circ}\).

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can adjust the position of a ray to change the size of two complementary angles. They can see the resulting angle measurements change in real time.

\section*{Accessibility: Vary Demands to Optimize Challenge}

As with Activity 1, provide 2-3 pairs of pre-cut angles. Ask students to measure the angles and describe what they notice. This will still allow them to access the goal of the activity without having to physically cut the materials.

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

During the Connect, as you define the term complementary angles, refer back to Activity 1 where supplementary angles were defined. Students may confuse these terms. Add these terms to the class display, along with visual examples of each, illustrating the sum of the angle measures for two complementary or two supplementary angles.

Mention that early mathematicians frequently studied right triangles and used the term complementary to describe two angles that "complete" or "fill up" a right angle.

Activity 3 Are They Complementary or Supplementary?
Students find the measures of complementary and supplementary angle pairs and begin to formalize a process for calculating angle measures, based on their understanding of these angle relationships.


\section*{1 Launch}

Ask student to explain what they learned about complementary and supplementary angles in their own words prior to starting this activity.

\section*{2 Monitor}

Help students get started by suggesting they use the straight edge of the protractor to elongate each ray of the angle. This will make it easier to accurately measure angle \(D A C\).

Look for points of confusion:
- Thinking they have to use the protractor to measure both angles in each problem. Ask them to consider how they can use what they learned in Activities 1 and 2.

\section*{Look for productive strategies:}
- Measuring the first angle with a protractor, and then calculating the measure of the second angle.

3 Connect
Have students share their strategies for finding the angle measures. Select students who calculated the value of the second angle instead of measuring it.

Highlight the relationships between the pair of angles in each problem. Discuss how to tell that the angles in Problem 1 are complementary and that this means their measures add up to \(90^{\circ}\). Discuss the same for the supplementary angles in Problem 2. Explain how to use subtraction to find the measure of an unknown angle.

Ask how students can use the vocabulary of this lesson to describe each diagram. Problem 1: \(\angle C A D\) and \(\angle D A B\) are adjacent complementary angles; Problem 2: \(\angle P O R\) and \(\angle P O S\) are adjacent supplementary angles.

Differentiated Support

\section*{Accessibility: Vary Demands to Optimize Challenge}

Provide the angle measures in part a of each problem. Then have students determine the measure of the second angle using what they know about complementary or supplementary angles. This will allow students to focus on the targeted goal of this activity without having to physically measure the angles.

\section*{Accessibility: Guide Processing and Visualization}

Have students annotate each diagram as showing either complementary or supplementary angles. Then have them annotate the sum of the angle measures for each to help them make connections between the terms and the sums of the angle measures.

\section*{Extension: Math Enrichment}

Challenge students to write equations that describe the relationships between the angle measures for each problem.
Problem 1: \(26+64=90\)
Problem 2: \(104+76=180\)

\section*{Summary}

Review and synthesize how complementary and supplementary angles can be used to find unknown angle measures.
(3)

\section*{Summary}

\section*{In today's lesson...}

You discovered two important and special types of angle pairs:
- complementary angles are two angles whose measures add up to 90
supplementary angles are two angles whose measures add up to 180

Reflect:


\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in Lesson 1. Ask them to review and reflect on any terms and phrases related to the terms complementary angles and supplementary angles that were added to the display during the lesson.

\section*{Math Language Development}
\(\qquad\)

\section*{Synthesize}

Display the Anchor Chart PDF, Angle Relationships and complete the complementary and supplementary definitions during the discussion.

\section*{Formalize vocabulary:}
- complementary angles
- supplementary angles

Highlight how to identify supplementary and complementary angles. Demonstrate how to use a protractor to measure one angle in each pair. Then discuss how to calculate the measure of the other angle in each pair.

\section*{Ask:}
- What does it mean for two angles to be supplementary?" Their measures have a sum of \(180^{\circ}\).
- "What does it mean for two angles to be complementary?" Their measures have a sum of \(90^{\circ}\).
- "If you know two angles are supplementary and you know the measure of one angle, how can you find the other?" Subtract the known angle measure from \(180^{\circ}\).
- "If you know two angles are complementary and you know the measure of one angle, how can you find the other?" Subtract the known angle measure from \(90^{\circ}\).

\section*{(D) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "When do certain combinations of angles form special angles?"

\section*{Exit Ticket}

Students demonstrate their understanding by determining the measure of an unknown angle in a complementary or supplementary angle pair.


\section*{Success looks like ...}
- Language Goal: Comprehending the terms complementary and supplementary as they describe pairs of angles. (Speaking and Listening, Writing)
» Using the information that angles \(S P R\) and \(R P Q\) are complementary to determine the measure of angle \(R P Q\).
- Language Goal: Explaining how to determine an unknown angle measure, given adjacent complementary or supplementary angles. (Speaking and Listening, Writing)
» Explaining how to determine the measure of angle \(R P Q\) in Problem 2.
- Language Goal: Generalizing that, when a straight angle or a right angle is decomposed, the measures of the resulting angles add up to \(180^{\circ}\) or \(90^{\circ}\), respectively. (Speaking and Listening)

\section*{- Suggested next steps}

If students ask for a protractor, consider:
- Reviewing strategies for determining unknown angles from Activity 3.
If students say the answer to Problem 1 is \(62^{\circ}\) and/or the answer to Problem 2 is \(143^{\circ}\), consider:
- Reviewing the difference between complementary and supplementary angles.
- Assigning Practice Problem 1.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C. Points to Ponder ...
- What worked and didn't work today? Which students' ideas were you able to highlight during Activity 3 ?
- How were Activities 1 and 2 from today similar or different from the Pattern Block Angles activity from the previous lesson? What might you change for the next time you teach this lesson?

© Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Supplementary and Complementary Angles (Part 2)}

\section*{Let's investigate angles that are not right next to each other.}


\section*{Focus}

\section*{Goals}
1. Language Goal: Use reasoning about angle measures to identify complementary or supplementary angles. (Speaking and Listening, Writing)
2. Language Goal: Explain how to determine an unknown angle measure, given complementary or supplementary angles. (Speaking and Listening, Writing)

\section*{Coherence}

\section*{- Today}

Students see that angles do not need to be adjacent to be complementary or supplementary. They find supplementary and complementary angles as they measure and draw conclusions about the angle relationships of polygons. Students attend to precision as they use protractors to measure angles. They also make use of structure to determine the measure of unknown angles.

\section*{< Previously}

In Lesson 3, students were introduced to supplementary angles and complementary angles, and used these relationships to determine the measures of unknown angles.

\section*{>Coming Soon}

In Lesson 5, students will be introduced to vertical angles and will use this relationship to determine the measures of unknown angles when two lines intersect.

\section*{Rigor}
- Students use special polygons to further their conceptual understanding of complementary and supplementary angles.
- Students calculate the unknown angle in complementary and supplementary angle pairs to develop procedural fluency.

\section*{©}

Warm-up

Activity 1


Activity 2


Activity 3


Summary

Exit Ticket
(-) 5 min
ㅇํㅇ Pairs
(1) 10 min
ㅇํ Pairs
(1) 10 min
ㅇํ Pairs

(J) 5 min

○ Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- geometry toolkits: rulers, protractors, tracing paper

\section*{Math Language \\ Development}

\section*{Review words}
- adjacent angles
- complementary angles
- protractor
- right angle
- supplementary angles
- straight angle

\section*{Amps : Featured Activity}

\section*{Activity 3 \\ Partner Problems}

Pairs of students solve related problems which happen to have the same solution, fostering discussion and encouraging collaboration.


\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- Half the class should complete Activity 1, while the other half completes Activity 2. Have both groups share their findings with the class.
- Omit part c and Problem 2 from both Activity 1 and Activity 2. During the discussion, have students share what they noticed with the class.

\section*{Warm-up Finding Related Statements}

Students examine a pair of supplementary angles and reason about how the relationship can be represented with an equation.


\section*{Activity 1 Triangle Angles}

Students measure the non-right angles of a right triangle to conclude that they are complementary. (Students are not expected to know a formal proof of this relationship.)


Activity 1 Triangle Angles
1. For each triangle, use a protractor to measure each non-right angle. Then determine the sum of their measures.

\(\mathrm{m} \angle B=60^{\circ}\)
\(\mathrm{m} \angle C=\quad 30^{\circ}\)
\(\mathrm{m} \angle B+\mathrm{m} \angle C=\quad 90^{\circ}\)
b

\(\mathrm{m} \angle E=45^{\circ}\)
\(\mathrm{m} \angle G=45^{\circ}\)
\(\mathrm{m} \angle E+\mathrm{m} \angle G=\quad 90^{\circ}\)
c

\(\mathrm{m} \angle L=20^{\circ}\)
\(\mathrm{m} \angle M=70^{\circ}\)
\(\mathrm{m} \angle L+\mathrm{m} \angle M=\quad 90^{\circ}\)
2. What do you notice?

Sample response: The two non-right angles have measures that add up to \(90^{\circ}\); they are complementary angles.
\(\qquad\)

\section*{1 Launch}

Activate prior knowledge by asking students to share the definitions of the terms complementary and supplementary and consider displaying these definitions for the remainder of class. Distribute geometry toolkits to pairs of students. Tell them accurate measurements are very important in this task.

\section*{Monitor}

Help students get started by asking, "Which angles in Triangle \(A B C\) are not right angles?" Ask them to trace these angles with tracing paper and then rearrange them to be adjacent angles, showing they are complementary.

\section*{Look for points of confusion:}
- Struggling to use a protractor to measure the angles. Have students extend the sides of the triangles to help make measuring the angle clearer.
- Thinking complementary angles must be adjacent. Point out this was true for the examples they have seen so far; however, the angles do not have to be adjacent to be complementary. Their measures just need to have a sum of \(90^{\circ}\)

\section*{3 Connect}

Display the triangles.
Have students share their angle measurements and what they noticed about the sum of the two non-right angles.

Highlight the use of precise mathematical language in describing this conclusion that the two non-right angles of a right triangle are complementary.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can view aggregate class data to draw a conclusion about the two non-right angles of a right triangle.

\section*{Accessibility: Guide Processing and Visualization, Vary Demands to Optimize Challenge}

Provide students with enlarged versions of each parallelogram to help them measure the angles with greater accuracy. Consider providing the angle measurements for the two non-right angles in each diagram, which will still allow students to access the goal of the activity without having to physically measure the angles.

\section*{Math Language Development}

\section*{MLR8: Discussion Supports—Press for Details}

During the Connect, as students share, encourage the use of their developing mathematical vocabulary by pressing for details. For example, if a student says, "The two angles add up to \(90^{\circ}\)," ask:
- "Which two angles do you mean? How can you be more detailed in your description?"
- "Is there another term for 'add up to \(90^{\circ}\) ' that you can use?"

\section*{English Learners}

Annotate the right angle in each triangle by writing right angle. Then annotate the two non-right angles by writing non-right angles and drawing arrows to those angles.

\section*{Activity 2 Parallelogram Angles}

Students measure the angles of parallelograms to reason about their angle relationships. (Students are not expected to know a formal proof of these relationships.)


\section*{1 Launch}

Tell students that accurate measurements continue to be important for this task. Activate their background knowledge by asking them what they know about parallelograms and whether they can explain why the figures shown are parallelograms.

\section*{2 Monitor}

Help students get started by explaining this activity is similar to Activity 1 , except they will measure the angles of parallelograms instead of triangles.

\section*{Look for points of confusion:}
- Struggling to use a protractor to measure the angles. Have students extend the sides of the parallelograms to help make measuring the angle clearer.
- Thinking supplementary angles must be adjacent. Point out this was true for the examples they have seen so far; however, the angles do not have to be adjacent to be supplementary. Their measures just need to have a sum of \(180^{\circ}\).
- Not seeing a relationship between the angles. Have students only study the rhombus and parallelogram to determine any angle relationships. Then have them study the rectangle to see if the rectangle also has these same angle relationships.

3 Connect
Display the parallelograms.
Have students share their angle measurements and what they noticed about them.

Highlight that opposite angles of parallelograms have the same measure. This means that there are two pairs of supplementary angles in parallelograms. Angles that are "next to each other" (adjacent) are supplementary.

\section*{Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization, Vary Demands to Optimize Challenge}

Provide students with enlarged versions of each parallelogram to help them measure the angles with greater accuracy. Consider providing the angle measurements for each parallelogram, which will still allow students to access the goal of the activity without having to physically measure the angles.

\section*{Extension: Math Enrichment}

Have students make and test a conjecture - by drawing or creating other parallelograms - as to the sum of the angle measures of any parallelogram. \(360^{\circ}\)

\section*{Math Language Development}

\section*{MLR8: Discussion Supports-Press for Details}

During the Connect, as students share, encourage their developing mathematical vocabulary by pressing for details. For example, if a student says, "The angles are the same," "The angles across from each other are the same," or "The angles next to each other add to \(180^{\circ}\)," ask:
- "Which angles are the same? Are they all the same, or only some of them? How can you be more detailed in your description?"
- "Is there another term for 'across from each other' that you can use?" Is there another term for 'next to each other' you can use?"

\section*{English Learners}

Annotate the adjacent angles and opposite angles in each parallelogram.

\section*{Activity 3 Partner Problems: Angles}

Students determine unknown angle measures when given supplementary or complementary angles to build fluency with writing and solving equations that represent these angle relationships.

Amps Featured Activity
Partner Problems

Activity 3 Partner Problems: Angles

One partner will complete Column A and the other will complete Column B. Complete the problems in your column, then compare responses with your partner. Discuss and resolve any differences.

For each column, write an equation that represents a relationship between the angles in each diagram. Then solve the equation to determine the unknown angle. The figures may not be drawn to scale.


48 Are you reasy yor mores
Continue the Partner Problems routine with these problems.
Column A Column B

Two angles are complementary. One
Two angles are complementary. One
angle measures \(37^{\circ}\). Determine the measure of the other angle. \(53^{\circ}\)

Column B
Two angles are supplementary. One angle measures \(127^{\circ}\). Determine th measure of the other angle. \(53^{\circ}\)

Differentiated Support

\section*{Accessibility: Vary Demands to Optimize Challenge}

Provide 3 or 4 different equations that can be used to represent each diagram and ask students to determine which equation is correct before using the equation to determine the unknown angle measure.

\section*{Extension: Math Enrichment}

Challenge students to draw their own diagram involving complementary or supplementary angles, or angles in triangles and parallelograms. They should include some angle measures and an unknown angle measure. Have them trade diagrams with a partner to determine the unknown angle measure.

\section*{(12)}

\section*{Math Language Development}

\section*{MLR8: Discussion Supports}

As students share their response with their partners, display these sentence frames to support them as they discuss and resolve any differences.
- "I agree with the solution because . . ."
- "I disagree with the solution because I determined .
- "I wrote the equation ___ because . . ."
- "The diagram shows that angles ___ and ___ are complementary/ supplementary because . .

\section*{Summary}

Review and synthesize how equations can represent complementary and supplementary angle relationships, and how solving those equations can help find missing angle measures.


\section*{Synthesize}

Display the terms complementary and supplementary, along with respective diagrams. Be sure to include nonadjacent examples.

\section*{Ask:}
- "Do supplementary or complementary angles need to be next to each other (adjacent)?" No; they just need to have a sum of \(180^{\circ}\) or \(90^{\circ}\), respectively.
- "If you know two angles are complementary/ supplementary but only know one angle's measurement, how can you find the measurement of the other angle?" Subtract the known angle's measurement from \(90^{\circ}\) or \(180^{\circ}\), respectively.

Highlight examples of adjacent and nonadjacent complementary and supplementary angle pairs. While the term nonadjacent is not a formal vocabulary term, it can be helpful for students to hear and use this term when describing angle relationships. Demonstrate how equations can help determine an unknown angle when one angle measure is known and whether the angle pair is complementary or supplementary.

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What pattern did you notice when measuring angles in right triangles? In parallelograms?"
- "What methods or strategies did you use to determine an angle measure without using a protractor?"

\section*{Exit Ticket}

Students demonstrate their understanding by finding pairs of supplementary and complementary angles.

\section*{亘 Printable}

Name: \(\longrightarrow\) Date: \(\ldots\) Period:
Exit Ticket
1. Trapezoid MATH has angle measurements of \(55^{\circ}, 125^{\circ}, 140^{\circ}\), and \(40^{\circ}\), respectively. Name two pairs of supplementary angles.

\(\angle M\) and \(\angle A\)
\(\angle T\) and \(\angle H\)
2. Here is a triangle where \(\angle L O V\) is a right angle. The measure of \(\angle L O E\) is equal to the measure of \(\angle O V E\), and the measure of \(\angle O L E\) is equal to the measure of \(\angle E O V\).

Name as many pairs of complementary angles as you can find. For each pair, determine if they are adjacent or
 nonadjacent.
\begin{tabular}{l} 
complementary and adjacent. \\
\(\angle L O E\) and \\
\hline
\end{tabular}
\(\angle L O E\) and \(\angle E O V\)
complementary and nonadjacent:
\(\angle O L E\) and \(\angle O V E\);
\(\angle O L E\) and \(\angle L O E\);
\(\angle O V E\) and \(\angle E O V\)


\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder . . .
- What worked and didn't work today? One instructional goal for this lesson was for students to use reasoning to find an unknown angle measure, given complementary or supplementary angles. What did you do specifically to help students accomplish this goal?
How did students attend to precision today? How are you helping students become aware of how they are progressing in this area? What might you change for the next time you teach this lesson?


\section*{(2)}

Name - oate - Period
5. A small dog is fed \(\frac{3}{4}\) cups of dog food twice a day. Write an equation that gives the total number of cups of food \(f\) the dog should be fed over \(d\) days. Use the equation to determine how many days a large bag of dog food will last, if it contains 210 cups of food.
The bag of dog food with 210 cups of food will last 140 days:
Sample response:
\(f=1.5 d\)
Using \(f=210\), solve for \(d\)
\(\begin{aligned} 210 & =1.5 d\end{aligned}\)
\(210 \div 1.5=1.5 d \div 1.5\)

Name all the angles shown in the diagram with measures less than \(180^{\circ}\)

\(\angle D E A, \angle D E B, \angle A E B, \angle A E C\), and \(\angle B E C\)
\begin{tabular}{|lclc|}
\hline Practice Problem Analysis & DOK \\
\hline Type & Problem & Refer to & 1 \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 1 \\
\hline Spiral & \(\mathbf{2}\) & Activity 3 & 2 \\
\hline Formative 0 & \(\mathbf{6}\) & \begin{tabular}{l} 
Activities \\
\(1-3\)
\end{tabular} & \begin{tabular}{l} 
Unit 6 \\
Lesson 22
\end{tabular} \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Vertical Angles}

\section*{Let's investigate angles that are across from each other.}


\section*{Focus}

\section*{Goals}
1. Language Goal: Comprehend that the term vertical angles refers to a pair of angles formed by two intersecting lines. (Speaking and Listening, Writing)
2. Language Goal: Generalize that the opposite angles formed by two intersecting lines have equal angle measures. (Speaking and Listening, Writing)
3. Language Goal: Solve multi-step problems involving vertical angles, and explain the reasoning used. (Speaking and Listening, Writing)

\section*{Coherence}

\section*{- Today}

In this lesson, students use the term vertical angles to describe the opposite angles that are formed when two lines intersect. They see that vertical angles have equal measures and use this relationship, along with what they have learned about other angle relationships, to find unknown angle measures in multi-step problems.

\section*{< Previously}

In Lessons 3 and 4, students learned about supplementary and complementary angles. They used these relationships to find unknown angle measures and to draw conclusions about the angle relationships of triangles and parallelograms.

\section*{> Coming Soon}

In Lesson 6, students will represent angle relationships using equations of the form \(p x+q=r\) and \(p(x+q)=r\). They will solve equations of this form to find unknown angle measures.

\section*{Rigor}
- Students use visual models to develop conceptual understanding of vertical angles.
- Students strengthen their fluency in calculating unknown angle measures.


Activity 1


Activity 2


Summary


Exit Ticket
() 5 min
\(\circ\) Independent
\(\oplus 20\) min
ㅇํำ Small Groups

(1) 5 min

○ Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 1 PDF (for display)
- Anchor Chart PDF, Angle Relationships
- Anchor Chart PDF, Angle Relationships (answers)
- geometry toolkits: protractors, rulers

\section*{Math Language \\ Development}

\section*{New word}
- vertical angles

\section*{Review words}
- adjacent angles
- complementary angles
- protractor
- right angle
- straight angle
- supplementary angles

\section*{Building Math Identity and Community Connecting to Mathematical Practices}

Students might not be successful if they choose not to follow all of the directions from Activity 1. Ask students to identify how their groups could have had better precision by making more constructive choices.

\section*{Amps \(\vdots\) Featured Activity}

\section*{Activity 1}

Collaborative Measurement
Students share their angle measures with their classmates. Then they use the collective data to make an observation about the measures of vertical angles.


\section*{Warm-up Notice and Wonder}

Students analyze images of scissors with vertical angles marked to introduce the idea that vertical angles have equal measures.

1. Launch

Conduct the Notice and Wonder routine using the images of the scissors.

\section*{2 Monitor}

Help students get started by asking,
"What do you notice about the images?"
Look for points of confusion:
- Not understanding that the arcs refer to the angles. Ask students to think about where they have seen those types of marks used in this unit.

\section*{Look for productive strategies:}
- Noticing the same arc is drawn on both angles in each pair of scissors and wondering if that means the angles have the same measure.

\section*{(3) Connect}

Have students share what they noticed and wondered about the images of the scissors.

Highlight the connections between real-world objects and geometric objects that can be used to model or represent them. Point out that the two parts of a pair of scissors can be thought of as two intersecting lines.

\section*{(7) Power-up}

\section*{Accessibility: Optimize Access to Tools, Guide Processing} and Visualization

Consider bringing in a pair of scissors to demonstrate opening and closing the scissors. Or allow students to physically manipulate scissors from their geometry toolkits to visualize the angle relationships.
Consider using the internet, or another source, to show images of other everyday objects that illustrate two opposite angles that have the same measure. Examples include: railroad crossing signs, street intersections, and artwork.

To power up students' ability to name angles, have students complete:

Recall that angles are named using three points, with the vertex as the middle point. For example, one angle in the given diagram is \(\angle X Z V\). Name as many other angles as you can.


Use: Before Activity 1.
Informed by: Performance on Lesson 4, Practice Problem 6

\section*{Activity 1 Vertical Angles}

Students measure the angles formed by two intersecting lines to conclude that vertical angles have the same measure. (Students are not expected to know a formal proof of this relationship.)


\section*{1 Launch}

Provide each student with a protractor and a ruler. Tell students that accurate measurements are important in this activity.

\section*{2 Monitor}

Help students get started by demonstrating what it means for two lines to intersect. Consider holding up two meter sticks to demonstrate several examples.

\section*{Look for points of confusion:}
- Thinking that intersecting lines must be perpendicular. Explain that the term intersect is another way of saying cross and that intersecting lines do not have to cross at right angles.

\section*{Look for productive strategies:}
- Using supplementary angles to explain why opposite angles have equal measures.

\section*{3 Connect}

Have students share what they notice about the angles at the intersection of the two lines.

Display the Activity 1 PDF.
Define the term vertical angles as opposite angles that share the same vertex. They are formed by two intersecting lines.

Highlight that two intersecting lines form vertical angles. Since each vertical angle is supplementary to the same adjacent angle, the vertical angles must have equal measures.

Ask students to identify four pairs of vertical angles shown in the diagram. Make sure students mention \(\angle C E A\) and \(\angle D E B\) as vertical angles and stress that here "vertical" doesn't necessarily mean up and down when referring to angles.

\section*{Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

Provide several different examples of pre-drawn intersecting lines for students to use, with angle measurements indicated. Have them complete Problem 4, using the examples provided. This will still allow them to access the goal of the activity, without having to draw their own diagram.

\section*{Extension: Math Enrichment}

Challenge students to construct an argument that explains why vertical angles must be congruent.

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

As students work, listen for and collect vocabulary, gestures, and phrases that students use to describe the relationships they notice between angles. For example, they may describe vertical angles as "opposite" angles. Add these examples to the class display for this unit.

\section*{English Learners}

Use gestures to model vertical and supplementary angle relationships. For example, cross your arms indicating an " \(X\) " to illustrate vertical angles. Keep one arm horizontal and use your other arm to indicate another angle, illustrating supplementary angles.

\section*{Activity 2 Determine the Missing Angles}

Students determine the measures of unknown angles by applying their understanding of vertical, complementary, and supplementary angles to reinforce understanding of these relationships.

Activity 2 Determine the Missing Angles

Determine the measures of the unknown angles in each figure. The figures may not be drawn to scale.
\(>1\).

\(\mathrm{m} \angle D B E=110^{\circ}\)
\(>2\).

\(\mathrm{m} \angle C O D=18^{\circ}\)
\(\mathrm{m} \angle A O B=63^{\circ}\)
\(\mathrm{m} \angle D O F=45^{\circ}\)

3

4.

\(\mathrm{m} \angle A O D=106^{\circ}\)
\(\mathrm{m} \angle D O C=74^{\circ}\)
\(\mathrm{m} \angle C O B=106^{\circ}\)

\section*{1 Launch}

Instruct students to complete each problem independently, before discussing it with their partner.

\section*{(2) Monitor}

Help students get started by having them identify the vertical angles in the diagram for Problem 1 and then asking them what they know about the measures of vertical angles.

\section*{Look for points of confusion:}
- Not recognizing the complementary angle relationship in Problem 3. Remind them to consider what other angle relationships are provided in each diagram.

\section*{Look for productive strategies:}
- Annotating the diagrams.
- Using vertical, complementary, and supplementary angle relationships to determine the unknown angle measures in each diagram.
(3) Connect

Have students share their strategies for determining the unknown angle measures.

Highlight how angle relationships can be used to determine unknown angle measures. Review vocabulary by naming the angle relationships in each diagram.

Ask, "Can you determine all the unknown angle measures in each diagram? Explain your thinking." Sample response: Yes, I can determine the measures of all the vertical angle pairs, then use what I know about complementary and supplementary angles to determine the other unknown angle measures.

Differentiated Support
Accessibility: Vary Demands to Optimize Challenge
If students need more processing time, have them focus on Problems 1-2.

\section*{Extension: Math Enrichment}

Challenge students to determine the measure of every angle for each diagram in Problems 1-3.
Problem 1: \(110^{\circ}, 110^{\circ}, 70^{\circ}, 70^{\circ}\)
Problem 2: Starting with \(\mathrm{m} \angle C O D\) and going clockwise: \(18^{\circ}, 45^{\circ}, 117^{\circ}, 18^{\circ}\), \(45^{\circ}, 117^{\circ}\)
Problem 3: Starting with \(42^{\circ}\) and going clockwise: \(42^{\circ}, 25^{\circ}, 23^{\circ}, 132^{\circ}, 25^{\circ}, 113^{\circ}\)

\section*{Math Language Development}

\section*{MLR8: Discussion Supports—Press for Details}

During the Connect, as students share their strategies for determining the unknown angle measures, press for details in their reasoning by asking the following questions:
- "What angle relationships did you use in Problem 1? What math terms can you use to describe these angles?"
- "What did you do first in Problem 2? What math term describes this relationship?"
- "What are some different approaches you could do first in Problem 3? Use math terms to describe these relationships."

\section*{Summary}

Review and synthesize how to use vertical angle relationships to determine unknown angle measures.


\section*{Synthesize}

Display the Anchor Chart PDF, Angle Relationships and complete the vertical angles section during the class discussion.

\section*{Formalize vocabulary: vertical angles}

Ask:
- "What angle relationships do you notice?"
- "Which angles are vertical angles?"
- "Which angles, if any, are complementary or supplementary?"
- "What does knowing these angle relationships tell you about the measures of these angles?"
- "If I told you the measure of one angle, how could you find the measures of the other three angles?"

Highlight the angle relationships shown in the diagram on the Anchor Chart PDF. Have students note which angles are vertical, which are supplementary, and which are vertical. You may wish to also review which angles are adjacent or nonadjacent.

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What pattern did you notice when measuring angles created by two intersecting lines?"
- "What methods or strategies did you use to determine an angle measure without using a protractor?"

\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in Lesson 1. Ask them to review and reflect on any terms and phrases related to the term vertical angles that were added to the display during the lesson.

\section*{Exit Ticket}

Students demonstrate their understanding of vertical angles by finding unknown angle measures in a diagram.


\section*{亘 Printable}


Exit Ticket \{G\}

Line segments \(A D, B E\), and \(C F\) are all diameters of the circle.

1. Determine the measure of \(\angle D O E\).
\(\mathrm{m} \angle D O E=40^{\circ}\)
2. Determine the measure of \(\angle C O D\) \(\mathrm{m} \angle C O D=60^{\circ}\)


Lesson 5 Vertical Angles

\section*{Success looks like ...}
- Language Goal: Comprehending that the term vertical angles refers to a pair of angles formed by two intersecting lines. (Speaking and Listening, Writing)
» Understanding that \(\angle D O E\) and \(\angle A O B\) are vertical angles to determine the measure of \(\angle D O E\) in Problem 1.
- Language Goal: Generalizing that the opposite angles formed by two intersecting lines have equal angle measures. (Speaking and Listening, Writing)
- Language Goal: Solving multi-step problems involving vertical angles, and explaining the reasoning used. (Speaking and Listening, Writing)
» Using the measures of adjacent vertical angles to determine the measure of \(\angle C O D\) in Problem 2.

\section*{Suggested next steps}

If students answer Problem 1 correctly and Problem 2 incorrectly, consider:
- Having them annotate the diagram with the given information and their response from Problem 1. Then have them identify the relationship between \(\angle C O D\) and other angles with known measures.
- Assigning Practice Problem 2.

If students solve for incorrect angles in the diagrams, consider:
- Reviewing how to name angles.
- Assigning Practice Problem 2.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...
- What worked and didn't work today? How did the Notice and Wonder routine support students in generalizing that vertical angles have equal angle measures?
In earlier lessons, students studied complementary and supplementary angles. How did that support them in building their understanding of vertical angles? What might you change for the next time you teach this lesson?

\begin{tabular}{|lclc|}
\hline Practice Problem Analysis \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 2 & 1 \\
\hline Spiral & \(\mathbf{2}\) & Activity 2 & 1 \\
\hline Formative 0 & \(\mathbf{3}\) & Activity 2 & 3 \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.
name
(A.) \(\frac{20}{100^{x}}\)
(.). \(x-\frac{100}{100^{x}}\)
c. \(\left.\frac{(100-20}{100}\right)_{x}\)
D. \(0.80 x\)
(®) \((1-0.8) x\)
5. Andre is solving the equation \(4\left(x+\frac{3}{2}\right)=7\). He says, "I can subtract \(\frac{3}{2}\)
from each side to get \(4 x=\frac{11}{2}\). Then divide by 4 to get \(x=\frac{11}{4}\)."
from each side to get \(4 x=\frac{11}{2}\). Then divide by 4 to get \(x=\frac{11}{8}\)."
Kiran says, "I think you made a mistake."
(a) How can Kiran know for sure that Andre's solution is incorrect? Sample response: Kiran can replace \(x\) in the equation with \(\frac{11}{8}\) and evaluate Sample response: Kiran can replace \(x\) in the equation
the expression on the left to see that it equals \(\frac{23}{2}\), not 7 .
b Describe Andre's error and explain how to correct his work.
Sample response: Andre did not distribute the number 4 before subtracting the onstant. \(4\left(x+\frac{3}{2}\right)=4 x+6\), so subtracting \(\frac{3}{2}\) from each side of the equation \(4 x+6=7\) gives a result of \(4 x+\frac{9}{2}=\frac{11}{2}\), not \(4 x=\frac{11}{8}\).
```

6. Solve each equation.
```
(a) \(8 x-5.5=7.3\)
\(8 x-5.5+5.5=7.3+5.5\)
\(8 x=12.8\)
\(8 x \div 8=12.8 \div 8\)
\(x=1.6\)
b \(2\left(y+\frac{3}{2}\right)=9\) \(2 y+3=9\)
\(2 y+3-3=9-3\)
\(\begin{aligned} 2 y & =6 \\ 2 y \div 2 & =6 \div 2\end{aligned}\)
\(\begin{aligned} 2 y \div 2 & =6 \div 2 \\ y & =3\end{aligned}\)

Additional Practice Available


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

\title{
Using Equations to Solve for Unknown Angles
}

Let's use equations to determine missing angle measures.


\section*{Focus}

\section*{Goals}
1. Language Goal: Critique whether a given equation represents the relationship between angles in a diagram. (Speaking and Listening, Writing)
2. Write an equation of the form \(p x+q=r\) or \(p(x+q)=r\) to represent the relationship between angles in a given diagram.
3. Language Goal: Solve an equation that represents a relationship between angle measures, and explain the reasoning used. (Writing)

\section*{Coherence}

\section*{- Today}

Students write equations of the form \(p x+q=r\) and \(p(x+q)=r\) to accurately represent relationships between angles shown in diagrams. They solve the equations to find unknown angle measures.

\section*{< Previously}

In Lessons 3, 4, and 5, students were introduced to supplementary, complementary, and vertical angle relationships.

\section*{> Coming Soon}

In Lesson 7, students will use what they have learned about equations and angle relationships to describe the angles formed by the hands of a clock.

\section*{Rigor}
- Students identify special angle relationships to further their conceptual understanding of angle relationships.
- Students strengthen their fluency in writing and solving equations that represent angle relationships.


Activity 1


Activity 2


Summary


Exit Ticket

\(\oplus 20 \mathrm{~min}\)
ㅇำ Small Groups
\(\oplus 5\) min
ํํํ Whole Class
() 5 min
\(\bigcirc\) Independent

\section*{Amps powered by desmos Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\cap\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice

\section*{Math Language \\ Development}

\section*{Review words}
- adjacent angles
- complementary angles
- right angle
- straight angle
- supplementary angles
- vertical angles

\section*{Amps Featured Activity}

\section*{Warm-up \\ Checking Angle Measure Estimates}

With the press of a button, angles adjust to show how close the student's estimate is to the actual measure.


\section*{Amps \\ desmos}

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

In Activity 1, students might struggle to work together, preventing them from achieving precise solutions. Before starting the activity, have students identify ways that building relationships will make the activity more successful. Lead them to conclude that every member of a group is valuable and has something to contribute to the group's success.

\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In Activity 1, instead of writing their explanations, have students share with the class during the discussion.
- In Activity 2, provide student choice by having them choose any 2 of the 4 problems to complete.

\section*{Warm-up It's All Downhill From Here}

Students estimate the measures of angles shown in diagrams, which prepares them to check the reasonableness of their solutions when solving for unknown angle measures.


\section*{1. Launch}

Read the passage as a class. Activate students background knowledge by asking them how a waterslide might be similar to or different from an aqueduct.

\section*{(2) Monitor}

Help students get started by suggesting they think of angle measures they already know (right angles, straight angles, the \(60^{\circ}\) angle of an equilateral triangle) and compare them to each given angle.

\section*{Look for productive strategies:}
- Adding a ray perpendicular to the bottom ray of each angle to compare the given angle with a right angle or half of a right angle.

3 Connect
Display the angles.
Have students share their estimates of each angle measure. Record these estimates for the class to see. For each angle, select one student who chose an average measurement and one student who chose an outlier measurement. Have each student explain their thinking.

Highlight that when finding unknown measures, estimation is a great tool to make sure the measures make sense, given the angle relationships. Diagrams will not always be drawn to scale, but students can use benchmark measurements, such as \(90^{\circ}\) and \(45^{\circ}\), to consider which measures are reasonable and which are not.

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which angles automatically resize to match their estimated measures.

\section*{Accessibility: Guide Processing and Visualization}

Consider displaying angles with benchmark measures, such as \(90^{\circ}, 60^{\circ}\), \(45^{\circ}\), or \(30^{\circ}\) to support students in their estimations.

\section*{(7) Power-up}

To power up students' ability to solve equation with more than one step, have students complete:
1. For each equation, determine which step would be most efficient to complete first when solving.
a. \(5 x+6=20\) Subtract 6 from both sides. Divide by 5 on both sides.
b. \(5(x+6)=20\) Subtract 6 from both sides. Divide by 5 on both sides.
2. Solve each equation. Explain or show your thinking.
a. \(5 x+6=20\)
b. \(5(x+6)=20\)

Use: Before Activity 2.
Informed by: Performance on Lesson 5, Practice Problem 6.

\section*{Activity 1 What's the Match?}

Students match diagrams of angle relationships with equations that represent those relationships, which prepares them to write and solve similar equations.


\section*{1 Launch}

Activate prior knowledge by asking, "What are the angle relationships you have studied so far in this unit?" Explain that students should keep these relationships in mind throughout the activity.

\section*{(2) Monitor}

Help students get started by suggesting they determine which angles are supplementary, complementary, or vertical in each diagram and then consider what this tells them about the angle relationships.
Look for points of confusion:
- Trying to solve the equations to find the angle measures. Direct students to make connections between the relationships shown in the equations and the diagrams.

\section*{Look for productive strategies:}
- Using appropriate vocabulary and language (i.e., vertical angles have equal measures, supplementary angles have measures with a sum of \(180^{\circ}\), etc.) when discussing their thinking with their group.

\section*{3 Connect}

Display each diagram, one at a time.
Have students share which equation they matched with each diagram and why. Encourage students to use precise mathematical vocabulary, such as vertical, complementary, and supplementary, when explaining their thinking.

Highlight the angle relationships in each diagram and the corresponding equation.

\section*{Ask:}
- "What angle relationship did you need to recognize so that you could match the equation to the diagram?"
- "Where do you see the relationship expressed in the equation in its corresponding diagram?"

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Display these questions that students can ask themselves to help them determine the matches. Responses are shown for Problem 3.
- Does this diagram show vertical angles? Supplementary angles? Complementary angles?
- What does this information tell you?

The angle labeled \(g\) and its opposite are vertical angles; Vertical angles have the same measure. The three angles ( \(35^{\circ}, g\), and \(h\) ) are supplementary. The sum of their measures is \(180^{\circ}\).

\section*{Math Language Development}

\section*{MLR8: Discussion Supports-Pressing for Details}

During the Connect, as students share how they determined their matches, encourage their developing mathematical vocabulary by pressing for details. For example, if a student says, " 2 hs and \(g\) add up to \(90^{\circ}\) " for Problem 4, ask:
- "How do you know that angle \(g\) is part of this sum? What angle relationships do you see?"
- "Did you use the terms opposite, vertical, or right angle in your explanation? If not, how can you revise your explanation to use these terms?"

\section*{Activity 2 What Does It Look Like?}

Students find unknown angle measures by writing and solving equations to reinforce their understanding of angle relationships and build fluency in solving equations.


\section*{1. Launch}

Let students know they will be writing and solving their own equations to find unknown angle measures. Note that there may be more than one possible equation to write for each diagram, but there is only one potential angle measure for each angle.
(2) Monitor

Help students get started by prompting them to look for any angles that are vertical, complementary, or supplementary.

\section*{Look for points of confusion:}
- Finding the unknown angle measure without writing an equation. Suggest students consider the steps they took to find the angle measure and write an equation that would be solved using the same steps.

\section*{Look for productive strategies:}
- Labeling the diagrams with angle relationships.

\section*{3 Connect}

Display each diagram, one at a time.
Have groups of students share the equations they wrote for each diagram. Have them explain their thinking using precise mathematical vocabulary.

Highlight how equations can be used to represent angle relationships.

Ask:
- "Did anyone use a different equation for this diagram? If so, did you get the same solution?"
- "Were any of the problems more challenging than others? Why?"
- "How can you check that the solution to the equation makes sense, given the diagram?"

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Display a series of questions that students can ask themselves to help them write the equation for each diagram. An example is shown.
- Which diagram shows a full circle? Problem 2
- How many degrees are in a full circle? \(360^{\circ}\)
- How many angles are shown? 6 angles; three labeled \(y\) and three labeled \(98^{\circ}\)
- What must be true about the sum of these measures? The sum is equal to \(360^{\circ}\).

\section*{(1ㅛ)}

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, mention that the diagrams in Problems 2 and 4 both utilize structure. Ask students to compare and connect the solution pathways for each diagram. For example, ask:
- "In Problem 2, you could begin by writing either of the equations \(3(y+98)=360\) or \(3 y+3 \cdot 98=360\). Which solution pathway seems more efficient? Why?"
- "Similarly, in Problem 4, you could write \(4(v+15)=90\) or \(4 v+4 \cdot 15=90\). Which solution pathway seems more efficient? Why?"
Encourage students to compare and connect the usefulness and efficiency of each approach.

\section*{Summary}

Review and synthesize how equations can be used to represent angle relationships in order to find unknown angle measures.


\section*{Synthesize}

Display the diagram from the Student Edition.
Have students share the angle relationships they see in the diagram. Students should use precise mathematical language and their vocabulary terms to describe these relationships, such as adjacent, complementary, right angle, straight angle, supplementary, and vertical.

Ask where students see an example of each of these angle relationships or vocabulary terms in the diagram.

Highlight how an equation can be used to represent the angle relationships in the diagram.

\section*{I. Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What types of special angles or angle relationships did you look for in each diagram?"
- "How did identifying special angles or angle relationships help you to write equations?"

\section*{Exit Ticket}

Students demonstrate their understanding by writing an equation to describe angle relationships in a diagram and describing how to determine the unknown angle measures.

㚛 Printable

Exit Ticket 6\}

Here are three intersecting lines


The figure may not be crawn to scale.
Write an equation that represents a relationship between these angles. \(2 w+76=180\)
. Describe, in words, the process you would use to find the value of \(w\). Sample response: Subtract 76 from 180 and divide the difference by 2.
3. Determine the value of \(w\). \(w=52^{\circ}\)


\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\(0_{0}\) Points to Ponder ...
- What worked and didn't work today? Thinking about the questions you asked students today and what students said or did as a result of the questions, which question was the most effective?

When you compare and contrast today's work with work students did earlier this year on writing equations, what similarities and differences do you see? What might you change for the next time you teach this lesson?

\begin{tabular}{|lclc|}
\hline Practice Problem Analysis \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 1 \\
& 2 & Activity 2 & 2 \\
\hline Spiral & 3 & Activity 2 & 2 \\
Formative 0 & 6 & \begin{tabular}{l} 
Unit 6 \\
Lesson 18 \\
Unit 6
\end{tabular} & 2 \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Like Clockwork}

Let's apply our understanding of angles and proportional reasoning to the hands on a clock.


\section*{Focus}

\section*{Goals}
1. Use proportional reasoning to calculate the angle of rotation of a hand on a clock.
2. Generalize an equation that determines the angle of rotation of the hands of a clock.

\section*{Coherence}

\section*{- Today}

Students explore the close relationship between how time is measured on an analog clock and how rotation is measured using degrees. The hands of the clock can be represented by the rays of an angle and proportional reasoning is used to both determine angle measures and create equations that represent the relationship.

\section*{< Previously}

Earlier in this grade, students studied proportional relationships and calculated unit rates. Earlier in this unit, students measured and constructed angles.

\section*{Coming Soon}

In the next section of Unit 7, students will learn about drawing polygons given certain conditions.

\section*{Rigor}
- Students apply their understanding of angles and proportional reasoning to create equations to model the angles formed by hands of a clock.


Activity 1
(1)

Activity 2


Summary


Exit Ticket
\((5\) min

Independent
(J) 12 min
\(\circ \circ\) Pairs


\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\cap\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 2 PDF, one set of cards per group
- Activity 2 PDF (answers)
- geometry toolkits: protractors, rulers

\section*{Math Language \\ Development}

\section*{Review words}
- adjacent angles
- complementary angles
- right angle
- straight angle
- supplementary angles
- vertical angles

\section*{Amps ! Featured Activity}

\section*{Activity 2 \\ Dynamic Clocks With Instant Feedback}

Students write and check their equations immediately with clock hands that rotate automatically.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students might not continue to persevere as algebra and geometry come together in Activity 2. Have students explain how they can change their thought patterns and relieve their stress. Point out that quantitative algebraic thinking can help make sense of abstract concepts such as time.

\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- The Warm-up may be omitted.
- In Activity 2, have students complete 3 of the 6 cards.

\section*{Warm-up Which One Doesn't Belong?}

Students reacquaint themselves with clocks and the significance of the position of the hands on a clock to prepare for upcoming work related to the angles formed by the hands of a clock.

\section*{Unit 7 | Lesson 7}

\section*{Like Clockwork}

Let's apply our understanding of angles and proportional reasoning to the hands on a clock.


Warm-up Which One Doesn't Belong?
Study the four clocks shown. Which one doesn't belong? Explain your thinking

B.

D.

Sample responses
- Clock A does not belong because it is the only clock that has the minute hand on the 12 .
- Clock B does not belong because it is the only clock whose hands do not form a right angle.
- Clock C does not belong because it is the only clock that does not show a time where the hour hand is between 3 and 4.
Clock \(D\) does not belong because it is the only clock in which the hands are not in the correct position to show the indicated time. To show 3:30, the hour hand should be halfway between 3 and 4 .

\section*{1 Launch}

Activate students' background knowledge by asking them how we tell time from analog clocks. If students are unfamiliar with analog clocks, provide an overview of how these clocks measure time. Conduct the Which One Doesn't Belong routine.

\section*{(2) Monitor}

Help students get started by asking them to consider the position of the hands on the clock.

Look for points of confusion:
- Not realizing that some hand positions shown are not correct. Have students consider where the hour hand should be in clock \(D\).

\section*{Look for productive strategies:}
- Analyzing multiple aspects of the clocks. Students may notice the time, the relative positions of the hands to the clock, or the relative positions of the hands to each other

3 Connect
Display the four clocks and conduct the Poll the Class routine to assess student thinking.

Highlight that the position of the hour and minute hands on a clock are related to each other. There are interesting questions to be asked about what positions are possible and impossible. This will be the focus of the work today.

Ask, "How do you know that clock D shows an incorrect position for the hands?" If the minute hand shows 30 minutes, then the hour hand needs to be in the middle between 3 and 4 .

Differentiated Support

\section*{Accessibility: Bridge Knowledge Gaps}

Some students may struggle with reading analog clocks fluently They will need to access this skill in the upcoming activities. Have students study Clocks A and D and point out that while they show the same angle, \(90^{\circ}\). Clock A is read as "three o'clock" and Clock D is read as "three thirty" (when the hour hand is adjusted). Provide other examples of different times that measure \(90^{\circ}\). Then ask students to study Clocks B and C and point out why the times shown are before four o'clock and seven o'clock, respectively.

Power-up
To power up students' ability to partition the degrees of a circle into equal parts, have students complete:
Recall that a circle is \(360^{\circ}\). Each circle is partitioned equally. Determine the measure of each angle.



\(60^{\circ}\)

Use: Before Activity 1.
Informed by: Performance on Lesson 6, Practice Problem 6.

Activity 1 Time, in Degrees
Students find the angle of rotation between the hour and minute hands for different periods of time to understand the proportional relationship between the quantities.


\section*{Differentiated Support}

\section*{1 Launch}

If students are unfamiliar with analog clocks, you may choose to show the online animation.

\section*{2 Monitor}

Help students get started by having them determine the total number of minutes and total number of degrees that are represented on the entire clock face.

Look for points of confusion:
- Confusing the minute hand and hour hand. Ask "How many degrees does the minute hand turn each minute? Sketch what the minute hand looks like before and after one turn."
- Struggling to calculate unit rates. Ask, "How many degrees does the minute hand turn in one hour? How many degrees does a minute hand turn in half an hour ( 30 minutes)?"
Look for productive strategies:
- Recognizing that a quarter turn measures \(90^{\circ}\) and a half turn measures \(180^{\circ}\)
- Calculating the unit rate for each hand's rotation

\section*{(3) Connect}

Display the image of the empty clock face. Mark the clock face as students explain their strategies.

Have students share their strategies for finding the degrees of the rotations (turns).

Highlight that finding the unit rate can be very useful when there is a proportional relationship between two quantities. Knowing the unit rate helps to find the number of degrees a hand turns in a certain period of time.

Ask, "What are some different ways in which a clock face can be partitioned?" Sample responses: halves, thirds, quarters, fifths, sixths, tenths, twelfths, fifteenths, twentieths, twenty-fourths, thirtieths.

\section*{Extension: Math Around the World, Interdisciplinary Connections}

Ask students if they have ever wondered, "Why are there 24 hours in a day?" Our concept of a 24 -hour day comes from the ancient Egyptian civilization. They used shadow clocks (or sundials) to measure the passing of time each day and divided the day into three sections: 10 hours of "day time," 1 hour of "twilight" at the beginning of "day time," and 1 hour of "twilight" at the end of "day time," thus making 12 hours. The night was divided into 12 hours as well. Students may be interested to learn that ancient Egyptians varied the length of the "day time" and "night time" hours, based on the season. In the summer, "day time" hours were longer than "night time" hours. In winter, it was the reverse.

Ask the following questions to facilitate class discussion:
- "Why do you think it was important for ancient Egyptian civilization to create and consequently adopt this ' 24 hours in a day' segmentation?"
- "Why do you think subsequent civilizations selected to also adopt this segmentation?"

Have students research shadow clocks (sundials) and ask students to compare them to the analog clocks used today. An example of an ancient sundial is shown in the Summary of this lesson. (History)

\section*{Activity 2 Precision Timekeeping}

Students create equations that relate time to the measure of the angles formed by the hands of an analog clock to strengthen students' understanding of the connection to proportional relationships.

Amps Featured Activity Dynamic Clocks With Instant Feedback

Activity 2 Precision Timekeeping

You will be given a set of cards, a protractor, and a ruler to complete this activity.
A time is given on each card. Write an equation that relates the number of hours \(h\) and minutes \(m\) to the angle formed by the hour hand and 12 o'clock. Then write an equation that relates the number of minutes to the angle formed by the minute hand and 12 o'clock. Then draw the precise location of the hands using your mathematical tools.
Sample responses provided in the Activity 2 PDF (answers).

\section*{1 Are you ready for more?}

What would a clock look like if time was measured using a 10 -hour system instead of a 12-hour system? Draw your design here and explain how you came up with it. Answers may vary

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides, in which they can write and check their equations immediately with clock hands that automatically rotate.

\section*{Accessibility: Vary Demands to Optimize Challenge}

Have students focus on Card A or Card E. This will still allow students to access the goal of the activity, which is to relate the angle measures formed by the hands of the clock to proportional relationships.

\section*{Extension: Math Around the World, Interdisciplinary Connections}

Ask students if they have ever wondered, "Why are there 60 minutes in 1 hour, and 60 seconds in 1 minute?" This concept comes from the ancient Babylonians who used a base-60 place value system. Interested students can further research the base- 60 place value system. Ancient Babylonians also divided the day into 360 partitions, which is different from how we divide the day into 24 partitions (hours). Many historians believe that they divided the day into 360 partitions because they had estimated the number of days in a year to be 360. Ask students, "How do you think the ancient Babylonians were able to estimate with such close accuracy that a year consisted of 360 days?" Have students work in small groups to address this question and to learn about the role of mathematics in Babylonian society. (History)

\section*{Summary}

Review and synthesize how proportional reasoning and algebraic representations can be used to represent and analyze geometric relationships.


\section*{Synthesize}

Display the images from the Student Edition.
Ask, "How is the ancient sundial that ancient Egyptians used in the 13th century BCE similar to or different from the analog clocks used today?"

Have students share their thoughts on the similarities and differences between the Egyptian sundial and the modern analog clock.

Highlight ideas that use precise vocabulary and reference understandings from the lesson activities. For example, the sundial is only a semi-circle, so it measures \(180^{\circ}\). It is partitioned differently, so perhaps their time was measured differently. Hours may have been longer. Students who are interested in this topic may research this further.

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What methods or strategies did you use to determine the angle measures within each clock?"
- "Did you notice any patterns or 'rules' as you determined each angle measure?"

\section*{Differentiated Support}

\section*{Extension: Math Around the World, Interdisciplinary Connections}

Cultures around the world have used different ways of representing and measuring time. For example, in ancient China, people divided the day into twelve 2-hour periods. Each double hour was called "shi". There is also evidence of a separate system for dividing a day into 100 equal-sized partitions called ke. For a while, these two systems did not correlate well with each other because 12 does not evenly divide 100. In 1628 CE, the number of \(k\) in a day was changed to be 96 for this reason. Prior to this change, previous dynasties in China utilized different numbers of ke's that included 100 (the majority of China's history), 120, 96, and 108.

Around 723 CE, during the Tang Dynasty, Chinese inventors developed its first astronomical clock indicating time. This clock used water to function. Have students work in small groups and use the internet or another source to research how water clocks work and how different civilizations - including ancient Egyptian and Babylonian civilizations - constructed and used different types of these water clocks. Have groups create a visual display of their findings and share them with the class. (History)

\section*{Exit Ticket}

Students demonstrate their understanding by determining the measure of the angle between the hands of a clock for a given time.


Date: \(\longrightarrow\) Period 2G

A clock currently shows a time of 1:20 p.m. Determine the measure of the angle between the hour hand and the minute hand. Use the blank clock face as needed. Explain your thinking.

\(80^{\circ}\)
Sample response:
An hour hand turns \(30^{\circ}\) in one hour. 1 hour and 20 minutes equals \(1 \frac{1}{3}\) hours and \(1 \frac{1}{3} \cdot 30=40\); The angle between the hour hand and \(12: 00\) is \(40^{\circ}\).
A minute hand turns \(60^{\circ}\) in one minute. \(20 \cdot 6=120\); The angle between the A minute hand turns \(60^{\circ}\) in one
minute hand and \(12: 00\) is \(120^{\circ}\)
\(120-40=80\); So, the measure of the angle between the hour hand and the minute hand is \(80^{\circ}\).


\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...
- What worked and didn't work today? During the Warm-up discussion, how did you encourage each student to share their understanding?
What challenges did students encounter as they worked through Activity 2? How did they work through it? What might you change for the next time you teach this lesson?

\begin{tabular}{|lclc|}
\hline Practice Problem Analysis & \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 3 \\
\hline Spiral & \(\mathbf{2}\) & \begin{tabular}{l} 
Activity 2
\end{tabular} \\
\hline Formative 0 & \(\mathbf{5}\) & \begin{tabular}{l} 
Unit 7 \\
Lesson 6
\end{tabular} & 2 \\
\hline
\end{tabular}
(6) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.


\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Drawing Polygons With Given Conditions}

In this Sub-Unit, students join the mathematical tradition of constructing geometric figures. Given certain conditions, they notice that sometimes many figures can be constructed, while other times no figures can be constructed.



\section*{Narrative Connections}

Read the narrative aloud as a class or have students read it individually. Students continue to encounter triangles in construction and location in the following places:
- Lesson 8, Activity 1: What Can You Build?
- Lesson 9, Activity 1: Where Is the Hideout?
- Lesson 11, Warm-up: Construct It

\title{
Building Polygons \\ (Part 1)
}

Let's build some polygons.


\section*{Focus}

\section*{Goals}
1. Language Goal: Comprehend that two shapes are considered "identical copies" if they can be placed on top of each other and match up exactly. (Speaking and Listening, Reading and Writing)
2. Language Goal: Recognize that four side lengths do not determine a unique quadrilateral, but that three side lengths can determine a unique triangle. (Speaking and Listening, Reading and Writing)
3. Language Goal: Use manipulatives to create a polygon with given side lengths, and describe the resulting shape. (Speaking and Listening, Writing)

\section*{Coherence}

\section*{- Today}

This lesson is the first in a series of lessons in which students create shapes with given conditions. Students experiment with building polygons of various orders and combinations of side lengths, using linkage strips and metal paper fasteners.

\section*{< Previously}

These lessons continue the language used in Grade 6, in that two polygons are identical if they match up exactly when placed one on top of the other.

\section*{> Coming Soon}

In the next lesson, students will formulate a rule for which side lengths are possible for triangles. Future work with congruence will continue in Grade 8 and throughout high school.

\section*{Rigor}
- Students use manipulatives to further their conceptual understanding of unique versus copied polygons.
- Students use a variety of tools to build their conceptual understanding of constructing polygons.


Warm-up
Activity 1

Activity 2

\section*{Activity 3}


Summary

Exit Ticket
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) 5 min & (1) 15 min & (1) 10 min & (1) 8 min & (1) 5 min & (1) 5 min \\
\hline \(\bigcirc\) Independent & ํํํ Pairs & \(\bigcirc\) Independent & \(\bigcirc\) Ondependent & กัํกําก & \(\bigcirc\) Independent \\
\hline
\end{tabular}

Amps powered by desmos Activity and Presentation Slides
For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify,com

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 1 PDF, pre-cut and organized, one set per pair
- sticky notes
- geometry toolkits: linkage strips (which may be substituted for Activity 1 PDF), tracing paper, protractors, rulers, metal paper fasteners

\section*{Math Language \\ Development}

\section*{Review word}
- polygon

\section*{Building Math Identity and Community}

Connecting to Mathematical Practices
Students might be insensitive as others present their results from Activity 3 . Ask students to identify how they want others to treat them when they share their thinking and then have them set some norms for how the class will treat each other during these discussions.

\section*{Amps : Featured Activity}

\section*{Activity 1 \\ Interactive Geometry}

Students can quickly make and manipulate the polygons they build with this tool. Student work is carried over from screen to screen so they can adjust their thinking.


\section*{Amps}
powereb by desmos

\section*{Warm-up Is It Identical?}

Students compare polygons to determine if they are identical, which prepares them for determining if two polygons are unique.


\section*{1 Launch}

Provide access to the geometry toolkits, in particular rulers, protractors, and tracing paper. Encourage students to consider which tools will be beneficial in determining if two polygons are the same.

\section*{(2) Monitor}

Help students get started by mentioning that paying attention to side lengths can help them understand how the polygon may have been repositioned.

\section*{Look for points of confusion:}
- Difficulty analyzing the positions of the polygons mentally. Supply students with tracing paper and have them trace the polygons.
- Not considering that some polygons may be flipped. Point out that a polygon is a two dimensional object that can be flipped, just like a piece of paper.

\section*{Look for productive strategies:}
- Color coding or annotating to match sides or side lengths.
- Using their hands to simulate turning or flipping the polygons.
- Using terms, such as flip, turn, reflect, slide, and rotate.

\section*{(3) Connect}

Display each pair of polygons so that you can physically manipulate them.

Have students share their explanations for whether the polygons in each set are identical. Listen for and highlight students using relevant vocabulary.

Highlight that the first two rows in the table show identical polygons because the figures were merely rotated or flipped.

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

While students work, circulate and look for productive strategies, such as students color coding and annotating the diagrams, as well as the use of terms flip, turn, and reflect. Organize the productive strategies onto a visual display and refer to the display during the discussion

\section*{English Learners}

Use hand gestures to represent flipping, turning, and reflecting the polygons.

\section*{(7) Power-up}

To power up students' ability to classify polygons, have students complete:

Which terms could be used to describe the

\begin{tabular}{ll} 
A. Square & (E.) Rhombus \\
\begin{tabular}{ll} 
B. Rectangle & F.) Polygon \\
C. Parallelogram & G. Triangle \\
D. Pentagon & (H.) Quadrilateral
\end{tabular}
\end{tabular}

Use: Before Activity 1.
Informed by: Performance on Lesson 7, Practice Problem 5.

\section*{Activity 1 What Can You Build?}

Students explore and make observations about a physical representation of polygons to familiarize themselves with the tools and definitions they will use in future activities.


\section*{1 Launch}

Distribute the linkage strips from the Activity 1 PDF and at least 12 metal paper fasteners to each pair of students. If necessary, demonstrate how to connect the linkage strips with the fasteners.

\section*{2 Monitor}

Help students get started by assisting them with connecting their linkage strips.

Look for points of confusion:
- Taking apart their original shape before comparing with their partner. Have students try to rebuild their shape, as best they can, in order to make the comparison.
- Trying to build a triangle with side lengths that do not work. Let them know they discovered something important, and that it will be discussed later in the lesson.
(3) Connect

Have students share the side lengths they chose for their triangle. Create a copy of the triangle with another set of strips and fasteners. Display it for all to see alongside the group's original triangle, but oriented differently. Repeat for another group's quadrilateral.

Ask, "Are the two polygons identical? How can you tell?" Sample responses: Yes, because I can place them on top of each other and they match up exactly; No, there is no way to match them up exactly.

Highlight that the two quadrilaterals are not necessarily identical copies, even though they have the same side lengths. The quadrilateral is "floppy" because its sides can be "pushed" or moved to create a different quadrilateral with the same side lengths. This is not true for triangles, so triangles are called rigid.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can create and manipulate the polygons they build using an interactive tool.

\section*{Accessibility: Guide Processing and Visualization}

Demonstrate how to use the fasteners to connect the strips to build one polygon students can use for Problem 1 Alternatively, provide pre-built polygons - that you or another class created - for students to use. This will allow them to access the goals of the activity, without having to physically build the polygons.

\section*{(바)}

Math Language Development

\section*{MLR8: Discussion Supports—Revoicing}

During the Connect, as students share their side lengths, ask others to revoice what they heard, using mathematical language. For example,
\begin{tabular}{l}
\multicolumn{1}{c|}{ If a classmate says: }
\end{tabular} \begin{tabular}{l}
\multicolumn{1}{c}{ Another student could say: } \\
\begin{tabular}{l} 
"The triangles are the same but the \\
quadrilaterals are different."
\end{tabular} \\
\begin{tabular}{l} 
"I think you are saying that the triangles have the \\
same side lengths and look exactly the same. The \\
quadriliterals also have the same side lengths, but \\
they look different from each other. Is that correct?"
\end{tabular} \\
Ask the original speaker if their peer was able to restate their thinking. \\
English Learners \\
The terms rigid and floppy are likely new terms for students. Be ready to address what \\
these words mean.
\end{tabular}

\section*{Activity 2 How Many Can You Build?}

Students build polygons given only a description of their side lengths, to reinforce that certain conditions define a unique polygon.

\section*{1. Launch}

Students will need the same materials from Activity 1. Tell students they will now work independently to build polygons.
(2) Monitor

Help students get started by asking, "What does it mean for two polygons to be identical? What does it mean if they are not identical?"
Look for points of confusion:
- Thinking that there is only one possible quadrilateral in Problem 1. Suggest students "push" the sides in or out and ask if it still looks like an exact copy of the other.
- Thinking there is more than one triangle in Problem 2. Ask students to create two triangles to see there is only one way to form the side lengths.
- Creating identical polygons. Ask, "Is there a way to check if this polygon is a copy of any of your others?"

\section*{Look for productive strategies:}
- Testing uniqueness by manipulating polygons to see if they are an exact copy of what they already created.
- Arranging the side lengths in different orders.

3 Connect
Have students share their constructions and explanations for how many they were able to build.
Display each student's constructed polygons for all to see.

Highlight that the triangle is the only polygon that is rigid. For stability, the internal structures of many buildings (and bridges) will include triangles because they are rigid. Rectangles or other polygons with more than three sides often include triangular supports on the inside, to make the construction more rigid and less floppy. Activate students' background knowledge by asking them whether they have seen triangular supports used in construction.

\section*{\(\oplus\) \\ Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

Have students work in pairs so they can alternate building polygons and spend more time analyzing them. Alternatively, provide pre-built polygons - that you or another class created - for students to use. This will allow them to access the goals of the activity, without having to physically build the polygons.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

Ask students to consider what is the same and what is different about their constructed quadrilaterals. Draw students' attention to the conditions that define a unique quadrilateral.

\section*{English Learners}

Use this time to formalize the term rigid and connect the mathematical meaning of rigid to the everyday meaning of the term by using physical manipulatives. For example, show a flexible tape measure and say "not rigid." Show a metal or wooden ruler and say "rigid."

\section*{Activity 3 Building a Certain Triangle}

Students attempt to build a triangle with three lengths that cannot form a triangle, which helps them see that sometimes it is impossible to build a polygon with certain conditions.


\section*{1 Launch}

Students will need the same materials as with Activities 1 and 2 . Set an expectation for the amount of time students will have to work individually on the activity.

\section*{2 Monitor}

Help students get started by making sure they are precise with their unit measurements on the linkage strips

Look for points of confusion:
- Bending the strips in order to make the lengths connect. Remind them that a polygon must contain only straight sides.

\section*{Look for productive strategies:}
- Reasoning about other potential side lengths that would not form a triangle.

\section*{3 Connect}

Display a student's incomplete triangle.
Have students share their explanations for why a triangle cannot be formed from these three lengths.

Highlight that as the unit progresses, students will be asked to create or draw shapes that include certain conditions. These conditions can determine whether the shape will be unique or even impossible.

Differentiated Support

\section*{Accessibility: Optimize Access to Tools, Vary Demands to Optimize Challenge}

Instead of having students use linkage strips, allow them to use a ruler to try to draw a triangle with side lengths that are 3 units, 4 units, and 9 units long. They can choose their unit of measure, such as inches or centimeters, as long as they use the same unit for each line segment.

\section*{Extension: Math Enrichment}

Ask students to create other sets of side lengths that would not form triangles. Have them come up with a reasonable explanation for why certain side lengths will not form a triangle. Sample response: The two shortest sides need to be at least a certain length in order to meet with the endpoint of the longest side.

\section*{Featured Mathematician}

Have students read about Featured Mathematician Vi Hart, whose popular videos show them doodling fascinating mathematical topics, often related to geometry.

\section*{Summary}

Review and synthesize how polygons can be constructed given side lengths, and that sometimes it is not possible to construct a polygon given certain side lengths.


\section*{Synthesize}

Display this set of lengths: 4 units, 4 units, 10 units, and 10 units.

Ask, "What polygons can be made from these side lengths? Be specific about which lengths you are using and how you are describing the polygons."

Have students share with examples and descriptions of the polygons they could make.

Highlight that a triangle can only be made using three of these side lengths, specifically 4 units, 10 units, and 10 units. A rectangle, parallelogram, and a quadrilateral can be made using all four lengths, depending on how they are arranged.

\section*{(1) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "Given certain segments and angles, how many unique polygons can be made?"

\section*{Exit Ticket}

Students demonstrate their understanding by reasoning about the polygons that can be constructed using four side lengths of 5 cm each.


\section*{Success looks like ...}
- Language Goal: Comprehending that two shapes are considered "identical copies" if they can be placed on top of each other and match up exactly. (Speaking and Listening, Reading and Writing)
- Language Goal: Recognizing that four side lengths do not determine a unique quadrilateral, but that three side lengths can determine a unique triangle. (Speaking and Listening, Reading and Writing)
" Explaining that two different quadrilaterals can be drawn with a side length of 5 cm in Problems 1 and 2.
- Language Goal: Using manipulatives to create a polygon with given side lengths, and describing the resulting shape. (Speaking and Listening, Writing)
" Sketching another polygon, such as a rhombus, that also has four sides of length 5 cm .

\section*{Suggested next steps}

If students disagree with Jada, consider:
- Reviewing the definition and properties of a quadrilateral.
If students do not think there is another polygon Jada could have drawn, consider:
- Having students try to build the given polygon using linkage strips. Ask them to move the linkage strip in a way that creates a different quadrilateral, while the lengths of the sides remain the same.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C. Points to Ponder ...
- What worked and didn't work today? Did students find Activities 1 or 2 more engaging today? Why do you think that is?
- In what ways did Activity 3 go as planned? What might you change for the next time you teach this lesson?


\title{
Building Polygons (Part 2)
}

\section*{Let's build some more triangles.}


\section*{Focus}

\section*{Goals}
1. Language Goal: Explain how to use circles to locate the point where the sides of a triangle, with known side lengths, should meet. (Writing)
2. Language Goal: Use manipulatives or tools to justify when it is not possible to make a triangle with three given side lengths. (Speaking and Listening, Reading and Writing)
3. Use manipulatives or tools to show that there is a minimum and maximum length for the third side of a triangle, given the other two side lengths.

\section*{Coherence}

\section*{- Today}

In this lesson, students experiment with constructing triangles given two or three side lengths. They discover that there are some combinations of lengths that do not create a triangle. Students notice that there are certain relationships between the side lengths that cause the formation of a triangle to be possible or not possible.

\section*{\(<\) Previously}

Students built triangles and quadrilaterals with varying side lengths, using linkage strips. They reasoned about whether the side lengths of certain polygons created identical polygons or not.

\section*{Coming Soon}

In the next few lessons, students will construct triangles given certain conditions (angle measures and side lengths).

\section*{Rigor}
- Students use compasses to further their conceptual understanding of triangle construction.
- Students use a variety of tools to construct triangles with given side lengths to develop fluency.


Warm-up


Activity 1


Activity 2


Summary


Exit Ticket
\((10 \mathrm{~min}\)
\(\circ \cap\) Pairs
(J) 10 min

คํำ Pairs
() 15 min

กํำ Pairs
(J) 5 min
\(\bigcirc\) Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 2 PDF, pre-cut and organized, one set per pair
- geometry toolkits: compasses, rulers, linkage strips (may be substituted for Activity 2 PDF), metal paper fasteners

\section*{Math Language} Development

\section*{Review word}
- compass*
*Students may be familiar with the term compass, as it relates to a directional compass. Be ready to address the differences between the everyday use and the mathematical use.

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students might not understand how a compass can be helpful in Activity 2. Ask students to start by marking one place where point \(C\) may lie. Then ask them to mark a second place, a third place, etc. By applying repeated reasoning with a compass and the definition of a circle, students will be on their way to the correct results.

\section*{Amps ! Featured Activity}

\section*{Activity 1 \\ Digital Collaboration}

Students individually plot potential locations for a call that satisfy mathematical constraints. Then, they can see all the points plotted by their classmates.


\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- The Warm-up may be omitted.
- Activity 1 may be omitted. Instead, during the Connect in Activity 2, highlight how the set of all points a certain distance from a starting point form a circle.

\section*{Warm-up True or False: Length Relationships}

Students express relationships between length measures with equations, in preparation for working with straight-line distances and radial distances.

\section*{Building Polygons (Part 2)}
Let's build some more triangles.

Warm-up True or False: Length Relationships
In the diagram, points \(A, B, C\), and \(D\) lie on the same line segment.
\(\stackrel{A}{a}{ }_{B}^{a}\)
Decide if each of these equations is true or false. Explain your thinking.
1. \(C D+B C=B D\)
True; Sample response: The lengths of segments \(B C\) and \(C D\) combined equal the length of segment \(B D\).
2. \(A B+B D=C D+A D\)
False; Sample response: Segment \(A B\) and segment \(B D\) combined form segment \(A D\), so their total length is equal to the length of segment \(A D\). But the length of segment \(C D\) plus the length of segment \(A D\) is greater than the length of segment \(A D\).
) 3. \(A C-A B=A B\)
False; Sample response: If 1 subtract the length of segment \(A B\) from the length of segment \(A C, I\) will be left with the length of segment \(B C\), not segment \(A B\).
) 4. \(B D-C D=A C-A B\)
True; Sample response: If I subtract the length of segment \(A B\) from the length of segment \(A C\), I will be left with the length of segment \(B C\). If I subtract the length of segment \(C D\) from the length of segment \(B D\), I will be left with the length of segment
\(B C\) as well.
(0) \(\qquad\)

\section*{1 Launch}

Set an expectation for the amount of time students have to work in pairs on the activity.

Power-up

To power up students' ability to construct and compare the lengths of line segments, have students complete:

1. Name all of the line segments you see in the diagram.

Segment \(E G\), segment \(E F\), segment \(G F\), segment \(F G\), segment \(G E\), and segment \(F E\).
2. Determine whether each statement about the line segment(s) is true or false.
a. Segment \(E G\) is the shortest segment. true
b. Segment \(G F\) is the longest segment. false
c. Segment \(E F\) is the same as segment \(F E\). true
d. Segment \(E G\) is the same as segment \(F G\). false

Use: Before the Warm-up.
Informed by: Performance on Lesson 8, Practice Problem 5.

\section*{Activity 1 Where Is the Hideout?}

Students use geometry tools to remind themselves that all the points that are a certain distance from a starting point form a circle.


Amps Featured Activity
Digital Collaboration

Activity 1 Where Is the Hideout?

Someone just made off with all the gold from the bank's safe! You are the only detective in town working on the case. Here is what you know:
- A cell tower is 5 miles west of your office.
- A phone call by the thief, asking to be picked up at the hideout, just happened at a location 3 miles away from the cell tower.

1. If 1 in. corresponds to 1 mile, use your ruler to label a possible location where the hideout could be. How far is this location from your office? Answers may vary, but the distance should be no more than 8 miles and no less than 2 miles.
2. Label some other possible locations for the hideout.
3. What are some places that could not be the hideout location? Explain your thinking.
Any place that is farther than 3 miles from the cell tower could not possibly be the location of the hideout.

\section*{1 Launch}

Provide access to the geometry toolkits. Set an expectation for the amount of time students will have to work in pairs on the activity.

\section*{(2) Monitor}

Help students get started by activating their prior knowledge by asking them how scale helps them to understand a map. Highlight that each inch on the ruler represents one mile.

Look for points of confusion:
- Assuming that the office, cell tower, and hideout are all on a straight line, and thus the hideout must be \(\mathbf{8}\) miles away. Ask these students if the problem tells them in which direction the hideout is from the cell tower.

\section*{Look for productive strategies:}
- Finding and labeling as many locations for the hideout as possible.

3 Connect
Have pairs of students share their responses and reasoning.

Ask:
- "What is the closest the hideout could be to the office?" 2 miles
- "What is the farthest the hideout could be away from the office?" 8 miles
- "What shape is made by all the possible locations where the hideout could be?" a circle

Highlight that there is a tool - the compass - in the students' geometry toolkits that can be used to create all the points that are a certain distance from a starting point. As students discovered in Unit 3, this set of points will always form a circle.

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Provide students with a copy of the map from the Student Edition with several points plotted on it. Have them use a ruler to measure whether each point could reasonably represent the location of the hideout. Be sure to provide them with the scale used in Problem 1. Plot enough points on the map that both could and could not represent the location of the hideout.

\section*{Extension: Math Enrichment}

After the Connect discussion, ask students if the hideout could be located in the interior of the circle, or the hideout must be a point that lies on the circle's curve. Have them justify their response. Students' responses will depend upon their interpretation of whether the phone call was located exactly 3 miles from the cell tower, or a maximum of 3 miles from the cell tower. Accept all reasonable responses, based on their interpretation.

\section*{Activity 2 Swinging the Sides Around}

Students use geometry tools to draw all the possible endpoints for given segments, which allows them to practice constructing triangles given the side lengths.

\section*{1 Launch}

Distribute a set of linkage strips from the Activity 2 PDF and at least 12 metal paper fasteners to each pair of students. Activate prior knowledge by asking a student to model how to use the compass to make a circle and an arc. method for building a triangle that has three specified side lengths. Follow these directions carefully.
1. Draw a 4-in. line segment using the space on the next page, and mark the endpoints \(A\) and \(B\).
2. Segment \(B C\) is 2 in . long. Use your compass to mark all the possible locations for point \(C\).
(a) What shape have you drawn while determining all the possible locations for point \(C\) ? Why is this the correct shape? Explain your thinking. A circle; Sample response: This is the correct shape because a circle epresents all the points that are located a certain distance from its enter point.
b Use your drawing to build two unique triangles, each with a base length of 4 in. and a side length of 2 in. Use a different color for each triangle. Record the side lengths of each of your triangles.

\section*{Triangle 1:}
\begin{tabular}{l|l}
\(A B=4 \mathrm{in}\). & \(A B=4 \mathrm{in}\).
\end{tabular}
\(A C=3 \mathrm{in}\).
\(B C=2\) in.
\(A C=5\) in.
\(B C=2 \mathrm{in}\).
3. Segment \(A C\) is 3 in. long. Use your compass to mark all the possible locations for point \(C\).
a Using a third color, draw a point where the two circles intersect. Using this third color, draw a triangle with side lengths of 4 in ., 2 in ., and 3 in.
b What is represented by the points of intersection of the two circles? The points of intersection represent the two places where the endpoints of the 3 -in. segment and the 2 -in. segment could meet, forming a triangle.

\section*{Monitor}

Help students get started by reading the steps aloud and having students demonstrate each step as you read it.

\section*{Look for points of confusion:}
- Trying to center their pencil in the center of the hole, creating a wobbly circle. Have students place their pencil along the outer edge of the hole as they rotate the linkage strip.

\section*{Look for productive strategies:}
- Noticing that two identical triangles can be created.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can create and manipulate the triangles they build using an interactive tool. They can use the interactive tool to rotate and trace points.

\section*{Extension: Math Enrichment}

Have students construct a triangle with side lengths of 2 in ., 3 in ., and 4 in ., given that the 2 -in. side is placed horizontally.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students share their drawings with the class, ask, "What is the same and what is different about the drawings you see?" Draw students' attention to the connections between building and drawing such as opening the hinge between the cardboard strips and drawing the circle using the compass.

\section*{English Learners}

As students respond to the Ask questions, have them point to their drawings to help justify their responses.

\section*{Activity 2 Swinging the Sides Around (continued)}

Students use geometry tools to draw all the possible endpoints for given segments, which allows them to practice constructing triangles given the side lengths.
(3) Connect

Have students share their drawings with the class.

\section*{Ask:}
- "How many different triangles could you draw when you had only traced a circle on one side? Why?" Sample response: Lots of different triangles, because we only used two of the given side lengths.
- "What is the longest the third side could have been? The shortest?" The length should be between 1 in. and 7 in .
- "How many different triangles could you draw once you traced a circle on each side?" Sample response: It looked like there were two different triangles, but they are identical copies, so there is really only one triangle.

\section*{Summary}

Review and synthesize that it is not always possible to construct a triangle given three side lengths.


\section*{Synthesize}

Ask, "When you are given three side lengths and asked to draw a triangle, what steps should you take?" Sample response: First draw one length. Then, using the endpoints of the first side and a compass, mark the circles representing all the possible endpoints of the other two sides. Use the intersections of those two circles to find the point where the second and third sides should meet.

Display a demonstration of a construction of a triangle with side lengths of 3 in., 4 in., and 5 in.

Ask:
- After the demonstration, ask "What side lengths make a triangle possible?" Any side lengths where the sum of the lengths of the two shorter sides are longer than the length of the longest side.
- "Which conditions make constructing a triangle impossible?" When the length of the longest side of the triangles is greater than or equal to the sum of the lengths of the two shorter sides.

Highlight that when students are given three lengths for the possible sides of a triangle, they must think about the side lengths in order to know if it is even possible to build a triangle.

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "Which tools did you use that were most useful in constructing triangles? In what way(s) were they useful?"
- "Which tools did you find most challenging to use? What made them challenging?"

\section*{Exit Ticket}

Students demonstrate their understanding by reasoning about the possible values for the unknown side length of a triangle.

亘 Printable


A triangle has side lengths of 2 in., 5 in., and a third side for which the length is unknown. What are all the possible values for the length of the unknown side? Explain your thinking.
Sample response: The length of the unknown side can be any length \(x\) that is
greater than 3 in. but less than 7 in., because \(2+x>5\) and \(5+2>x\).


\section*{Success looks like ...}
- Language Goal: Explaining how to use circles to locate the point where the sides of a triangle, with known side lengths, should meet. (Writing)
- Language Goal: Using manipulatives or tools to justify when it is not possible to make a triangle with three given side lengths. (Speaking and Listening, Reading and Writing)
- Goal: Using manipulatives or tools to show that there is a minimum and maximum length for the third side of a triangle, given the other two side lengths
" Determining the possible lengths of the unknown side of a triangle when the two given sides are 2 in . and 5 in .

\section*{Suggested next steps}

If students include 7 in . and 3 in . as possible side lengths, consider:
- Having them try to draw a triangle with these side lengths and then explain why it is not possible.
If students only give discrete values as the possible lengths, consider:
- Suggesting they try some fractional values. Ask if they can find a way to express all the possible values using an inequality symbol.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
© Points to Ponder ...
- What worked and didn't work today? Who participated and who didn't in Activity 2? What trends do you see in participation?
- How did using a variety of tools to construct triangles set up students to develop the skills they will need to determine what characteristics determine unique triangles? What might you change for the next time you teach this lesson?

\begin{tabular}{|lclc|}
\hline Practice Problem Analysis \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 2 & 2 \\
\hline & 2 & Activity 2 & 2 \\
\hline Spiral & 3 & Activity 1 & 2 \\
\hline Formative 0 & 6 & \begin{tabular}{l} 
Unit 7 \\
Lesson 2
\end{tabular} & 2 \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Nom
Date: Period
\begin{tabular}{l} 
>4. Complete the table so that each row contains the degree measures of \\
two complementary angles. \\
\begin{tabular}{|c|c|}
\hline Measure of an angle & Measure of its complement \\
\hline \(80^{\circ}\) & \(10^{\circ}\) \\
\hline \(25^{\circ}\) & \(65^{\circ}\) \\
\hline \(54^{\circ}\) & \(36^{\circ}\) \\
\hline\(x\) & \((90-x)^{\circ}\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}
5. Mai's family is traveling in a car at a constant speed of 65 miles per hour
(a) At this speed, how long will it take them to travel 200 miles?

Sample responses
It will take them \(3 \frac{1}{13}\) hours; Sample response:
Let \(x\) be the time in hours to travel this distance
\(\begin{aligned} 65 x & =200 \\ 65 x \div 65 & =200 \div 65\end{aligned}\)
\(x=3 \frac{1}{13}\)
b At this same speed, how far do they travel in 25 minutes? They travel \(27 \frac{1}{12}\) miles in 25 minutes; Sample response: Let \(x\) be the distance in miles.
\(65 \cdot \frac{25}{60}=x\)
\(27 \frac{1}{12}=x\)
> 6. Triangle \(A B C\) is shown. List the pairs of angles that have equal measures


Additional Practice Available


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

\title{
Triangles With Three Common Measures
}

Let's compare triangles that have common side lengths or angle measures.


\section*{Focus}

\section*{Goals}
1. Language Goal: Describe, compare, and contrast triangles that share three common measures of angles or sides. (Speaking and Listening, Writing)
2. Language Goal: Justify (using multiple representations) whether triangles are identical copies (unique) or are different triangles. (Speaking and Listening, Writing)
3. Language Goal: Recognize that examining which side lengths and angle measures are adjacent can help determine whether triangles are identical copies. (Speaking and Listening, Reading and Writing)

\section*{Coherence}

\section*{- Today}

Students examine sets of triangles in which all the triangles share three common measures of angles or sides. Students learn to recognize when triangles are identical copies, even if they are oriented differently, and when triangles are not unique. Students make conjectures and justify their conclusions.

\section*{< Previously}

In Lesson 9, students constructed triangles given various side lengths and determined when it was not possible to construct a triangle.

\section*{Coming Soon}

In Lesson 11, students will draw triangles given three measurements and determine if the one they created is unique or not.

\section*{Rigor}
- Students use a variety of tools to construct triangles with given characteristics to develop fluency.
- Students apply their understanding of triangle constructions to determine and justify if two triangles are copies or are unique.


Warm-up

Activity 1

Activity 2

\section*{Activity 3}


Summary

Exit Ticket
\begin{tabular}{l|l}
\(\lceil(1) 7\) min & \(\bigodot 7\) min \\
ㅇํㅇ Pairs & ㅇํㅇ Pairs
\end{tabular}
(1) 10 min
ㅇํㅇ Pairs10 min
ㅇํㅇ Pairs
(1) 5 min

○ Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- geometry toolkits: tracing paper, protractors, rulers

\section*{Math Language \\ Development}

\section*{Review word}
- corresponding

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students might lack the motivation to make good and purposeful observations of the sets of triangles that they will share in Activity 1. Ask students to explain what they will do to motivate themselves to use their mathematical minds to make their observations and be ready to defend them to the class.

\section*{Amps : Featured Activity}

\section*{Activity 2 \\ Dynamic Triangles}

Students can digitally trace, flip, and rotate as they compare whether two triangles are identical copies or not.


\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- The Warm-up may be omitted.
- Divide the class and have one half complete Activity 2 and the other half complete Activity 3. Have students share what they noticed during a single discussion for both activities.

\section*{Warm-up Identical or Not?}

Students examine triangles to observe how many measurements are needed to determine if the triangles are identical copies.


\section*{1. Launch}

Provide access to the geometry toolkits. Activate prior knowledge by asking what it means when two or more angles have the same number of arcs.

\section*{(2) Monitor}

Help students get started by directing partners to each draw a triangle with a specific side length, such as 3 in., and then complete Problem 1.

\section*{Look for points of confusion:}
- Saying the first set of triangles are "equal". Explain that shapes cannot be equal; only values, such as measurements, can be equal. Instead, they should say, "These triangles are identical copies." Note: The term congruent will be formalized in Grade 8.
- Thinking they need to draw identical copies. Ask students to show that one measurement is not enough to determine whether the triangles are identical copies. Have them create triangles that only share one or two common measurements.
(3) Connect

Ask, "How many measurements are enough to determine if two triangles are identical copies?"

Display student responses.
Have students share their reasoning behind how they answered the question. Record their reasoning. As students complete Activities 1-3, check with the list to determine whether any opinions have been proven or disproven.

Highlight that knowing all six corresponding measurements are equal will guarantee the triangles are identical copies. However, it is not necessary to know all six measurements, and the next activities will help determine how many, and what type, are needed.

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization,} Vary Demands to Optimize Challenge

Provide pairs of pre-drawn triangles that each satisfy the conditions given in Problems 1 and 2. Ask students to study the pre-drawn triangles to see if they have enough information to determine if they are identical copies, instead of drawing their own.

\section*{(7) Power-up}

To power up students' ability to use arc notation to identify angles of equal measure, have students complete:
Recall that when two angles have the same measure, they are marked with the same number of arcs.
Determine all pairs of angles with equal measure in the figure.
\(\angle D A B\) and \(\angle A D C\)
\(\angle A B C\) and \(\angle B C D\)
Use: Before the Warm-up


Informed by: Performance on Lesson 9, Practice Problem 6.

\section*{Activity 1 Three Sides or Three Angles}

Students study triangles in two sets - one in which all side lengths are equal and one in which all angle measures are equal - to determine which set contains identical copies.


\section*{1 Launch}

Provide access to geometry toolkits. Set an expectation for the amount of time students will have to work in pairs on the activity.

\section*{(2) Monitor}

Help students get started by tracing the first triangle on tracing paper and using it to determine if the triangles are identical copies.
Look for points of confusion:
- Thinking the triangles in Set 1 are different.

Explain that the triangles in Set 1 are identical copies, so there really is just one triangle that has been copied many times.
- Thinking the triangles in Set 2 are identical copies because the angle measures are the same. Have students use tracing paper to trace one triangle to see if it can be matched exactly with another triangle.

\section*{Look for productive strategies:}
- Using tracing paper to trace one triangle and transforming it to try to match the other triangles. Note students who do this.
- Extending the sides and measuring angles with a protractor. Note students who do this.

\section*{3 Connect}

Have students share what they notice is similar and different about the triangles in each set.

\section*{Highlight:}
- In Set 1, all the triangles are identical copies, just in different orientations. The corresponding side lengths and angle measures are the same.
- In Set 2, the triangles are not identical copies. They are scaled copies. They have the same three angle measures, but different side lengths.
Note: The terms congruent and similar will be developed in Grade 8.

\section*{Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization}

Provide copies of the triangles in each set for students to cut out and examine individually. Alternatively, provide pre-cut copies of the triangles so students do not need to cut them out themselves.

\section*{Extension: Math Enrichment}

Have students complete the following problem:
Draw a parallelogram and draw one diagonal partitioning the parallelogram into two triangles. Determine whether the triangles formed are identical copies and explain your thinking. Yes; Sample response: The diagonal line segment separates the parallelogram into two triangles of equal size. The triangles have the same side lengths and the same angle measures.

\section*{Activity 2 Two Sides and One Angle}

Students examine a set of triangles given two side lengths and one angle measurement to determine if any are identical copies, and how many unique triangles exist in the set.

Amps Featured Activity Dynamic Triangles

Activity 2 Two Sides and One Angle

Ever since Thales of Miletus, mathematicians have studied triangles that have side lengths and angles in common. Examine this set of triangles. The figures may not be drawn to scale.

1. What is the same about the triangles in the set? All of the triangles have side lengths of 5 units and 7 units and an angle measure of \(30^{\circ}\)
2. What is different?

Some triangles are different shapes.
3. Which triangles are identical copies of other triangles in the set? Explain or show your thinking.

Collect and Display: What math terms did you use whe describing the similarities and differences between the triangles? Add these to you class display.

Triangles A D and \(F\) have the same size and shape.
Triangles \(C\) and \(E\) have the same size and shape.
Sample response: I traced the triangles and compared them
to see whether any others were identical copies.

\section*{4 Featured Mathematician}


Thales of Miletus
Thales was a mathematician from Ancient Greece, and was born in what is now modern-day Turkey. It is believed he studied under Egyptian scholars. Thales made contributions to scientific reasoning, astronomy, and geometry. He is known for articulating and proving several fundamental theorems about circles and triangles particularly triangles with side lengths or angles in common.

758 \(\qquad\)

\section*{1 Launch}

Provide access to geometry toolkits. Demonstrate, using one of the triangles, how to determine which angle is across, or opposite, from each side.

\section*{2 Monitor}

Help students get started by having them trace Triangle A to determine whether any other triangles are identical copies of Triangle A.

\section*{Look for points of confusion:}
- Thinking if two triangles both have a side length of 5 across from a \(30^{\circ}\) angle, then they are identical. Point out that Triangles B and C both satisfy this criteria, but are not identical.

3 Connect
Display the set of triangles.
Highlight that two side lengths and one angle measure can produce many triangles. It is important to know the order of the measurements. In Triangles D and F, the known angle is between the two known side lengths and they are identical copies. In Triangles B and E, the known \(30^{\circ}\) angle is across from the side length of 5 ; however, they are not identical copies.

Have students share what they notice about the triangles that are identical copies and those that are not.

Ask:
- "When given one angle measurement and two side lengths, how do you know if they will form a unique triangle?" It will only be unique if the known angle is between the two side lengths.
- "When given one angle measurement and two side lengths, how do you know when identical copies will be made?" I need to know where the angle is. Even if the location of the angle is given, I cannot prove the triangles will be identical. (Refer to Triangles B and C for an example.)

\footnotetext{
Differentiated Support

\section*{Accessibility: Guide Processing}

Provide copies of Triangles A-F for students to cut out and examine individually. In Problem 3, students can group the triangles together that are identical copies of one another.

\section*{and Visualization} -

Math Language Development
MLR2: Collect and Display
During the Connect, collect vocabulary and diagrams students use to describe the similarities and differences between the triangles.

\section*{English Learners}

Provide a graphic organizer for students to keep track of the different cases of side length and angle placement for the triangles.
}
(4) Featured Mathematician

\section*{Thales of Miletus}

Have students read about featured mathematician Thales of Miletus, a mathematician, astronomer and philosopher from Ancient Greece who used geometry to calculate the heights of pyramids and the distance of ships from the shore.

\section*{Activity 3 One Side and Two Angles}

Students examine a set of triangles given one side length and two angle measurements to determine whether any are identical copies, and how many unique triangles exist in the set.


\section*{1 Launch}

Provide access to geometry toolkits. Tell students this activity is similar to Activity 2; however, different types of measurements are given here.

\section*{(2) Monitor}

Help students get started by having them trace Triangle A to determine whether any other triangles are identical copies of Triangle A.

Look for points of confusion:
- Saying there are only two unique triangles. Prompt students to notice where the \(80^{\circ}\) angle is located in comparison to the side length of 6 on the smaller triangles.
(3) Connect

Display the set of triangles.
Have students share their responses to Problems 1-3, the strategies they used, and their thinking.

Highlight there are three unique triangles in the set. In each set, the known side is either (1) between the two known angles, as in Triangles A, C, D, and G, (2) across from the \(40^{\circ}\) angle, as in Triangles E and H, or (3) across from the \(80^{\circ}\) angle, as in Triangles B and F.

\section*{Ask:}
- "What differences do you see between the triangles in Activities 2 and 3?" The given measures in Activity 3 were for two angles and one side. In Activity 2 , they were for two sides and one angle.
- "What similarities do you see?" Three measures are known for each triangle in each activity, a combination of side lengths and angle measures.

\section*{Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization}

Provide copies of Triangles A-H for students to cut out and examine individually. In Problem 3, students can group the triangles together that are identical copies of one another.

\section*{Extension: Math Enrichment}

Have students draw other sets of triangles with the same two angle measurements and the same side length. Ask, "Which ones are always identical copies?" Have students make a conjecture about what they discovered. Alternatively, have students measure the third angle in all the triangles and ask them what they notice.

\section*{Math Language Development}

\section*{MLR3: Critique, Correct, Clarify}

During the Connect, display two triangles that are not identical copies and an incorrect statement, such as "Triangles A and F are identical copies because they have the same measures shown." Ask:
- Critique: "Do you agree or disagree with this statement? Why?" Sample response: I disagree. The measures are not always shown in the same location. The side labeled 6 is between the two angles in Triangle A, but not between the two angles in Triangle F. Listen for understanding of the term between and clarify, as needed.
- Correct and Clarify: "Write a corrected statement that is now true. How do you know that the statement is now true?"

\section*{Summary}

Review and synthesize how triangles with the same three measurements may still not be identical copies. The order of the measures helps determine whether they are identical.

\section*{Summary}

\section*{In today's lesson.}

You examined sets of triangles with common side lengths or angle measures to determine if any triangles were identical copies of other triangles in the set. To know whether triangles are identical copies of one another, a minimum of three equal measures of corresponding parts are needed. However, it cannot be just any three measures.
If you create two triangles with three equal measures, but these measures are not next to each other in the same order, it usually means the triangles are different. For example, the two triangles shown are not identical, even though they have three measures in common. The \(32^{\circ}\) angle and the side length of 5 are corresponding parts between the two triangles, but the side length of 6 is not in the same relative position for the two triangles


\section*{Exit Ticket}

Students demonstrate their understanding by analyzing two triangles to determine whether they are identical copies.


\section*{Professional Learning}

\section*{Success looks like ...}
- Language Goal: Describing, comparing, and contrasting triangles that share three common measures of angles or sides. (Speaking and Listening, Writing)
» Explaining how to make a different triangle with the same three common measures in Problem 2.
- Language Goal: Justifying (using multiple representations) whether triangles are identical copies (unique) or are different triangles. (Speaking and Listening, Writing)
» Explaining why Andre's and Noah's triangles are identical in Problem 1.
- Language Goal: Recognizing that examining which side lengths and angle measures are adjacent can help determine whether triangles are identical copies. (Speaking and Listening, Reading and Writing)
» Comparing side lengths and angles of Andre's and Noah's triangles to determine whether the triangles are identical in Problem 1.

\section*{- Suggested next steps}

\section*{If students complete Problem 1 incorrectly,} consider:
- Reviewing that the term identical copies means the triangles are the same shape and size, but do not have to be in the same location or have the same orientation.
- Using tracing paper to trace one triangle, and then overlaying it on top of the other triangle to see how they match up.
- Assigning Practice Problem 1.

If students complete Problem 2 incorrectly, consider:
- Assigning Practice Problems 2 and 3.
- Providing additional support during Lesson 11.

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

0 Points to Ponder . . .
- What worked and didn't work today? In what ways have your students gotten better at making conjectures and justifying their conclusions?
- This lesson asked students to notice when conditions determine a unique triangle or more than one triangle. Where in your students' work today did you see or hear evidence of them doing this? What might you change for the next time you teach this lesson?

(C) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.


\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Drawing Triangles (Part 1)}

Let's see how many different triangles we can draw with certain measurements.


\section*{Focus}

\section*{Goals}
1. Language Goal: Draw triangles with two given angle measures and one side length, and describe how many different triangles could be drawn with the given conditions. (Speaking and Listening)
2. Language Goal: Use drawings to justify whether two given angle measures and one side length determine one unique triangle. (Writing)

\section*{Coherence}

\section*{- Today}

Students draw their own triangles given certain measurements for two given angles and a side length. They gain experience using various tools drawing triangles with given conditions to help them understand that sometimes there is only one possible triangle, more than one triangle, or no triangle. Students must attend to the structure of each triangle to ensure uniqueness.

\section*{< Previously}

In Lesson 10, students were given sets of triangles and noticed they shared angle and side measures, and that sometimes there was more than one unique triangle which met the same conditions.

\section*{> Coming Soon}

In Lesson 12, students will continue to draw their own triangles, but will focus on given conditions consisting of two side lengths and one angle measure.

\section*{Rigor}
- Students use a variety of tools to construct triangles with given characteristics to develop fluency.
- Students apply their understanding of triangle constructions to determine and justify if two triangles are copies or are unique.


Warm-up


Activity 1


Activity 2


Summary


Exit Ticket
( 10 min
\(\circ \circ\) ค Pairs
() 12 min

กำ Pairs
() 5 min
ํํํํํํํ Whole Class
(J) 7 min
\(\bigcirc\) Independent

\section*{Amps powered by desmos Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- geometry toolkits: tracing paper, protractors, rulers

Math Language
Development

\section*{Review words}
- compass
- corresponding

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students might lack the self-discipline to determine additional triangles after drawing one in Activity 2. Ask students to identify how the patterns they have observed in the structure of triangles can help them manage their progress, determining whether or not they can do more.

\section*{Amps : Featured Activity}

\section*{Activities 1 and 2 Digital Constructions}

Students create triangles with given conditions using digital edges and angles.


\section*{- Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- In Activity 2, have students work in groups of three. Each student should be responsible for one set in Problem 1, then they should share their findings with their group.

\section*{Warm-up Construct It}

Students create a triangle with given conditions and measure the unknown angles and side to determine whether the triangle is unique.


\section*{1) Launch}

Provide access to the geometry toolkits.

\section*{Monitor}

Help students get started by explaining or demonstrating how to draw a triangle with the given conditions.

\section*{Look for points of confusion:}
- Difficulty drawing an angle. Remind students, or demonstrate, how to draw one side first, create the angle, and then draw the other side.
- Labeling the angle incorrectly. Remind students that the vertex of the angle is the middle letter in the angle's name.
- Struggling to make the sides the correct length. After the angle is drawn, have students measure the appropriate lengths and place points at each end. If their line extends beyond, reassure them this is fine, as long they know where the sides are supposed to end.

\section*{Look for productive strategies:}
- Drawing and measuring accurately. Note students who do this and have them support and help others.

\section*{3 Connect}

Display students' drawings.
Have pairs of students share whether or not their triangles were identical copies. Have them compare their triangles and measurements with the ones displayed.
Highlight that everyone should have drawn identical copies because the given conditions were in an arrangement that creates a unique triangle.
Ask, "Why do you think everyone drew an identical triangle?" The arrangement of the given conditions were such that only one triangle was possible.

Differentiated Support

\section*{Accessibility: Vary Demands to Optimize Challenge}

Provide students with the side length of 6 cm already drawn. Have them create the \(56^{\circ}\) angle and side length of 3 cm .

\section*{Extension: Math Enrichment}

After posing the Ask question in the Connect section, ask students whether they can draw other given conditions that might result in more than one triangle being possible.

\section*{Power-up}

\section*{To power up students' ability to draw a given angle} measurement, have students complete:

In order to construct an angle, first draw a line segment on your paper, then line up the center of your protractor with the endpoint of the line segment. Make a mark on your paper where the indicated angle measurement is, then use your ruler to connect it to the endpoint.

Use your ruler and protractor to construct a \(75^{\circ}\) angle. Answers may vary
Use: Before the Warm-up
Informed by: Performance on Lesson 10, Practice Problem 6.

\section*{Activity 1 Can You Draw It?}

Students reconstruct a triangle with given conditions to determine whether it is unique.

Amps Featured Activity
Digital Constructions

Activity 1 Can You Draw It?

Priya drew a triangle with two angles measuring \(75^{\circ}\) and \(45^{\circ}\), and one side measuring 5 cm .
1. Construct Priya's triangle.

Sample responses:

2. Compare your triangle with your partner's triangle. Are they identical copies? How do you know?
Answers may vary. Some pairs will have identical copies and some will not Students can check if their triangles are identical by tracing one triangle men overlaying it on top of the triangle to compare them.
3. To make sure everyone in your class has an identical copy of Priya's triangle, what should the directions have been?
Sample responses:
- Priya drew a triangle with two angles measuring \(75^{\circ}\) and \(45^{\circ}\), and the side between these angles measuring 5 cm . Construct Priya's triangle.
Priya drew a triangle with two angles measuring \(75^{\circ}\) and \(45^{\circ}\), and the sid across from the \(45^{\circ}\) angle measuring 5 cm . Construct Priya's triangle
- Priya drew a triangle with two angles measuring \(75^{\circ}\) and \(45^{\circ}\), and the side across from the \(75^{\circ}\) angle measuring 5 cm . Construct Priya's triangle.
1) Launch

Let students know that although they are working in pairs, each of them should draw their own triangles with supplies from their geometry toolkits.
(2) Monitor

Help students get started by having them draw the 5 cm side just above the directions for Problem 2 to provide room for the rest of their triangle.

\section*{Look for points of confusion:}
- Difficulty drawing a triangle. Have them start by drawing the 5 cm side first, followed by the \(75^{\circ}\) angle.
- Drawing a triangle that does not fit on the page. Tell students it is okay if their triangle covers part of the directions. Provide a separate sheet of paper if needed.

\section*{3 Connect}

Ask, "Did anybody draw a triangle identical to the one drawn by their partner?"
Display students' triangles. Have the three sample responses available in case one of these was not drawn.

Have students share what they notice about the different triangles.

Highlight there are three possible triangles given these conditions. However, if triangles have the same arrangement of these conditions, they will be identical. Use tracing paper to quickly show the identical copies. Review Problem 3, referencing students' triangles or the sample triangles shown in the answer key noted on the Student Edition page here.

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can create triangles with given conditions using an interactive tool.

\section*{Accessibility: Vary Demands to Optimize Challenge}

Consider one of these alternative approaches to this activity:
- Demonstrating how to construct a possible triangle for Problem 1. Having students describe how to construct other possible triangles.
- Providing copies of triangles that may or may not meet the given conditions. Have students measure sides and angles to determine which triangles meet the given conditions.

\section*{Math Language Development}

\section*{MLR8: Discussion Supports}

Before students complete Problem 3, use the Think-Pair-Share routine to encourage them to discuss with their partner what the directions might be for creating identical triangles. Based on their discussions, have students record the directions for creating identical triangles.

\section*{English Learners}

Provide sentence frames, such as:
- "I noticed __, sol..."
- "This triangle is/is not identical because...

\section*{Activity 2 How Many Can You Draw?}

Students draw triangles given certain conditions to determine whether they are unique.


\section*{1 Launch}

Provide access to the geometry toolkits.

\section*{2 Monitor}

Help students get started by helping them draw the \(60^{\circ}\) angle first.

\section*{Look for points of confusion:}
- Thinking the criteria in Set A produces different triangles because this same arrangement produced a different triangle in Lesson 10, Activity 3. Have students try to draw a different triangle given these conditions. This is a special case, because it is an equilateral triangle.
- Confusing which of their drawings belongs to which set of measurements. Have students draw Set B on the front of a sheet of paper and Set C on the back.
- Saying the conditions in set \(C\) produce a unique triangle. They may assume the known side length is between the two angles. Remind them of Priya's triangle from Activity 1.

\section*{3 Connect}

Have students share their drawings and reasoning about the uniqueness of each problem. Discuss strategies students used to think about other triangles that might fit the conditions.

\section*{Ask:}
- "Which conditions produced a unique triangle? Why?" Set A because it is an equilateral triangle.
- "Which conditions produced more than one triangle?" Set C
- "Which conditions did not produce a triangle? Why?" Set B; because the two sides are parallel and will never intersect

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can create triangles with given conditions using an interactive tool.

\section*{Accessibility: Vary Demands to Optimize Challenge}

Consider one of these alternative approaches to this activity:
- Demonstrating how to draw the triangles for each set.
- Providing copies of triangles for each set. Have students determine which triangles meet the given conditions.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, ask students to consider what is the same and what is different about the conditions given in each set and connect this information to whether each set produced a unique triangle, more than one triangle, or no triangle.

\section*{English Learners}

Encourage students to use their drawings and/or hand gestures to illustrate whether the conditions in each set produced a unique triangle. Connect the term unique to "one triangle."

\section*{Summary}

Review and synthesize why the number of unique triangles that can be formed given two angle measurements and one side length depends on the arrangement of the given conditions.

\section*{Summary}

\section*{In today's lesson. .}

You explored how many different triangles you could draw, given ertain measurements.

Sometimes, you are given the measures of two different angles and a side length, and it is impossible to draw a triangle. For example, it is impossible to draw a triangle with two angle measures of \(100^{\circ}\) and \(90^{\circ}\), and a side length of 2 cm .
Sometimes, you are given the measures of two different angles and a side length, and you can draw multiple triangles. For example, there are three triangles with two angle measures of \(45^{\circ}\) and \(30^{\circ}\), and a side length of 2 cm .


Sometimes, you are given two different angle measures and a side length, and you can draw a unique triangle. You need to know where the side length is located (either between the known angles or across from one of the two known angles) to draw the unique triangle. For example, there is only one unique triangle that can be drawn with two angle measures of \(45^{\circ}\) and \(30^{\circ}\), and a side length of 2 cm across from the \(30^{\circ}\) angle.

\section*{Synthesize}

Have students share a set of conditions of two angle measurements and one side length which will produce one unique triangle, many triangles, and no triangle.

Highlight the strategies students use to draw their triangles. Demonstrate the strategy of drawing the side length and one angle, and then using the ruler and protractor to construct the other angle at the other end of the known line segment.


\section*{Ask:}
- "If given a side length and two angle measures, what are the possible outcomes for the number of triangles?" One unique triangle, many triangles, or no triangle.
- "If you are given a side length and two angles, what would you do to make different triangles?" For one triangle, draw the two angles on either end of the line segment. For another triangle, draw a known angle across from the known side length. For the third triangle, draw the known side length across from the other known angle.

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What did you find most challenging in constructing triangles? How did you overcome these challenges?"
- "Which tools or strategies did you find most useful when constructing your triangles?"

\section*{Exit Ticket}

Students demonstrate their understanding by drawing a triangle with two given angle measurements and one side length, and then determining whether it is unique.


\section*{Success looks like ...}
- Language Goal: Drawing triangles with two given angle measures and one side length, and describing how many different triangles could be drawn with the given conditions.

\section*{(Speaking and Listening)}
» Explaining whether two different triangles could be drawn with two \(45^{\circ}\) angles and a side length of 8 cm in Problem 2.
- Language Goal: Using drawings to justify whether two given angle measures and one side length determine one unique triangle. (Writing)

\section*{Suggested next steps}

If students were unable to draw a triangle in Problem 1, consider:
- Reviewing how to use a protractor and draw a triangle.
- Assigning Practice Problem 2.

If students were unable to determine whether the triangle was unique in Problem 2, consider:
- Reviewing the conditions resulting in a unique triangle.
- Assigning Practice Problem 1.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\(\bigcirc\) Points to Ponder ...
What worked and didn't work today? What did you see in the way some students approached constructing triangles that you would like other students to try?
- Did anything unexpected happen during Activity 2? What might you change for the next time you teach this lesson?


O Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Drawing Triangles (Part 2)}

\author{
Let's draw some more triangles.
}


\section*{Focus}

\section*{Goals}
1. Language Goal: Draw triangles with three given angles and triangles with two given side lengths and one angle measure, and describe how many different triangles could be drawn with the given conditions. (Speaking and Listening)
2. Language Goal: Use drawings to justify whether two given side lengths and one angle measure can determine one unique triangle. (Writing)

\section*{Coherence}

\section*{- Today}

Students draw their own triangles given measurements of one given angle and two side lengths, or three angles. They gain experience using various tools (i.e., compass and protractor) when drawing triangles with given conditions to help them see that sometimes there is only one possible triangle, more than one triangle, or no triangle. Students must pay attention to the structure of each triangle to ensure uniqueness.

\section*{\(\checkmark\) Previously}

In Lesson 11, students drew triangles given two angle measures and one side length to determine if the conditions resulted in one unique triangle, many triangles, or no triangles.

\section*{Coming Soon}

In Lesson 13, students will determine the shape of a cross section of a sliced prism. In later lessons, students will find the volume and surface area of right prisms.

\section*{Rigor}
- Students apply their understanding of triangle constructions to determine the number of unique triangles that can be formed given certain conditions.


Warm-up


Activity 1


Activity 2


Summary


Exit Ticket
\begin{tabular}{|c|c|c|c|c|}
\hline (d) 7 min & (J) 12 min & (J) 15 min & (J) 5 min & (J) 7 min \\
\hline \(\bigcirc \bigcirc \bigcirc\) & \(\bigcirc \bigcirc \bigcirc\) & \(\bigcirc \bigcirc \bigcirc 冂(\) Pairs & คํํํํํํ Whole Class & \(\bigcirc\) ○ Independent \\
\hline
\end{tabular}

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 2 PDF (as needed)
- geometry toolkits: compasses, tracing paper, protractors, rulers

\section*{Amps Featured Activity}

\section*{Activity 2 \\ Digital Constructions}

As students construct triangles with specific conditions, this digital tool allows them to shorten the time between their first, subsequent, and final drafts.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students might lack the self-discipline to determine additional triangles after drawing one in Activity 2. Have students describe how the tools they have can help them determine whether or not other triangles can be drawn or if they have found them all.

\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- Omit the Warm-up. Instead, demonstrate how to set the compass to a specific length during the Activity 1 Launch.
- In Activity 2, assign each pair of students two of the four sets. Be careful to ensure all sets are being completed for the whole-class discussion.

\section*{Warm-up Using a Compass to Estimate Length}

Students draw an angle using a compass to realize a compass can be used for more than drawing a circle, such as drawing equivalent side lengths.


\section*{1 Launch}

Provide access to the geometry toolkits. Activate students' prior knowledge by asking, "How did you use your compass to show distance in Activity 1 from Lesson 9?"

\section*{2 Monitor}

Help students get started by reminding them how to draw a \(40^{\circ}\) angle.
Look for points of confusion:
- Using a ruler to draw the side lengths of 5 cm . Tell them to mark the side lengths after they draw an arc with the compass.
- Struggling to use the compass to measure length. Have them read the directions carefully to determine where to place the compass. Some may need to draw the entire circle.

\section*{3 Connect}

Have students share their diagrams and responses to Problems 3 and 4.

Highlight that compasses can be used for transferring lengths (i.e., making sure that lengths are drawn to be the same measure), not just drawing circles. If students do not mention how to use a compass to estimate the length of the third side, demonstrate this process.

\section*{Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization, Vary Demands to Optimize Challenge}

Provide copies of a \(40^{\circ}\) angle with side lengths greater than 5 cm for students to use, instead of drawing their own angle for Problem 1. Have them begin with the compass directions in Problem 2.

\section*{(7) Power-up}

To power up students' ability to construct a circle for a given radius or diameter, have students complete:
Recall that the radius of a circle is the distance from its center to a point on a circle. The diameter of a circle is the distance across a circle through its center. Use your ruler and compass to construct each circle.
1. Radius: 3 cm
2. Diameter: 4 cm


Use: Before the Warm-up.
Informed by: Performance on Lesson 11, Practice Problem 6.

\section*{Activity 1 Can You Draw It?}

Students draw a triangle given two side lengths and an obtuse angle measure to determine if these conditions result in one unique triangle.


\section*{1. Launch}

Provide access to the geometry toolkits. Let students know this activity is similar to Lesson 11, Activity 1.
(2) Monitor

Help students get started by drawing the \(100^{\circ}\) angle first, and then draw the side lengths of 3 cm and 4 cm . Ask them if there is another arrangement of the sides.

\section*{Look for points of confusion:}
- Drawing different orientations of the same triangle and thinking this means the triangles are not unique. Have students trace one triangle on tracing paper and see how it compares to the other. If it matches, then the triangles are identical copies and not unique.
- Attempting to draw a triangle with the \(3-\mathrm{cm}\) side across from the \(\mathbf{1 0 0}^{\circ}\) angle. Have them use their drawing to help respond to the Are you ready for more? problem.
- Drawing a triangle that does not fit on the page. Tell students their triangle may cover part of the directions.

\section*{3 Connect}

Ask, "Did anybody draw a triangle identical to the one drawn by their partner?"

Display students' triangles. Have the two sample responses available in case one of these was not drawn.

Highlight there are two possible triangles given these conditions. If triangles have the same arrangement of the conditions, they will be identical. Use tracing paper to show the identical copies. Review Problem 3, referencing students' triangles or the sample triangles shown in the answer key of the Student Edition page here.

\section*{Accessibility: Guide Processing and Visualization}

Provide students with a partially-drawn triangle and have them complete it, making sure the conditions of Elena's triangle are met.

\section*{Extension: Math Enrichment}

If students complete the Are you ready for more? problem, mention that in their future studies of geometry, they will learn that the longest side of a triangle is always across from the largest angle, and vice versa. Ask students to explain why this makes sense. Sample response: The largest angle will need to have the side opposite it long enough to meet at both endpoints of the angle's rays.

\section*{Math Language Development}

\section*{MLR5: Co-craft Questions}

During the Launch, display the introductory text about Elena's triangle. Have students work with their partner to write 2-3 mathematical questions they may have about the triangle Elena drew.
Sample questions could be:
- "How many triangles fit this criteria?"
- "Is the \(100^{\circ}\) angle between the two given sides?"

\section*{English Learners}

Model for students 1-2 mathematical questions that could be asked about this situation. Then ask them to revise one of your questions and create one of their own.

\section*{Activity 2 How Many Can You Draw?}

Students draw triangles for given conditions to determine whether there is one unique triangle, many triangles, or no triangle.

\section*{Amps Featured Activity} Digital Constructions

Date: Period:
Activity 2 How Many Can You Draw?
1. Draw as many different triangles as you can that satisfy each set of criteria. Sample responses are shown.
a Set A: One angle measures \(50^{\circ}\), one measures \(60^{\circ}\), and one measures \(70^{\circ}\)

b Set B: One angle measures \(50^{\circ}\), one measures \(60^{\circ}\), and one measures \(100^{\circ}\)


\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can create triangles with given conditions using an interactive tool.

\section*{Accessibility}

Have students try to build just one triangle for each set of conditions. Provide them with a copy of the Activity 2 PDF that they can use as a guide for the criteria in Set C .

\section*{Extension: Math Enrichment}

Have students make conjectures about what type of conditions will result in one unique triangle, many triangles, or no triangle. Have them refer to Lessons 10 and 11 for more examples for them to study.

\section*{Math Language Development}

\section*{MLR1: Stronger and Clearer Each Time}

Before the Connect, have students share their responses for Problem 2 with another pair of students to give and receive feedback. Display these prompts that reviewers can use to press for details.
- "How do you know that this set produces scaled copies/many triangles/a unique triangle/no triangle?"
- "Could you explain how you know that \(\qquad\) ?"

\section*{English Learners}

Provide students with a word bank or create an anchor chart with mathematical vocabulary needed to reason about the number of triangles, such as scaled copies, unique, identical, etc.

\section*{Activity 2 How Many Can You Draw? (continued)}

Students draw triangles given conditions to determine whether there is one unique triangle, many triangles, or no triangle.

Activity 2 How Many Can You Draw? (continued)
C Set C: One angle measures \(40^{\circ}\), one side measures 4 cm , and one side
measures 5 cm .

d Set D: Two sides measure 6 cm and one angle measures \(100^{\circ}\).

2. Which sets of measurements determine one unique triangle? Explain your thinking.
Set A produces scaled copies of the triangles, but they are not unique.
Set \(B\) does not produce a triangle.
Set C produces many triangles; however, all the triangles with the \(40^{\circ}\) angle placed between the \(4-\mathrm{cm}\) and \(5-\mathrm{cm}\) sides will be identical. Set \(D\) only produces a triangle if the \(100^{\circ}\) angle is between the \(6-\mathrm{cm}\) sides; it is a unique triangle.

\section*{(3) Connect}

Display students' triangles for each set of conditions.
Have a few students share how many triangles were possible for each set of conditions. Have them share how they knew when one unique triangle, many triangles, or no triangles were possible.

\section*{Highlight:}
- Set A results in many triangles which are all scaled triangles of each other. Mention that corresponding angles have the same measure and corresponding side lengths are multiplied by a scale factor.
- It is impossible to create a triangle for Set B. Note: At this level, students do not need to know that the sum of all the interior angles of a triangle is \(180^{\circ}\).
- If not brought up in student explanations, point out that for Set C , one possible order for the measurements ( \(40^{\circ}, 5 \mathrm{~cm}, 4 \mathrm{~cm}\) ) can result in two different triangles. One way to show this is to draw a \(5-\mathrm{cm}\) segment. Then use a compass to draw a circle with a radius of 4 cm centered at one of the segment's endpoints. Draw a \(40^{\circ}\) angle on the segment's other endpoint to demonstrate that this ray will intersect the circle twice. Each intersection could be the third vertex of the triangle.
Note: Students do not need to learn the rules about the number of possible triangles given different sets of conditions.
- The measurements in Set D will only result in a triangle if the \(100^{\circ}\) angle is between the two \(6-\mathrm{cm}\) sides. Show an attempt with the \(100^{\circ}\) angle across from a 6 -cm side.

\section*{Ask:}
- "Did any set of conditions result in a unique triangle?" Set D
- "Which set of conditions could not be drawn?" Set B
- "Why can more than one triangle be made for the conditions in Set A?" There were no side lengths, so the triangles can be made as scaled copies with shorter or longer sides.

\section*{Summary}

\section*{Review and synthesize how knowing given conditions of a triangle will help determine whether one unique triangle, many triangles, or no triangle can be drawn to meet those conditions.}


\section*{Synthesize}

Display different sets of conditions and drawn triangles from the activities of this lesson.

Highlight that a triangle has six measures (three angle measurements and three side lengths). A minimum of three measurements are needed to determine whether there is only one triangle, many triangles, or no possible triangle. It is important to note what types of measurements they are, but also their order, such as the location of the measurements in reference to the other measurements (i.e., adjacent or across).

\section*{Ask}
- "How was a compass useful in today's activities?" It helps find the points a certain distance away
- "What strategies did you use to include two given side lengths and a given angle?" Draw one of the side lengths, use a protractor to draw the angle at one end, and use a compass to finish the triangle by drawing the other side length.
- "What strategies did you use to include three given angles?" Draw one angle and then use a protractor and ruler to slide along one side of the first angle.


\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "Given certain segments and angles, how many unique triangles can be made?"

\section*{Exit Ticket}

Students demonstrate their understanding by explaining how to complete a triangle with given conditions and determining whether there is another possible triangle that can be drawn.

\section*{畕 Printable}


Exit Ticket ¢

Noah is trying to draw a triangle with a \(30^{\circ}\) angle and side lengths of 4 cm and \(\mathbf{~ c m}\).
- He uses his ruler to draw a 4 cm line segment.

He uses his protractor to draw a \(\mathbf{3 0}\) angle on one end of the line segment.
1. What should Noah do next? Explain and show how he can finish drawing the triangle.
Noah should mark off a point on the other side of the
 \(30^{\circ}\) angle so that this side measures 6 cm . Then he should connect the endpoints to create a triangle.
2. Is there a different triangle Noah could draw that would satisfy the given criteria? Explain your thinking
Yes; Sample response: Noah could draw a \(6-\mathrm{cm}\) side from the left endpoint of the \(4-\mathrm{cm}\) side, making sure this new segmen intersects the other ray


\section*{Success looks like...}
- Language Goal: Drawing triangles with three given anglesand triangles with two given side lengths and one angle measure and describing how many different triangles could be drawn with the given conditions.

\section*{(Speaking and Listening)}
» Explaining whether Noah could draw a different triangle with a \(30^{\circ}\) angle and side lengths of 4 cm and 6 cm in Problem 2.
- Language Goal: Using drawings to justify whether two given side lengths and one angle measure can determine one unique triangle. (Writing)
» Drawing a different triangle with a \(30^{\circ}\) angle and side lengths of 4 cm and 6 cm in Problem 2.

\section*{- Suggested next steps}

If students cannot think of a possible different triangle that Noah could draw in Problem 2, consider:
- Checking to see whether they drew the triangle instead of explaining how to draw it.
- Assigning Practice Problem 2.

If students could not think of the second possible triangle, consider:
- Assigning Practice Problems 1 and 3.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

\section*{Co. Points to Ponder . .}

What worked and didn't work today? Which groups of students did and didn't have their ideas seen and heard today?
What resources did students use as they worked through Activity 2? Which resources were especially helpful? What might you change for the next time you teach this lesson?

\begin{tabular}{|lclc|}
\hline Practice Problem Analysis \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 2 & 2 \\
\hline Spiral & \(\mathbf{2}\) & Activity 1 & 1 \\
\hline Formative 0 & \(\mathbf{3}\) & Activity 2 & 2 \\
\hline & \(\mathbf{4}\) & \begin{tabular}{l} 
Unit 7 \\
Lesson 3 \\
Unit 5
\end{tabular} & 2 \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.


\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

In this Sub-Unit, students slice, dice, unfold, wrap, and fill three-dimensional figures to discover relationships between their sizes and shapes.


This machine will slice, but will it dice?

Thankfully, no. At least not in the case of our internal organs.

In years past, the only way to see inside of our bodies was to cut them open. Though surgeries have been performed for thousands of years, it was a fairly violent affair. Anaesthesia was developed in the late 1800s to reduce the pain, but infection and death occurred regularly.

In 1972, Godfrey Hounsfield built a machine capable of slicing the human body into cross sections, except these slices were images. The body didn't have to be cut open to see inside. This process is called a computed tomography scan, or CT scan. It works by taking a series of images of very thin slices of the body. The images are then reassembled next to each other, giving doctors a threedimensional view of what's inside.

Today, CT scans are used to find everything from tiny fractures to brain tumors, all while keeping our insides intact.
The usefulness of cross sections doesn't end with medical technology, though. We can use these two-dimensional slices to find volumes of three-dimensional figures beyond the rectangular prisms you already know.

\section*{Slicing Solids}

Let's see what shapes you get when you slice a three-dimensional solid.


\section*{Goals}
1. Language Goal: Categorize images of planes intersecting pyramids and prisms and describe the categories. (Speaking and Listening)
2. Language Goal: Comprehend that the term cross section refers to the two-dimensional face that results from slicing a threedimensional figure. (Speaking and Listening, Writing)
3. Language Goal: Describe, compare, and contrast different cross sections that could result from slicing the same pyramid or prism. (Speaking and Listening, Writing)

\section*{Coherence}

\section*{- Today}

This lesson introduces the idea that slicing a three-dimensional solid with a plane results in a two-dimensional cross section. Given twodimensional representations of how solids are sliced, students practice visualizing the three-dimensional solids and the resulting cross sections.

\section*{< Previously}

In Grade 6, students learned to find the volume of right rectangular prisms with fractional side lengths. They also learned to represent three-dimensional figures using nets.

\section*{> Coming Soon}

In the next lesson, students will generalize a formula for the volume of a prism. They will build on the ideas of taking slices identical to the base and stacking them to fill the prism.


Warm-up

\section*{Activity 1}

Activity 3 (optional)


Summary

Exit Ticket
(1) 10 min
\(\cap \circ\) Pairs
(1) 5 min

○ Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice}


\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 2 PDF, pre-cut cards, one set per pair

\section*{Math Language \\ Development}

\section*{New word}
- cross section

\section*{Review words}
- base (of a prism or pyramid)
- prism
- pyramid

\section*{Amps ! Featured Activity}

\section*{Activity 1 \\ Interactive Cross Sections}

Students are able to manipulate a twodimensional plane in three dimensions to see highlighted cross sections where the plane intersects the solid.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

In Activity 2, students might think that they have found the only way to sort the cards. Explain that there are many ways to sort the cards. They should rely on their own strengths, being prepared to explain their reasoning while accepting and appreciating the valid reasoning of others.

\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- The Warm-up may be omitted.
- Optional Activity 3 may be omitted.

\section*{Warm-up Prisms and Pyramids}

Students review the characteristics of prisms and pyramids, preparing them for the upcoming activities.


\section*{1 Launch}

Ask students, "What do you see? Describe each figure and its parts as precisely as you can."

\section*{(2) Monitor}

Help students get started by having them describe aloud something they notice about the first figure.

Look for points of confusion:
- Not being sure how to interpret the dashed lines. Have students focus on a corner in the foreground (where three solid lines meet).
- Thinking that a prism must have its base on the bottom. Ask the students if they can find two identical, parallel bases.

\section*{Look for productive strategies:}
- Using vocabulary that will be important throughout the lesson, such as prism, face, and pyramid.
- Identifying the first and third figures as prisms.
(3) Connect

Have students share their descriptions of each figure. Record and display their responses for all to see.

Define a prism as a three-dimensional figure with two identical polygonal bases, connected by rectangles. A pyramid is a three-dimensional figure with one polygonal base, and all other faces are triangles which meet at a single point. A plane is a flat two-dimensional surface, similar to a piece of paper, that students will use in the upcoming activities to slice through solids.

Highlight that students will be thinking about what happens when they slice threedimensional solids, the different ways those solids can be sliced, and the shapes of the cross sections created by those slices.

Differentiated Support
Accessibility: Guide Processing and Visualization, Vary Demands to Optimize Challenge

Provide students with a word bank of attributes they can choose from to describe each figure, such as the following.
\begin{tabular}{|c|c:c|c}
\begin{tabular}{c} 
Shape of \\
the base
\end{tabular} & \begin{tabular}{c} 
Shape of each \\
face
\end{tabular} & Number of faces & \begin{tabular}{c} 
Are the faces \\
identical?
\end{tabular} \\
\hline \begin{tabular}{c:c} 
Are the faces \\
parallel?
\end{tabular} & Is this a prism?
\end{tabular}

\section*{(7) Power-up}

To power up students' ability to identify faces of threedimensional figures, have students complete:
1. How many faces does the figure have? 6
2. Identify the polygons that make up the faces of the figure. One pentagon and 5 triangles.

Use: Before the Warm-up.
Informed by: Performance on Lesson 12, Practice Problem 6

\section*{Activity 1 What Is the Cross Section?}

Students view a demonstration of slicing a solid to help them visualize two-dimensional cross sections of three-dimensional solids.


Amps Featured Activity Interactive Cross Sections
\(\qquad\)
Activity 1 What is the Cross Section?

Here is a rectangular prism and a pyramid with the same base and same height. Watch the animation to see what happens as the plane moves through the solids.

1. If you slice each solid parallel to its base halfway up, what shape of cross section would you get for each? What would be the same about the cross sections? What would be different?
Sample response: The cross section of the rectangular prism would be a rectangle, exactly the same size and shape as the base. The cross section of the pyramid would also be a rectangle, but smaller than the cross section of the rectangular prism. The cross sections would be both the same shape, but the slicing the pyramid causes the size of the rectangle to decrease the further the slice is away from the base.

2. If you slice each solid parallel to its base near the top, what shape of cross section would you get for each? What would be the same about the cross sections? What would be different?
Sample response: The cross section of the rectangular prism would still be a rectangle, exactly the same size and shape as the base. The smaller than the cross section of the rectangular prism. The cross sections would still be both the same shape, but slicing the pyramid causes the size of the rectangle to decrease the further the slice is away from the base.


\section*{1 Launch}

Use the digital tool to demonstrate a plane slicing through a rectangular prism and pyramid. Say, "When you slice a threedimensional solid, you expose new faces that are two-dimensional. Each two-dimensional face is called a cross section."

\section*{2 Monitor}

Help students get started by leaving the digital tool visible and showing the plane passing through the three-dimensional figures halfway.

\section*{Look for points of confusion:}
- Not understanding what parallel means for planes. Have students simulate parallel planes with their hands.
- Thinking the cross section is a parallelogram. Remind students that they know the base is a rectangle, even though it looks slanted.

\section*{Look for productive strategies:}
- Noticing that the size of the pyramid's cross section is a scaled version of the base.

\section*{3 Connect}

Have students share their descriptions of the cross sections.

Ask, "How do the dimensions of each cross section change as the plane moves upward?" The cross section of the rectangular prism remains the same size, but the cross section of the pyramid gets smaller.

Highlight there are many ways to slice a threedimensional solid. In this activity, students only sliced horizontally. In the next activity, they will see what the cross sections look like when they slice vertically and diagonally.

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can manipulate a two-dimensional plane in three dimensions to see highlighted cross sections where the plane intersects the solid.

\section*{Accessibility: Optimize Access to Tools}

If you choose to not use the Amps slides for this activity, consider bringing in three-dimensional models of a rectangular prism and pyramid for students to physically examine.

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

During the Connect, as students share their descriptions and respond to the Ask question, listen for and amplify the mathematical language they use in their descriptions. Add these words and phrases, such as cross section, same size, gets smaller, slice, and parallel to the base to the class display.

\section*{English Learners}

Use gestures and pictures to illustrate the slice type and the shapes formed For example, hold your arm horizontal and demonstrate what it looks like to slice the solid parallel to its base.

\section*{Activity 2 Card Sort: Sorting Cross Sections}

Students visualize cross sections in a more abstract way by sorting images of three-dimensional solids sliced by a plane by the cross sections created by the slices.

Activity 2 Card Sort: Sorting Cross Sections

You will be given a set of cards. Sort the images into groups that make sense to you. Record your sorted groups in the table, along with an explanation of why those cards belong in the same group. You may or may not need all of the rows.
Sample responses shown.
\begin{tabular}{|c|c|c|}
\hline & Cards in this group & Explanation \\
\hline Group 1 & Cards E, F, G & Based on the solid object that is being sliced: rectangular prism \\
\hline Group 2 & Card H, I, J & Based on the solid object that is being sliced: triangular prism \\
\hline Group 3 & Card K, L, M & Based on the solid object that is being sliced: rectangular pyramid \\
\hline Group 4 & Cards A, B, C, D & Based on the solid object that is being sliced: triangular pyramid \\
\hline
\end{tabular}

Additional sample responses:
- Based on the cross section made by the slices:
parallel to the base (Cards D, G, I, M)
perpendicular to the base (Cards C, J, K)
oblique to the base (Cards A, B, E, F, H, L)
Based on the shape of the cross-section: Note: There could be two or
three groups.
riangles (Cards C, D, E, I, K)
quadrilaterals (Cards A, B, F, G, H, J, L, M)
Three Groups:
triangles (Cards C, D, E, I, K)
trapezoids (Cards B, F, H, I, L)

1 Launch
Distribute one set of cards from the Activity 2 PDF to each pair of students. Tell students that these cards have several qualities in common, so each pair of students might have different reasons for sorting the images. Conduct the Card Sort routine.
(2) Monitor

Help students get started by mentioning that they may want to make note of the shapes of each cross section first.

\section*{Look for points of confusion:}
- Struggling to identify the cross section. Remind students how the perspective can make a shape look different from different angles of viewing.

\section*{Look for productive strategies:}
- Sorting based on the solid being sliced.
- Sorting based on the direction of the slice (vertically, horizontally, diagonally).
- Sorting based on the shape of the cross section.
(3) Connect

Display a pair's set of cards that are organized by the shape of the cross section.

Highlight that there are multiple ways to obtain cross sections that are triangles. Note the more obvious ways (such as from a pyramid or triangular prism) and the less obvious (such as slicing a corner of a cube).

Ask, "What kind of slice creates a cross section that is identical to the base of that shape?" When you slice a prism parallel to its base, the cross section is identical to the base.

Differentiated Support

\section*{Accessibility: Vary Demands to Optimize Challenge}

If students need more processing time, have them focus on sorting Cards A-J. This will still allow them to access the mathematical goal of the activity.

\section*{Extension: Math Enrichment}

Have students compare the horizontal cross sections for the prisms related to the pyramids. Ask them why all horizontal cross sections of a prism will be the same size, regardless of how far up the prism the slice occurs. Then have them explain why this is not true for all horizontal cross sections of pyramids.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

After students have sorted the cards into groups, ask them to investigate each other's work by taking a tour of other group's sorting methods via a Gallery Tour routine. Facilitate discussion among students by asking questions, such as "What similarities or differences do you see in how other groups sorted the cards compared to how your group sorted the cards?"

\section*{English Learners}

Model using, and encourage students to use, arm gestures when talking about horizontal, vertical, and diagonal cross sections.

\section*{Activity 3 Drawing Cross Sections}

Students draw cross sections of various slices and use them to estimate the dimensions of the cross sections, given the dimensions of the three-dimensional solids.


\section*{1 Launch}

Set an expectation for the amount of time students have to work in pairs on the activity.

\section*{2 Monitor}

Help students get started by reminding them that they have seen a rectangular prism sliced horizontally in Activity 1.

Look for points of confusion:
- Not knowing which of the figure's dimensions are dimensions of the cross section. Have students shade the face of the prism that is parallel to the slice.

\section*{Look for productive strategies:}
- Drawing the cross sections first and then returning to consider the dimensions.

\section*{(3) Connect}

Have pairs of students share how they reasoned about the dimensions of their cross section.

Ask, "Why is it important to draw a cross section as if you were looking directly at it?" This is the true shape of the two-dimensional shape. The perspective is distorted when viewing it in the three-dimensional solid.

Highlight, "Sometimes a cross section can look just like the face of the shape, and other times it can look quite different. It's important to consider the direction of the slice and what type of three-dimensional solid is being sliced when visualizing what the cross section will look like."

\section*{Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge, Guide Processing and Visualization}

Consider providing pre-drawn cross sections that may or may not match each figure. Have students determine which cross section is correct for each figure.

\section*{Extension: Math Enrichment}

Have students complete the following problem:
For any given three-dimensional solid, what is the greatest number of sides you can have for a cross section of that solid? For any solid with \(n\) faces, the greatest number of sides for any of its cross sections is \(n\). For example, for a rectangular prism, the greatest number of sides for a cross section is 6 because a rectangular prism has 6 sides.

\section*{Summary}

Review and synthesize why slicing a three-dimensional solid with a plane results in a two-dimensional cross section.

\section*{Summary}

\section*{In today's lesson.}

You saw that when you slice a three-dimensional solid, you expose new faces that are two-dimensional. The two-dimensional face is called a cross section. For example, if you slice a rectangular pyramid parallel to the base, the cross section is a rectangle that is smaller than the base.
The two-dimensional surface used to slice the figure is called a plane.
Many different cross sections are possible when slicing the same
three-dimensional solid. It takes practice visualizing the cross sections of a three-dimensional solid for different slices.
\(>\) Reflect:

\section*{Synthesize}

Display the digital tool that allows you, or students, to manipulate the cross section of a rectangular prism with a square base.

Ask, "What are all the possible cross sections that can be made when slicing this rectangular prism?" triangle, square, rectangle, pentagon, hexagon

Have pairs of students share or draw all the different cross sections they think can be made.

Highlight that there are many possible cross sections when slicing a three-dimensional solid.

\section*{Formalize vocabulary:}
- cross section
- plane
(1) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What shapes can be seen when you slice through solid figures?"

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in Lesson 1. Ask them to review and reflect on any terms and phrases related to the terms cross section and plane that were added to the display during the lesson.

\section*{Exit Ticket}

Students demonstrate their understanding by describing cross sections that result from slicing a pentagonal pyramid.


\section*{Success looks like ...}
- Language Goal: Categorizing images of planes intersecting pyramids and prisms and describing the categories. (Speaking and Listening)
» Describing the cross sections of the pyramid in Problem 1.
- Language Goal: Comprehending that the term cross section refers to the twodimensional face that results from slicing a three-dimensional figure. (Speaking and Listening, Writing)
- Language Goal: Describing, comparing, and contrasting different cross sections that could result from slicing the same pyramid or prism. (Speaking and Listening, Writing)
» Describing a different cross section of the pyramid in Problem 2.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...
- What worked and didn't work today? Have you changed any ideas you used to have about cross sections as a result of today's lesson?
- What surprised you as your students worked through Activity 2? What might you change for the next time you teach this lesson?


a Last month, the price of the phone increased by \(10 \%\). Write an expression for the price of the phone last month
b This month, the price of the phone decreased by \(10 \%\). Write an expression for the price of the phone this month. 0.9(1.1c)
c Is the price of the phone th
ago? Explain your thinking.
ago? Explain your thinking. No; Sample response
did two months ago.
5. How many cubes are needed to build each three-dimensional figure? Explain your thinking.


The first tigure needs 7 cubes; Sample response: There are 5 on the bottom layer and a The second figure needs 12 cubes; Sample response: There are two layers of 6 cubes each.
6. Determine the height of a rectangular prism whose volume is 70 in. \({ }^{3}\),
width is \(3 \frac{1}{2}\) in. and length is \(6 \frac{1}{4}\) in. Show your thinking.
\(3 \frac{1}{5} \mathrm{in}\).; Sample response:
\(V=l w h\) and \(V=70, w=3 \frac{1}{2}\), and \(l=6 \frac{1}{4}\)
\(70=\left(3 \frac{1}{2}\right)\left(6 \frac{1}{4}\right) h\)
\(70 \div \frac{175}{8}=\frac{175}{8} h \div \frac{175}{8}\)
\(\frac{560}{175}{ }^{\circ}\) or \(3 \frac{1}{5}=h\)

Additional Practice Available


For students who need
additional practice in
this lesson, assign the
Grade 7 Additional
For students who nee
additional practice in
this lesson, assign the
Grade 7 Additional
For students who need
additional practice in
this lesson, assign the
Grade 7 Additional
For students who nee
additional practice in
this lesson, assign the
Grade 7 Additional Practice.
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\title{
Volume of Right Prisms
}

Let's look at volumes of prisms.


\section*{Focus}

\section*{Goals}
1. Determine the volume of a right prism by counting how many unit cubes it takes to build one layer, then multiplying by the number of layers.
2. Language Goal: Generalize the relationship between the volume of a prism, the area of its base, and its height. (Speaking and Listening)
3. Identify whether a given figure is a prism and, if so, identify its base and height.

\section*{Coherence}

\section*{- Today}

In this lesson, students learn that they can calculate the volume of any right prism by multiplying the area of the base by the height of the prism. Students make sense of the structure of this formula by visualizing the prism decomposed into identical layers, each layer being 1 unit tall.

\section*{< Previously}

In Grades 5 and 6, students calculated the volume of rectangular prisms. In Lesson 13, students were reacquainted with three-dimensional solids in the form of prisms and pyramids.

\section*{> Coming Soon}

Students will continue working with the volume of right prisms, adding cases where the area of the base is found by decomposing a polygon into triangles and rectangles.

\section*{Rigor}
- Students use snap cubes to create models to build their conceptual understanding of volume of right prisms.
- Students generalize the relationship between a prism's base area and its height to develop procedural fluency in calculating volume.


Activity 1


Activity 2


Summary


Exit Ticket
(1) 5
\(\circ\) ㅇํ Pairs
()
15 min
응 Small Groups
(1) 5 min
\(\bigcirc\) Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 1 PDF, pre-cut figure, one per group
- Activity 2 PDF, pre-cut and assembled, one set per pair
- Anchor Chart PDF, Solids
- Anchor Chart PDF, Solids (answers)
- rulers marked with centimeters
- snap cubes » 30-60 per group

\section*{Math Language Development}

\section*{Review words}
- base (of a prism or pyramid)
- cross section
- plane
- prism
- pyramid
- volume

\section*{Building Math Identity and Community Connecting to Mathematical Practices}

In Activity 1, students will use snap cubes to build a prism, layer by layer. They use the structure of the layers of the prism to determine a strategy for finding the volume for different numbers of layers. Some students will see this structure more readily than others; ask them to help explain the structure to their classmates who may not see the structure at first.

\section*{Amps : Featured Activity}

\section*{Activity 1 \\ Building Layers of a Prism}

Students use digital block manipulatives to build layers of a prism to better understand determining volume using slices.


\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In the Warm-up, have students only consider bases A and B .
- In Activity 2, provide students with choice by allowing them to complete the table for any 2 or 3 figures.

\section*{Warm-up Three Prisms With the Same Volume}

Students reason about the relationship between the area of the base of a prism and the prism's volume to activate knowledge from Grade 6 about the volume of a prism.


\section*{1) Launch}

Set an expectation for the amount of time students will have to work in pairs on the activity.

\section*{2 Monitor}

Help students get started by showing that each square in the base represents where a stack of cubes will be placed on top.

Look for points of confusion:
- Being unsure how to find the volume. Remind students that volume is the number of cubic units that occupy a three-dimensional figure. To find the volume, multiply the area of the base by the height.

\section*{Look for productive strategies:}
- Selecting common multiples of 3,4 , and 8 to test their reasoning for Problem 2.

\section*{3 Connect}

Display Rectangles A, B, and C.
Have students share the prism they found to have the greatest and least volume and the tallest and shortest height. Record and display their responses for all to see. Use the Poll the Class routine to determine whether students agree or disagree. If students all agree, ask a few students to share their reasoning. If some students do not agree, ask students to explain their reasoning until they reach an agreement.

Ask, "If each prism has the same volume and the prism associated with base \(B\) has a height of 6 units, what is the height of the prism associated with base C?" 3 units

Highlight that the area of the base of a prism directly affects the volume of the prism. For prisms with the same height, a prism with a greater base area will have a greater volume. For prisms with the same volume, a prism with a greater base area will be shorter.

\section*{Math Language Development}

\section*{MLR8: Discussion Supports}

During the Connect, when discussing how the area of the base of a prism directly affects the volume of a prism, consider providing students with manipulatives, such as two different rectangular prisms with the same height, but different base areas. Encourage students to discuss how changing the area of the base affects the volume of the rectangular prisms.

Power-up
To power up students' ability to determine the height of a rectangular prism given its volume, length, and width, have students complete:
Recall that the relationship between the volume of a rectangular prism and its dimension can be represented by \(V=B \cdot h\) or \(V=l \cdot w \cdot h\).
Determine the height of a rectangular prism whose volume is \(50 \mathrm{~cm}^{3}\), length is 10 cm , and width is 2.5 cm . Show your thinking.
\(2 \mathrm{~cm} ; V=l \cdot w \cdot h\) where \(V=50, l=10\), and \(w=2.5 .50=(10) \cdot(2.5) \cdot h\) or \(50=25 h\). \(50 \div 25=25 h \div 25\) or \(2=h\)
Use: Before the Warm-up.
Informed by: Performance on Lesson 13, Practice Problem 6 and Pre-Unit Readiness Assessment, Problems 6 and 7.

\section*{Activity 1 Determine Volume With Cubes}

Students use snap cubes to build a prism, helping them to generalize the formula for the volume of a prism.

\section*{Amps Featured Activity Building Layers of a Prism}

Activity 1 Determining Volume With Cubes

You will be given a sheet of paper with a figure on it and some snap cubes.
1. Using the face of a snap cube as your unit of area, what is the area of the figure? Explain or show your thinking.
The area of the figure is 27 square units, because that's how many cubes it takes to cover the area of the base.
2. Use snap cubes to build the figure. What is the volume of your figure? 27 cubic units
3. Add another layer of cubes to the top of the figure. Describe this new figure. This new three-dimensional figure is a prism. It is a concave hexagonal prism in an " L " shape.
\(>\) 4. What is the volume of your figure? Show or explain your thinking. The volume of this figure is 54 cubic units; \(27 \cdot 2=54\)
5. Right now, your figure has a height of 2 units. What would the volume be if it had a height of:
(a) 5 units
\(27 \cdot 5=135\); The volume would be 135 cubic units.
(b) 8.5 units
\(27 \cdot 8.5=229.5\); The volume would be 229.5 cubic units.
A. Are you ready for more?

Which three-dimensional figure has a greater volume? All of the cubes are the same size.


The volumes are equal because the number of cubes in each vertical layer is the same for both solids.

\section*{1. Launch}

Distribute the shapes from the Activity 1 PDF to each group. Tell students they will build a prism using snap cubes, so that the base of the prism is the same shape as the figure on the PDF.

\section*{(2) Monitor}

Help students get started by showing them how to make sure the cubes are tight to the corners and edges of the figure on the PDF.

\section*{Look for points of confusion:}
- Being unsure how to use the face of a cube as a unit. Ask, "Anything can be a unit if it is consistent. How many of the cube faces cover the shape?"

\section*{Look for productive strategies:}
- Using multiplication strategies to find the volume for different heights of the prism.

\section*{3 Connect}

Ask:
- "How do you know this figure is a prism?"
- "What is the area of the base of this prism?"
- "How do you calculate the total number of cubes to make the prism?"
- "If you find the area of the base, how do you use that information to calculate the volume of the prism?"
- "How would the volume of the prism change if the shape of the base changed, but you still used 27 cubes to build it?" The volume would not change.

Highlight that calculating the total number of cubes to make the prism is the same as calculating the volume of the prism. Students can find the area of the base of the prism and multiply that by the number of layers in the prism, i.e., the height of the prism.

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can use digital block manipulatives to build layers of a prism to better understand determining volume using slices.

\section*{Accessibility: Optimize Access to Tools}

If you choose not to use the Amps slides for this activity, consider providing pre-built figures, each with a different number of layers, using snap cubes and asking students to analyze the figures and the number of layers to determine the volume of each.

\section*{Math Language Development}

\section*{MLR1: Stronger and Clearer Each Time}

During the Connect, invite students to draft a response to the first Ask question, "How do you know this figure is a prism?" Have them meet with \(2-3\) partners to share and receive feedback on their responses. Display these prompts that reviewers can use to press for details.
- "Does the base have to be a rectangle to be a prism?"
- "What does each layer have to look like to be a prism?"

\section*{English Learners}

Allow students to write their draft response in their primary language Ask them to translate their final response to English.

\section*{Activity 2 Can You Determine the Volume?}

Students engage in a hands-on experience with three-dimensional figures, recognizing whether a figure is a prism and, if so, determining its base area and finding its volume.


\section*{1. Launch}

Distribute one pre-assembled figures from the Activity 2 PDF and a centimeter ruler to each pair of students.

\section*{2 Monitor}

Help students get started by asking them to explain the differences between prisms and pyramids.

\section*{Look for points of confusion:}
- Thinking that a cube is not a prism. Ask students whether the cross sections would be identical if they made various slices parallel to one side.

\section*{Look for productive strategies:}
- Looking for identical bases in the figures.
- Using the table to multiply the base area by the height to get the volume.

\section*{3 Connect}

Have students share their responses to each part of the table and ask 1 or 2 volunteers to explain how they arrived at their responses. Display the responses in the table for all to see.

\section*{Ask:}
- "What is different about the structure of nonprisms in comparison to prisms?"
- "Why can't you use the formula area of the base times the height to calculate the volume of the figures that are not prisms?"

Highlight that students have now found two ways to find the volume of a prism. If they can count the square units of the base, then they can multiply that amount by the height. If they can find the area of the base, then they can also multiply that by the height. Review the formula \(V=B h\), where \(V\) is the volume of the prism, \(B\) is the area of the prism's base, and \(h\) is the prism's height.

\section*{Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

Eliminate Figure D from the task and have students focus on Figures A, B, and C. You may also choose to provide the measurements for the area of the base and the height for Figures \(A\) and \(B\) to allow students to focus on calculating the volume, as opposed to measuring.

\section*{(112)}

\section*{Math Language Development}

\section*{MLR3: Critique, Correct, Clarify}

During the Connect and before students share, display an incorrect response such as, "Figure A is not a prism because it is a cube." Ask:
- Critique: "Do you agree or disagree with this statement? What must be true for a figure to be a prism?" Sample response: I disagree. A cube is a prism because it has two parallel bases and all of the other faces are rectangles. It just happens that in a cube, all of these faces are equal-sized squares.
- Correct: "Write a corrected statement that is now true." Sample response: Figure A is a prism because it is a cube, and all cubes are prisms.
- Clarify: "How did you correct the statement? How do you know that the statement is true?"

\section*{Summary}

Review and synthesize how to find the volume of a prism using slices.

\section*{Summary}

\section*{In today's lesson.}

You explored how to determine the volume of cubes and other prisms. Any cross section of a prism that is parallel to the base will be identical to the base. This means you can slice a prism by its layers to help determine its volume.
area of base \(=32\) square units


Reflect:

\section*{Synthesize}

Display the Anchor Chart PDF, Solids, and complete the Volume section as you facilitate a class discussion using the following questions.

\section*{Ask:}
- "How could you use layers or slices to find the volume of a prism?" If you look at the first layer of a prism, you can find how many cubes are in that layer by finding the area of the base. Once you find the number of cubes on the first layer, you multiply that by the number of layers it takes to stack up to the height of the prism.
- "Two prisms have the same base area and height, but different base shapes. Which prism has a greater volume? Explain." The two prisms have the same volume. The shape of the base does not matter if it is a prism, only the area of the base.

Have pairs of students share their responses to one of these questions with each other.

Highlight that any cross section of a prism that is parallel to the base will be identical to the base. This means students can think of slicing prisms to help find their volume. For example, if a rectangular prism has a height of 3 units, with a base measuring 4 units by 5 units, students can think of this as 3 layers, where each layer has \(4 \times 5\) cubic units.

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What process did you follow when creating your figure out of snap cubes? Do you think there was a more effective process?"
- "What characteristics did you look for when deciding whether a figure was a prism?"

\section*{Exit Ticket}

Students demonstrate their understanding by finding the volume of a trapezoidal prism.


\section*{Success looks like ...}
- Goal: Determining the volume of a right prism by counting how many unit cubes it takes to build one layer, then multiplying by the number of layers.
- Language Goal: Generalizing the relationship between the volume of a prism, the area of its base, and its height. (Speaking and Listening)
» Calculating the volume of the trapezoidal prism using the area of its base and the height in Problem 2.
- Identifying whether a given figure is a prism and, if so, identifying its base and height.

\section*{- Suggested next steps}

If students struggle to find the area of the base, consider:
- Having them count the unit squares.
- Partitioning the trapezoid into smaller shapes.

If students use the incorrect unit, consider:
- Having them think about what they are measuring. Say, "When measuring how many cubes fit in an object, use cubic units. When measuring how many unit squares cover an area, use square units."

\section*{If students struggle to find the height of the prism, consider:}
- Asking them to imagine how they would find the number of layers in a prism that had a certain base area, if they know the total number of cubes.

\section*{Professional Learning}

\section*{(5) Math Language Development}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

O Points to Ponder . .
- What worked and didn't work today? What routines enabled all students to do math in today's lesson?
- Which teacher actions made facilitating the students in generalizing the relationship between base area, height, and volume strong? What might you change for the next time you teach this lesson?

Language Goal: Generalizing the relationship between the volume of a prism, the area of its base, and its height.
Reflect on students' language development toward this goal.
- Are students able to describe two ways to determine the volume of a prism? What math language are they using in their descriptions? How can you help them be more precise in their descriptions?
- Reflect on the language routines used in this lesson? Were there any that were more helpful than others? Why? Would you change anything the next time you use these routines?
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Practice Problem Analysis} \\
\hline Tуре & Problem & Refer to & DOK \\
\hline \multirow{3}{*}{On-lesson} & 1 & Activity 1 & 2 \\
\hline & 2 & Activity 2 & 2 \\
\hline & 3 & Activity 2 & 2 \\
\hline \multirow[b]{2}{*}{Spiral} & 4 & Unit 7 Lesson 3 & 1 \\
\hline & 5 & Unit 6 Lesson 22 & 2 \\
\hline Formative 0 & 6 & Unit 7 Lesson 15 & 1 \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.


\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Decomposing Bases for Area}

\author{
Let's look at the bases of different solids.
}


\section*{Focus}

\section*{Goals}
1. Language Goal: Critique different methods for decomposing and calculating the area of a prism's base. (Speaking and Listening)
2. Language Goal: Explain how to decompose and calculate the area of a prism's base and then use it to calculate the prism's volume. (Speaking and Listening, Writing)

\section*{Coherence}

\section*{- Today}

Students continue working with the volume of right prisms. They encounter prisms where the base is composed of triangles and rectangles and decompose the base to calculate its area. They also work with solids, such as a heart-shaped box or house-shaped figures, where they have to identify the base in order to view the solid as a prism and calculate its volume. Students look for the prism structure in a shape to solve problems.

\section*{< Previously}

In Lesson 14, students learned that the volume of any right prism is found by multiplying the area of the base and the height of the prism.

\section*{>Coming Soon}

In future lessons, students will find the surface area for right prisms and draw conclusions of when surface area or volume is needed to solve a problem. In Lesson 17, students will revisit the heart-shaped box to find its surface area.

\section*{Rigor}
- Students strengthen their fluency in calculating the volume of right prisms.
- Students apply their understanding of area and volume to determine the volume of real-world objects.


Activity 1

\section*{\(\Delta\)}

Activity 2


Summary


Exit Ticket
\begin{tabular}{|c|c|}
\hline (J) 5 min & (1) 10 min \\
\hline \(\bigcirc \bigcirc \bigcirc \bigcirc\) & \(\bigcirc \bigcirc \bigcirc \bigcirc\) \\
\hline
\end{tabular}
( 1
15 min
ㅇํㅇ Pairs
(d) 10 min
\(\bigcirc\) 응́ndependent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 2 PDF (for display)
- Activity 2 PDF, Plans, one per student (as needed)
- Activity 2 PDF, Lin's Plan (for display)

\section*{Math Language \\ Development}

\section*{Review words}
- base (of a prism or pyramid)
- cross section
- plane
- prism
- pyramid
- volume

\section*{Building Math Identity and Community Connecting to Mathematical Practices}

Students might not make sense of problems by focusing on the shape which does not show a traditionally-curved heart in Activity 2. Have students control their impulse to get stuck on something that is not familiar and explore the purpose of it. After completing the activity, ask students to identify why they think the heart was not curved.

\section*{Amps \(\vdots\) Featured Activity}

\section*{Activity 2 \\ Comparing Methods}

Students choose one method and their partners choose another method for finding the area of the base. Afterwards, they compare areas, discussing and resolving any differences.


\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- The Warm-up, Problem 2 may be omitted.
- You may also choose to have the class complete only Activity 1 or Activity 2. If Activity 1 is omitted, be prepared to support students with decomposing the figure in Activity 2.

\section*{Warm-up Are These Prisms?}

Students determine what the bases of different prisms look like to prepare them for decomposing complex base shapes to find their areas.


\section*{1 Launch}

Conduct the Think-Pair-Share routine.

Power-up

\section*{Extension: Math Enrichment}

During the Connect, as students discuss why a cross section parallel to the base of a pyramid will not be identical to the base, have them draw various cross sections to illustrate why this is so. Ask them to explain what happens to the size of the cross section as it gets farther away from the base.

To power up students' ability to determine the area of a trapezoid, have students complete:
Recall that the formula for determining the area of a trapezoid is \(A=\frac{1}{2}(a+b) h\) where \(a\) and \(b\) are the lengths of the two bases and \(h\) is the height.
Determine the area of the given trapezoid. \(35 \mathrm{in}^{2}\)
Use: Before the Warm-up.
Informed by: Performance on Lesson 14,
Practice Problem 6b and Pre-Unit
Readiness Assessment, Problem 8.


\section*{Activity 1 Determine the Area}

Students decompose complex shapes into simpler shapes and find their areas to prepare them for decomposing complex shapes that represent the bases of prisms.

Activity 1 Determine the Area

For each figure, determine the area. Show and organize your work so that it can be understood by others. Sample ways to partition each figure are shown.
\(>1\).


Total area: \(\mathbf{4 0}\) square units
\(>2\).


48 Arc you reaty tor mores
Determine the area of the figure. Sample response: The area of the entire rectangle is \(\mathbf{3 0 0}\) square units. The area of the 6 by 7 rectangle is 42 square units. The area of the 2 by 2 square is 4 square units. The total area of the figure is: \(\mathbf{3 0 0 - 4 2 + 4}\), or 262 square units.

Total area: \(\mathbf{2 4}\) square units


92 Unit 7 Anses Tiantes andPrisms

1 Launch
Activate background knowledge by asking students to explain how to find the area of a rectangle and triangle. Explain that it will be important for them to organize their work so that others can follow it. Ask, "Once you find the area of the smaller figures, how do you find the total area?"

\section*{2 Monitor}

Help students get started by asking them to decompose the figures into simpler shapes.

\section*{Look for points of confusion:}
- Mislabeling the dimensions of the smaller figures. Have students use a pencil to trace the sides that are parallel and use them to determine the lengths of the unknown dimensions using addition and or subtraction.

\section*{Look for productive strategies:}
- Showing their work in an organized manner. Use their work as examples during the Connect.
- Finding the area of the larger \(\mathbf{7}\) by 10 rectangle and subtracting the area of the smaller 6 by 5 rectangle in Problem 1. Use this as an alternative solution during the class discussion.

\section*{3 Connect}

Display student work that is organized and easy to follow. If possible, have an example of pre-made disorganized work to discuss, being careful not to call out any individual student work that may be disorganized.

Highlight that decomposing complicated shapes into triangles and rectangles helps determine the area of the larger shape. However, the large shapes should be decomposed in ways where students can determine the dimensions of the smaller shapes. Ask, "Are there any other ways to decompose these shapes?"

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Demonstrate how to partition the figure in Problem 1 in two different ways. Illustrate for students how the total area is the same regardless of how the figure is partitioned

\section*{Extension: Math Enrichment}

Use the internet, or another source, to provide images of real-world objects that are composed of triangles and rectangles. Ask students to find an image - or draw one - that can be decomposed into rectangles and triangles and have them show how to partition the figure.

\section*{Math Language Development}

\section*{MLR3: Critique, Correct, Clarify}

Display or provide copies of a premade example of disorganized decomposition work. Ask:
- Critique: Have students discuss in pairs what makes the work disorganized. Encourage them to include specific details or examples of why they think the work is unclear.
- Correct and Clarify: Ask students to write a few sentences describing how the work could be better organized so that others can understand it. Have them assume they are writing to a peer helping them understand how to show their work more clearly.

\section*{Activity 2 A Heart-Shaped Box}

Students analyze two decompositions of a heart-shaped box, which helps them consider different strategies for decomposing figures.

Amps Featured Activity
Comparing Methods Name: Date: Period:

Activity 2 A Heart-Shaped Box

A box is a prism with a heartshaped base and a height of 2 in . The drawing shows the measurements of the base.
To calculate the volume of the box, two students have drawn line segments showing how they plan on first determining the area of the heart-shaped base.


Plan ahead: What will you do to understand the approaches of others in this activity?
1. For each student's plan, describe the shapes for which they need to determine the area, and the operations needed to calculate the total area.
Jada needs to find the area of the two smaller triangles (that have equal areas), a rectangle, and a larger triangle. She needs to add these areas together to find the area of the heart.
Diego needs to find the area of the larger rectangle and two larger triangles (that have equal areas), one medium-size triangle, and two smaller triangles (that have equal areas) Diego needs to subtract the negative space triangles from the area of the large rectangle.
2. Of the two plans, select one and have your partner select the other. Circle the plan you selected. You will use your selected plan for the rest of this activity.

\section*{1 Launch}

Display the Activity 2 PDF, showing the heartshaped box. Have students brainstorm about how the shape of the base could be decomposed into simpler shapes, such as rectangles and triangles.

\section*{Monitor}

Help students get started by providing a copy of Activity 2 PDF and having them choose a plan (Jada's or Diego's) and mark known lengths on the plan they choose.

\section*{Look for points of confusion:}
- Missing sections. Have students write and circle their known areas in the sections of the heart. Have them count the number of sections to make sure they know all the smaller areas before finding the sum.
- Not understanding Diego's plan. Ask, "What shape is formed by the dotted lines around the figure? If you knew the area of this shape, how could you find the area of the heart?"

\section*{Look for productive strategies:}
- Noticing repetitions among sections. If students notice the sections have the same shape, they can save time by not calculating the same area twice.

\section*{Activity 2 continued >}

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Provide copies of the Activity 2 PDF to students with the dimensions for each plan pre-labeled. They may use these copies of Jada's plan and Diego's plan to help them organize their work.

\section*{Extension: Math Enrichment}

Ask students where they may have seen a heart-shaped box before, or any box that is in the shape of a prism with a unique base shape. Have them research product packaging to learn more about the different shapes of packages that companies use and why they may choose certain shapes over others, depending on cost efficiencies or the shapes of the products they need to ship

\section*{Math Language Development}

\section*{MLR5: Co-craft Questions}

Display the image of the heart-shaped box from the Activity 2 PDF and the introduction to Activity 2 that shows the dimensions of the base. Ask students to work with their partner to write 2-3 mathematical questions about the heart-shaped box. Sample questions could be:
- "How could I decompose this shape to determine its area?"
- "Is the right side of the shape the same as the left side? Can I use that information somehow?"

\section*{English Learners}

Display 1 or 2 sample questions and allow students to say their questions aloud as opposed to writing them, or vice versa.

\section*{Activity 2 A Heart-Shaped Box (continued)}

Students analyze two decompositions of the same heart-shaped box, which helps them consider different strategies for decomposing figures.

Activity 2 A Heart-Shaped Box (continued)
3. Using the quadrilaterals and triangles drawn in your selected plan, determine the area of the base. Show and organize your work so that it can be understood by others.
Jada's Plan
Section a: Triangle with base 4 in . and height 1 in
\(\frac{1}{2} \cdot 4 \cdot 1=2\); The area is \(2 \mathrm{in}^{2}\).
- Section b: Same area as section a
- Section c: Rectangle with base 8 in . and height 2 in
\(8 \cdot 2=16\); The area is \(16 \mathrm{in}^{2}\).
- Section d: Triangle with base 8 in . and height of 5 in
\(\frac{1}{2} \cdot 8 \cdot 5=20\); The area is \(20 \mathrm{in}^{2}\).
Area of the heart: \(2+2+16+20=40\),
so the area is \(40 \mathrm{in}^{2}\)
4. Trade with your partner and check each other's work. If you disagree, work to reach an agreement.
5. Return your partner's work. Calculate the volume of the box. \(40 \cdot 2=80\); The volume is \(80 \mathrm{in}^{3}\).

Additional Response for Problem 3:
Diego's Plan:
Area of larger rectangle: base 8 in. and height 8 in
\(8 \cdot 8=64\); The area is \(64 \mathrm{in}^{2}\)
- Section a: Triangle with base 2 in . and height 1 in
\(\frac{1}{2} \cdot 2 \cdot 1=1\); The area is \(1 \mathrm{in}^{2}\).
- Section b: Triangle with base 4 in . and height 1 in .
\(\frac{1}{2} \cdot 4 \cdot 1=2\); The area is \(2 \mathrm{in}^{2}\).
- Section c: Same as section a.
- Section d: Triangle with base 4 in . and height 5 in.
\(\frac{1}{2} \cdot 4 \cdot 5=10\); The area is \(10 \mathrm{in}^{2}\)
- Section e: Same as section d.


To find the area of the heart, subtract all the triangles' areas from the larger rectangle's area.
\(64-(1+2+1+10+10)=40\); The area of the heart is \(40 \mathrm{in}^{2}\).

\section*{Summary}

Review and synthesize how decomposing bases into rectangles and triangles can help in determining the area of a complex shape.


\section*{Synthesize}

Display the figures from the Summary.
Ask, "When the base is not a rectangle or a triangle, what are some methods for determining the area?" Decompose the base into rectangles and triangles. Another method is to imagine a larger figure (e.g., rectangle) that can be decomposed into the base and a "missing" figure, and subtract the area of the missing figure from the larger figure.

Have students share how they would decompose the figure into smaller rectangles and triangles.

\section*{Highlight}
- The different strategies for decomposing the base to determine its area. Each strategy works because the whole area is equal to the sum of its parts.
- Remind students the volume of a prism is the area of the base multiplied by the height of the prism.

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What strategies did you find helpful in finding the area of the base of prisms today? How were they helpful?"
- "Were any strategies not helpful? Why?"

\section*{Exit Ticket}

Students demonstrate their understanding by explaining how to decompose the base of a complex solid to find its volume.

亘 Printable


Here is a prism with a pentagonal base. The height is 8 cm . What is the volume of the prism? Show and organize your work so it can be understood by others.


Sample response:


Total area of the base: \(9+6+14=29 ; 29 \mathrm{~cm}^{2}\)
Volume: 29•8=232; \(232 \mathrm{~cm}^{3}\)


\section*{Success looks like . . .}
- Language Goal: Critiquing different methods for decomposing and calculating the area of a prism's base. (Speaking and Listening)
- Language Goal: Explaining how to decompose and calculate the area of a prism's base and then using it to calculate the prism's volume. (Speaking and Listening, Writing)
» Decomposing and calculating the volume of the pentagonal prism.

\section*{- Suggested next steps}

If students mistake the base as rectangular, consider:
- Asking, "How do you know this figure is a prism? What must be true about the figure in order to consider it a prism?"
- Reminding them that in a prism, the non-base faces are rectangular, but the base can be any shape.
- Revisiting the Warm-up.

If students decompose the base of the figure incorrectly, consider:
- Reminding them to mark the dimensions on the smaller figures after they decompose the larger figure.
- Assigning Practice Problems 1 and 2.

If students find the area of the base, but do not find the volume, consider:
- Reminding them to carefully read the directions.
- Assigning Practice Problem 1.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

\section*{0 Points to Ponder ...}

What worked and didn't work today? What did the process of decomposing shapes to find the area reveal about your students as learners?
- The focus of this lesson was decomposing and calculating the area of a prism's base to be able to calculate its volume. How did this focus go? What might you change for the next time you teach this lesson?

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Practice Problem Analysis} \\
\hline Type & Problem & Refer to & DOK \\
\hline \multirow{2}{*}{On-lesson} & 1 & Activity 2 & 2 \\
\hline & 2 & Activity 2 & 3 \\
\hline \multirow[b]{2}{*}{Spiral} & 3 & \begin{tabular}{l}
Unit 7 \\
Lesson 5
\end{tabular} & 2 \\
\hline & 4 & \begin{tabular}{l}
Unit 4 \\
Lesson 2
\end{tabular} & 2 \\
\hline Formative 0 & 5 & \begin{tabular}{l}
Unit 7 \\
Lesson 16
\end{tabular} & 1 \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{(8)}
ver
3. Select all the equations that represent a relationship between angles in the figure.
(A.) \(90-30=b\)
(D.) \(30+b=a+c\)
(B.) \(a+c+30+b=180\)
E. \(a=30\)
C. \(a+c=30\)
(F.) \(90+a+c=180\)

4. A mixture of punch contains 1 qt of lemonade, 2 cups of grape juice, 4 tbsp of honey, and \(\frac{1}{2}\) gallons of sparkling water. Determine the percentage of the punch mixture composed of each ingredient. Round to the nearest tenth of a percent. (Hint: 1 cups \(=16\) tbsp.)
\(I\) converted each measure to cups.
Total volume: \(4+2+\frac{1}{4}+8=14 \frac{1}{4}\), so the volume is \(14 \frac{1}{4}\) cups.
- Lemonade: 4 cups out of \(14 \frac{1}{4}\) cups is \(28.1 \%\). Honey: \(\frac{1}{4}\) cups out of \(14 \frac{1}{4}\) cups is \(1.8 \%\).
- Grape Juice: 2 cups out of \(14 \frac{1}{4}\) cups is \(14.0 \%\). \(\begin{gathered}\text { Sparkling water: } 8 \text { cups out of } 14 \frac{1}{4} \text { cups } \\ \text { is } 56.1 \% \text {. }\end{gathered}\)
5. Determine the area of each figure.
a


Additional Practice Available


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Surface Area of Right Prisms}

\author{
Let's look at the surface area of prisms.
}

\section*{Focus}

\section*{Goals}
1. Language Goal: Calculate the surface area of a prism and explain the solution method used. (Speaking and Listening, Reading and Writing)
2. Comprehend that surface area and volume are two different attributes of three-dimensional objects and are measured in different units.
3. Language Goal: Interpret different methods for calculating the surface area of a prism and evaluate their usefulness. (Speaking and Listening, Reading and Writing)

\section*{Coherence}

\section*{- Today}

Students critique two methods for finding the surface area of prisms. They see that the structure of a prism allows for shortcuts in adding the areas of the faces or if the prism is sitting on its base, then the vertical sides can be unfolded into a single rectangle whose height is the height of the prism and whose length is the perimeter of the base. The purpose of the lesson is not to come up with a formula for the surface area of a right prism, but to help students see and make use of the structure of the prism to find surface area efficiently.

\section*{\(\checkmark\) Previously}

In Grade 6, students used nets made up of rectangles and triangles to find the surface area of three-dimensional figures.

\section*{> Coming Soon}

In the next lesson, students will determine if surface area or volume would be the appropriate measure for certain real-world problems.

\section*{Rigor}
- Students use visual models to develop conceptual understanding of surface area of right prisms.
- Students are introduced to multiple methods of calculating surface area to build procedural skills.
©
Warm-up

Activity 1

Activity 2

Summary

Exit Ticket
\begin{tabular}{|c|c|c|c|c|}
\hline (J) 5 min & (-) 20 min & (J) 10 min & () 5 min & (J) 7 min \\
\hline \(\stackrel{\bigcirc}{\cap}\) Independent & \(\stackrel{\circ}{\cap}\) ค Pairs & \(\stackrel{\circ}{\circ}\) Pairs & ํำำ ํํํํํ Whole Class & \(\stackrel{\bigcirc}{\cap}\) Independent \\
\hline
\end{tabular}

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\cap\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Warm-up PDF, precut and assembled (for display)
- Activity 2 PDF, pre-cut nets, one per pair (as needed)
- Anchor Chart PDF, Solids
- Anchor Chart PDF, Solids (answers)

\section*{Math Language}

Development

\section*{Review words}
- base (of a prism or pyramid)
- cross section
- plane
- prism
- pyramid
- surface area
- volume

\section*{Building Math Identity and Community}

Connecting to Mathematical Practices
Students might exhibit a chaotic approach to finding surface area in Activity 1. Ask students how they can use the structure of the figure to organize their work so that they are sure to include all faces when calculating the surface area.

\section*{Amps \(\vdots\) Featured Activity}

\section*{Activity 2 \\ Choice and Collaboration}

Students select a prism to determine the surface area of, then compare their strategy with a partner who chose the same prism.


\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- The Warm-up may be omitted.
- Activity 2 may be omitted. You may consider assigning this Activity as Additional Practice.

\section*{Warm-up Multifaceted Objects}

Students recognize important attributes of solids in anticipation of computing volume and surface area.


Unit 7 | Lesson 16

\section*{Surface Area of Right Prisms}

Let's look at the surface area of prisms.


Warm-up Multifaceted Objects
Here is a prism.

1. What are some attributes of the prism you could measure?

Sample response: I could measure the height of the prism, area of the base, area of a face, calculate the prism's volume from these measurements.
or how much material could be used to cover each face of the prism.
2. What units would you use for these measurements? Sample response: centimeters or inches for lengths, square centimeters or square inches for area, cubic centimeters or cubic inches for volume.

\section*{1) Launch}

Display the prism from the Warm-up PDF, which will be used for both the Warm-up and Activity 1.

\section*{(2) Monitor}

Help students get started by reminding them of the measures they have calculated in previous lessons, such as area of a base and volume of a prism.

\section*{Look for points of confusion:}
- Listing only one attribute in Problem 1 and only one unit in Problem 2. Challenge students to write down as many attributes and their units of measurement as they can.
- Not knowing what the term attribute means. Explain that an attribute is like a characteristic or feature. If students still struggle, provide an example, such as the prism's height.

\section*{3 Connect}

Display the prism.
Have students share their responses to Problems 1-2.

Ask the class to think of unreasonable units for the prism, such as yards or kilometers. Have students share why these units are unreasonable.

Differentiated Support

\section*{Accessibility: Vary Demands to Optimize Challenge, Guide Processing and Visualization}

For Problem 1, provide students with a list of attributes from which they could choose ones that are appropriate for this prism.
For Problem 2, provide students with a list of units from which they could choose ones that are appropriate for each attribute they listed in Problem 1. Be sure to include linear units, square units, and cubic units.

\section*{(7) Power-up}

To power up students' ability to determine the area of polygons by composing and decomposing them into familiar shapes, have students complete:
1. Draw one line on the given figure to break it into two rectangular pieces. Sample response shown.
2. Determine the lengths of the sides that are not labeled and add them to the diagram. Sample response shown.
3. Determine the area of each resulting rectangle then determine their sum to calculate the area of the entire figure. \(52 \mathrm{~cm}^{2}\)
Use: Before Activity 1
Informed by: Performance on Lesson 15, Practice Problem 5.


\section*{Activity 1 So Many Faces}

Students make sense of different methods for calculating the surface area of a prism to generalize whether they will work for any prism.

\section*{(4)}

Activity 1 So Many Faces

Refer to the prism from the Warm-up, now with the dimensions labeled.

Two students are trying to calculate the surface area of this prism.
- Noah says, "This is going to be a lot of work We need to find the area of 7 different faces and then add them up."
Andre says, "It's not so bad. The 2 bases are the same and the other faces, the

1. Do you agree with Noah or Andre? Explain your thinking.

Answers may vary. Students may agree with Noah because finding the area of all the faces and adding them up will give the surface area. Students may agree with Andre because they remember being able to use the net to find area while the remaining faces are rectangular (with the same height).
2. Use Noah's method to determine the surface area. Draw each face and determine its area. Show and organize your work so that it can be understood by others.


Total surface area: \(34+34+56+32+32+40+64=292\), so the surface area is \(292 \mathrm{in}^{2}\)

\section*{1 Launch}

Display the prism from the Warm-up and let students know they will be critiquing the reasoning of other students. Activate students' prior knowledge by asking them to how they determined the surface area of rectangular prisms in Grade 6.

\section*{2 Monitor}

Help students get started by having them restate each method in their own words using the physical model if necessary.

\section*{Look for points of confusion:}
- Thinking only one method is correct. Have students reason through each method to find that both methods work for this prism.
- Missing the area of some faces in Problem 2. Have students count the number of faces and check this number against the number of faces mentioned by Noah and Andre.
- Not understanding that \(7+4+4+5+8\) is the perimeter of the base. Have students trace these sides in order.

Differentiated Support

\section*{Accessibility: Vary Demands to Optimize Challenge, Guide Processing and Visualization}

Instead of having students draw the shapes in Problems 2 and 3, provide predrawn shapes and ask them to label the measurements on each shape and find the total surface area.

\section*{Extension: Math Enrichment}

Have students derive the formula for the surface area S.A. of any prism using Andre's method, defining the variables they use.
\(S . A .=p h+2 B ; p=\) perimeter of the base, \(h=\) height of the prism, and \(B=\) area of the base.

\section*{Math Language Development}

\section*{MLR1: Stronger and Clearer Each Time}

While students study Noah's and Andre's strategies and respond to Problem 1, have them use a Think-Write-Pair-Share routine. Have them individually make sense of each strategy, write an individual response to Problem 1, and share their response with their partner. Partners should review each other's responses and make suggestions for improvement. Provide prompts that will help partners strengthen ideas and clarify language, such as:
- "How can you draw a picture to support your explanation?"
- "How can you expand on...?

\section*{Activity 1 So Many Faces (continued)}

Students make sense of different methods for calculating the surface area of a prism to generalize whether they will work for any prism.

Activity 1 So Many Faces (continued)
3. Use Andre's method to determine the surface area.
a Draw one of the bases and determine the area of the base

b To determine the total area of the rectangular faces Andre wrote \(8 \cdot 7+8 \cdot 4+8 \cdot 4+8 \cdot 5+8 \cdot 8=8(7+4+4+5+8)\).
What does each part of the expression on the left side of the equal sign represent? The right side? What did Andre do to determine the expression on the right side?
8 is the height of the prism; 7, 4, 4, 5, and 8 are the lengths of the rectangular faces. The expression \(7+4+4+5+8\) represents the perimeter of the base; Andre factored the height 8 from the expression on can be thought of as a rectangle with height 8 and length 28 .
C Determine the total area of the rectangular faces
\(8(7+4+4+5+8)=224\)
The total area of the rectangular faces is \(224 \mathrm{in}^{2}\).
(d)

Determine the surface area.
\(68+224=292\)
The surface area is 292 in \(^{2}\)
4. Will Noah's method always work for determining the surface area of any prism? Andre's method? Be prepared to explain your thinking. Both methods will work for all right prisms.
5. Which method do you think is the most efficient? Why?

Answers may vary. Students might choose Noah's method, because they can visualize all faces. Some students might find Noah's method timeprism by the remaining side length for the rectangular faces.
\(\qquad\)

\section*{Activity 2 Determining the Surface Area}

Students explore solids from a previous lesson to build fluency with determining the surface area of prisms.


\section*{1 Launch}

Let students know they may recognize the figures from a previous lesson, but now they will determine the surface area of the figures.

\section*{2 Monitor}

Help students get started by having them draw the bases of the figures with the known dimensions.

\section*{Look for points of confusion:}
- Determining the volume instead of the surface area. Remind students to attend to the directions.

\section*{Look for productive strategies:}
- Remembering these Figures 1 and 2 from Lesson 15. If students completed the Exit Ticket and Practice Problem 1, they have already calculated the base areas of these prisms, which can save time. If they cannot locate the base areas, use this as an opportunity to reinforce why organizing their work is important.

\section*{3 Connect}

Have students share the methods they used to determine the surface area.

Ask:
- "How did you determine the area of the base and any other areas you needed to solve the problem?"
- "Which methods are more efficient than others? Why?"
- "Do you think you will prefer this same method for every problem? If not, what would make you change methods?"

Highlight the methods from Activity 1. Determining the area of all the faces (Noah's method) requires calculating the area of many figures. Determining the perimeter of the base and multiplying by the height of the prism (Andre's method) requires visualizing the prism in a different way, but not as many areas need to be calculated. Both methods work and are valuable.

\section*{Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization}

Use copies of the Activity 2 PDF to provide students with nets of Figures 1-3 to help them determine the area.

\section*{Extension: Math Enrichment}

Challenge students to draw their own prisms, whose bases can be decomposed into smaller, known figures. Have them provide and label the dimensions needed to calculate their prism's surface area. Ask them to trade prisms with a partner to see if each student can calculate the surface area.

\section*{Math Language Development}

\section*{MLR8: Discussion Supports}

During the Connect, as students describe the methods they used to determine the surface area of each prism, provide sentence frames, such as:
- "First, I \(\qquad\) because . . Then I \(\qquad\) , because. . .
- "I decomposed (or unfolded) \(\qquad\) o determine..
- "I know the base is a \(\qquad\) because . . ."

\section*{English Learners}

Provide a word bank students can use to assist them as they describe their strategy, such as: area of the base, rectangular faces, square units, trapezoid, and triangle.

\section*{Summary}

Review and synthesize how to determine the surface area of a right prism with a non-rectangular base.


\section*{Synthesize}

Display the Anchor Chart PDF, Solids, and complete the Surface Area section as you facilitate a class discussion using the following questions.

Ask:
- "What is surface area?" The total area of all the exposed faces of an object.
- "What are some methods for determining the surface area of prisms?"
Sample responses:
- Calculate the area of each face and add them to find the total.
- Determine groups of faces that have the same area, which saves some calculation.
- Calculate the area of the bases and then add the area of the long rectangle made up of the sides.

Highlight that determining the area of the base might involve decomposing the figure into rectangles and triangles first. To determine the surface area, the area of the sides must also be included.

\section*{(.) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What attributes of your prism did you consider when calculating its surface area?"
- "What did you find most challenging about calculating surface area today? How did you work through any challenges?"

\section*{Exit Ticket}

Students demonstrate their understanding of surface area by reasoning about a prism with a non-rectangular base.


\section*{Success looks like ...}
- Language Goal: Calculating the surface area of a prism and explaining the solution method used. (Speaking and Listening, Reading and Writing)
» Calculating the surface area of the prism and explaining how it was determined.
- Goal: Comprehending that surface area and volume are two different attributes of threedimensional objects and are measured in different units.
- Language Goal: Interpreting different methods for calculating the surface area of a prism and evaluating their usefulness. (Speaking and Listening, Reading and Writing)

\section*{Suggested next steps}

If students use a rectangle for the base, consider:
- Assigning Practice Problems 1 and 2.

If students do not complete the process of determining the surface area, consider:
- Reminding them of the methods from Activity 1.
- Having them choose Noah's or Andre's method and apply the method to the prism in the Exit Ticket.
- Assigning Practice Problem 2 to practice the chosen method (Noah's or Andre's method).

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
©. Points to Ponder ...
- What worked and didn't work today? How did students see and make use of structure today? How are you helping them become aware of how they are progressing in this area?
- What did students find frustrating, if anything, during Activity 1 ? What helped them work through this frustration? What might you change for the next time you teach this lesson?

> 4. For each expression, rewrite it using fewer terms.
(a) \(12 m-4 m=8 m\)
\begin{tabular}{|lclc|}
\hline Practice Problem & Analysis \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 2 & 2 \\
\hline Spiral & \(\mathbf{2}\) & Activity 2 & 2 \\
\hline Formative \(\mathbf{O}\) & 6 & \begin{tabular}{l} 
Unit 7 \\
Lesson 13 \\
Unit 6
\end{tabular} & 1 \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Distinguishing Surface Area and Volume}

Let's work with surface area and
volume in real-world situations.


\section*{Focus}

\section*{Goals}
1. Language Goal: Compare and contrast problems involving surface area and volume of prisms. (Speaking and Listening, Reading and Writing)
2. Language Goal: Decide whether to calculate the surface area or
volume of a prism to solve a problem in a real-world situation and justify the decision. (Speaking and Listening)

\section*{Coherence}

\section*{- Today}

Students apply their knowledge of surface area and volume to solve realworld problems. The purpose of this lesson is to help students distinguish between surface area and volume and to choose which of the two measures is appropriate for solving the problem.

\section*{< Previously}

In previous lessons, students found the volume and surface area for many prisms, including ones with non-rectangular or non-triangular bases.

\section*{Coming Soon}

In the final lesson of the unit, students will see how adjusting dimensions can affect the volume and surface area.

\section*{Rigor}
- Students strengthen their fluency in calculating surface area and volume of right prisms.
- Students apply their knowledge of surface area and volume to solve real-world problems.


Warm-up

Activity 1

Activity 2


Activity 3 (optional)


Summary

Exit Ticket
\(\bigcirc\) Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 1 PDF (for display)

\section*{Math Language Development}

\section*{Review words}
- base (of a prism or pyramid)
- cross section
- plane
- prism
- pyramid
- surface area
- volume

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students might find themselves locking onto key words, instead of reading each question completely when choosing a model in Activity 2. Have students present strategies for maintaining focus and thoroughly reading the question before selecting an answer. Acknowledge that this requires self-discipline and impulse control.

\section*{Amps \(\vdots\) Featured Activity}

\section*{Activity 1 \\ Digital Sketches}

Students decompose the heart-shaped base while drawing directly on the image using the sketch tool.


\section*{- Modifications to Pacing}

You may want to consider this additional modification if you are short on time
- Optional Activity 3 may be omitted.

\section*{Warm-up The Science Fair}

Students think about two objects with the same volume to reason about their surface areas.
(6)


203 Amplify Eucuation. Inc.all Ifghis reserved.
Lesson 17 Distinguishing Surface Area and Volume 805

\section*{1 Launch}

Activate students' background knowledge by asking them why ice cubes in a glass of water melt over time.

\section*{Distinguishing Surface Area and Volume}

Let's work with surface area and volume in real-world situations.


\section*{Warm-up The Science Fair}

Mai's science teacher told her that when there is a greater amount of ice touching the water in a glass, the ice melts faster. Mai wants to test this statement, so she designs her science fair project to determine if crushed ice or ice cubes will melt faster in a drink. She begins with two cups of warm water. In one cup, she puts one cube of ice. In a second cup, she puts crushed ice that has the same volume as the cube of ice.

What is your hypothesis? Will the ice cube or crushed ice melt faster, or will they melt at the same rate? Explain your thinking.
Answers will vary. However, the correct answer is that the crushed ice will melt faster because the surface area is greater than the ice cube with the same volume.

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Display images of cubes of ice and crushed ice to help students visualize the differences between them.

\section*{Power-up}

To power up students' ability to determine the surface area and volume of a cube, have students complete:

Recall that the formula for surface area of a cube is \(S=6 s^{2}\) and the formula for its volume is \(V=s^{3}\) where \(s\) is the length of one side.
Determine the surface area and volume of a cube with side lengths of 2 ft .
Surface area: \(24 \mathrm{ft}^{2}\); Volume: \(8 \mathrm{ft}^{3}\);
\(S=6(2) 2 \quad V=(2)^{3}\)
\(S=6 \cdot 4 \quad V=8\)
\(S=24\)
Use: Before Activity 1.
Informed by: Performance on Lesson 16, Practice Problem 6.

\section*{Activity 1 A Heart-Shaped Box, Revisited}

Students use the heart-shaped box from a previous lesson to calculate the surface area of complex shapes.


Amps Featured Activity
Digital Sketches

Activity 1 A Heart-Shaped Box, Revisited

Previously, you calculated the volume of this heart-shaped box. Here is a copy of the same image with the slanted side lengths now included.
The depth of the box is \(\mathbf{2} \mathrm{in}\). How much cardboard is needed to create the box?


From Lesson 15, Activity 2, the area of the heart is \(40 \mathrm{in}^{2}\).
Perimeter of the base:
\(4 \cdot 2.2+2 \cdot 6.4+2 \cdot 2=25.6 ; 25.6 \mathrm{in}\).
Surface area: \(25.6 \cdot 2+2 \cdot 40=131.2 ; 131.2\) in \(^{2}\)
131.2 in \(^{2}\) of cardboard is needed to create the box.
(1) Launch

Remind students they calculated the volume of this box in a previous lesson. Display the image of the heart with the dimensions labeled.

\section*{(2) Monitor}

Help students get started by having them write down all the dimensions they know and what they need to find to calculate the surface area.

\section*{Look for productive strategies:}
- Referencing Lesson 15 for the area of the heart. Encourage students to work efficiently using known dimensions.
- Doubling the lateral area. Students who are familiar with actual heart-shaped boxes may want to double the lateral area to represent the way the top and bottom pieces nest together. Students who do this are making the mathematical aspects of this problem fit the real-world example. This should be developed further with discussion.

\section*{3 Connect}

Display the image of the heart.
Have students share their solutions and methods for calculating the surface area.

\section*{Ask:}
- "How did you know you had to calculate the surface area?" I need to find how much cardboard is needed.
- "Suppose you want to make a set of two boxes that are each half of the heart and placed side-by-side to form a full heart, how does the amount of cardboard needed to make two half-heart boxes compare to making one full-heart box?" More cardboard is needed to make two half-heart boxes.
- "How could you reduce the surface area of the one box without reducing the volume?" Sample response: I could change the shape to something with fewer segments, such as a triangle.

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can decompose the heart-shaped box while drawing directly on the image using the sketch tool.

\section*{Accessibility: Activate Prior Knowledge}

Review the heart-shaped box calculations from the earlier, related activity in this unit. Consider displaying the various strategies that were used to calculate the area of the heart.

\section*{Extension: Math Enrichment}

Ask students how the surface area would change if the depth of the box was changed to each of the following lengths.
\begin{tabular}{|l|c|c:c}
\hline Depth of box (in.) & 3 & 5 & \(x\) \\
\hline Surface area \(\left(\right.\) in \(^{2}\) ) & 156.8 & 208 & \(25.6 x+80\) \\
\hline
\end{tabular}

\section*{Activity 2 Surface Area or Volume?}

Students determine whether it is more reasonable to use volume or surface area when answering real-world questions.


\section*{1 Launch}

Once pairs have completed Problem 1, use the Poll the Class routine to discuss which measurement is needed for the first row. Repeat for the second row.

\section*{2 Monitor}

Help students get started by asking if the question is referring to what the object can hold (volume) or how much of a material is covering the object (surface area).

\section*{3 Connect}

Display the results from the poll for each problem.

Ask:
- "How did you determine which measure you needed to answer each question?"
- "What is different about the measures used in each question?"

Have students share their explanations of how they determined whether a question required surface area or volume.

Highlight students' verbal descriptions of their reasoning because they will later be asked to write about similarities and differences in the Exit Ticket. Refer back to the poll responses to help this discussion.

\section*{Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization}

Use the internet, or another source, to provide images, such as a swimming pool, a pillowcase, and a birdhouse, to help students visualize each scenario.

\section*{Extension: Math Enrichment}

Have students brainstorm two questions, one involving surface area and the other volume, that could be applicable to their neighborhood or city. Sample responses:
- Surface area: How much tile is needed to tile the walls in a bathroom?
- Volume: How many cubic feet of air is circulated in an office building?

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students share how they determined whether surface area or volume is the more reasonable measure, call their attention to the words indicated in the text of each question by asking:
- "How does the word fill help indicate which measure is more reasonable when filling a swimming pool?"
- "When you think about painting something, are you covering a surface or filling a container?"

\section*{English Learners}

Use pictures or physical objects to help students visualize each scenario.

\section*{Activity 3 Sharing Quiche}

Using a scenario involving a quiche, students decide whether to use surface area or volume to determine the amount of crust needed and the size (volume) of the quiche.


\section*{1. Launch}

Show students a picture of a quiche in the shape of a square prism, and ask them what mathematical observations they could make or find about the quiche.

\section*{2 Monitor}

Help students get started by asking, "What measure would you find to know how much quiche there was? What measure would you find to know how much crust there was?"

\section*{Look for points of confusion:}
- Having difficulty drawing on the dot paper. The dot paper is meant to help them draw a prism. If it is distracting, have them draw and label the prism in the margins or on another sheet of paper.
- Finding the entire surface area to represent the crust. Ask students if all surfaces are visible and covered with crust to get them to realize the top face should not be included. They will need only one base area to find the amount of crust used.

\section*{Look for productive strategies:}
- Showing work in an organized manner. Use these as models during the whole class discussion.
(3) Connect

Display students' drawings and their work.
Ask:
- "How did you determine which measure you needed to answer the question?"
- "What is different about the measures used in each question?"
Have students share how they knew which measure to find for each scenario and what phrases helped them know which measure to use.

Highlight similarities and differences in the measurements for the quiche.

\section*{Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

Consider providing pre-drawn figures for Problem 1 and have students begin the activity with Problem 2. You may also choose to have students omit Problem 5.

\section*{Accessibility: Guide Processing and Visualization, Clarify Vocabulary and Symbols}

Students may be unfamiliar with the term quiche. Display images of quiches and help them pronounce the term. Draw an image of what the quiche might look like with crust on the sides and bottom.

\section*{(1) Math Language Development}

\section*{MLR2: Collect and Display}

During the Connect, add to the class display any phrases and explanations students use when determining whether to find the quiche's volume or surface area. Have students who need support deciding which measure to use refer to the display.

\section*{English Learners}

Display images of correctly labeled and organized student work so that students can visualize the work as they participate in the discussions. For example, annotate any work or calculations that provide the area of the base as "area of base."

\section*{Summary}

Review and synthesize how surface area and volume each measure different attributes of three-dimensional figures, and how to select the appropriate measure to use to solve a real-world problem.


\section*{Synthesize}

Have students share strategies they have for determining whether surface area or volume should be used to solve a real-world problem. Have students add these strategies to their notes section and the methods for determining each measurement.

Note: At this time, students do not need to know or use a formula for surface area; however, if they have created one, check to make sure it is accurate.

Highlight examples of each measure, making sure students understand why surface area is used versus volume, and vice versa.

\section*{Ask}
- "When is it better to know surface area rather than volume?" Sample responses: when you are covering an object, when you want to know how much is exposed to the environment, etc.
- "When is it better to know volume rather than surface area?" Sample responses: When you are filling up an object, when you need to know how much is already inside, etc.
- "If you cut an object in half and consider the totality of the two halves, how are the surface area and volume affected?" The volume remains unchanged, but the surface area will increase

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "In your own words, how would you describe surface area? What about volume?"

\section*{Exit Ticket}

Students demonstrate their understanding by describing similarities and differences between real-world situations in which surface area or volume is the appropriate measure.


\section*{亘 Printable}


Exit Ticket \{G\}

Describe some similarities and differences between a real-world situation that involves calculating surface area and one that involves calculating volume.
Sample response: Surface area measurements involve covering the outside of the object (such as with painting, wrapping, etc.). Volume measurements involve filling an object (such as how much water the object will hold, how much air an object can hold, etc.)

\section*{Self-Assess}

\section*{}
a I can decide whether I need to find the surface area or volume of an object when solving a real-world problem.

123

\section*{Success looks like...}
- Language Goal: Comparing and contrasting problems involving surface area and volume of prisms. (Speaking and Listening, Reading and Writing)
» Explaining the similarities and differences between calculating surface area and volume in a real-world situation.
- Language Goal: Deciding whether to calculate the surface area or volume of a prism to solve a problem in a real-world situation and justifying the decision.
(Speaking and Listening)

\section*{Suggested next steps}

If students confuse surface area and volume scenarios, consider:
- Reviewing Activity 2.
- Assigning Practice Problem 2.

\section*{Math Language Development}

Language Goal: Deciding whether to calculate the surface area of volume of a prism to solve a problem in a realworld situation and justifying the decision.

Reflect on students' language development toward this goal.
- How have students progressed in their justifications for deciding whether to calculate the surface area or volume, given a real-world situation? What key words do they look for?
- How did using the Collect and Display routine in this lesson help students look for certain key words as they make their decisions? Would you change anything the next time you use this routine?


\section*{(8)}
4. Angle \(H\) is half the measure of angle \(J\). Angle \(J\) is one fourth the measure of angle \(K\). Angle \(K\) has measure of \(240^{\circ}\). What is the measure of angle \(H\) ?
\(\mathrm{m} \angle K=240^{\circ}\)
\(\mathrm{m} \angle J=\frac{1}{4} \cdot 240^{\circ}=60^{\circ}\)
\(\mathrm{m} \angle H=\frac{1}{2} \cdot 60^{\circ}=30^{\circ}\)
5. The Colorado state flag consists of three horizontal stripes of equal height. The side lengths of the rectangular flag are in the ratio \(2: 3\) The diameter of the gold circle inside the letter C is equal to the height of the center stripe What percentage of the flag is gold?
Sample response: Keeping the \(2: 3\) ratio and using
sample side measurements of 6 units and 9 units
sample side measurements of 6 units and 9 units
results in a flag area of 54 square units. The diamete
 of the gold circle is the height of the white stripe, which is 2 units. The e radius will be 1 unit, giving an
approximate area of the circle of \(3.14 .11^{2}\) or about approximate area of the circle of \(3.14 \cdot 1^{2}\), or about
3.14 square units. 3.14 is approximately \(6 \%\) of the area of 54 square units.
( 6 . The solids below have the same volume. Determine if their surface
areas are also the same. Explain or show your thinking


No, the surface areas are different: Sample response
The surface area of the first solid is \(6(2 \cdot 2)=24\), so the area is \(24 \mathrm{~cm}^{2}\). The surface area of the second solid is \(2(1 \cdot 2)+2(1 \cdot 4)+2(4 \cdot 2)=28\),
so the area is \(28 \mathrm{~cm}^{2}\).
\begin{tabular}{|lclc|}
\hline Practice Problem & Analysis \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 3 & 2 \\
& \(\mathbf{2}\) & Activity 2 & 1 \\
Spiral & \(\mathbf{3}\) & \begin{tabular}{l} 
Unit 7 \\
Lesson 11
\end{tabular} & 2 \\
Formative 0 & 6 & \begin{tabular}{l} 
Unit 7 \\
Lesson 4
\end{tabular} & 2 \\
\hline
\end{tabular}

\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Applying Volume and Surface Area}

\section*{Let's explore applications of volume and surface area.}


\section*{Focus}

\section*{Goals}
1. Language Goal: Apply reasoning about volume and surface area of prisms as well as proportional relationships to calculate how much the material to build an office building will cost and explain the solution method. (Speaking and Listening, Writing)
2. Language Goal: Describe, compare, and contrast the solids from which a given set of cross sections could have originated. (Speaking and Listening)

\section*{Coherence}

\section*{- Today}

Students return to cross sections in the Warm-up to build further understanding of planes that are not parallel or perpendicular to a base of a solid. They explore how adjusting dimensions of a fixed-volume prism impacts the surface area. Further, students model with mathematics when considering how to minimize costs by varying the dimensions of the prism.

\section*{\(\leqslant\) Previously}

Students worked with cross sections in Lesson 13 and with volume and surface area of prisms in Lessons 14-17.

\section*{>Coming Soon}

Students will continue their work with cross sections in high school when they identify three-dimensional objects generated by rotations of two-dimensional objects.

\section*{Rigor}
- Students apply their understanding of cross sections, surface area, and volume to the creation of office buildings.


Warm-up

Activity 1

Summary


5 min
Whole Class

Exit Ticket

\section*{() 8 min}


\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Warm-up PDF, pre-cut and pre-assembled, one set per pair

\section*{Math Language \\ Development}

\section*{Review words}
- base (of a prism or pyramid)
- cross section
- plane
- prism
- pyramid
- surface area
- volume

\section*{Amps ! Featured Activity}

\section*{Activity 1}

Dynamic Building Blocks
Students use the building tool to quickly construct an office building of varying dimensions. This allows them to test, analyze, and rebuild quickly. Students compete to find who can design the building with the least cost. Students receive a notification of their current place in the competition.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students might struggle with evaluating which design model works best each set of specifications in Activity 1. Encourage students to compare their models and think about what ethical responsibilities might come into play when building a building. As they present their best design, have them reflect on why they made the choice that they made.

\section*{Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- In Activity 1, Problems 2 and 3 may be omitted.

\section*{Warm-up A Mysterious Figure}

Students interpret a set of cross sections to determine from which solid each cross section could have originated, preparing them to think about cross sections in a new way.

(1) Launch

Consider demonstrating a set of parallel planes slicing a solid different from those in this Warm-up.

\section*{(2) Monitor}

Help students get started by asking how the cross sections change from the start to the end of the set.

Look for points of confusion:
- Thinking that, because the cross sections are rectangles, the figure must be the rectangular prism. Challenge their thinking by asking, "Have you noticed that rectangular pyramids can have rectangular cross sections?"

\section*{Look for productive strategies:}
- Sketching the planes through the solids to check if given cross sections are possible

\section*{3 Connect}

Display the digital tool that shows the cross sections.

Have individual students share what the cross sections of the other two solids would look like if they were also sliced by planes diagonal to the base.

Ask, "When is the cross section of a threedimensional solid a line segment?" When the plane passes through the edge of the figure,

Highlight that, when considering the shape of the cross section, it is important to think about which edges and faces are included in the slice.

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization, Optimize Access to Tools}

Pre-assemble nets from the Warm-up PDF to form the three-dimensional solids shown in the Warm-up. Allow students to hold these models to support their visualization and reasoning about the possible cross sections.

\section*{(7) \\ Power-up}

To power up students' ability to determine the surface area of a prism, have students complete:

Recall that one method of determining the surface area of a prism is to add the area of each base \(B\) to the area of the rectangular faces. Their area can be determined by multiplying the perimeter of the base by the height of the prism.
Determine the surface area of the prism. \(62 \mathrm{~cm}^{2}\)
Use: Before Activity 1.
Informed by: Performance on Lesson 17, Practice Problem 6.


\section*{Activity 1 Office Building}

Students design an office building according to certain specifications, while thinking strategically about minimizing costs without adjusting volume (72 office units).


Amps Featured Activity Dynamic Building Blocks
Name: \(\square\) Date: \(\square\) Period: \(\square \square\)
Activity 1 Office Building

They say that architecture is the relationship between form and space, such as the shape of a building and the volume it contains. How these two elements play off of each other affect how people experience different types of buildings.


Air, light, space, proximity, distance, and beauty all play a role in what is designed and built. The National Museum of African American History and \(\begin{gathered}\text { Cutur crvandyke/Shutterstock.com }\end{gathered}\) At the center of decisions is the trade-off between volume and area.

Imagine you are an architect, in charge of designing a new office building.
Using your cubes, build a model of a building that meets the following specifications. Each cube counts as one office, each face of a cube on the bottom base counts as a unit of land, and every face of a cube on the side of the building will be a window. It is important that you keep the costs as low as possible.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Building specifications } & \multicolumn{1}{|c|}{ Building costs } \\
\hline - The shape must be a rectangular prism. & - Each office costs \(\$ 10,000\). \\
- There should be 72 office units. & - Each square unit of land costs \(\$ 5,000\). \\
- All exterior faces are glass windows. & - Each square unit of windows costs \(\$ 1,000\). \\
\hline
\end{tabular}

\section*{1. Design a building and determine its dimensions, volume, surface area, and cost}

\section*{Sample response:}

Volume: \(12 \cdot 3 \cdot 2=72 ; 72\) cubic units
Surface area: \(2(2 \cdot 3)+2(2 \cdot 12)+2(12 \cdot 3)=132\); 132 square units Cost in dollars:
- Offices: \(\mathbf{1 0 0 0 0} \boldsymbol{\bullet} 72=720000 ; \$ 720,000\)
- Land: \(\mathbf{5 0 0 0}(2 \cdot 3)=\mathbf{3 0 0 0 0} ; \mathbf{\$ 3 0 , 0 0 0}\)

Windows: \(1000[2(2 \cdot 12)+2(3 \cdot 12)]=120000 ; \$ 120,000\) Total: \(720000+\mathbf{3 0 0 0 0}+\mathbf{1 2 0 0 0 0}=\mathbf{8 7 0 0 0 0}\) The total cost of this building is \(\mathbf{\$ 8 7 0 , 0 0 0}\).


\section*{1 Launch}

Read the introduction as a class. Tell students they may try out more than two plans and that the plan that costs the least (without adjusting the volume of 72 office units) will be named at the end. Distribute 72 linking cubes to each group.

\section*{2 Monitor}

Help students get started by activating their background knowledge. Ask, "Have you visited an office building in which all sides of the building are windows?"

Look for points of confusion:
- Minimizing only the land area. Ask, "When the base area is small, how does that affect the number of windows in your building?"
- Minimizing only the surface area. Have students reread the specifications. Have them verify that their building meets each specification.

\section*{Look for productive strategies:}
- Using an organizational strategy to track which faces have been accounted for when finding the surface area. Consider organizing results by adding them to a spreadsheet that all students can see. This will encourage groups to try different combinations of dimensions.

Activity 1 continued >

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can use the interactive tool to construct an office building given different dimensions. This allows them to test, analyze, and quickly rebuild.

\section*{Extension: Math Enrichment}

Have students complete the following problem:
If the volume of a rectangular prism is \(216 \mathrm{~cm}^{3}\), what are the dimensions of the prism that minimize the surface area? A cube with a side length of 6 cm ; The surface area is \(216 \mathrm{~cm}^{2}\).

\section*{Math Language Development}

\section*{MLR6: Three Reads}

Use this routine to help students make sense of the demands of the task.
- Read 1: Students should understand that they need to design a building that meets the specifications given in the table.
- Read 2: Ask students to name the given quantities and relationships, such as each office costs \(\$ 10,000\).
- Read 3: Ask students to brainstorm strategies for how to design their building that keeps the cost as low as possible.

\section*{English Learners}

Draw a sample rectangular prism, without labels, and illustrate where the office units and windows will be located.

\section*{Activity 1 Office Building (continued)}

Students design an office building according to certain specifications, while thinking strategically about minimizing costs without adjusting volume (72 office units).

\section*{(3) Connect}

Display a few different models of offices that students have built. Include the design with the least cost.

Have groups of students share their best design and the values they found for their design using the Gallery Tour routine.

Highlight that there seems to be a pattern related to finding the lowest cost for a building There is a lower cost for buildings that have a smaller base, but yet not too tall, which incurs a greater cost for windows.

\section*{Ask:}
- "Which design had the least cost? Why do you think that is?"
- "Which costs stayed the same? Which changed?"
- "What is the tallest building that could be constructed and meet these specifications?"

\section*{Unit Summary}

Review and synthesize what students understand from this unit by having them complete a graphic organizer and compare their notes with others.


\section*{Narrative Connections}

Read the narrative aloud as a class or have students read it individually

\section*{(4) Synthesize}

Display the Summary. Have students read the Summary or have a student volunteer read it aloud.

Highlight that it is very useful to spend some time reflecting on one's own learning at the conclusion of a unit. This helps to retain information and make connections that may not have been made when focusing on each individual lesson.

\section*{Reflect}

After synthesizing the concepts of this unit, allow students a few moments for reflection around the unit narratives. To help them engage in meaningful reflection, consider asking:
- "Can you think of other places where triangles are found in nature or architecture? In the room you are in right now?"
- "Which objects or spaces around you are shaped like prisms? What things in the wider world are shaped like prisms?'

\section*{Exit Ticket}

Students demonstrate their understanding of this unit by reflecting on their confidence with the geometrical concepts and terms used throughout the unit.


Date:

In this unit, you studied angles, triangles, and prisms. It is important to reflect on your learning at the end of a unit.
Complete the table by listing concepts from the unit - those you are confident you understand and those about which you are still unsure.
Use vocabulary from this unit in your reflection: right angle, straight angle, adjacent angles, complementary angles, supplementary angles, vertical angles, quadrilateral, base, cross section, prism, pyramid, volume, surface area, compass, and protractor.
\begin{tabular}{|c|c|}
\hline Confident about ... & Still unsure about ... \\
\hline Answers may vary. & Answers may vary \\
\hline
\end{tabular}


\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

\section*{\(\omega_{0}\). Points to Ponder ...}
- What worked and didn't work today? What was especially satisfying about how students worked in teams to create their building designs?
What challenges did students encounter as they worked through Activity 1? How did they work through it? What might you change for the next time you teach this lesson?


4
> 4. Refer to the trapezoidal prism.


Shade a base of the prism
b Determine the area of the base you shaded. Area of the base:
\(4 \cdot 5+\frac{1}{2} \cdot 4 \cdot 3=20+6=26 ; 26\) square units


Determine the volume of the prism
Volume: \(26 \cdot 12=312 ; 312\) cubic units
d Determine the surface area of the prism
Perimeter of the base: 22 units
Area of larger rectangle formed by the
lae
Surface area: \(264+2 \cdot 26=316 ; 316\) square units
\begin{tabular}{|lclc|}
\hline Practice Problem Analysis & \\
\hline Type & Problem & Refer to \\
\hline Spiral & \(\mathbf{1}\) & \begin{tabular}{l} 
Unit 7 \\
Lesson 4
\end{tabular} & DOK \\
\hline & \(\mathbf{2}\) & \begin{tabular}{l} 
Unit 7 \\
Lesson 2
\end{tabular} & 2 \\
\hline & 3 & \begin{tabular}{l} 
Unit 7 \\
Lesson 8 \\
Unit 7 \\
Lesson 17
\end{tabular} & 2 \\
\hline
\end{tabular}

\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

UNIT 8
Probability and Sampling

For the first time, students encounter how to quantify the chances of something happening. Though the future is unwritten, probability and statistics help us make better predictions and thus better decisions.

Essential Questions
- When faced with more than one possibility, how can you determine which is more likely to happen?
- Our world is really complicated - how can we simulate parts of it to make better predictions?
- When is a sample not representative of a population?
- (By the way, how do you crack a Caesar cipher-encoded message?)


THAT'S UNFAIR!


\(\square\)


\section*{Key Shifts in Mathematics}

\section*{Focus}
- In this unit...

Students develop the knowledge and language to describe the probability of single-step and multistep chance events. When chance events grow more complex, they learn how to represent sample spaces in tables, tree diagrams, and lists - and to design and use simulations. Samples of populations are generated in hands-on experiments, compared, and analyzed for bias. Finally, students share the results of their own statistical study based on the understandings gained throughout the unit.

\section*{Coherence}

\section*{< Previously ..}

Students were introduced to statistics in Grade 6. They reasoned about statistical questions and statistical variability by thinking about the shapes of data distributions and how a single value could represent the measure of center or variation of a numerical data set.

\section*{Coming soon ...}

Students will continue to explore the ways statistical data are represented visually on scatter plots. They will look for patterns of association and try to determine linear models that fit the relationship - or decide when an association is not linear.

\section*{Rigor}

In this unit, students engage in rich tasks that address one or more of these aspects of rigor. The following are examples of how each pillar is addressed. See each Lesson Brief to learn more about how rigor is balanced throughout the unit.

Students see that the best way to estimate the probability of an event is to observe it over the long-run. As students roll dice and collect data from classmates, they notice that many trials are needed (Lesson 4).

\section*{Procedural Fluency}

As students learn how to represent sample spaces for experiments with multiple parts, they are provided ample opportunity to practice with various scenarios and levels of complexity (Lesson 7).

Students are provided with an opportunity to apply what they have learned about the benefits of different simulation types and design their own simulations (Lesson 10).

\section*{Winning Chance}

\section*{SUB-UNIT \\ 1}

Lessons 2-6

\section*{Probabilities of Single-step Events}

Students begin their formal study of probability and develop the mathematical language necessary for describing the probability of single-step events. Through games and experiments, they learn that the chance of an event occurring is related to its sample space.


Narrative: The women of Bletchley Park use probability to decode enemy messages during World War II.

\section*{SUB-UNIT}


\section*{Probabilities of Multi-step Events}

Students discover that multi-step events are composed of more than one event. They organize the total number of possible outcomes in the sample space, using treee. diagrams, lists, and tables. To estimate the probability of even more complex events, students design and conduct simulations.


Narrative: Discover how to determine the chances of drawing both Blazing Shoal and Dragonstorm.

\section*{The Invention of Fairness}

Students explore the possibility that fairness can be quantified and measured. They play an unfair game and are given the power to change the rules to make it more fair. As they do so, they notice that they can begin to predict which events in the game are more likely than others.

\section*{SUB-UNIT}

Lessons 11-16

\section*{Sampling}

Students identify whether a sample is representative of a population, both numerically and visually. They begin to understand the importance of random sampling. As they watch out for sampling bias, they become more data-literate and better shepherds of their own data they collect.


Narrative: Use sampling and statistics to answer the questions that interest you.

\section*{Capstone \\ Lesson 17}

\section*{Presentation of Findings}

Students share the research and analysis of a statistical question they have been working on throughout the third Sub-Unit. They study each other's presentations, provide feedback, and take time to reflect on the feedback their presentation received. This lesson simulates the experience of conducting and refining academic research.

\section*{Unit at a Glance}

Spoiler Alert: When tree diagrams grow too large and complex, use multiplication to help determine the total number of possible outcomes for a multi-step event.


Capstone
Assessment


15 Estimating Population Measures of Center
Observe that a population with less variability produces samples that are more representative than populations with greater variability.


16 Estimating Population Proportions

Discover that having a representative sample makes it possible to use proportional reasoning to make predictions about a population.


17 Presentation of Findings
Share the statistical studies
students have worked on throughout the last Sub-Unit.

\section*{Key Concepts}

Lesson 3: Identifying the sample space helps determine the probability of a chance event occurring.
Lesson 7: Tree diagrams, tables, and organized lists can be used to determine the total number of possible combinations of a multi-step event. Lesson 14: Some samples from a population can be biased.

\section*{Pacing}

17 Lessons: 45 min each Full Unit: 20 days 3 Assessments: 45 min each - Modified Unit: 17 days

Assumes 45 -minute class periods per day. For block scheduling or other durations, adjust the number of days accordingly.


4 Estimating

\section*{Probabilities Through} Repeated Experiments
Perform an experiment and see that in the long run, the relative frequency approaches the theoretical probability of the chance event.

5 Code Breaking (Part 1) •
Build on experience with ratios and experimental probability to perform a frequency analysis of letters in an encrypted message.

\begin{tabular}{|c|c|c|c|c|}
\hline a & b & c & d & e \\
\hline \(8 \%\) & \(1 \%\) & \(2 \%\) & \(4 \%\) & \(11 \%\) \\
\hline \hline a & b & c & d & e \\
\hline \(0 \%\) & \(2 \%\) & \(4 \%\) & \(0 \%\) & \(4 \%\) \\
\hline
\end{tabular}


\section*{Sub-Unit 3: Sampling}


11 Comparing Two Populations

Decide whether two populations are very different from each other by comparing their means and mean absolute deviations.


12 Larger Populations
Introduces how data can be gathered from a sample of a population when it is impractical to collect from every individual.


13 What Makes a Good Sample?

Examine different samples of the same population and learn what it means to be representative of the population.


14 Sampling in a Fair Way
Consider different methods for selecting a sample and see that bias may prevent a sample from being representative of the population.

\section*{- Modifications to Pacing}

Lessons 5 and 6: In these lessons, students study encrypted messages to explore the frequency of letters used. The standards addressed will be re-introduced in the third Sub-Unit, so you may consider omitting Lessons 5 and 6.

Lesson 10: This lesson provides an opportunity for students to select an appropriate tool for a simulation, but does not introduce any new tools or strategies. It may be omitted.

Lesson 17: In the Capstone lesson, students who have completed all the components for their statistical study share and receive feedback on their work with the whole class. Alternatively, you might display students' work in the classroom or hall and omit the lesson.

\section*{Unit Supports}

\section*{Math Language Development}
\begin{tabular}{|l|l|}
\hline Lesson & \begin{tabular}{l} 
New Vocabulary \\
chance experiment \\
chance experiment \\
equally likely as not \\
event*
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
probability \\
sample space \\
impossible \\
likely \\
outcome \\
unlikely
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
relative frequency \\
multi-step event \\
tree diagram
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
simulation
\end{tabular} \\
\hline 7 & \begin{tabular}{l} 
population \\
sample
\end{tabular} \\
\hline 12 & \begin{tabular}{l} 
representative sample
\end{tabular} \\
\hline 13 & random sample \\
\hline 14 & population proportion \\
\hline 16 & \\
\hline
\end{tabular}

Mathematical Language Routines (MLRs) support students' language development in the context of mathematical sense-making.
\begin{tabular}{ll}
\hline Lesson(s) & Mathematical Language Routines \\
\hline \(4,9,15\) & MLR1: Stronger and Clearer Each Time \\
\hline \(1-4,7,9,12-16\) & MLR2: Collect and Display \\
\hline 16 & MLR3: Critique, Correct, Clarify \\
\hline 8 & MLR5: Co-craft Questions \\
\hline 5,7 & MLR6: Three Reads \\
\hline \(2,4,5,7-9,11\), & MLR7: Compare and Connect \\
\hline 13,16 & MLR8: Discussion Supports \\
\hline \(8,12-15\) &
\end{tabular}

\section*{Materials}

\section*{Every lesson includes:}


\section*{Instructional Routines}

Activities throughout this unit include these routines.
\begin{tabular}{|l|l|}
\hline Lesson(s) & Instructional Routine \\
\hline 2,12 & Card Sort \\
\hline \(7,9,11,15\) & Poll the Class \\
\hline 15 & Would You Rather? \\
\hline 17 & Gallery Tour \\
\hline \(2,13,15\) & Think-Pair-Share \\
\hline
\end{tabular}

\section*{Unit Assessments}

\section*{Assessments}

\section*{Pre-Unit Readiness Assessment}

This diagnostic assessment evaluates students' proficiency with prerequisite concepts and skills they need to feel successful in this unit.

\section*{Exit Tickets}

Each lesson includes formative assessments to evaluate students' proficiency with the concepts and skills they learned.

\section*{Mid-Unit Assessment}

This summative assessment provides students the opportunity to demonstrate their proficiency with the concepts and skills they learned in the first part of the unit.

\section*{End-of-Unit Assessment}

This summative assessment allows students to demonstrate their mastery of the concepts and skills they learned in the lessons preceding this assessment. Additionally, this unit's Performance Task is available in the Assessment Guide.

\section*{When to Administer}

Prior to Lesson 1

End of each lesson

After Lesson 10

\section*{powered by desmos}

\section*{Social \& Collaborative Digital Moments}

\section*{Featured Activity}

\section*{What's in the Bag?}

Put on your student hat and work through Lesson 3, Activity 2 :Points to Ponder . .
- What was it like to engage in this activity as a learner?
- How might you pace your students through this activity?
- What best practices might you employ for integrating technology in your classroom?

\section*{Other Featured Activities:}
- Cubes and Coins (Lesson 8)
- In the Long Run (Lesson 4)
- Multi-Step Events (Lesson 7)
- Breeding Mice (Part 2) (Lesson 10)


\section*{Unit Study \\ Professional Learning}

This unit study is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can engage in a meaningful professional learning experience to deepen your own understanding of this unit and employ effective pedagogical practices to support your students.

\section*{Anticipating the Student Experience With Fawn Nguyen}

Sub-Unit 3 introduces the idea of larger populations where it's not possible or reasonable to survey everyone, but data can be gathered from a sample of the population. Students learn to look for fair samples that are unbiased to represent the population. Equip yourself to support your students with this concept by engaging in a brief problem-solving exercise to deepen your own learning.

\section*{Do the Math}

Put on your student hat and tackle these problems from Lesson 13, Activity 1 :

\section*{Activity 1 Fish Market}

A saltwater fisherman caught and sold 10 different fish. The mean selling price was \(\$ 379\) per fish.
\(>1\). The first two fish she sold were sold for \(\$ 50\) and \(\$ 410\). Are the prices of these two fish a good representation of the 10 fish? Explain your thinking.
\(>2\). The fisherman sold three whole tuna fish for \(\$ 250, \$ 400\), and \(\$ 1,200\). Are the prices of these three fish a good representation of the 10 fish? Explain your thinking.
\(>3\). The fisherman sold three groupers for \(\$ 410, \$ 350\), and \(\$ 375\). Are the prices of these groupers a good representation of the 10 fish? Explain your thinking.
> 4. The table shows the selling prices for all 10 fish. Now that you have seen the entire population. which sample from Problems 1-3 is a better representation of the 10 fish? Explain your thinking.
```

 Prices of 10 fish ($)
 50
 350
    ```

Put your teacher hat back on to share your work with one or more colleagues and discuss your approaches.

Points to Ponder . . .
-What was it like to engage in this problem as a learner?
- Other than finding the mean price of each sample, are there other central measures that might be appropriate?
- What implications might this have for your teaching in this unit?

\section*{Focus on Instructional Routines}

\section*{Choose One Instructional Routine to list here}

\section*{Rehearse...}

How you'll facilitate the Card Sort instructional routine in Lesson 2, Activity 2:


\section*{Points to Ponder . . .}
- In this routine, students organize and classify information according to specific rules or goals.

\section*{This routine...}
- Normalizes error as part of the process of learning
- Encourages flexible thinking and sense-making.
- Engages visual and tactile learners.
- Allows for students to quickly adjust or correct their previous thinking.

\section*{Anticipate...}
- Students may have difficulty keeping track of all of the cards.
- If you haven't used this routine before, what classroom management strategies might you need to put in place to help it run smoothly?
- If you have used this routine before, what went well? What would you want to refine?

\section*{Strengthening Your Effective Teaching Practices}

\section*{Pose Purposeful Questions}

\section*{This effective teaching practice . . .}
- Helps you assess the reasoning behind student responses. They may arrive at a correct response using flawed reasoning; probing for their reasoning helps you know if they truly understand the concept.
- Helps you advance student reasoning and sense making by asking deeper questions about mathematical ideas and relationships.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

MLR7 appears in Lessons 2, 4, 5, 7-9, 11, 13, and 16.
- In Lesson 7, students compare three different representations for the sample space of a multi-step event. Probing questions are provided to help students use math language in their comparisons.
- In Lesson 11, students compare numerical values for mean and MAD to the visual displays of dot plots. Probing questions are provided for you to help students connect these two concepts.
- English Learners: In Lesson 5, Spanish letter frequencies are provided for students whose primary language is Spanish. Students can write a code in Spanish, create a cipher, and decode it using the Spanish letter frequencies provided.

\section*{3 Point to Ponder ...}
- How will you help students make greater connections between mathematical concepts and deepen their understanding of comparing two populations, sampling, and probability in this unit?

\section*{Unit Assessments}

Use the results of the Pre-Unit Readiness Assessment to understand your students' prior knowledge and determine their prerequisite skills.

\section*{Look Ahead . . .}
- Review and unpack the Mid- and End-of-Unit Assessments, noting the concepts and skills assessed in each.
- With your student hat on, complete each problem.
O. Points to Ponder...
-What concepts or skills in this unit might need more emphasis?
- Where might your students need additional scaffolding and support?
- How might you support your students with using proportional reasoning in the context of probability problems throughout the unit? Do you think your students will generally:
» struggle with converting fluently between decimal, fraction, and percent representations?
» be able to adapt to different representations of situations involving probability?
» understand the concept of probability, but face challenges identifying the relevant information in a problem?

\title{
The Invention of Fairness
}

\section*{Let's figure out how to make complex games fair.}


\section*{Focus}

\section*{Goals}
1. Language Goal: Compare the likelihoods of different outcomes when rolling two number cubes. (Speaking and Listening)
2. Create fair rules for a game, based on the likelihood of the outcomes when rolling two number cubes.

\section*{Rigor}
- Students build conceptual understanding of "fairness" by analyzing the outcomes of games with number cubes.
- Students play games with number cubes to develop conceptual understanding of the likelihood of events (probability).

\section*{Coherence}

\section*{- Today}

Students consider fairness from a quantitative perspective. By playing a game with two number cubes, they recognize that not all outcomes are equally likely, and they informally begin to reason about probability. When creating new rules for a game based on their observations during experiments, students reason both abstractly and quantitatively.

\section*{< Previously}

This is a special moment in your students' math careers - the start of work in a new branch of mathematics. Students have not yet been formally introduced to probability in prior grades. Get ready to help them navigate these uncharted waters. While students have not yet formally studied probability, they have developed ratio reasoning in Grade 6 and in earlier units of Grade 7. Ratio reasoning will be particularly helpful as they apply their understanding of ratios to probability.

\section*{> Coming Soon}

Students will formalize their understanding of probability and how to calculate the probability of certain outcomes.


Warm-up
\begin{tabular}{l|c}
\begin{tabular}{l|l} 
(1) 5 min & (C) 25 min \\
ㅇํㅇ Pairs & ㅇํㅇํํ Small Groups
\end{tabular}
\end{tabular}


Activity 1


Summary


\section*{Exit Ticket}
\[
\text { (ㄱ) } 5 \text { min }
\]
\(\bigcirc\) Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- number cubes, two per group

\section*{Amps ! Featured Activity}

\section*{Activity 1 \\ Digital Number Cubes}

Students quickly roll and record their results, allowing for more representative outcomes.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students may feel frustrated that the rules for the game they create in Round 2 of Activity 1 may not seem fair after playing only one time. Mention to students that - as they will see throughout the rest of the unit - some games must be played several times before you can tell whether they are fair.

\section*{Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- In Activity 1, Problem 3 may be omitted. If additional time is needed, Problems 6 and 7 may also be omitted.

\section*{Warm-up Fair or Unfair?}

Students activate their background knowledge by considering how they determine what is "fair" and recall any prior experiences with unfair games.


\section*{1 Launch}

Tell a story - real or invented - about a game you have played that you thought was unfair. Carnival or arcade games may serve as good examples. Activate students' background knowledge by asking them if they have ever played any games that they thought were fair or unfair.

\section*{(2) Monitor}

Help students get started by suggesting some common games that students may have played, such as board games.

\section*{Look for points of confusion:}
- Thinking about games that involve a player's skill rather than a game of chance. Discussing the fairness of skill games can be tricky - try to steer students back to thinking about games of chance.

\section*{Look for productive strategies:}
- Mentioning specific rules related to fairness, such as taking turns, receiving the same numbers of cards, or starting with the same amount of money.
(3) Connect

Have pairs of students share their descriptions of unfair games with each other. Call on a few students who are willing to share with the whole class.

Highlight some of the commonalities that emerge from the discussions of unfair games, such as earning a prize that was not worth the effort, starting with different numbers of points, or not having an equal opportunity to earn new points.

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

While students respond to the Warm-up prompt, circulate and collect any language they use to describe whether a game is "fair" or "unfair." Add this language to a class display for this unit, and invite students to add to and refer to this class display throughout the rest of this unit.

\section*{English Learners}

Allow students to work with a partner who shares the same primary language.

\section*{Activity 1 Game Time}

Students play a game with number cubes and craft new rules that are more fair, based on the outcomes they observe from playing the game.

Discuss withyour ghe mard each player she garne more for Sample response shown.
\begin{tabular}{|c|l|c|c|c|}
\hline & \multicolumn{1}{|c|}{ Wins if . . . } & Reward (points) & Win tally & Total points \\
\hline Player A & \begin{tabular}{l} 
The sum of the \\
number cubes is 4.
\end{tabular} & 3 & 11 & 6 \\
\hline Player B & \begin{tabular}{l} 
The sum of the \\
number cubes is 7.
\end{tabular} & 1 & 1111 & 4 \\
\hline Player C & \begin{tabular}{l} 
The sum of the \\
number cubes is 12.
\end{tabular} & 5 & 1 & 5 \\
\hline
\end{tabular}

\section*{1 Launch}

Read the directions for playing the game. Model how to shake and roll the number cubes gently.

\section*{2 Monitor}

Help students get started by suggesting a neutral characteristic they can use to select which player they will be in the activity. For example, "closest to the door," or "first name by reverse alphabetical order."

\section*{Look for points of confusion:}
- Thinking that not receiving any points means the game is unfair. Ask students to consider whether they had the same opportunity to earn points as the other players, not merely whether they earned points.

\section*{Look for productive strategies:}
- Noticing that certain outcomes are more likely to occur than others, and using these observations to craft new rules.
- Systematically analyzing the likelihood of the sums when rolling two number cubes, such as using a table or ordered list to record possibilities.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can interact with digital number cubes and roll them more quickly, allowing for more representative outcomes.

\section*{Extension: Math Enrichment}

Have students make a list to record all of the possible ways to roll a sum, when rolling two number cubes. Then have them revisit their response to Problem 7 to see if the list they created supports their response.

\section*{Accessibility: Guide Processing and Visualization}

Demonstrate how points are scored for Round 1 by rolling two number cubes until at least Player A, B, or C would have scored a point. Show how the points are scored based on the sum of the two number cubes.

\section*{Activity 1 Game Time (continued)}

Students play a game with number cubes and craft new rules that are more fair, based on the outcomes they observe from playing the game.


\section*{3 Connect}

Have groups of students share their responses to Problem 7. Record each group's list in a separate row of a table. Then select a few groups to share their reasoning for how they ordered their list. Allow groups to reconsider the order of their lists following the discussion.

Ask, "How much should each sum be worth? If you assume rolling a sum of 7 is one point, what should be the worth of rolling a sum of 12 ? Why do you think that?" Answers may vary.

Highlight that even though there is an equal chance of rolling each number on a number cube, when you add the two number-cube values together, the sums do not have the same chances of occurring.

\section*{Differentiated Support}

\section*{Extension: Math Around the World}

Have students use the internet, or another source, to research games that have been played by other cultures around the world. Have them select one game, describe the rules for play, and then decide whether they think the game is fair. They should explain their reasoning for why they think the game is either fair or unfair. Ask students to include in their research how the games were part of each culture or civilization.

Some games that students can research are provided here
- Ashbii (Native American)
- Dreidel (a Jewish game that originated in Germany)
- Hubbub (Penobscot Nation, New England)
- Lu-Lu Dice (Hawaii)
- Mancala (ancient Egypt)
- Tomo Todo (Mexico)
- Zambales (Philippines)
- Zara (ancient Italy)

\section*{Summary Winning Chance}

Review and synthesize that analyzing the likelihood of outcomes helps to determine whether games are fair or unfair and can be used to create rules for fair games.


\section*{Narrative Connections}

Read the narrative aloud as a class or have students read it individually.

\section*{(4) Synthesize}

Display the Summary from the Student Edition. Have students read the Summary or have a student volunteer read it aloud.

Highlight that, in this unit, students will engage in a new branch of math called probability. Even though it is new, students likely have prior experience understanding the chance of an event happening. Encourage them to share their own experiences in class during this unit.

Ask, "Why do you think Pascal and Fermat decided to use math to make the game more fair? Why were they not satisfied with just using their 'gut instinct' or intuition?"

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. To help them engage in meaningful reflection, consider asking:
- "What does it mean to be fair?"
- "Which strategies did you use with your group today to make your game fair? Were any successful? Unsuccessful?"

\section*{Exit Ticket}

Students demonstrate their understanding by analyzing the results of a game and determining whether the game is fair or unfair.


\section*{冒 Printable}


\section*{Exit Ticket} GS

Noah and Lin are playing a game with two number cubes. The rules and results are recorded in the table.
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{1}{c|}{ Wins if ... } & \begin{tabular}{c} 
Reward \\
(points)
\end{tabular} & Win tally & \begin{tabular}{c} 
Total \\
points
\end{tabular} \\
\hline Noah & \begin{tabular}{l} 
The sum of the \\
number cubes is 7.
\end{tabular} & 1 & 1111 & 4 \\
\hline Lin & \begin{tabular}{l} 
The sum of the \\
number cubes is 12.
\end{tabular} & 6 & । & 6 \\
\hline
\end{tabular}

Noah claims the game is not fair because they do not have the same score. He says if the game was fair, they would have the same score. Is Noah correct? Explain your thinking.
Sample response: Noah is incorrect, because a fair game does not mean Noah and Lin will always receive the same number of points. This game seems fair because rolling a sum of 7 should happen more often than rolling a sum of 12. Assigning the fewer points to the more likely sum (7) balances with assigning more points to the less likely sum (12).

\section*{Success looks like ...}
- Language Goal: Comparing the likelihoods of different outcomes when rolling two number cubes. (Speaking and Listening)
» Explaining whether the game with two number cubes is fair by comparing the likelihood of a sum of 7 with the likelihood of a sum of 12
- Goal: Creating fair rules for a game, based on the likelihood of the outcomes when rolling two number cubes.

\section*{- Suggested next steps}

If students claim the game is not fair because each player receives a different reward, consider:
- Having them review Activity 1, Problem 7 and describe why certain sums, such as 2 and 12 . are less likely to occur than other sums.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder . .
- What worked and didn't work today? What did students find frustrating about Activity 1 ? What helped them work through this frustration?
- Knowing where your students need to be by the end of this unit, how did developing the concept of fairness influence that future goal? What might you change for the next time you teach this lesson?

\begin{tabular}{|lclc|}
\hline Practice Problem & Analysis \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 2 \\
\hline Spiral & \(\mathbf{2}\) & Activity 1 & 2 \\
\hline Formative 0 & \(\mathbf{3}\) & \begin{tabular}{l} 
Unit 7 \\
Lesson 16
\end{tabular} & 2 \\
\hline & \(\mathbf{4}\) & \begin{tabular}{l} 
Unit 6 \\
Lesson 7 \\
Unit 8 \\
Lesson 2
\end{tabular} & 2 \\
\hline
\end{tabular}
© Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.


\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Probabilities of Single-step Events}

In this Sub-Unit, students examine the probability of simple events through games and experiments.



\section*{Narrative Connections}

Read the narrative aloud as a class or have students read it individually. Students continue to explore how probability and frequency is connected to decoding messages in the following places:
- Lesson 5, Activity 1 :

Caesar Cipher
- Lesson 5, Activity 2: Crack the Code
- Lesson 6, Activity 1: Send a Secret Message
- Lesson 6, Activity 2 : Decoding the Secret Message

\section*{Chance Experiments}

\section*{Let's investigate experiments of chance.}


\section*{Focus}

\section*{Goals}
1. Language Goal: Comprehend and use the terms impossible, unlikely, equally likely as not, likely, and certain to describe the likelihood of an event. (Speaking and Listening, Writing)
2. Language Goal: Order a given set of events from least likely to occur to most likely, and justify the reasoning. (Speaking and Listening)

\section*{Coherence}

\section*{- Today}

Students investigate chance events. They use language such as impossible, unlikely, equally likely as not, likely, or certain to describe the likelihood of a chance event. Students make sense of the chance events and sort them into these categories. By comparing informal groupings first and numerical quantities later, students attend to precision as they order the events from least likely to most likely.

\section*{< Previously}

In Lesson 1, students considered the fairness of a game by playing a game using two number cubes. They recognized that not all outcomes are equally likely and informally reasoned about chance events.

\section*{>Coming Soon}

In Lesson 3, students will use a sample space to calculate the probability of a chance event. They will connect the language that describes the likelihood of an event to more precise numerical values.

\section*{Rigor}
- Students use real-world examples and spinners to build their conceptual understanding of the likelihood of an event.
- Students order events from least likely to most likely to develop procedural fluency of ordering events by likelihood.


Warm-up


Activity 2


Activity 3


Summary
\begin{tabular}{|c|c|}
\hline (J) 10 min & ( 10 min \\
\hline ㅇํำ Small Groups & \(\stackrel{\circ}{\circ} \mathrm{O}\) Pairs \\
\hline
\end{tabular}


\section*{(-) 5 min}

○ Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\cap\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 2 PDF, pre-cut cards, one set per group
- Activity 3 PDF, pre-cut spinners, one per pair
- paper clips, one per pair

\section*{Math Language}

Development

\section*{New words}
- certain
- chance experiment
- equally likely as not
- event*
- imposssible
- likely
- outcome
- unlikely
*Students may be familiar with the term event in its everyday use of the term, such as a sporting event. Be ready to address how the everyday meaning relates to the statistical meaning.

\section*{Amps \(\vdots\) Featured Activity}

\section*{Activity 2 \\ Digital Ordered Lists}

Students can drag and drop scenarios in an ordered list, showing how they order the likelihood of events.


\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In Activity 1, have students only complete 5-6 of the events. Select at least one event for them to complete from each category: possible, impossible, certain.
- In Activity 3, Problem 3, have students spin the spinner 5 times and combine their results with another set of partners.

\section*{Warm-up Which Is More Likely?}

Students use two real-world scenarios to reason about likelihood, which will help them define probability in future activities.

(1) Launch

Have students use the Think-Pair-Share routine. Provide them 1 minute of individual think time. Then have them complete the Warm-up with a partner.

\section*{(2) Monitor}

Help students get started by asking them to consider the total number of shoes in the closet and the total number of songs on the playlist.

\section*{Look for points of confusion:}
- Thinking that a specific shoe has to be selected. Have students visualize a pile of shoes and tell them they can choose any left shoe. To clarify, have them determine how many right shoes are in the closet.

\section*{3 Connect}

Have students share their thinking with the class.

Highlight that when comparing the two events, it is more likely that you will pull out a left shoe from a closet of 10 pairs of shoes, because there are 10 left shoes and 10 right shoes. If there were only 1 left shoe in the closet - and the remaining 19 shoes were right shoes - then the events would have the same likelihood. When using terms like possible, likely, or not very likely to describe the chances of an event happening, students are describing the likelihood of that event.

\section*{(7) Power-up}

To power up students' ability to identify benchmark fractions and decimals on a number line, have students complete:
Use the number line to complete each problem.

1. What fraction does the first tick mark represent? \(\frac{1}{10}\)
2. What decimal does the first tick mark represent? 0.1
3. Write the value of point \(A\) as both a fraction and a decimal.

Fraction: \(\frac{4}{10}\) or equivalent
Decimal: 0.4 or equivalent

Use: Before Activity 2
Informed by: Performance on Lesson 1, Practice Problem 5 and Pre-Unit Readiness Assessment, Problem 1

\section*{Activity 1 How Likely Is It?}

Students engage their intuition about the likelihood of events and informally assign the terms impossible, possible, and certain to describe them.


\section*{1 Launch}

Activate students' background knowledge by asking them what the terms impossible, possible, and certain mean to them.

\section*{(2) Monitor}

Help students get started by having them read through the descriptions of all the events, first looking for which events are impossible.

Look for points of confusion:
- Not understanding the difference between certain and possible. Tell students that certain means "it will definitely happen." Possible means "it might happen, but it also might not happen."
(3) Connect

Have pairs share how they defined each term in their own terms with specific examples from the activity.

Highlight how students organized the events in Problem 1 as impossible, possible, or certain.

\section*{Ask:}
- "Were there any disagreements among you and your partner? How did you resolve them?" Answers may vary.
- "Were any of these events challenging to describe using these terms?" Answers may vary.
- "Which terms are the most strict about what types of events can be described by them?" Certain and impossible
- "What does it mean for an event to be certain?" Sample response: The event will definitely happen.

\section*{Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

Have students choose 6 of the events in Problem 1 to complete. Allowing them to choose which parts they would like to complete helps increase their engagement in the activity.

\section*{Accessibility: Clarify Vocabulary and Symbols}

Students are likely to be familiar with the terms possible, impossible (not possible), and certain. Display the following as a reminder of these terms.
\begin{tabular}{|c|c:c|}
\hline Possible: & Impossible: & Certain: \\
\begin{tabular}{l} 
It might happen or it \\
might not happen.
\end{tabular} & It definitely will & It definitely will \\
not happen. & happen.
\end{tabular}

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students respond to the Ask questions, draw their attention to the terms that are the most strict about what types of events they describe. If students do not say certain and impossible, ask these follow-up questions:
- "If you are sure that the event will either happen or not happen, which term(s) are best to describe these?" Certain or Impossible.
- "If you are unsure as to whether the event will happen, which term(s) are best to describe the event?" Possible.

\section*{English Learners}

Students may be confused by the term trot in Problem 1e. Mention this term describes how an animal might move.

\section*{Activity 2 Card Sort: Likelihood}

Students move toward formally describing the likelihood of events as impossible, unlikely, equally likely as not, likely, and certain.


Amps Featured Activity
Digital Ordered Lists

Activity 2 Card Sort: Likelihood

You will be given cards with descriptions of events on them.
1. Order the events from most likely to least likely. Record the card letters in the table.

Card B
Most likely
Card D
Card C
Card A Least likely

After ordering the first set of cards, pause here and wait for further instructions. Then you will be given additional cards.
2. Add the additional cards to the first set. Reorder all of the cards from most likely to least likely and record the card letters in the table.
\begin{tabular}{|c|c|}
\hline Card B & Most likely \\
\hline Card E & \\
\hline Card D & \\
\hline Card H or Card G & \\
\hline Card G or Card H & \\
\hline Card C & \\
\hline Card F & \\
\hline Card A & Least likely \\
\hline
\end{tabular}

\section*{1 Launch}

Distribute one set of cards from the Activity 2 PDF to each group. Distribute Cards A-D first and then Cards E-H after Problem 1 has been completed. Conduct the Card Sort routine.

\section*{(2) Monitor}

Help students get started by choosing two cards first to compare them, and then adding in additional cards one at a time.

\section*{Look for points of confusion:}
- Not noticing that Card G and Card H have the same likelihood. Ask students, "How much of each book consists of even-numbered pages?"

\section*{Look for productive strategies:}
- Thinking about the likelihood of each event in terms of ratios.

3 Connect
Have groups of students share their reasoning for ordering the cards in the way they did.

Ask, "How can you know that Card F is less likely to happen than Card H?"

Highlight that students can use mathematical reasoning to gain a sense of which kinds of events are more likely to occur than others. Also, it is possible for two events to have the same likelihood of occurring.

Define the terms impossible, unlikely, equally. likely as not, likely, and certain.

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can drag and drop scenarios into a digital ordered list.

\section*{Accessibility: Clarify Vocabulary and Symbols}

Be sure students understand the phrases least likely and most likely. Least likely: Either impossible or probably won't happen (compared to the others).
Most likely: Either certain or probably will happen (compared to the others).

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students respond to the ask question, display Card F and Card H. Follow-up with these questions:
- "How many ways are there for Card F to occur? 1 way Card H?" 50 ways
- "What if a new card, Card I, stated, 'Opening a 100 -page book to a page numbered greater than 35 '? Which card would be more likely, Card I or Card H? Why?" Card I because there would be 65 ways for Card I to occur.

\section*{English Learners}

Show examples of an even-numbered page and a "double-digit" page to help students comprehend Cards E, G, and H.

\section*{Activity 3 Spin to Win}

Students begin to move toward a more quantitative understanding of likelihood by observing a chance experiment that has several outcomes.


\section*{1 Launch}

Distribute a paper clip and a spinner from the Activity 3 PDF to each pair of students.

\section*{2 Monitor}

Help students get started by having them generate three informal observations about the spinner.

\section*{Look for points of confusion:}
- Thinking it is impossible to land on cyan. Ask, "Impossible means it will never happen. Is that what you mean?"

\section*{3 Connect}

Have pairs of students share the reasoning behind their predictions from Problem 3a.

Define the following terms:
- A chance experiment is an experiment you can perform multiple times, in which the outcome may be different each time. For example, spinning the spinner 10 times to see what the result is each time.
- The outcome of a chance experiment is something that can happen when you perform the experiment. For example, when you toss a coin, one possible outcome is landing heads facing up.
- An event is a set of one or more outcomes in a chance experiment.

Highlight that students can reason about the likelihood of an event by comparing the chances for different outcomes.

Ask, "If you performed this chance experiment again, would you get different outcomes?" Yes.

Differentiated Support

\section*{Accessibility: Vary Demands to Optimize Challenge}

In Problem 3, have students focus on a particular outcome, such as spinning blue 5 times, because spinning blue is the most likely event to happen. Discuss reasons why blue might not have actually occurred that exact number of times.

\section*{Extension: Math Enrichment}

Have students explain whether the likelihood would change for each color if the spinner was spun 5 times, 10 times, or 15 times. No, the likelihood will not change regardless of how many times the spinner is spun. For example, each time the spinner is spun, landing on blue will always have the greatest likelihood.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students share their reasoning behind their predictions for Problem 3a, draw their attention to the connections between the relative size of each section and the comparative number of times they predicted the spinner would land on each color. Ask:
- "What do you notice about the largest-size section, compared to your prediction in Problem 3a? The smallest-size section?"
- "What did the sum of your predictions need to be? How did that affect your predictions?"

\section*{English Learners}

Annotate the blue section of the spinner with the phrase most likely and the cyan section with the phrase least likely.

\section*{Summary}

Review and synthesize how to compare and describe likelihood.

\section*{Summary}

\section*{In today's lesson.}

You explored events of chance and how likely they are to occur. A chance experiment is something that happens in which the outcome is unknown. For example, if you toss a coin, you do not know whether the result will be heads facing up or tails facing up until the coin lands
An outcome is any one of the possible results that can happen when you perform a chance experiment. For example, when you toss a coin, one possible outcome is that the coin will land heads facing up. An event is a set of one or more outcomes that are favorable, or desirable.
You can describe the likelihood of events using these phrases:
- impossible
- unlikely
- equally likely as not
- likely.
- certain

Reflect:

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in this unit. Ask them to review and reflect on any terms and phrases related to the terms chance experiment, outcome, event, impossible, unlikely, equally likely as not, likely, and certain that were added to the display during the lesson.

\section*{Exit Ticket}

Students demonstrate their understanding by comparing the likelihood of events.


\section*{Success looks like ...}
- Language Goal: Comprehending and using the terms impossible, unlikely, equally likely as not, likely, and certain to describe the likelihood of an event. (Speaking and Listening, Writing)
- Language Goal: Ordering a given set of events from least likely to occur to most likely, and justifying the reasoning. (Speaking and Listening)
» Ordering the likelihoods of the shaded areas of the spinners in Problem 1.

\section*{Suggested next steps}

If students order the spinners in a different order, consider:
- Reviewing the terms impossible and certain.
- Reviewing the events in Activity 2 and applying these terms to those events.
- Asking students to identify which spinner has no shaded section and which spinner is entirely shaded.
- Assigning Practice Problem 1.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

\section*{Points to Ponder ..}
- What worked and didn't work today? What did you see in the way some students approached Activity 2? What does that tell you about similarities and differences among your students?
- During the discussion about Activity 1 , how did you encourage each student to share their understanding? What might you change for the next time you teach this lesson?

\section*{Math Language Development}

\section*{Language Goal: Comprehending and using the terms impossible, unlikely, equally likely as not, likely, and certain to describe the likelihood of an event.}

Reflect on students' language development toward this goal.
- How are students progressing in their use of these terms to describe the likelihood of events? How can you model the use of these terms to support them?
- Reflect on the language routines used in this lesson? Were there any that were more helpful than others? Why? Would you change anything the next time you use these routines?


\section*{What Are Probabilities?}

Let's find out what's possible.


\section*{Focus}

\section*{Goals}
1. Language Goal: Generalize the relationship between the probability of an event and the number of possible outcomes in the sample space, for an experiment in which each outcome in the sample space is equally likely. (Speaking and Listening)
2. Language Goal: List the sample space of a simple chance experiment. (Writing and Reading)
3. Use the sample space to determine the probability of an event, and express it as a fraction.

\section*{Coherence}

\section*{- Today}

Students begin to assign probabilities to chance events. They understand that the greater the probability, the more likely the event will occur. They learn that the sample space is the set of all possible outcomes. Students reason that if there are \(n\) equally likely outcomes for a chance experiment, they can construct the argument that the probability of each of these outcomes is \(\frac{1}{n}\).

\section*{< Previously}

In Lesson 2, students used the terms impossible, unlikely, equally likely as not, likely, and certain to describe the likelihood of a chance event.

\section*{> Coming Soon}

Students will conduct experiments and see that in the long run, the relative frequency of a chance event approaches its theoretical probability.

\section*{Rigor}
- Students build conceptual understanding of sample space by creating lists of outcomes.
- Students build conceptual understanding of probability by using sample spaces to model possible outcomes.


Warm-up


Activity 1


Activity 2


Summary


Exit Ticket
(J) 5 min
\(\circ ํ(\) Pairs
(J) 10 min
\(\circ \circ\) Pairs
() 15 min
\(\stackrel{\circ}{\circ} \mathrm{O}\) ㅇํ Small Groups


\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 2 PDF, pre-cut slips, one set per group
- bags, one per group

Math Language Development

\section*{New words}
- probability
- sample space

\section*{Review words}
- chance experiment
- outcome
- event

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students may lose focus while they attempt to determine what is in the bag as they select slips of paper out of the bag. Encourage students to discuss their feelings with their group members. Others may be feeling similarly and can empathize. Together they can work on a strategy for staying focused without frustration.

\section*{Amps : Featured Activity}

\section*{Activity 2 \\ Mystery Bags}

Students will select slips of paper from a virtual bag. They will then try to guess the contents of the bag based on their selection.


\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In Activity 1, Problem 2 may be omitted.
- In Activity 2, Problem 4 may be omitted.

\section*{Warm-up Would You Rather?}

Students compare likelihoods of two events to get a better idea of how the size of the sample space affects the likelihood.


\section*{1 Launch}

Activate students' background knowledge by asking if they have ever played a game that involved tossing a coin or rolling a number cube. Conduct the Would You Rather? routine.

\section*{2 Monitor}

Help students get started by thinking about all the possible outcomes for each game.
Look for points of confusion:
- Thinking that the chances to win are the same for each game because there is one favorable outcome for each game. Ask students to experiment with a coin and a number cube to observe what happens.

\section*{Look for productive strategies:}
- Listing the total outcomes for each game and comparing the number of favorable outcomes for each game to the total.

\section*{Connect}

Have pairs of students share which game they chose and their reasoning.
Highlight that the likelihood of winning depends on how the number of favorable outcomes compares to the total number of outcomes.
Define the sample space as the list of every possible outcome for a chance experiment. For example, when rolling a number cube once, the sample space is \(1,2,3,4,5\), and 6 .

\section*{Ask:}
- "What is important to consider when judging how likely you are to win a game of chance?" How many chances you have to win compared to how many chances you have to lose (or how many total outcomes there are).
- "What is the sample space if you were to randomly select one letter from the word DEBATE?"

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

During the Connect, as students share which game they chose and their reasoning, collect informal language that students use to describe the sample space and connect their language to the formal definition introduced.

\section*{English Learners}

Use diagrams and organized lists to list the total outcomes of the games played to support students in visualizing the sample space.

\section*{Power-up}

To power up students' ability to calculate percentages based on real-world data, have students complete:
Recall that determining the percentage from a part \(p\) and a whole \(w\) you can use the expression \(\frac{p}{w}\). 100
Jada's teacher assigned 30 minutes of reading for homework. Determine the percent of the assigned reading each student completed.
a Diego read for 21 minutes. \(70 \%\)
b Priya read for 15 minutes. \(50 \%\)
c Bard read for 36 minutes. \(120 \%\)
Use: Before Activity 2
Informed by: Performance on Lesson 2, Practice Problem 6 and Pre-Unit Readiness Assessment, Problem 2

\section*{Activity 1 What's Possible?}

Students think about chance situations, determine the sample space, and then consider the likelihood of certain outcomes.


\section*{1 Launch}

Set an expectation for the amount of time students will have to work in pairs on the activity.

\section*{(2) Monitor}

Help students get started by asking, "What are all of the possible numbers you can roll on a number cube?"

Look for points of confusion:
- Thinking Mai is more likely to select the letter \(T\) in Problem 2b because there are more possible outcomes. Have students imagine placing each outcome in the sample space into a bag and selecting one without looking.

\section*{3 Connect}

Have pairs of students share their responses to Problem 2.

Highlight that when the sample space is greater in one event than another, but the number of favorable outcomes is the same, then the likelihood of the event with the greater sample space is less than the likelihood of the other event, as seen in Problem 2b. Conversely, when the sample space is the same, but the number of favorable outcomes is greater, there is a greater likelihood of the event, as seen in Problem 2c. Point out that there is a ratio that will help them measure likelihood.

Define the term probability as a number that tells how likely it is for an event to happen. When outcomes are equally likely, the probability is the ratio of the number of favorable outcomes to the total possible outcomes.

\section*{Ask:}
- "What is the probability of tossing a coin and landing heads facing up?" \(\frac{1}{2}\)
- "What is the probability of rolling a standard number cube and rolling a 1 or 4 ?" \(\frac{2}{6}\) or \(\frac{1}{3}\)

\section*{Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization}

Consider demonstrating how to determine the sample space for Problem la and then have students complete the rest of the problems.

\section*{Accessibility: Clarify Vocabulary and Symbols}

During the Connect, as you define the term probability, add the following to the class display:
probability = favorable outcomes : possible outcomes
probability \(=\frac{\text { favorable outcomes }}{\text { possible outcomes }}\)

\section*{Math Language Development}

\section*{MLR8: Discussion Supports—Press for Reasoning}

During the Connect, as students share their responses to Problem 2, press them to explain their reasoning for Problem 2b. Ask:
- "What do you notice about the sample space for Kiran's experiment compared to Mai's experiment?"
- "How does the sample space affect the likelihood of the event?"

\section*{English Learners}

Consider providing students with notecards or small pieces of paper to try a few of the experiments. This will help support students' sense making around sample space and favorable outcomes.

\section*{Activity 2 What's in the Bag?}

Students conduct an experiment, seeing that the probability of an event cannot be found without first understanding the sample space.

 Date: Period:

Activity 2 What's in the Bag?
Your teacher will give your group a bag of paper slips with a letter printed on each slip.
- Without looking in the bag, make a guess as to what letter might be printed on one of the slips. Record your guess in the table.
- Without looking in the bag, take out one of the slips and show it to the group.
- Everyone in the group records what is printed on the slip.
- Replace the slip back in the bag. Shake the bag and pass it to the next person.
Repeat these steps until everyone in your group has had a turn
1. After everyone has taken a turn, can you be certain whether you have seen all of the letters that are printed on all of the slips? Explain your thinking.
Sample response: No, because we replaced the selected slip back into the bag each time and we do not know the total number of slips in the bag.
2. Is it possible to know the probability of selecting a slip of paper with a particular letter printed on it? Explain your thinking.
Sample response: No, because if we do not know the number of slips in the bag it is not possible to know how likely it is to select a slip with a particular letter printed on it. We also do not know what letters are printed on the slips.
3. Take out all of the slips from the bag and study them. Are all the possible outcomes - selecting a slip with a particular letter - equally likely? Explain your thinking. Answers may vary according to which set of cards the group had. For Sets 1, 3, and 4, the outcomes are equally likely. For Set 2 , the outcomes are not equally likely because the likelihood of selecting the letter \(A\) is greater.
4. Based on what is in your bag, determine the probability that you would select a slip with a vowel printed on it.
\(\begin{array}{ll}\text { Set } 1: \frac{1}{6} \text { or } \frac{2}{6} \text {, depending on how the } & \text { Set } 3: \frac{5}{6} \text { or } \frac{6}{6} \text {, depending on how the } \\ \text { Setter } Y \text { is classified. } & \text { letter } Y \text { is classified. } \\ \text { Sor } \frac{1}{3} & \text { Set } 4: \frac{2}{6} \text { or } \frac{1}{3}\end{array}\)

\section*{1 Launch}

Provide each group with a bag containing a set of paper slips from the Activity 2 PDF. Inform students that their task is to determine what is printed on the slips of paper in their bag.

\section*{2 Monitor}

Help students get started by acting out the steps they will take to perform the experiment.

Look for points of confusion:
- Thinking it is possible to know the probability of selecting a slip of paper with a particular letter on it in Problem 2. Ask, "If I asked whether you would like a snack from a mystery bag, wouldn't you want to know what the possibilities are first?"

\section*{3 Connect}

Ask, "What reasoning did you use to refine your predictions after each person took their turn?"
Highlight that students can think of the contents of the bag as the sample space of the experiment. Sometimes, in the real world, the sample space is unknown before conducting an experiment. When the sample space is not known, an accurate prediction cannot be made about the probability of outcomes. Once the sample space is better understood, then accurate predictions can be made.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides, in which they can select slips of paper from a virtual bag and guess the contents of the bag based on their selection.

\section*{Accessibility: Clarify Vocabulary and Symbols}

During the Launch or before students attempt Problem 3, preview the vocabulary term equally likely and be sure students understand its meaning Remind them that outcomes in an experiment are equally likely if the likelihood of selecting each outcome is the same. Consider providing an example, such as rolling a number cube or tossing a coin.

\section*{Extension: Math Enrichment}

Have students consider the following scenario:
You are given a new bag with slips of paper in it. Each slip has a letter printed on it. You are told that the bag contains all the letters of the alphabet. You selected and replaced slips of paper 50 times and never selected the letter Z . Does this mean there is no letter Z in the bag? Explain your thinking. Not necessarily, but it might make me wonder if it is missing.

\section*{Summary}

Review and synthesize how the sample space of a chance experiment can help determine the probability of an event occurring.

\section*{Summary}

\section*{In today's lesson...}

You listed all of the possible outcomes for a chance experiment, which is known as the sample space of the experiment. If outcomes are equally likely, identifying the sample space can help you determine the probability of an event occurring.

When all of the outcomes are equally likely, the probability of an event is the ratio of the number of favorable outcomes to the total possible number of outcomes.
\(P(\) event \()=\frac{\text { number of favorable outcomes }}{\text { tal }}\)
Probabilities are expressed using numbers from 0 to 1 , where 0 represents an event that is impossible and 1 represents an event that is certain. Often, probabilities are expressed as ratios, fractions, or percentages


Reflect:

\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in this unit. Ask them to review and reflect on any terms and phrases related to the terms sample space and probability that were added to the display during the lesson

\section*{Synthesize}

Highlight that the probability of an event occurring is the ratio of the number of favorable outcomes to the total possible number of outcomes in an experiment. This ratio is a number between 0 and 1 , where 0 represents an event that is impossible and 1 represents an event that is certain. The probability of an event can be written as a fraction, a decimal, or a percentage.
\(P(\) event \()=\frac{\text { number of favorable outcomes }}{\text { total possible number of outcomes }}\)

\section*{Formalize vocabulary:}
- sample space
- probability.

Ask:
- "If you randomly select one letter from the English alphabet, how many outcomes are in the sample space? There are 26 outcomes in the sample space.
- Suppose you want to select a vowel (not including \(Y\) ). How many favorable outcomes are there? What is the probability of selecting a vowel?" There are 5 favorable outcomes that are vowels: A, E, I, O, and \(U\). The probability of selecting a vowel is \(\frac{5}{26}\)
- "Suppose, in a different chance experiment, there are 100 different outcomes in the sample space that are equally likely. What is the probability that a specific outcome will occur?" \(\frac{1}{100}\)
- "Is it possible to have a probability of 3? Why or why not?" No; Sample response: An event that is certain to happen has a probability of 1 . Any number greater than 1 does not make sense within the context of probability.

\section*{(I) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What methods did you use to organize your sample spaces in class today? Which methods did you find helpful?"
- "Why is it important to consider all of the outcomes when determining the likelihood or probability of an event occurring?"

\section*{Exit Ticket}

Students demonstrate their understanding by listing the sample space of a chance experiment and finding the probability of an event occurring.


\section*{Success looks like ...}
- Language Goal: Generalizing the relationship between the probability of an event and the number of possible outcomes in the sample space, for an experiment in which each outcome in the sample space is equally likely. (Speaking and Listening)
- Language Goal: Listing the sample space of a simple chance experiment. (Writing and Reading)
» Listing the sample space of letters that are possible for the parent to teach in Problem 1.
- Goal: Using the sample space to determine the probability of an event, and expressing it as a fraction.
» Determining the probability of selecting the letter \(Y\) as a fraction in Problem 3.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

C3. Points to Ponder ..
- What worked and didn't work today? The instructional goal for this lesson was for students to create sample space to determine the probability of single events. How well did students accomplish this? What did you specifically do to help students accomplish it?
- In what ways in Activity 2, did things happen that you did not expect? What might you change for the next time you teach this lesson?

\begin{tabular}{|lclc|}
\hline \multicolumn{3}{|l|}{ Practice Problem Analysis } \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 1 \\
\hline Spiral & \(\mathbf{2}\) & Activity 1 & 2 \\
\hline & 3 & Activity 2 & 2 \\
Formative 0 & \(\mathbf{6}\) & \begin{tabular}{l} 
Unit 2 \\
Lesson 5
\end{tabular} & 2 \\
\hline
\end{tabular}

For students who need additional practice in this lesson, assign the Grade 7 Additional

O Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available} Practice.

6. A coach can choose only one player to take a penalty shot in a soccer game. The coach must decide between Tyler, who scored on 2 out of his previous 3 penalty shots, and Bard, who scored on 15 of Bard's previous 25 penalty shots. Would you advise the coach to choose Tyler or Bard? Explain your thinking.
Sample response: I would advise the coach to choose Bard, even though
Bard has a lower percentage of making the penalty shots ( \(60 \%\) for Bard, compared to about \(67 \%\) for Tyler.) This is because Bard has more
experience and it is possible that Tyler has had 2 lucky shots so far.

\section*{Estimating Probabilities Through Repeated Experiments}

\author{
Let's do some experimenting.
}


\section*{Focus}

\section*{Goals}
1. Language Goal: Describe patterns, observed in a table or on a graph, that show the relative frequency for a repeated experiment. (Speaking and Listening, Writing)
2. Language Goal: Generalize that the cumulative relative frequency approaches the probability of the event as an experiment is repeated many times. (Speaking and Listening)
3. Language Goal: Generate possible results that would or would not be surprising for a repeated experiment, and justify the reasoning (Speaking and Listening)

\section*{Coherence}

\section*{- Today}

Students roll a number cube many times and see that in the long run, the relative frequency approaches the probability of the chance event. They repeat the experiment and examine the structure of the results. They also see that the relative frequency of a chance event seldom has the exact same value as the expected probability.

\section*{< Previously}

In Lesson 3, students were introduced to assigning probabilities to chance events and learned that the greater the probability, the more likely the event will occur.

\section*{>Coming Soon}

In Lessons 5 and 6, students will engage in a project asking them to compare the relative frequencies of letters in texts in order to crack a code

\section*{Rigor}
- Students build conceptual understanding of relative frequency by repeatedly rolling number cubes.
- Students build fluency in determining the probability of single-step events by comparing them to the cumulative relative frequency of the events in an experiment.


Warm-up


Activity 2
\[
\begin{aligned}
& \text { (1) } 10 \text { min } \\
& \text { ㅇํ Pairs }
\end{aligned}
\]


Summary


Exit Ticket
\begin{tabular}{|c|c|}
\hline (1) 5 min & (1) 15 min \\
\hline กำ Pairs & คํำ Pairs \\
\hline
\end{tabular}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \(\bigcirc\) Independent

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 1 PDF (optional, for display)
- number cubes, one per pair

\section*{Math Language}

Development

\section*{New word}
- relative frequency

\section*{Review words}
- chance experiment
- event
- outcome
- probability
- sample space

\section*{Amps \(\vdots\) Featured Activity}

\section*{Activity 1}

Aggregate Class Data
Students see how, over the long term, the experimental (observed) probability approaches the theoretical probability of an event.

desmos

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students may feel confused when considering the theoretical outcomes of tossing a coin without actually conducting the experiment. Encourage students to use drawings or objects to simulate the experience of tossing a coin when it cannot actually be done.

\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In the Warm-up, Problem 2 may be omitted.
- In Activity 2, Problem 3 may be omitted.

\section*{Warm-up Decimals on the Number Line}

Students place decimal values on a number line to prepare them for working with decimals and probability in the upcoming activities.


\section*{1 Launch}

Encourage students to discuss their plan, with a partner, for locating the numbers on the number line before they place the values.

\section*{Activity 1 In the Long Run}

Students conduct an experiment to observe the long-run relative frequency of an event and compare it to the event's probability.


Amps Featured Activity
Aggregate Class Data

Activity 1 In the Long Run

Let's test how often a number cube will roll a 5 or a 6 during an experiment. You will be given a number cube to use starting with Problem 3.
1. List the sample space for rolling a number cube. \(1,2,3,4,5\), and 6
2. The number cube is rolled once. What is the probability of rolling a 5 or a 6? What does this mean?
The probability of rolling a 5 or 6 is \(\frac{1}{3}\). This means that out of the 6 total possible outcomes, 2 outcomes are favorable.
3. With a partner, roll the number cube 10 times. One partner should roll while the other records the results. Trade roles and repeat the experiment for Round 2.
Round Record the results. What number is rolled each time?

1
2
4. Determine the ratio of the number of 5 s or 6 s rolled to the total number of rolls for each round.
a Round 1 b Round 2
5. Determine the ratio of the number of 5 s or 6 s rolled to the total number of rolls combined for each round.
a Round 1 b Round2
6. After 20 rolls, how close was the result of your experiment to the expected probability from Problem 2?
Sample response: After 20 rolls, the result of our experiment was \(\frac{4}{20}\), or a \(\mathbf{2 0 \%}\) chance of rolling on a 5 or a 6 . This is less than the expected probability of \(\frac{1_{3}}{}{ }^{20}\)

Pause and wait for further instructions while your teacher collects the class's data.
7. Pool the class results. What was the ratio of the total number of 5 s or 6 s rolled to the total number of rolls for your entire class? How close is this ratio to the expected probability from Problem 2?
Sample response: \(\frac{210}{600}\), or \(35 \%\). This is very close to the expected probability of \(\frac{200}{300}\), or about 33\%.

\section*{1 Launch}

Provide one number cube for each pair of students.

\section*{2 Monitor}

Help students get started by asking them what the sample space of an event means.

\section*{Look for points of confusion:}
- Thinking the probability of rolling a 5 or 6 is \(\frac{1}{6}\) in Problem 2. Remind students that probability is a ratio of the number of favorable outcomes, 2 , to the total number of possible outcomes, 6 .
- Generalizing from their results that the small sample was very close to the probability. Share results from other pairs of students to show this is not always the case.

\section*{Look for productive strategies:}
- Writing an equivalent percentage for each ratio in the table in Problem 3.

\section*{3 Connect}

Have pairs of students share their results from their experiment, and display them for the class to see, including a graph of the data. To share results, you may create your own spreadsheet to aggregate class data or use the Activity 1 PDF containing a graph of sample data.

\section*{Ask:}
- "What do you notice about the shape of the graph? Why does the graph jump around more at first?"
- "After how many trials does the graph seem to get closer to the expected (theoretical) probability?"

Highlight that the graph of the class data (or in Activity 1 PDF) appears to flatten in the long run and approach the probability from Problem 2. Mention that the term relative frequency refers to the observed (experimental) probability.

\section*{\(\oplus\) \\ Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides, in which they can see, over the long term, how the observed probability approaches the theoretical probability.

\section*{Extension: Math Enrichment}

Have students complete the following problem: If a computer simulated \(7,329,210\) rolls of the number cube, about how many 5 s or \(6 s\) would you expect? About \(2,400,000\) (about \(1,200,000\) of each number).

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as you either aggregate class data or use the sample data from the Activity 1 PDF, draw students' attention to the shape of the graph and the mathematical language that describes what is happening. Highlight the following:
- The graph shows the observed (experimental) probabilities. These probabilities are the same as the relative frequencies.
- As the number of trials (rolls) increases, the graph approaches the expected (theoretical probability). This is known as the long-run relative frequency because it describes what happens in the long run.

\section*{English Learners}

Annotate the graph with the term long-run relative frequency as the graph approaches the theoretical probability, \(\frac{1}{3}\).

Activity 2 Due For a Win
Students reason about chance events that may be surprising to understand that the probability of an event is not dependent upon the results of prior events.


\section*{1 Launch}

Encourage students to discuss any surprising prior experiences they may have had with tossing coins or other probability events.

\section*{2 Monitor}

Help students get started by telling them the probability of a tossed coin landing heads facing up is \(\frac{1}{2}\).
Look for points of confusion:
- Thinking a tossed coin will land heads facing up half of the time, no matter how many times the coin is tossed. Give students a coin to experiment with a few times to see what happens.

\section*{Look for productive strategies:}
- Reasoning or discussing with a partner about the point at which a result becomes "surprising".
- Finding that the probability for Problem 1c is \(\left(\frac{1}{2}\right)^{100}\) Note: This calculation or expression is not required for this activity.
(3) Connect

Have individual students share their responses for Problems 1b and 1c and display for all to see. Then create a range of values that might not be surprising based on student responses.

Ask the class if they agree with this range or to provide a reason for why the range is too large.

Highlight that a theoretical probability represents the expected likelihood of an event occurring for a single trial of an experiment. In the short term, the outcomes from your trials will likely not match the theoretical probability exactly, but should stay close enough that it is not surprising. Regardless of what has come before, each coin flip should be equally as likely to land heads up as tails up.

\section*{Differentiated Support}

Accessibility: Optimize Access to Tools, Guide Processing and Visualization

Provide access to coins and allow students to toss an actual coin during the activity to help them visualize the experiment and ground their reasoning.

\section*{Extension: Math Enrichment}

Tell students that the expected (theoretical) probability of tossing a coin 100 times and having the coin land on heads all 100 times is 1 out of \(1,267,650,600,228,229,401,496,703,205,376\), an extremely unlikely event, but not impossible.

\section*{Math Language Development}

\section*{MLR1: Stronger and Clearer Each Time}

After students complete Problem 4, have them meet with 1-2 other pairs of students to share their responses and give and receive feedback. Encourage reviewers to ask clarifying questions such as:
- "Can you include an example in your response?"
- "What mathematical language did you use in your response?"

Have students write a final response, based on the feedback they received.

\section*{English Learners}

Encourage students to use diagrams or illustrations in their response indicating the outcomes of the experiment.

\section*{Summary}

Review and synthesize that in the long run, the relative frequency of a chance event will approach the expected probability - but not necessarily in the short term.


\section*{Synthesize}

\section*{Formalize vocabulary: relative frequency.}

\section*{Ask:}
- "What is the probability of rolling a 2,3 , or 4 on a standard number cube?" \(\frac{1}{2}\); There are three favorable outcomes out of six possible outcomes.
- "If you roll the number cube three times and none of them result in a 2,3 , or 4 , does the chance of rolling one of these numbers increase with the next roll? Why or why not?" No; Sample response Each roll is considered independent of the results of prior rolls.
- "Suppose the probability of getting the flu during flu season is \(\frac{1}{8}\). If a family has 8 people living in the same house, is it guaranteed that one of them will get the flu? Sample response: No, it is possible that none of the people in the family will get the flu and also possible that more than 1 person will get the flu
- "If a country has 8 million people, about how many do you expect will get the flu? Would you be surprised if the actual number of people that get the flu is a different number?" Sample response: about 1 million people; I would not be surprised if the actual number is different, as long as it is not significantly higher or lower than 1 million.
- "How can you check whether a coin is a fair coin?" Sample response: I could flip the coin many times and check that the relative frequency of landing heads facing up or tails facing up is close to \(\frac{1}{2}\).
Highlight that an interesting problem in statistics is trying to define when an outcome should be considered "surprising." Tossing a fair coin 100 times and having it land heads facing up 55 times should not be surprising, but landing heads facing up either 5 or 95 times would be surprising, based on the theoretical probability. It is expected that the coin should land heads facing up about 50 times, so if the number of times it lands heads facing up is significantly less than or greater than 50 , it would be surprising.

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments to reflect on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "Our world is really complex - how can we simulate parts of it to make better predictions?"

\section*{Exit Ticket}

Students demonstrate their understanding of long-term relative frequency by comparing surveys with different sample sizes.


\section*{Success looks like ...}
- Language Goal: Describing patterns, observed in a table or on a graph, that show the relative frequency for a repeated experiment. (Speaking and Listening, Writing)
» Estimating the chance that the ext user will choose a comedy in Problem 1.
- Language Goal: Generalizing that the cumulative relative frequency approaches the probability of the event as an experiment is repeated many times. (Speaking and Listening)
» Explaining that Whooloo might more confident about predicting the next genre in Problem 2.
- Language Goal: Generating possible results that would or would not be surprising for a repeated experiment, and justifying the reasoning. (Speaking and Listening)

\section*{Suggested next steps}

\section*{If students say the chance that the next} Webflicks user will choose a comedy is \(\frac{1}{40}\) in Problem 1, consider:
- Asking them to think about how many users had chosen a comedy compared to the total number of users.

If students say that Webflicks might be more confident, consider:
- Reviewing Activity 1.
- Asking them to identify whether a smaller or larger sample size yields more accurate predictions.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
© 0 . Points to Ponder ...
- What worked and didn't work today? Which students' ideas were you able to highlight during Activity 2?
- In what ways have your students improved at looking for and expressing regularity in repeated reasoning? What might you change for the next time you teach this lesson?
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Practice Problem Analysis} \\
\hline Type & Problem & Refer to & DOK \\
\hline \multirow{3}{*}{On-lesson} & 1 & Exit Ticket & 2 \\
\hline & 2 & Activity 2 & 2 \\
\hline & 3 & Activity 1 & 2 \\
\hline \multirow[b]{2}{*}{Spiral} & 4 & Unit 6 Lesson 16 & 2 \\
\hline & 5 & Unit 8 Lesson 3 & 2 \\
\hline Formative 0 & 6 & Unit 8 Lesson 5 & 2 \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.


\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice

\section*{Code Breaking (Part 1)}

\section*{Let's use probability to decode encrypted messages.}


\section*{Focus}

\section*{Goals}
1. Language Goal: Describe reasons why the relative frequency from an experiment may not exactly match the expected probability of the event. (Speaking and Listening, Writing)
2. Recognize that sometimes the outcomes in a sample space are not equally likely.

\section*{Rigor}
- Students build procedural skills for finding the relative frequencies by comparing the amount of a certain letter to the total letters in a text
- Students apply their understanding of likelihood by comparing relative frequencies to decode a secret message.

\section*{Coherence}

\section*{- Today}

Students use their knowledge of ratio and relative frequency to conduct a frequency analysis of letters in a message encrypted by a Caesar cipher. They reason about the structure of the words and notice which letter appears at about the same frequency in the encrypted message as in typical English usage. Finally, they compare and contrast the frequency in typical English usage to the frequency in a short speech.

\section*{< Previously}

In Lesson 4, students saw that in the long run, the relative frequency approaches the probability of the chance event, but this will not necessarily be seen using a small sample.

\section*{> Coming Soon}

Students will continue to explore how to use frequency analysis to crack codes. They will try to decode each other's messages using their understanding of the Caesar cipher.

Warm-up
( \() 5 \mathrm{~min}\)
\(\bigcirc\) Independent

Activity 1


Activity 2


Summary

Exit Ticket
() 5 min

() 5 min

○ Independent

\section*{desmos Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \(\bigcirc\) Independent

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 1 PDF, one per student
- Activity 2 PDF, pre-cut and assembled, one per pair
- calculators
- markers
- round head fasteners, one per pair

\section*{Math Language}

Development

\section*{Review words}
- chance experiment
- event
- outcome
- probability
- relative frequency*
- sample space
*Students may confuse the term relative with its familial meaning. Be ready to address the similarities and differences between the familial meaning and the mathematical meaning.

\section*{Amps : Featured Activity}

\section*{Activity 2 \\ Digital Decoder Ring}

Students use a dynamic decoder to help them quickly shift the letters in the alphabet to decode a message using the Caesar cipher.


\section*{- Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- In Activity 2, students do not need to decode the entire message in Problem 3. Instead, have them decode the first four words.

\section*{Warm-up Comparing Chance Experiments}

Students compare the relative frequencies of letters in different words, to prepare for finding relative frequencies in larger texts in the upcoming activities.


\section*{1 Launch}

Remind students that randomly selecting a letter or an object is similar to choosing that letter or object from a bag, without looking.

\section*{2 Monitor}

Help students get started by asking them how many letters are in each word and what the letters are in each word.

Look for points of confusion:
- Thinking the experiments are exactly the same because both words only have the letters \(A, L, M\), and \(B\). Ask, "Is the chance of choosing the letter \(A\) the same for both words?"

\section*{Look for productive strategies:}
- Noticing that even though the sample spaces are the same, the relative frequency of the letters are different.

\section*{3 Connect}

Have pairs of students share their responses with each other.

Highlight that the event with the greatest probability is choosing the letter \(A\) from the word ALABAMA.

Ask students if they noticed which letters they use most frequently when writing. Have them share their thinking with a partner before inviting a few to share with the class.

Define the relative frequency as the ratio of the number of times an an outcome occurs to the total number of trials the activity is performed. It is expressed as a fraction, a decimal, or a percentage of the total number.

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Have students rewrite each word in large, spaced-out letters on a separate sheet of paper. Have them visualize placing each letter from the word ALABAMA in a bag and randomly selecting one of the letters. This will help make the abstract idea more concrete.

To power up students' ability to determine percentage from analyzing a diagram or phrase, have students complete:
Determine the ratio that compares the number of times the letter 0 occurs in the word ONOMATOPOEIA to the total number of letters in the word. Write the ratio as a percentage. \(\frac{4}{12}\) or approximately \(33 \%\).
Use: Before the Warm-up
Informed by: Performance on Lesson 4, Practice Problem 6

\section*{Activity 1 Caesar Cipher}

Students learn how a Caesar cipher works and perform a frequency analysis for a few letters in a short message to notice that certain letters are used more frequently.

Julius Caesar had good reason to be suspicious - he would eventually be assassinated by some of his closest friends. So, it was understandable why the Roman emperor developed one of the earliest secret codes, encrypting important messages that would be sent across his empire.
The Caesar cipher shifts all the letters in the alphabet by some amount. If the cipher shifted the letters by three places to the left, you could spell CAFE as \(Z X C B\) (with \(Z\) representing the letter \(C, X\) representing the letter \(A\), and so on).

Where many of Caesar's enemies were illiterate and thus incapable of cracking this code, modern codebreakers have found a tool - using probability - to crack the code.
Consider this encrypted message:
Pm ol ohk hufaopun jvumpkluaphs av zhf, ol dyval pa pu jpwoly, aoha pz, if \(z v\) johunpun aol vykly vm aol slaalyz vm aol hswohila, aoha uva h dvyk jvbsk il thkl vba
1. Choose a few letters from the encrypted message to analyze. Determine the number of times each letter you chose occurs in the message. Then determine the relative frequency for each letter. Use the table to collect and organize your data. Sample response shown.
\begin{tabular}{|c|c|c|}
\hline Letter & \begin{tabular}{c} 
Relative frequency \\
Number of \\
occurrences
\end{tabular} & \begin{tabular}{c} 
Rumber of times the letter occurs \\
number of letters in the text
\end{tabular} \\
\hline\(T\) & 1 & \(\frac{1}{126}\) or about \(0.79 \%\) \\
\hline A & 17 & \(\frac{17}{126}\) or about \(13.49 \%\) \\
\hline\(H\) & 11 & \(\frac{11}{126}\) or about \(8.73 \%\) \\
\hline
\end{tabular}
2. Do you have any guesses about which letters in the coded message represent the actual letters in the English alphabet? Discuss with a partner and write your thoughts. Sample response: The letter \(M\) in the coded message may represent the letter \(S\) in the original message because I see some two-letter words that end with \(M\).

\section*{1. Launch}

Read the introduction as a class. Distribute calculators and markers to each pair and assign each pair to find the frequency of a set of three specific letters (be sure to account for the whole alphabet).

\section*{2 Monitor}

Help students get started by suggesting one student in each pair counts certain letters while the other student counts the total number of letters.

\section*{Look for points of confusion:}
- Thinking that the chance of each letter occurring is \(\frac{\mathbf{1}}{\mathbf{2 6}}\). Ask students to describe the sample space for randomly selecting a letter from the first three words, and then ask if the frequency of each letter is the same or different.

\section*{Look for productive strategies:}
- Marking or tallying letters as they are counted.

\section*{3 Connect}

Note: Distribute the Activity 1 PDF to each student. Students will use this PDF in Activity 2.

Highlight that the table was created to help students first find the frequency of a letter and then to find the relative frequency. Ask a student to describe the difference between the frequency of a letter and its relative frequency.
Display the letter frequency table and complete the rows as students share their work. If student responses do not match the answer key, you may wish to record the answer key now for students, and follow up at another time.

Have pairs of students share their work with the class.

\section*{Differentiated Support}

\section*{Accessibility: Clarify Vocabulary and Symbols,} Guide Processing and Visualization
Explain that a cipher provides the rules for writing a secret message in code. The message that is written in code is called the encrypted message. Illustrate the Caesar cipher by showing how the letter \(D\) shifts three letters to the left, becoming the letter \(A\). Ask students why the letters \(A, B\), and \(C\) are shifted to the end of the alphabet.

\section*{Accessibility: Vary Demands to Optimize Challenge}

Provide the total number of letters in the message (126) so that students can concentrate on determining the frequency of their assigned letters.

\section*{Math Language Development}

\section*{MLR6: Three Reads}

Use this routine to help students make sense of the introductory text:
- Read 1: Students should understand that they will be analyzing an encrypted code.
- Read 2: Ask students to describe the given relationship between the letters in the word CAFE and its encrypted message ZXCB.
- Read 3: Ask students to plan their solution strategy as to how they will complete Problem 1.

\section*{Activity 2 Crack the Code}

Students analyze and compare the letter frequencies in typical English usage to the frequencies in the coded message from Activity 1, and use this to decode the message.


\section*{Amps Featured Activity}

Name.
Activity 2 Crack the Code

The Caesar cipher is an example of a "substitution cipher," in which each letter is substituted with another. The Nazi ciphers of World War II were more complex, and it took mathematicians, such as Alan Turing, and early computers to break these codes.

Next, you will be given a Caesar Cipher Decoder and a table showing the approximate frequency of letters used in the English language.
1. Compare the frequencies you observed in the coded message in Activity 1 to the frequencies in the table that represents typical English usage. Do any frequencies seem to match? Explain your thinking.
Sample response: I think that \(H\) might represent \(A\) because both have very high frequencies.
2. Use the decoder to shift the alphabet according to the matched frequencies. By how many letters do you think the encrypted message is shifted?

Encrypted message:
ABCDEFGH I JKLMNOPQRSTUVWXYZ

Typical English usage:
HIJKLMNOPQRSTUVWXYZABCDEFG
Sample response: I think it is shifted 7 letters to the right.

\section*{1 Launch}

Distribute the pre-assembled Activity 2 PDF to each student pair. Discuss which letters are the most and least frequently used in the English language.

\section*{2 Monitor}

Help students get started by having them highlight letters in each table that are highusage, medium-usage, and low-usage, using different colors. This will help them to see correspondences across the two tables.

\section*{Look for points of confusion:}
- Thinking that the frequencies need to match up perfectly. Have students consider a very simple sentence, such as "Math is amazing." Then ask them whether the letter frequencies from this small sample size would match those of the typical English usage table.

\section*{Look for productive strategies:}
- Drawing lines to connect possible letter matches from the typical English usage table to the encrypted message table. This will help students visualize the shift more easily.

Activity 2 continued >

Differentiated Support
Accessibility: Optimize Access to Technology
Have students use the Amps slides for this activity, in which they can use a digital decoder to help them quickly shift the letters in the alphabet to decode the message using the Caesar cipher.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as time allows, have pairs of students write sentences or phrases in their primary language and create a cipher to share with their classmates.

\section*{English Learners}

Provide the following Spanish letter frequencies for students whose primary language is Spanish and use the internet to research frequencies for other languages.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A & B & C & D & E & F & G & H & 1 & J & K & L & M & N \\
\hline 12.5 & 1.3 & 4.4 & 5.1 & 13.2 & 0.8 & 1.2 & 0.8 & 6.9 & 0.5 & 0.1 & 5.8 & 2.6 & 7.1 \\
\hline \(\tilde{N}\) & 0 & P & Q & R & S & T & U & V & w & X & Y & Z & \\
\hline 0.2 & 9.0 & 2.8 & 0.8 & 6.6 & 7.4 & 4.4 & 4.0 & 1.0 & 0.03 & 0.2 & 0.8 & 0.4 & \\
\hline
\end{tabular}

\section*{Activity 2 Crack the Code (continued)}

Students analyze and compare the letter frequencies in typical English usage to the frequencies in the coded message from Activity 1, and use this to decode the message.

Activity 2 Crack the Code (continued)
3. Decode the following message.

Pm ol ohk hufaopun jvumpkluaphs av
zhf, ol dyval pa pu jpwoly, aoha pz, if zv
johunpun aol vykly vm aol slaalyz vm aol
hswohila, aoha uva h dvykjvbsk il thkl vba.
If he had anything confidential to say, he wrote it in cipher, that is, by so changing the order of the letters of the alphabet, that not a word could be made out.


Featured Mathematician

\section*{Alan Turing}

Have students read about Featured Mathematician Alan Turing, a mathematician and computer scientist from England who used computers to decipher German communications during WWII.

\section*{Summary}

Review and synthesize the reasons why the relative frequency from an experiment may vary from the expected frequency.


\section*{Synthesize}

Highlight that finding the frequency of a letter in a text can be considered an experiment.

Ask, "Suppose a chance experiment is repeated many times, but the fraction of outcomes for which a certain event occurs does not match the expected probability of the event. What are some reasons why this may happen?"
Sample responses:
- The experiment may not have been repeated enough times.
- The experiment was not conducted properly.
- Some variance is expected between the estimated probability and the expected probability.

Note: Prior to the next lesson, have students think of a quote or positive message they would like to send to a random classmate. Provide students the opportunity to prepare this quote or message before the next lesson begins.

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What strategies did you use to help you decode the secret message?"
- "Which strategy was the most successful? Which strategy was the least successful?"

\section*{Exit Ticket}

Students demonstrate their understanding by analyzing the discrepancy of letter frequency in a new text to typical English usage.


\section*{Success looks like ...}
- Language Goal: Describing reasons why the relative frequency from an experiment may not exactly match the expected probability of the event. (Speaking and Listening, Writing)
» Explaining why the relative frequency of the letters in the speech excerpt are different from the typical relative frequencies found in the English language.
- Goal: Recognizing that sometimes the outcomes in a sample space are not equally likely.

\section*{Suggested next steps}

If students struggle to identify valid reasons for the differences among the relative frequencies, consider:
- This is just a starting point for further exploration that will occur later in this unit. Allow students to cite any possible reasons they can think of to explain the discrepancy among the relative frequencies, and accept all reasonable responses.
If students do not mention that the excerpt is a relatively small sample, consider:
- Reviewing Lesson 5, Activity 1.

If students do not mention that this excerpt might not be representative of typical English usage because it is a political speech, consider:
- Making a note to revisit this text after Lesson 13, where students learn more about representative samples.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

\section*{C. Points to Ponder . .}
- What worked and didn't work today? Which groups of students did or didn't have their ideas seen and heard today?
- What surprised you as your students worked on Activity 1 ? What might you change for the next time you teach this lesson?


\section*{0}

Name: \(\quad\) Date: \(\quad\) Period:
> 4. Use the circle to design and label a spinner, with as many sections as needed, so that all of the following criteria are met:
. The chance of landing on the section labeled \(A\) is equally likely as not
The chance of landing on the section labeled \(B\) is unlikely.
The chance of landing on the section labeled \(C\) is less than landing on \(A\)
but greater than landing on \(B\).

5. The names of four months are written in code. Can you determine which months they are? Explain your thinking.

MXOB DXJXVW MXQH PDB
July, August, June, May: Sample response: I used clues about the length of the words, and I determined that \(P\) PDB must be MAAS because May is the
only three-letter month of the year This means that the letter in the only three-letter month of the year. This means that the letter \(B\) in the
code represents the letter \(Y\). So, \(M X O B\) must be July because July is the only four-letter month of the year that ends in \(Y\). This means that th letter \(X\) in the code represents the letter \(U\). So, \(D X J X V W\) is \(A U G U S T\) and MXOH must be JUNE.
\begin{tabular}{|lclc|}
\hline \multicolumn{3}{|l|}{ Practice Problem Analysis } \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 3 \\
\hline Spiral & \(\mathbf{2}\) & Activity 2 & 2 \\
\hline Formative 0 & \(\mathbf{3}\) & \begin{tabular}{l} 
Unit 7 \\
Lesson 16 \\
Unit 8
\end{tabular} & 2 \\
\hline Lesson 2 & \begin{tabular}{l} 
Unit 8 \\
Lesson 6
\end{tabular} & 2 \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

\section*{Code Breaking (Part 2)}

Let's use probability to decode encrypted messages.


\section*{Focus}

\section*{Goal}
1. Perform a frequency analysis, and use the results to decipher a coded text.

\section*{Coherence}

\section*{Today}

Students continue their work with frequency analysis of coded messages. They create their own message to be sent to a classmate and then look for and make use of patterns while comparing frequencies in two tables.

\section*{< Previously}

In Lessons 1-4, students were introduced to the idea of how analyzing the probability of an event can help shed light on future outcomes.

\section*{> Coming Soon}

Students will learn about multi-step experiments and how to find the probability of multi-step events.

\section*{Rigor}
- Students strengthen their fluency reasoning about fraction and percent equivalents.


Warm-up


Activity 1


Activity 2


Summary


Exit Ticket
\begin{tabular}{|c|c|c|c|c|}
\hline (1) 5 min & (1) 15 min & (1) 15 min & (1) 5 min & (1) 5 min \\
\hline กำ Pairs & \(\bigcirc\) ○ Independent & \(\bigcirc\) ○ Independent & กํำกำ Whole Class & \(\bigcirc\) ○ Independent \\
\hline
\end{tabular}

\section*{desmos Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Warm-up PDF, Caesar Cipher Decoder, one per student (also used in Activity 1)
- Activity 1 PDF, Sample Text (optional)
- lined paper, one per student

\section*{Math Language \\ Development}

\section*{Review words}
- chance experiment
- event
- outcome
- probability
- relative frequency
- sample space

\section*{Amps ! Featured Activity}

\section*{Activity 1}

Digital Decoder Ring
Students use a dynamic decoder to help them quickly shift the letters in the alphabet to decode a message using the Caesar cipher.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students may lose track while counting letters and feel disorganized. Ask if there are any tools or strategies they can think of that might help them maintain their place while counting.

\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In Activity 1, have students keep their message to less than 10 words.
- In Activity 2, Problem 3 may be omitted.

\section*{Warm-up What's the Shift?}

Students compare two sets of frequency data and notice patterns to practice finding the shift of a Caesar cipher.


\section*{Unit 8 | Lesson 6}

Code Breaking
(Part 2)
Let's use probability to decode encrypted messages.


Warm-up What's the Shift?
Use the letter frequency analysis and your pattern-recognition skills to reason about how the alphabet has been shifted using a Caesar cipher.

Typical English usage (\%):

Mystery coded text (\%):



What is the shift? Explain your thinking.
Sample response: The shift is 6 to the right. I think this is because the frequency of the letter \(A\) matches the frequency of the letter \(G\) in the mystery text, and the frequency of the letter \(E\) matches the frequency of the letter \(K\) in the mystery text. Both of these letters are shifted 6 places.
1. Launch

Activate students' prior knowledge by asking for a student, or students, to explain how they used the Caesar Cipher in the previous lesson.

Remind students that a letter frequency analysis means comparing the frequencies of one set of letters to another.
(2) Monitor

Help students get started by reminding them that data from an experiment will often not exactly match the expected probability.

\section*{Look for points of confusion:}
- Thinking that determining any two values that match is the key to the shift. Ask students to also compare the values to the left and the right to make sure those also match. Provide access to the Warm-up PDF, Caesar Cipher Decoder to allow students to better compare these values.

\section*{Look for productive strategies:}
- Finding the absolute value of differences to find the most likely shift

\section*{3 Connect}

Have individual students share their strategy for reasoning about the shift.

Highlight that it may take checking several letters, in various places, to confirm the letter shift.

Ask, "Why is it that the coded text does not match the typical English letter frequency?" It does not match because the sample is not representative of the entire English language

\section*{Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization}

Have students circle or highlight the most frequently occurring letter in the Typical English usage table. Then ask, "Which letter in the mystery coded text table has the greatest percentage? What might this tell you?"

\section*{Power-up}

To power up students' ability to use patterns to decipher phrases, have students complete:

The names of four days of the week are written in code. Can you determine which days they are?
ACVLIG
UWVLIG
BCMALIG
a Consider the days of the week, what are the three letters that they all end in? DAY
b Using your answer from Part A and your Caesar Cipher, what is the shift in letters. 8
c What are the three days of the week? Sunday, Monday, and Tuesday.
Use: Before Activity 2
Informed by: Performance on Lesson 5, Practice Problem 5

\section*{Activity 1 Send a Secret Message}

Students select and encode a secret message that will be used in the next activity for other students to decode.


\section*{1 Launch}

Have students take out the quote or positive message they prepared ahead of time. Distribute lined paper and the pre-assembled decoder from the Warm-up PDF, Caesar Cipher Decoder. For students who have not prepared a message or would like to choose a message from a text, distribute the sample text from the Activity 1 PDF, Sample Text.

\section*{(2) Monitor}

Help students get started by suggesting they encode their text one letter at a time, e.g., first encoding the letter a throughout the message.

\section*{Look for points of confusion:}
- Sending personal messages to specific people in their class. Remind them that the message will be delivered to a random classmate, so it is important to keep the message general and positive.

\section*{(3) Connect}

Highlight that some students may have noticed that they used certain letters that are not used as frequently.

Ask, "What may be a cause of a text varying a lot from typical English letter frequencies?"

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can use a digital decoder to help them quickly shift the letters in the alphabet to decode the message using the Caesar cipher.

\section*{Accessibility: Vary Demands to Optimize Challenge,}

\section*{Optimize Access to Tools}

Consider one or more of these additional supports:
- Suggest that students use a shorter message for their original message, limiting them to about 10 words.
- Display sample messages from which to choose a message, instead of having them create their own.
- Provide access to graph paper and suggest they use it to help organize and align the letters in their original and coded messages.

\section*{Activity 2 Decoding the Secret Message}

Students receive a coded message from a classmate and use a frequency analysis on a sample letter to determine the shift of the Caesar cipher used.

Activity 2 Decoding the Secret Message

You will receive a secret message from another classmate. Use a frequency analysis to determine the shift of the Caesar cipher and decode the message. You should only need to analyze a few letters to determine the shift.
1. Select a few letters to analyze. Use the table to organize your work. You may add rows to the table, if needed. Sample response shown.
\begin{tabular}{|c|c|c|}
\hline Letter & \begin{tabular}{c} 
Number of \\
occurrences
\end{tabular} & \begin{tabular}{c} 
Relative frequency \\
number of times the letter occurs \\
total number of letters in the text
\end{tabular} \\
\hline\(M\) & \(\mathbf{8}\) & \(\mathbf{1 2 \%}\) \\
\hline\(V\) & 7 & \(10 \%\) \\
\hline\(I\) & 7 & \(10 \%\) \\
\hline
\end{tabular}
2. Use this table of typical English letter frequencies and the blank table for your analysis.

Typical English usage (\%):
ABCDEFGHIJKLMNOPQRSTUVWXYZ
\(\begin{array}{lllllllllllllllllllllllllll}8 & 1 & 2 & 4 & 11 & 2 & 2 & 6 & 8 & 0 & 1 & 4 & 2 & 7 & 8 & 2 & 0 & 8 & 6 & 9 & 3 & 1 & 3 & 0 & 2 & 0\end{array}\)

Blank table for your analysis (\%):
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|} 
A & B & C & D & E & F & G & H & I & J & K & L & M & N & O & P & Q & R & S & T & U & V & W & X & Y \\
\hline
\end{tabular}
10 12
10
3. What is the shift of the letter in the coded message? Use your decoder to decode the message on the same paper that has the message. Sample response: The shift is 8 to the right.

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can use a digital decoder to help them quickly shift the letters in the alphabet to decode the message using the Caesar cipher.

\section*{Accessibility: Optimize Access to Tools}

Provide access to graph paper and suggest they use it to help organize and align the letters in their original and coded messages.

\section*{Summary}

Review and synthesize how a frequency analysis can help crack a code.


\section*{Synthesize}

Display an example of a decoded message, including the coded message from Activity 2.

Ask, "Why is a frequency analysis a good tool to help decipher a coded message?" A frequency analysis reveals information about patterns that exist. It helps us to identify a letter by a property that cannot be hidden by a cipher.

Highlight that the frequency analysis used to decipher the messages are a great example of how students can make inferences about a larger set of information from a smaller set of related information. This will be an important aspect of the statistics work in the next part of the unit.

\section*{(i) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition To help them engage in meaningful reflection, consider asking:
- "Did you reuse any of your strategies from the previous lesson on code breaking? If so, which one(s)"
- "Did you make any changes to your strategies from the previous lesson on code breaking? If so, how?"

Students demonstrate their understanding of how using probability can help gain information and make predictions that aren't readily observable.



\section*{Exit Ticket}
 GS

In this unit so far, you have worked with mysterious bags and mysterious messages.

Describe an example of how using probability can help you analyze and understand situations in which you do not have all of the information.
Sample response: Probability can help me analyze and understand a situation because I can perform experiments to see the likelihood of obtaining a
certain outcome. Even if I am unsure about the likelihood of an outcome, by performing the experiment many times, I can obtain a clearer picture about the situation, even when I do not know all of the information.
```

Self-Assess

```
a I can analyze the frequency of letters in a coded message and compare them to the frequency of letters the English language to decode e message 123
b I can explain how probability can be used to help me better understand a situation in which do not know all the information.

123 \\ \section*{\title{
Professional Learning
}} \\ \section*{\title{
Professional Learning
}}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder . . .
- What worked and didn't work today? What challenges did students encounter as they worked on Activity 1? How did they work through them?
- In what ways did Activity 2 go as planned? What might you change for the next time you teach this lesson?

\section*{Success looks like . . .}
- Goal: Performing a frequency analysis, and using the results to decipher a coded text.

\section*{Suggested next steps}

If students cannot recall the ways in which they used probability in the first lessons of the unit, consider:
- Having them turn back in their textbook or look over previous digital lessons.
If you repeat this experiment 50 times, abou
expect to turn to an even numbered page?
About 25 times, but \(I\) would not be surprised if it was a little less or a
little more.
858 Units Probability and Samoling \(\qquad\)

\section*{(2) \\ \({ }^{\sim}\)}

> 4. There is a proportional relationship between volume measured in cups and the same volume measured in tablespoons. As shown on the graph, 48 tbsp is equivalent to 3 cups. a Plot and label two more points that represent this relationship. Sample response shown. b Draw a line that passes through these points and represents this proportional relationship. c For which value of \(y\) is the point \((1, y)\) on the line you drew in part b? \(y=\frac{1}{16}\)

(d) What is the constant of proportionality for this relationship? What does
it mean within the context of this scenario?
The constant of proportionality is \(\frac{1}{16}\); One cup is equal to \(\frac{1}{16}\) tbsp.
e Write an equation representing this relationship. Use \(c\) for cups and \(\mathcal{T}\) for tablespoons.
\(c=\frac{1}{16} T\), or some students may write the equivalent equation \(T=16 c\).
c Spinning the spinner shown.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Practice Problem Analysis} \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & 1 & Activity 2 & 3 \\
\hline & 2 & Unit 8 Lesson 4 & 2 \\
\hline Spiral & 3 & Unit 8 Lesson 3 & 2 \\
\hline & 4 & \begin{tabular}{l}
Unit 2 \\
Lesson 12
\end{tabular} & 2 \\
\hline Formative 0 & 5 & Unit 8 Lesson 7 & 1 \\
\hline
\end{tabular}

\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Probabilities of Multi-step Events}

In this Sub-Unit, students will explore different methods for finding the probability of a multi-step event and learn how to design and conduct simulations.



\section*{Narrative Connections}

Read the narrative aloud as a class or have students read it individually. Students continue to explore how understanding the probability of multi-step events can help them solve real-world problems in the following places:
- Lesson 7, Activity 3: How Many Sandwiches?
- Lesson 9, Activity 1: Graphington Slopes (Part 2)
- Lesson 10, Activity 1 :

Breeding Mice (Part 2)

\section*{Keeping Track of All Possible Outcomes}

\section*{Let's explore sample spaces for experiments with multiple events.}


\section*{Focus}

\section*{Goals}
1. Language Goal: Compare and contrast different methods for representing the sample space of a multi-step event, and evaluate their usefulness. (Speaking and Listening, Writing)
2. Language Goal: Determine the total number of possible outcomes for a multi-step event, and justify the reasoning for using other representations. (Speaking and Listening, Writing)
3. Interpret or create a list, table, or tree diagram representing the sample space of a multi-step event.

\section*{Coherence}

\section*{- Today}

Students practice listing the sample space for a multi-step event. They make use of the structure of tree diagrams, tables, and organized lists as methods of organizing this information. Students notice that the total number of outcomes in the sample space for an experiment consisting of multiple events can be found by multiplying the number of outcomes for each event.

\section*{\& Previously}

Students determined the probabilities of single-step events and analyzed coded messages by using the frequency of the letters.

\section*{> Coming Soon}

In the next lesson, students will use sample spaces to calculate the probability of multi-step events.

\section*{Rigor}
- Students build their conceptual understanding of multi-step events.
- Students apply their understanding of finding the sample space for single-step events to multi-step events.


\section*{Building Math Identity and Community}

Connecting to Mathematical Practices
Students may feel disorganized as they try to list the sample spaces of multi-step events; they may repeat or forget outcomes as they try to make use of the structure of tree diagrams, tables, or lists. Help them grow their organizational skills as they list and pair the outcomes of one event with the outcomes of the other event, ensuring that all possible outcomes are listed.

\section*{Amps ! Featured Activity}

\section*{Activity 2}

Student Choice
Students choose two of four experiments for which to determine the sample space.


\section*{- Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- Complete optional Activity 3 as a whole class, or Activity 3 may be omitted.

\section*{Warm-up Questeros}

Students use their own methods to organize an inventory of different outcomes to prepare them for keeping track of all of the possible outcomes in a multi-step probability event.

\section*{Unit 8 | Lesson 7}

\section*{Keeping Track of All Possible Outcomes}

Let's explore sample spaces for experiments with multiple events


Warm-up Questeros
Your character is about to embark on an epic journey in the land of Questeros.
You begin at Level 1 and must choose a path.
- The first choice is which skill you will learn before reaching Level 2: navigation, agriculture or warfare.
As you continue, you must make a difficult decision for how to get to Level 3: journe cross the Creature Crossing.


You
on any path.
1. Which path will you choose? Why?

Answers may vary.
2. What are all the possible paths that may be chosen?

Navigation-Creature Crossing Agriculture-The Dark Forest
Navigation-The Dark Forest
Agriculture-Creature Crossing
Warfare-Creature Crossing

Warfare-The Dark Forest
1. Launch

Activate students' background knowledge by asking if they have ever played a game where they needed to choose a path.

\section*{Monitor}

Help students get started by asking them how many paths branch out from Level 1.

Look for points of confusion:
- Thinking they can obtain every skill. Let students know they cannot move backwards and have them trace the paths with their finger or pencil.

\section*{Look for productive strategies:}
- Organizing the possible paths using a list or table.

\section*{Connect}

Display the image from the Warm-up.
Have students share their methods for organizing the list of possible paths.
Ask:
- "How do you know that you counted all the possible paths?"
- "How do you know that you did not repeat any path(s)?"

Highlight the importance of creating an organized list so that possible outcomes are neither missed nor repeated.

\section*{Math Language Development}

\section*{MLR6: Three Reads}

Use this routine to help students make sense of the introductory text.
- Read 1: Students should understand that they will start at Level 1 and choose one of the three paths shown by selecting a skill to learn.
- Read 2: Ask students to name or highlight the given constraint of not being able to move backwards on any path
- Read 3: Ask students to decide which path they will choose.

\section*{English Learners}

Use gestures, such as pointing, to illustrate the choices that need to be made at each level and the corresponding paths based on those choices.

\section*{Power-up}

To power up students' ability to list outcomes of an event, have students complete:

Recall that an outcome is a possible result of an experiment. For example, the outcomes of tossing a coin are heads and tails.

List the possible outcomes of rolling an 8 -sided dice.
\(1,2,3,4,5,6,7\), and 8
Use: Before the Warm-up
Informed by: Performance on Lesson 6, Practice Problem 5


\section*{Activity 1 Lists, Tables, and Tree Diagrams}

Students are shown three methods for writing sample spaces to understand the possible outcomes of a multi-step event.


\section*{1 Launch}

Explain that there are two events: tossing a coin and rolling a number cube. When an experiment consists of two or more events, it is called a multi-step event.

\section*{2 Monitor}

Help students get started by asking, "What are the possible outcomes for flipping a coin? Rolling a number cube?"

\section*{Look for points of confusion:}
- Misinterpreting the tree diagram. Help students see that a single outcome is represented by following the "branches." Have students highlight the paths using different colors.

\section*{Look for productive strategies:}
- Checking one sample space against another to ensure each method shows all of the outcomes.

\section*{3 Connect}

Display the three sample space representations.

Have students share their preferred method. Use the Poll the Class routine, and then ask one student for each method to explain why they prefer it.

Highlight that all three methods show the same possible outcomes, but organize them differently.

Define the term multi-step event as an event that consists of two or more events.

\section*{Ask:}
- "Why is it important to organize the sample space?"
- "How can you make sure not to repeat any outcomes in the sample space?"
- "Would the sample space change if the number cube was rolled before the coin is tossed?"

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Annotate the tree diagram by writing "coin toss" next to the first row and "number cube" next to the second row to help students make sense of the two events occurring.

\section*{Extension: Math Enrichment}

Have students determine the sample space for tossing two coins and rolling one number cube.
HH1, HH2, HH3, HH4, HH5, HH6
HT1, HT2, HT3, HT4, HT5, HT6
TH1, TH2, TH3, TH4, TH5, TH6
TT1, TT2, TT3, TT4, TT5, TT6

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, have students compare the three methods used to represent the sample space. Connect how the three different representations all show the same information. Ask:
- "How many total possible outcomes are there? How do you see this in the organized list? Table? Tree diagram?"
- "How does the tree diagram show this is a multi-step event?" There are two steps: (1) heads versus tails, and (2) each of those has the 6 numbers listed underneath.

\section*{English Learners}

Color code one of the outcomes in each representation to illustrate how they are each displayed.

\section*{Activity 2 Multi-step Events}

Students record the sample spaces to learn the total number of outcomes can be found by multiplying the number of outcomes of each experiment.


Amps Featured Activity

\section*{Activity 2 Multi-step Events}

Select two of the following four experiments (A, B, C, D). For each experiment you select, complete the following tasks
- Use any method to determine the sample space. Make sure you list all of the possible outcomes without repeating any outcome.
- Determine the total number of outcomes for your chosen experiments.

Experiment A: Toss a dime, then toss a nickel, and then toss a penny. Record whether each lands heads facing up or tails facing up.
Sample response:
HHH, HHT, HTH, HTT
THH, THT, TTH, TTT;
8 possible outcomes

Experiment B: Han's closet has a blue shirt, a gray shirt, a white shirt, blue pants, khaki
pants, and black pants. He will randomly select one shirt and one pair of pants to wear
for the day
Sample response:
blue shirt and blue pants, blue shirt and khaki pants, blue shirt and black pants, white shirt and blue pants, gray shirt and khaki pants, gray shirt and black pants, 9 possible outcomes

Experiment C: Spin a color and then spin a number
Sample response:
Y1, Y2, Y3, Y4, Y5,
R1, R2, R3, R4, R5,
B1, B2, B3, B4, B5,
G1, G2, G3, G4, G5;
G1, G2, G3, G4, G5;
20 possible outcome

Plan ahead: How will you organize your sample spaces? How will you keep yourself organized?

Experiment D. Spin the hour hand on an analog clock, and then choose a.m. or p.m.
Sample response: 1 a.m., 2 a.m., 3 a.m., 4 a.m., 5 a.m., 6 a.m., 7 a.m.,
8 a.m., 9 a.m., 10 a.m., 11 a.m., 12 a.m., 1 p.m., 2 p.m., 3 p.m., 4 p.m.,
5 p.m., 6 p.m., 7 p.m., 8 p.m., 9 p.m., 10 p.m., 11 p.m., 12 p.m.;
24 possible outcomes

For each experiment you selected, determine the number of outcomes for each event Then study the relationship between the number of outcomes for each event and the total number of outcomes in the sample space. What do you notice? The total number of outcomes in the sample space is the product of the number of outcomes for each event. Experiment A: \(2 \cdot 2 \cdot 2 ; 8\) total outcomes Experiment B: \(3 \cdot 3 ; 9\) total outcomes Experiment C: \(4 \cdot 5 ; 20\) total outcomes Experiment D: 12•2; 24 total outcomes
\(\qquad\)

m.

\section*{Activity 3 How Many Options? (optional)}

Students apply their understanding of calculating the total number of possible outcomes in a multi-step event without listing all of the possible outcomes in the sample space.
It is estimated that the average adult makes about 35,000 decisions per day! Let's look at a few decisions that someone might make throughout the day.
1. Elena's closet contains 15 shirts, 5 pair of pants, and 3 pairs of shoes. How many different outfits are possible if it consists of one shirt, one pair of pants, and one pair of shoes? Show or explain your thinking.
There are 225 possible outfits; Sample response: \(15 \cdot 5 \cdot 3=225\).
2. Elena's school cafeteria offers the items shown for lunch. How many different meals are possible if it consists of one item from each category? Show or explain your thinking.
\begin{tabular}{|c|c|c|c|}
\hline Main & Side & Beverage & Dessert \\
\hline sandwich & \begin{tabular}{c} 
salad \\
soup \\
pasta \\
veggie pizza \\
baked potato \\
carrots \\
bretzels
\end{tabular} & \begin{tabular}{c} 
water \\
milk \\
seltzer \\
veggie crisps burger
\end{tabular} & \begin{tabular}{c} 
zucchini bread \\
apple juice
\end{tabular} \\
\hline
\end{tabular}
There are \(\mathbf{3 6 0}\) possible meals;
Sample response: \(4 \cdot 6 \cdot 5 \cdot 3=360\).
3. Elena registers as a new user for an online game, where she is asked to create a five letter password. How many passwords are possible if the letters are not case sensitive and can be repeated? Show or explain your thinking.
There are 11,881,376 possible passwords;
Sample response: \(\mathbf{2 6 \cdot 2 6 \cdot 2 6 \cdot 2 6 \cdot 2 6 = 1 1 , 8 8 1 , 3 7 6}\).
A. Are you ready for more?
Suppose a mail carrier delivers mail using the map shown, where each grid square represents a block. How many
different routes can the mail carrier travel from start different routes can the mail carrier travel, from start to
finish, if she does not backtrack and only travels north and east? 35 routes

1. Launch

Ask, "What types of decisions does someone make each day?"

\section*{Monitor}

Help students get started by having them underline the possible outcomes for each event.

Look for points of confusion:
- Creating a sample space to determine the possible outcomes. Tell students that while this is a valid strategy, it may not be the most efficient because it might take a lot of time and space.
- Struggling to answer Problem 3. Explain a password that is not case sensitive means it does not matter whether the password includes capital or lowercase letters. Then remind students that there are 26 letters in the alphabet. Allow students write their answer as an expression using exponents.

\section*{Look for productive strategies:}
- Noticing the order in which they multiply the outcomes does not matter.

3 Connect
Have students share their responses. For Problem 3, select students who wrote different expressions, such as \(26 \cdot 26 \cdot 26 \cdot 26 \cdot 26\) or \(26^{5}\) to determine their response.

Highlight that some situations have very large sample spaces and recording every possible outcome is not an efficient method. However, the total number of possible outcomes can be found by multiplying the number of outcomes for each event. Note: In Grade 7, students do not need to know this is the Fundamental Counting Principle.

Ask, "For Problem 3, how would the number of total possible outcomes change if the letters were case sensitive?" There would be \(52^{5}\), or 380,204,032, possible passwords.

\section*{Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization}

Suggest that students create an expression using blanks, and then fill each blank with the number of outcomes of each event. For example, for Problem 3, students may write
\(\qquad\)
\(\qquad\) - -- _ , and then fill in the blanks with
the number of outcomes for each event.

\section*{Extension: Math Enrichment}

For Problem 3, have students determine the number of total possible outcomes if the letters cannot be repeated. \(26 \cdot 25 \cdot 24\) \(\cdot 23 \cdot 22\), or 7,893,600 possible passwords.

\section*{Math Language Development}

\section*{MLR3: Critique, Correct, Clarify}

During the Connect, display the incorrect statement for Problem 3, "There are 130 possible passwords because \(26 \cdot 5=130\)."
- Critique: "Do you agree or disagree with this statement? Why or why not?"
- Correct: "Write a corrected statement that is now true."
- Clarify: "What was the most likely misunderstanding of the person who wrote this incorrect statement?" They multiplied the number of events by the possible outcome for one event.

\section*{English Learners}

Allow students time to rehearse what they will say with a partner before sharing with the whole class.

\section*{Summary}

Review and synthesize the variety of methods that can be used to create and organize the sample space for multi-step events.

\section*{Summary}

\section*{In today's lesson...}

You explored how to determine the sample space for an experiment with multiple events. An event that consists of more than one event is called a multi-step event Up until this lesson, you studied single-step events, which just include one event.

Suppose a multi-step event consists of choosing a letter from A, B, or C, and then choosing a number from \(1,2,3\), or 4 . Sometimes, it is helpful to use a systematic way to count the number of outcomes which are possible. You can use tree diagrams, tables, and organized lists to count the possible outcomes of a multi-step event.
With a tree diagram, each branch represents an outcome and the end of brances can ene and the end of branches can be co
In this example, there are 3 events followed by 4 events, giving a total of \(3 \cdot 4\), or 12 outcomes.
A table also can represent the possible outcomes
This display also shows a total of \(3 \cdot 4\), or 12 outcomes.
\begin{tabular}{|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 \\
\hline A & A1 & A2 & A3 & A4 \\
\hline B & B1 & B2 & B3 & B4 \\
\hline C & C1 & C2 & C3 & C4 \\
\hline
\end{tabular}

An organized list for these two events also shows the same number of total possible outcomes
A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C

Reflect:


Rerle

\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in this unit. Ask them to review and reflect on any terms and phrases related to the terms multi-step event and tree diagram that were added to the display during the lesson

\section*{Exit Ticket}

Students demonstrate their understanding by calculating the total number of possible outcomes for a multi-step event.


\section*{Success looks like ...}
- Language Goal: Comparing and contrasting different methods for representing the sample space of a multi-step event, and evaluating their usefulness. (Speaking and Listening, Writing)
- Language Goal: Determining the total number of possible outcomes for a multistep event, and justifying the reasoning for using other representations. (Speaking and Listening, Writing)
» Determining the number of possible outcomes for the point in Problem 1.
- Goal: Interpreting or creating a list, table, or tree diagram representing the sample space of a multi-step event.

\section*{Suggested next steps}

If students answer Problem 1 with 100, consider:
- Reminding them to include 0 as a possible coordinate.

If students struggle to complete Problem 2, consider:
- Providing them with a piece of graph paper containing quadrant I.
- Assigning Practice Problems 1, 2, and 3.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C. Points to Ponder ...

What worked and didn't work today? In this lesson, students used tree diagrams and tables to determine the probability of multi-step events. How did this build on the early work that students did with sample space and simple events?
- What routines enabled all students to do math in today's lesson? What might you change for the next time you teach this lesson?

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Practice Problem Analysis} \\
\hline Type & Problem & Refer to & DOK \\
\hline & 1 & Activity 1 & 1 \\
\hline On-lesson & 2 & Activity 2 & 1 \\
\hline & 3 & Activity 2 & 1 \\
\hline \multirow[t]{2}{*}{Spiral} & 4 & \begin{tabular}{l}
Unit 7 \\
Lesson 14
\end{tabular} & 2 \\
\hline & 5 & Unit 6 Lesson 20 & 1 \\
\hline Formative 0 & 6 & Unit 8 Lesson 8 & 1 \\
\hline
\end{tabular}

\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\title{
Experiments With Multi-step Events
}

\section*{Let's look at probabilities of experiments with multi-step events.}


\section*{Focus}

\section*{Goals}
1. Language Goal: Choose a method for representing the sample space of a multi-step event, and justify the choice. (Speaking and Listening)
2. Language Goal: Use the sample space to determine the probability of a multi-step event, and explain (using other representations) the reasoning. (Speaking and Listening, Writing)

\section*{Coherence}

\section*{- Today}

Students continue to write sample spaces for chance experiments having multiple steps and begin using those sample spaces to calculate the probability of an event. Students may start listing the sample space using one method and then decide to switch to a different method, or they might recognize certain aspects of the situation leading them to choose a particular method from the beginning. The events mentioned in the lesson use everyday language; therefore, students will need to reason abstractly to create the event outcomes.

\section*{< Previously}

In Lesson 7, students wrote the sample space and reasoned that multiplying the number of outcomes for each event gave the total number of possible outcomes in an experiment.

\section*{> Coming Soon}

In Lessons 9 and 10, students will design and perform a simulation to estimate the probability of a real-world event.

\section*{Rigor}
- Students build conceptual understanding of more efficient methods for finding the total number of possible outcomes for a multi-step event.
- Students apply their understanding of the different methods for representing the sample spaces of multi-step events.


\section*{Amps powered by desmos Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\cap\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 1 PDF, Sample Spaces, one per pair (optional)
- Activity 1 PDF, Spinners, one per pair (optional)
- Activity 2 PDF Sample Spaces, one per pair (optional)
- Activity 3 PDF (for display)
- paper clips (optional)

\section*{Math Language}

Development

\section*{Review words}
- chance experiment
- event
- multi-step event
- outcome
- probability
- sample space
- tree diagram

\section*{Building Math Identity and Community Connecting to Mathematical Practices}

Students may feel frustrated by writing or referencing sample spaces when finding the probability of multi-step experiments; it may be hard to find the favorable outcomes if their work is disorganized. Ask them to use quantitative reasoning to find the total number of outcomes of the sample space by multiplying the number of outcomes for each event. This will allow them to check if they have accounted for all possible outcomes.

\section*{Amps Featured Activity}

\section*{Activity 2 \\ Digital Number Cubes}

Students roll a number cube to determine which sample space method they will use to complete the activity.

powered by desmos

\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In the Warm-up, Problems 4 and 5 may be omitted.
- In Activity 3, Problems 3 and 5 may be omitted.

\section*{Warm-up Spinner}

Students review how to find the probability of single-step events to prepare them for finding the probability of multi-step events.

\section*{Experiments With Multi-step Events}
Let's look at probabilities of experiments with multi-step events.


\section*{Warm-up Spinner}
The spinner shown is divided into equal sections.
1. What is the probability of landing on section Y ? \(\frac{1}{4}\)
2. What is the probability of landing on section R ? \(\frac{1}{4}\)

> 3. What is the probability of landing on section \(Y\) or \(R\) ?
\(\frac{1}{2}\)
> 4. What is the probability of not landing on section B ? \(\frac{3}{4}\)
> 5. List the sample space for two spins of the spinner \(Y Y, Y R, Y B, Y G, R Y, R R, R B, R G, B Y, B R, B B, B G, G Y, G R, G B, G G\)
(0)




\section*{1 Launch}

Activate prior knowledge by asking, "What methods did you use previously to determine the sample space of a multi-step event?" Explain that they can use any method for Problem 5.

\section*{Power-up}

To power up students' ability to list sample spaces, have students complete:
Recall that some tools you can use to create sample space are a tree diagram, a table, or an organized list.

Choose one tool to determine the sample space for rolling a number cube and flipping a coin, then determine the total number of outcomes.

Answers may vary, but should have 12 total outcomes:
\(1 \mathrm{H}, 2 \mathrm{H}, 3 \mathrm{H}, 4 \mathrm{H}, 5 \mathrm{H}, 6 \mathrm{H}\)
1T, 2T, 3T, 4T, 5T, 6T
Use: Before Activity 1
Informed by: Performance on Lesson 7, Practice Problem 6

Monitor
Help students get started by asking what fraction of the circle represents each color.

\section*{Look for points of confusion:}
- Not knowing how to find the probability of not landing on B . Explain to students that "not landing on \(B\) " means landing on Y or R or G .

Look for productive strategies:
- Finding the probability for Problem 4 by subtracting the probability of spinning \(B\) from 1 .

\section*{3 Connect}

Display the spinner.
Highlight student reasoning and that the probability for each color is \(\frac{1}{4}\) because the spinner is segmented into 4 equal sections, not just because there are 4 colors.

Ask, "If you change yellow ( Y ) to red ( R ), how does this change the probabilities?" The blue (B) and green (G) probabilities stay the same; however, the probability of spinning red \((R)\) increases and now becomes \(\frac{1}{2}\).
\(\qquad\)

\section*{Activity 1 Spinning a Color and a Number}

Students use the sample space of a multi-step experiment to calculate the probability of multi-step events.

Activity 1 Spinning a Color and a Number

In the previous lesson, you wrote the sample space for spinning each of these spinners once. Let's see what happens if we create a multi-step event and spin both of them at the same time.


Co-craft Questions Work with your partner to write 2-3 questions you could ask about spinning
both of these spinners at both of these spinners at th same time.

What is the probability of spinning:
1. G and 3 ? Explain your thinking.
\(P(G\) and 3\()=\frac{\mathbf{1}}{\mathbf{2 0}}\)
Answers may vary, but could include a sample space of 20 outcomes with one favorable outcome: G3.
2. B and any odd number? Explain your thinking.
\(P(B\) and odd number \()=\frac{3}{20}\)
Answers may vary, but could include a sample space of 20 outcomes with
three favorable outcomes: B1, B3, and B5.
3. Any section on the first spinner other than \(R\) and any number other than 2? Explain your thinking.
\(P(\) not \(R\) and not 2\()=\frac{12}{20}=\frac{3}{5}\)
Answers may vary, but could include a sample space of 20 outcomes with 12 favorable outcomes: Y1, Y3, Y4, Y5, B1, B3, B4, B5, G1, G3, G4, and G5.
(1) Launch

Activate student's prior knowledge by asking, "How do you determine the probability of an event?" The probability of multi-step events is found the same way.

\section*{(2) Monitor}

Help students get started by having them record the sample space.

\section*{Look for points of confusion:}
- Counting the outcomes for G or 3 . Have students circle the outcome for \(G\) and 3 and ask whether there are any other ways to spin a \(G\) and then the number 3 .

\section*{Look for productive strategies:}
- Referencing the sample space from Lesson 7 , Activity 2.
- For Problem 3, finding the probability for R or 2 and subtracting it from 1 .
- Circling or highlighting favorable outcomes. Note students who do this to share their answers during the discussion.

\section*{3 Connect}

Display the spinners and sample space.
Have students share their reasoning for determining the number of favorable outcomes and the probability for each event.

Highlight students' use of precise mathematical language to describe their reasoning. As the events are described in everyday language, students must reason abstractly to identify the described outcomes.
Ask, "How did you calculate the number of outcomes in the sample space?" Counting the items in the tree diagram, table, or list, or using the multiplication: \(4 \cdot 5=20\).

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Tools}

Provide students with a copy of the Activity 1 PDF, Spinners and a paper clip. Distribute pencils if students do not have their own. Show them how to attach the paper clip to each spinner and spin the paper clips to represent the multi-step event. Students can manipulate the concrete models to help them visualize the multi-step event.

\section*{Accessibility: Guide Processing and Visualization}

Provide students with a copy of the Activity 1 PDF, Sample Spaces to help them make sense of the sample space for the multi-step event. Suggest that students use colored pencils to mark the favorable events in the sample space.

\section*{Math Language Development}

\section*{MLR5: Co-craft Questions}

During the Launch, display both spinners and have students work with their partner to write 2-3 mathematical questions they could ask about this multistep event. Sample questions shown.
- How many total possible outcomes are there?
- How does the likelihood of spinning yellow and 1 relate to the likelihood of spinning red and 3 ?
- What is the probability of spinning blue and an even number?

\section*{English Learners}

To support students in developing metalinguistic awareness, model how to craft a mathematical question. Consider displaying one of the sample questions.

\section*{Activity 2 Cubes and Coins}

Students continue thinking about multi-step experiments and use different representations of the sample space to compute probabilities.


\section*{1 Launch}

Assign each pair of students a representation for writing out the sample space: a tree diagram, a table, or a list.

\section*{2 Monitor}

Help students get started by having them list the outcomes for each event independently, then creating the sample space for the multi-step event.

\section*{Look for points of confusion:}
- Not finding the outcome in their sample space representation. Have students use another method to record their sample space.

\section*{Look for productive strategies:}
- Referencing the sample spaces from Lesson 7, Activity 1.

3 Connect
Have pairs of students share their method of representing the sample space and their reasoning for determining each probability.
Highlight how each method of recording the sample space is useful in determining the probability.

\section*{Ask:}
- "Does one method of representing the sample space work better for this event?"
- "Do you have a preferred method for representing the sample space? Why?"
- "If you know the sample space and the number of favorable events, how can you determine the probability?" The total number of possible outcomes is the divisor and the number of favorable events is the dividend of the probability ratio.

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can roll a digital number cube to determine which sample space method they will use to complete the activity.

\section*{Accessibility: Guide Processing and Visualization}

Provide students with a copy of the Activity 2 PDF, Sample Spaces to help them make sense of the sample space for the multi-step event. Suggest that students use colored pencils to mark the favorable events in the sample space.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students share the method they used to represent the sample space for each event, highlight the connections between the representations and how they each show the same information. Ask students where they see the total number of possible outcomes and the number of favorable outcomes in each representation.

\section*{English Learners}

Use gestures, such as pointing, or annotations to show where the number of favorable outcomes are shown in each representation.

\section*{Activity 3 Two Cubes}

Students continue their work with multi-step events using the sample space to find probabilities.


\section*{1. Launch}

Explain to students that they can use any of the methods discussed previously to determine the probability for each scenario.

Monitor
Help students get started by having them write the sample space for rolling two number cubes. A table might be beneficial for most students.

\section*{Look for points of confusion:}
- Not recognizing that rolling a 2 then a 3 is different from rolling a 3 then a 2 . Have students imagine the number cubes are different colors to help them see they are different outcomes.
- Not realizing a probability of zero is possible. For Problem 5, have students write the sample space of the sum of two number cubes.

\section*{Look for productive strategies:}

Referencing the sample space from Lesson 7, Practice Problem 6.

\section*{3 Connect}

Display the sample space for rolling two number cubes. When discussing the probabilities for the prompts, display the Activity 3 PDF.

Highlight the different methods students used to determine the probabilities and how listing the sample space aided in their solutions.

\section*{Ask:}
- "Is there a method for finding the number of outcomes in the sample space that was more efficient than counting them?" The number of outcomes can be found by \(6 \cdot 6=36\).
- "One of the events had a probability of zero. What does this mean?" It is impossible to occur.
- "What would the probability be of an event if it was certain to occur?" 1
- "Using two number cubes, describe an event that has a probability of 1." Answers may vary, but should describe an event that is certain to occur.

\section*{Accessibility: Vary Demands to Optimize Challenge}

If students need more processing time, have them focus on completing Problems 1, 2, and 4. These problems provide a variety of different types of outcomes to consider for this multi-step event.

\section*{Extension: Math Enrichment}

Have students determine the sum(s) with the greatest and least probabilities of occurring when two number cubes are rolled. Ask them to explain their thinking. The sum with the greatest probability is a sum of 7 because there are 6 ways for that sum to occur. The sums with the least probability are 2 and 12 because there is only one way for each of these to occur.

\section*{Accessibility: Guide Processing and Visualization}

Display or provide students with a copy of the correct response for Lesson 7, Practice Problem 6, which shows the sample space for rolling two number cubes, and is also shown here.
\begin{tabular}{l:c:c:c:c:c}
1,1 & 1,2 & 1,3 & 1,4 & 1,5 & 1,6 \\
\hline 2,1 & 2,2 & 2,3 & 2,4 & 2,5 & 2,6 \\
\hline 3,1 & 3,2 & 3,3 & 3,4 & 3,5 & 3,6 \\
\hline 4,1 & 4,2 & 4,3 & 4,4 & 4,5 & 4,6 \\
\hline 5,1 & 5,2 & 5,3 & 5,4 & 5,5 & 5,6 \\
\hline 6,1 & 6,2 & 6,3 & 6,4 & 6,5 & 6,6
\end{tabular}

\section*{Summary}

Review and synthesize how to find probabilities of multi-step events using the sample space.


\section*{Synthesize}

Have students share their methods for determining probabilities of multi-step events using sample spaces.

\section*{Ask:}
- "When the outcomes in the sample space are equally likely, how do you calculate the probability of the event?"
- "Now that you have plenty of practice, do you have a favorite method for writing the sample space?"
- "Are there times when one strategy for writing the sample space makes more sense than others?"

Highlight writing sample spaces with lists, tables, or tree diagrams can be helpful. Also, knowing that the total possible number of outcomes can be found by multiplying the number of events for each part of the experiment is useful. The probability of an event is found by calculating the ratio of the number of favorable events to the total number of possible events.

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "How did looking at sample spaces help you in determining the probability of multi-step events?"

\section*{Exit Ticket}

Students demonstrate their understanding by finding the probability of a multi-step event.


\section*{宴 Printable}


Exit Ticket
G6
8.08

Lin plays a game involving a standard number cube and a deck of ten cards, numbered 1 through 10. If both the number cube and card have the same number, Lin gets another turn. Otherwise, the next player takes their turn. What is the probability Lin will get another turn? Show or explain your thinking. The probability that Lin will get another turn is \(\frac{1}{10}\); Sample response:
Rolling a number cube has 6 possible outcomes. Randomly selecting a card
from the deck of ten cards has 10 possible outcomes. The total number of
outcomes is 6 - 10 , or \(\mathbf{6 0}\) outcomes. Of these, there are 6 outcomes where the numbers will be the same ( \(1,2,3,4,5\), and 6 ). The probability that Lin will get another turn is \(\frac{6}{60}=\frac{1}{10}\).

\section*{Success looks like ...}
- Language Goal: Choosing a method for representing the sample space of a multi-step event, and justifying the choice. (Speaking and Listening)
- Language Goal: Using the sample space to determine the probability of a multistep event, and explaining (using other representations) the reasoning. (Speaking and Listening, Writing)
» Determining and explaining how to find the probability that Lin will get another turn.

\section*{Suggested next steps}

If students spend time writing out the sample space, consider:
- Reminding them the total number of possible outcomes can be found by multiplying the number of outcomes for each event.
- Giving them a copy of the sample space to determine whether they can find the probability.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

\section*{Points to Ponder ...}
- What worked and didn't work today? In what ways in Activity 2 did things happen that you did not expect?
What did your students' use of lists, tables, and tree diagrams to determine multi-step probability reveal about your students as learners? What might you change for the next time you teach this lesson?

\begin{tabular}{|lclc|}
\hline Practice & Problem & Analysis \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & \begin{tabular}{l} 
Activities \\
\(1-3\) \\
Activities \\
\(1-3\)
\end{tabular} & 2 \\
\hline Spiral & \(\mathbf{2}\) & \begin{tabular}{l} 
Activities \\
\(1-3\)
\end{tabular} & 2 \\
Formative 0 & \(\mathbf{4}\) & \begin{tabular}{l} 
Unit 6 \\
Lesson 15
\end{tabular} & 2 \\
\hline
\end{tabular}
(6) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additiona Practice.

\section*{Simulating Multi-step Events}

Let's simulate multi-step events.


\section*{Focus}

\section*{Goals}
1. Language Goal: Coordinate a real-world situation and a chance event which could be used to simulate that situation. (Speaking and Listening)
2. Language Goal: Perform a multi-step simulation, and use the results to estimate the probability of a multi-step event in a real-world situation (using other representations). (Speaking and Listening, Writing)

\section*{Coherence}

\section*{- Today}

Students see that multi-step events can be simulated by using multiple chance experiments. In this case, it is important to communicate precisely what represents one outcome of the simulation. Students consider how real-world situations can be represented using simulation.

\section*{< Previously}

In Lesson 4, students simulated a chance experiment and were shown the experimental (observed) probability would approach the theoretical (expected) probability as more simulations were performed. In Lesson 8, students used the sample space to determine probabilities of multi-step events.

\section*{Coming Soon}

In Lesson 10, students design and perform a simulation to model a real-world event. They use the results of the simulation to estimate probabilities.

\section*{Rigor}
- Students build conceptual understanding of how chance events can be used to simulate real-world situations.


\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\cap\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Power-up PDF (as needed)
- Power-up PDF (answers as needed)
- Activity 1 PDF, Graphington Slopes, pre-cut spinner, one per group
- Activity 1 PDF, Graphington Slopes: Theoretical Probability (mathematical information for the teacher)
- bags with slips of paper
- number cubes
- paper clips

\section*{Math Language Development}

\section*{New word}
- simulation

\section*{Review words}
- chance experiment
- multi-step event
- outcome
- probability
- sample space

\section*{Amps \(\vdots\) Featured Activity}

\section*{Activity 1}

Aggregate Class Data
Students perform their individual simulations followed by the entire class's data aggregating to create a greater number of trials. Students compare their simulation probability to the class's probability.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students may grow disinterested with the repetitive nature of a simulation; they may want to be impulsive and make assumptions instead of modeling the event and completing the simulation. Encourage students to persist and work as a group to finish all trials of the simulation because accurate results are needed for the entire class to learn.

\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- Complete the Warm-up as a whole class.
- Reduce the number of simulations in Activity 1 to three instead of five.
- In Activity 2, have students match only the first two situations.

\section*{Warm-up Graphington Slopes (Part 1)}

Students design simulations of a real-world event to use in Activity 1.

\section*{Unit 8 | Lesson 9}

\section*{Simulating Multi-step Events}

Let's simulate multi-step events.


Warm-up Graphington Slopes (Part 1)
Graphington Slopes is a ski business. To make money over spring break, it needs to snow at least 4 out of the \(\mathbf{1 0}\) days of spring break. The weather forecast indicates a \(\frac{1}{3}\) chance it will snow on each day during spring break.
1. Describe how a spinner could be used to model an experiment to determine the probability of snow on the first day of spring break.
Sample response: Create a spinner with three equal-sized sections. One of the sections should be marked as "snow" and two of the
2. Describe how a number cube could be used to model the probability of snow on the first day of spring break.
Sample response: Let the numbers 1 and 2 represent "snow" and 3, 4, 5, and
6 represent "no snow." Roll the number cube once.

and the four remaining numbers representing "no snow.")

\section*{Accessibility: Activate Background Knowledge}

Students are likely familiar with weather forecasts. Ask, "When a weather forecast indicates a probability of snow (or other weather), what does that mean to you? Do you think a \(\frac{1}{3}\) chance of snow means that snow is likely or unlikely?"

\section*{Accessibility: Optimize Access to Tools}

Provide students with a blank spinner and a number cube that they can hold and physically manipulate to help them visualize how they could use each one to model the probability.
(1) Launch

Read the scenario to the class and ask, "What is the probability it will snow on any given day?"
(2) Monitor

Help students get started by describing a spinner that is divided into thirds. Ask, "How many sections represent snow and how many sections represent no snow?"

\section*{Look for points of confusion:}
- Having difficulty describing a spinner showing a third as snow. Let students draw a spinner instead of describing it.
- Not understanding how the number cube could be used. Have students write the sample space of rolling a number cube then circle one third of it.

\section*{Look for productive strategies:}
- Describing multiple simulations for the number cube or a simulation using other items such as marbles or slips of paper.

\section*{(3) Connect}

Define the term simulation as an experiment used to estimate or predict the probability of a real-world event. The chance experiments designed in Problems 1 and 2 are examples of simulations.
Highlight why simulations are used to model a multi-step event using everyday objects like number cubes, marbles, coins, or spinners to help estimate probabilities.
Ask:
- "How can you adjust the simulations from Problems 1 or 2 to find the probability of Graphington Slopes making money?" (Take this conversation and lead into the Launch of Activity 1),
- "Which simulation would you like to perform to help find the probability?" (Based on group responses, provide those materials to the groups for Activity 1.)

\section*{Power-up}

To power up students' ability to construct sample spaces to determine the number of outcomes for three or more events:
Provide students with a copy of the Power-up PDF.
Use: Before the Warm-up
Informed by: Performance on Lesson 8, Practice Problem 6

\section*{Activity 1 Graphington Slopes (Part 2)}

Students perform the simulation created in the Warm-up to determine the relative frequency of a real-world event.


Amps Featured Activity Aggregate Class Data
\(\qquad\)
Activity 1 Graphington Slopes (Part 2)

Recall the ski business, Graphington Slopes, from the Warm-up. To make money over spring break, it needs to snow at least 4 out of the \(\mathbf{1 0}\) days of spring break. The weather forecast indicates a \(\frac{1}{3}\) chance it will snow on each day during spring break.
1. How could a simulation be used to determine whether Graphington Slopes will make money?
Sample response: I can roll a number cube 10 times. If I roll a 1 or a 2 on each roll, then it will snow that day. If this happens at least 4 times out of the 10 times, then they will make money.
2. Run your simulation for ten days to see if Graphington Slopes will make money over spring break. Record your results in the first row (Simulation 1) of the table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Simulation & \multicolumn{9}{|c|}{Did it snow? ( \(\checkmark\) or \(X\) )} \\
\hline 1 & & & & & & & & & \\
\hline 2 & & & & & & & & & \\
\hline 3 & & & & & & & & & \\
\hline 4 & & & & & & & & & \\
\hline 5 & & & & & & & & & \\
\hline
\end{tabular}
>3. Complete the simulation four more times and record your results in the table (Simulations 2-5).
4. For each simulation, determine the frequency of days with snow and whether or not Graphington Slopes made money. Record your responses in the table.
\begin{tabular}{|c|c|c} 
Simulation & \begin{tabular}{c} 
Frequency of days \\
with snow
\end{tabular} & \begin{tabular}{c} 
Did they make money? \\
(Yes or No)
\end{tabular} \\
\hline
\end{tabular}

1
2
3
4
5
©2023 Amplity Eucuator. inc. An right resereved.

\section*{1 Launch}

Provide groups with the Activity 1 PDF, a pre-cut spinner, paper clips, number cubes, and bags with slips of paper. Give students 2 minutes to complete Problem 1 and have a whole-class discussion regarding any questions they have before starting the simulation.

\section*{2 Monitor}

Help students get started by helping them analyze and understand their simulation results. Once a simulation is complete (Problem 2), ask, "How do you know if Graphington Slopes will make money?"

Look for points of confusion:
- Not knowing how to find frequency. Remind students that frequency means the number of occurrences, for example, how many times it snowed.
- Confusing the phrase "at least 4." Remind students that this phrase means 4 or more days of snow.
- Totaling the number of snow days across all simulations. Remind students one complete simulation represents 10 days, not any more or less.

Activity 1 continued >

Differentiated Support

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides, in which they can perform their own simulations and view the class data aggregated. Students can then compare their individual simulation probability to the class's probability.

\section*{Extension: Math Enrichment}

Ask students how the design of their simulation would change if the weather forecast indicated a \(10 \%\) chance of snow on each day

Answers will vary.

\section*{Math Language Development}

\section*{MLR1: Stronger and Clearer Each Time}

After students complete Problem 1, have groups meet with another group to share and receive feedback on the design of their simulations. Have reviewers ask these questions:
- "Does the response include a description of the tool to use and how to use it (spinner, number cube, slips of paper, etc.)?"
- "Does the response include a description of what the favorable outcome represents when using the tool?"
Have groups revise their designs, based on the feedback, and proceed with the rest of the activity.
English Learners
Suggest that students draw diagrams or pictures to include in their descriptions.

\section*{Activity 1 Graphington Slopes (Part 2) (continued)}

Students perform the simulation created in the Warm-up to determine the relative frequency of a real-world event.

Activity 1 Graphington Slopes (Part 2) (continued)
5. Based on your simulation results, estimate the probability that Graphington Slopes makes money over spring break.
\(P(\) Graphing Slopes makes money \()=\frac{\text { number of simulations resulting in "yes" }}{\text { ne }}\) number of completed simulations


Answers may vary, but should include the ratio of the number of simulations
showing Graphington Slopes making money to the total number of simulations ( 5 in most cases).

Pause and wait for further directions while your teacher collects the class's data.
6. Based on the class simulation results, estimate the probability that Graphington Slopes makes money over spring break.
Answers may vary, but should include the ratio of the class's number of favorable utcomes (Graphington Slopes making money) to the class's total number of simulations.

\section*{3 Connect}

Have groups of students share their simulation results and display them for the class to see. Have students complete Problem 5 using the class data.

Highlight that the experimental (observed) probability approaches the theoretical (expected) probability when many trials are observed.

Note: At this level, make the assumption that the class's simulation result is the theoretical probability of the event. In later grades, students will learn to calculate the precise theoretical probability of multi-step events. The theoretical probability of it snowing at least 4 days out of the 10 days is 0.44 . Refer to the Activity 1 PDF, Graphington Slopes: Theoretical Probability for an explanation.

\section*{Ask:}
- "How close was your group's estimated probability to the class's probability?"
- "Is your group's probability a good representative of the class's probability?"
- "The class performed \(\qquad\) simulations and calculated the probability of Graphington Slopes making money to be \(\qquad\) What do you think you could do to make the estimated probability the same as the expected probability?" Perform more simulations.
- "Do you anticipate Graphington Slopes will make money this year?" Answers may vary depending on the class's experimental (observed) probability. If the probability is less than 0.5 , perhaps students would not expect to make money.

\section*{Activity 2 Simulation Nation}

Students practice what they learned about simulations by matching them with real-world scenarios.


\section*{1 Launch}

Read the directions and explain to students that each simulation will be used exactly one time.

\section*{Monitor}

Help students get started by having them find the probabilities represented in each simulation, and then reading the problems to see which matches.

Look for points of confusion:
- Not seeing the connection between Problem 3 and the number cube. Have students write the sample space for a standard number cube and circle the numbers 1 and 2 . Ask them what the probability is of rolling a 1 or 2 .
Look for productive strategies:
- Explaining their reasoning with precise mathematical language.

3 Connect
Display the situations and simulations.
Have students share their matches using the Poll the Class routine, and explain their thinking.

Highlight how the simulations model the problems using the explanations from the students.

\section*{Ask:}
- "For Problem 1, why is the spinner spun five times?" Five fish are caught
- "For Problem 1, why does the same number need to be spun 3 or more times?" We are trying to find the probability of at least 3 being female.
- "For any given problem, could part of it be changed and still result in the simulation working?" Answers may vary, but should include maintaining the probability of the experiment.

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Tools}

Provide students with blank spinners, number cubes, coins, slips of paper and a bag or box that they can physically manipulate to help them visualize how they could use each one to simulate the situations.

\section*{Accessibility: Vary Demands to Optimize Challenge}

Consider having students complete only Problems 1-3 and remove Simulation C from the list of simulations to choose.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students share how they determined their matches, listen for and amplify the connection between the numerical quantities in the simulation and the situation. Display sentence frames for students to use, such as:
- "Situation \(\qquad\) matches with Simulation \(\qquad\) because...
- "I saw that the text mentions \(\qquad\) sol..
\(\qquad\) , because .

\section*{English Learners}

Mention that the phrase "simulated results" means the results of the simulation

\section*{Summary}

Review and synthesize how simulations are used to estimate probabilities.

\section*{Summary}

\section*{In today's lesson.}

You saw the more complex an experiment is, the more challenging it can be to estimate the probability of a particular event. Well-designed simulations are ways to estimate a probability in a complex experiment, especially when it would be challenging or impossible to determine the probability from reasoning alone.
To design a good simulation - an experiment to model a real-world event - you need to know or be able to determine the probability of the individual events you wish to find. These probabilities can help you design the simulation. For example, if an event has the probability of \(\frac{1}{2}\), you can use a coin toss to simulate the experiment. You can also use a number cube, in which rolling three out of the six possible outcomes is favorable.

As the number of trials of the simulation increases, the experimental (observed) probability should approach the theoretical (expected) probability.


\section*{Synthesize}

Have students share what they understand about simulations and how they are used to estimate probabilities.

Highlight experimental (observed) probability is calculated as the ratio of the number of observed favorable cases to the number of completed simulations. Performing more simulations should result in an observed probability which is closer to the expected probability. For instance, a simulation using 10,000 trials should have a better observed probability than one using only 100 trials.

\section*{Formalize vocabulary: simulation}

Ask, "Each day, a student randomly reaches into a bowl of fruit and picks one for his lunch. To simulate the situation, he creates a spinner with four equal sections labeled: apple, orange, pear, and peach. Why might this simulation not represent the situation very well?" This simulation assumes each fruit is equally likely to be chosen. I do not know if there are the same number of each fruit. Also, as the week progresses, the remaining fruit might not have the same ratio as it did at the beginning of the week.

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments to reflect on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "Our world is really complicated - how can we simulate parts of it to make better predictions?

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in this unit. Ask them to review and reflect on any terms and phrases related to the term simulation that were added to the display during the lesson.

\section*{Exit Ticket}

Students demonstrate their understanding of simulations by designing one and using it to
estimate probabilities. estimate probabilities.


\section*{Success looks like...}
- Language Goal: Coordinating a real-world situation and a chance event which could be used to simulate that situation. (Speaking and Listening)
» Explaining how many marbles of each color Noah should use in his simulation in Problem 1.
- Language Goal: Performing a multi-step simulation, and using the results to estimate the probability of a multi-step event in a realworld situation (using other representations) (Speaking and Listening, Writing)
»Using the results of Noah's five simulations to estimate the probability that at least one battery will die within 15 hours in Problem 2.

\section*{- Suggested next steps}

If students respond to Problem 1 with an incorrect ratio of marbles, consider:
- Reviewing ratios and equivalent fractions.
- Assigning Practice Problem 1.

If students respond to Problem 2 incorrectly, consider:
- Reviewing Activity 1, Problem 4.
- Assigning Practice Problem 2.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder ...
- What worked and didn't work today? Have you changed any ideas you used to have about simulations as a result of today's lesson?
- How was Activity 1 similar to or different from Activity 1 in Lesson 4? What might you change for the next time you teach this lesson?

>. Design a simulation of an experiment in which the favorable outcome
has a probability of 0.25 .
Sample response: Creating a spinner with four equal-sized sections anding on ond 4 . Spin the spinner once. A favorable outcome is
\begin{tabular}{|lclc|}
\hline \multicolumn{3}{|l|}{ Practice Problem Analysis } \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 2 & 2 \\
\hline Spiral & \(\mathbf{2}\) & Activity 1 & 2 \\
\hline Formative \(\mathbf{0}\) & \(\mathbf{5}\) & Activity 2 & 2 \\
\hline
\end{tabular}

\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Designing Simulations}

\section*{Let's simulate some real-world experiments.}


\section*{Focus}

\section*{Goals}
1. Language Goal: Describe a multi-step experiment to simulate a multi-step event in a real-world situation, and justify that it represents the situation. (Speaking and Listening, Writing)
2. Language Goal: Perform a simulation to estimate the probability of a multi-step event, and explain how the simulation could be improved. (Speaking and Listening, Writing)

\section*{Coherence}

\section*{- Today}

Students estimate probabilities by designing and performing simulations of multi-step events. This lesson gives the option of every group performing the scaffolded simulation or designing their own simulation using tools (e.g., spinners, number cubes, blocks, etc.). This provides an opportunity for students to practice communicating precisely

\section*{< Previously}

In earlier lessons, students calculated probabilities of multi-step events and described simulations to model real-world events.

\section*{> Coming Soon}

In the next Sub-Unit, students compare distributions and discuss ways to use sample populations of data. Throughout the last lessons, Practice Problems, labeled as Capstone project helper, will aid students in their statistical Capstone project for Lesson 17.

\section*{Rigor}
- Students gain procedural skills by performing simulations and tracking results.
- Students apply their understanding of simulations to reason how they can be improved.


\section*{Amps powered by desmos Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Power-up PDF (as needed)
- Power-up PDF (answers, as needed)
- Activity 1 PDF, Are you ready for more? (optional)
- bags
- coins
- colored blocks or marbles
- number cubes
- paper clips
- spinners

\section*{Math Language \\ Development}

\section*{Review words}
- multi-step event
- simulation

\section*{Building Math Identity and Community Connecting to Mathematical Practices}

Throughout this lesson, students will select tools to simulate probability experiments. They may be unsure of selecting a tool, especially if they are unfamiliar with the tool. Encourage them to experiment with different tools until they find one that will work for each simulation. You may want to spend extra time during the Warm-up to familiarize everyone with the tools listed.

\section*{Amps : Featured Activity}

\section*{Activity 1 \\ Digital Simulation}

Students are able to perform the simulation digitally which will limit the number of materials required and provide a more realistic idea of how simulations are performed in the real world.


\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- This entire lesson may be omitted, as it is an optional lesson.
- In Activity 1, perform the simulations digitally using the Desmos Featured Activity.

\section*{Warm-up Breeding Mice (Part 1)}

Students select a tool and describe how it could be used to simulate a multi-step event from Activity 1.

\section*{Designing Simulations}
Let's simulate some real-world experiments.


\section*{Warm-up Breeding Mice (Part 1)}
A scientist is studying the genes that determine the color of a mouse's fur. When two mice with brown fur breed, there is a \(25 \%\) chance that each baby will have gray fur. Choose one of the following tools or describe your own. Describe how you would use the tool to simulate this experiment.


\section*{Other tool:}
Answers may vary, but should include \(\frac{1}{4}\) of the outcomes representing a mouse with gray fur. Sample responses could include:
- Spinner: Assign landing on red ( R ) to represent a mouse born with gray fur Number cube: Assign two outcomes
represent a mouse born with gray fu
Two coins: Assign landing on heads on both coins to represent a mouse born with gray fur
- Bag of blocks: Assign the blue cube to represent a mouse born with gray fur.
- Octahedral die: Assign the numbers 1 and 2 to represent a mouse born with gray fur. Students may also describe a different tool and how it can be used to simulate this experiment.
(0) \(\qquad\) Lesson 10 Designing Simuations 883

\section*{1 Launch}

Set an expectation for the amount of time students will have to work individually on the activity.

\section*{Accessibility: Optimize Access to Tools}

Provide students with blank spinners, paper clips, number cubes, coins, slips of paper and a bag or box that they can physically manipulate to help them visualize how they could use each one to simulate the situations. Students may be unfamiliar with an octahedral die. If they are available, allow students to manipulate them. Otherwise, explain that an octahedral die is an eight-sided die labeled with the numbers 1-8.

\section*{Power-up}

To power up students' ability to simulate an event given a probability have students complete:

Provide students with a copy of the Power-up PDF.
Use: Before the Warm-up
Informed by: Performance on Lesson 9, Practice Problem 5

\section*{Activity 1 Breeding Mice (Part 2)}

Students perform the simulation of their choice to estimate probabilities.


Amps Featured Activity
Digital Simulation

Activity 1 Breeding Mice (Part 2)

You will be given materials to perform a simulation. Refer to the scenario from the Warm-up. When two mice with brown fur breed, there is a \(\mathbf{2 5 \%}\) chance that each baby will have gray fur. For the scientist's experiment to continue, at least 2 out of 5 baby mice born need to have gray fur.
> 1. What tool(s) are you using to simulate this experiment? List the sample space and circle the outcome representing the mouse having gray fur. Answers may vary, but should include \(\frac{1}{4}\) of the outcomes representing a mouse with gray fur and \(\frac{3}{4}\) representing a mouse without gray fur.
2. How many trials will need to be completed to represent one simulation? Explain your thinking.
Five; 2 out of 5 baby mice need to be born with gray fur, so I need to simulate 5 mice being born.
>3. How do you know whether the scientist's experiment can continue?
If there are 2,3,4, or 5 gray mice in the simulation, the experiment
can continue.
can continue.
4. Perform five simulations and record your results in the table. Let the letter \(G\) represent a mouse born with gray fur and let \(X\) represent a mouse born without gray fur.


\section*{1 Launch}

Provide groups of students with the necessary materials (e.g., number cube, coins, bags with colored blocks, spinner, etc.) needed to perform their simulations. If students opt to design their own simulation modeling the problem from the Are you ready for more? problems, provide a copy of the Activity 1 PDF, Are you ready for more?
(2) Monitor

Help students get started by having them record the sample space.

Have students list their sample space based on their chosen simulation tool(s) and helping them complete Problem 1.

\section*{Look for points of confusion:}
- Thinking each trial completes a simulation. Remind students they need 5 trials to complete their simulation and then need to complete the simulation 5 times.
- Combining all the simulation results to calculate the probability. Remind students the probability is found by finding the ratio of the number of successful simulations to the total number of completed simulations (most likely 5 in this situation).

\section*{Look for productive strategies:}
- Using precise mathematical language to describe their simulation and the resulting probabilities of the simulation.

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Tools}

Display the same images of the tools from the Warm-up to help students select a tool for their simulation. Allow access to blank spinners, number cubes, coins, slips of paper and a bag or box to help them visualize how they could use each one to simulate the experiment.

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can perform the simulation in a digital environment which limits the number of materials required. By doing so, students are provided with a more realistic way of how simulations are often performed in the real world.

\section*{Extension: Math Enrichment}

Have students complete the Activity 1 PDF, Are you ready for more?, instead of this activity. They will choose a scenario from the Are you ready for more? in their Student Edition and design and conduct a simulation.

\section*{Activity 1 Breeding Mice (Part 2) (continued)}

Students perform the simulation of their choice to estimate probabilities.


\section*{3 Connect}

Display the class results for Problem 5. Allow students to complete Problems 6 and 7 before the class discussion.

Have groups of students share their simulation method and results. If students completed the Are you ready for more? problems, have them share their prompt and their simulation design, perhaps in a planned presentation.

Highlight that good simulations model the real-world event and have matching probabilities for the events.

Ask, "How could you get a better estimate than what you got in your group?" Repeat the experiment many more times and combine the data from the class.

\section*{Summary}

Review and synthesize the characteristics of a good simulation.

\section*{Summary}

\section*{In today's lesson.}

You designed a simulation to model a real-world, multi-step event. You can use simulations to estimate the probability of an event. The more simulations performed, the closer the estimated probability should be to the expected probability.
Many real-world events are complicated to reproduce multiple times.
So, scientists, computer programmers, financial analysts, sports analysts,
environmental scientists, and others create simulations to model the outcomes. Using computer software, they are able to perform thousands of simulations to answer questions about everyday phenomena!

\section*{Synthesize}

Highlight that a good simulation must model the event and have the same probability. To make a simulation produce a better estimated probability, perform many trials. This is why computer programs are often used to simulate experiments.

\section*{Ask:}
- "What are some things you had to consider when designing your simulation?" The simulation needed to have the same theoretical probability as the actual event.
- "What did you learn from the simulations the other groups performed?"
- "Were the results of any of the simulations surprising?"
- "Why would it make sense to design and perform a simulation rather than repeat the actual experiment multiple times?" It would make sense when the actual experiment is costly in time or resources or cannot be controlled or repeated.

\section*{(.) Reflect}

After synthesizing the concepts of the lesson allow students a few moments to reflect on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition To help them engage in meaningful reflection, consider asking:
- "Our world is really complicated - how can we simulate parts of it to make better predictions?"

\section*{Exit Ticket}

Students demonstrate their understanding by analyzing simulation designs to determine which design is the best and why the others are not good simulations.


\section*{Success looks like ...}
- Language Goal: Describing a multi-step experiment to simulate a multi-step event in a real-world situation, and justifying that it represents the situation. (Speaking and Listening, Writing)
» Explaining which option is the best design of a simulation for the scientists to perform.
- Language Goal: Performing a simulation to estimate the probability of a multi-step event, and explaining how the simulation could be improved. (Speaking and Listening, Writing)

\section*{- Suggested next steps}

If students select \(A\) as the best simulation, consider:
- Reminding them that a simulation is meant to get results quickly so the data can be analyzed.

\section*{If students select \(B\) as the best simulation, consider:}
- Reminding them that a simulation should have the same theoretical probability as the actual events.

\section*{If students select \(D\) as the best simulation, consider:}
- Reminding them that the more trials a simulation has, the better it will estimate the probability.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...
- What worked and didn't work today? What did students find frustrating about Activity 1? What helped them work through this frustration?
- The instructional goal for this lesson was for students to design and perform simulations for multi-step events. How well did students accomplish this? What did you specifically do to help students accomplish it? What might you change for the next time you teach this lesson?

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

In this Sub-Unit, students will learn how to identify whether a sample is representative of its population and understand the importance of random sampling.


\section*{y}

\section*{Narrative Connections}

Read the narrative aloud as a class or have students read it individually. Students continue to explore how sampling and statistics can help them answer questions in the following places:
- Lesson 11, Activities 1-2:

Team Heights, Family Heights
- Lesson 13, Activities 1-3: Fish Market, Sampling the Fish Market (Part 1), Sampling the Fish Market (Part 2)
- Lesson 15, Activities 1-2:

Three Different Shows,
Making a Recommendation
- Lesson 16, Activities 1-2:

Travel Times, A New Comic Book Hero

\section*{Comparing Two Populations}

Let's compare two populations of data.


\section*{Focus}

\section*{Goals}
1. Language Goal: Calculate the mean and mean absolute deviation (MAD) for a data set, and interpret these measures. (Speaking and Listening)
2. Language Goal: Compare and contrast populations represented on dot plots in terms of their center, spread, and visual overlap. (Speaking and Listening, Writing)
3. Language Goal: Justify whether two populations are "very different" based on the difference in their means expressed as a multiple of the mean absolute deviation. (Writing)

\section*{Coherence}

\section*{- Today}

Students work at deciding whether two groups are different from each other. They use a quantifiable method of determining if the two groups are relatively close or relatively different using means and MADs of the two groups. For the problems in this lesson, the populations under study are small and the data for the entire populations are known.
\(<\) Previously
In Grade 6, students calculated the mean absolute deviation (MAD) of a data set and used it to describe the spread of the data.

\section*{Coming Soon}

In Lesson 12, students will revisit the method of reasoning used in today's lesson to decide whether there is a meaningful difference between two populations' given data from only a sample of each of the populations. At the end of the unit, students will present their findings concerning their selfselected question. In order to prepare for the Capstone project, students will be given a milestone problem in each of the remaining lessons

\section*{Rigor}
- Students build conceptual understanding of how the mean and mean absolute deviation can be used to determine whether two sets of data are very different from each other.
- Students further develop procedural skills for calculating the mean absolute deviation.


\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 3 PDF, Comparing Two Populations (for display, as needed)
- Graphic Organizer PDF, MAD Recording Sheet, one per student

\section*{Math Language} Development

\section*{Review words}
- center
- mean
- mean absolute deviation (MAD)
- spread
- variability

\section*{Building Math Identity and Community Connecting to Mathematical Practices}

Students may dislike the tedious process of calculating the mean and mean absolute deviation; they may be lost on how to compare the groups of data. Help them practice taking control of their own impulses by suggesting they seek out support from two to three people, such as other students or you, when they feel frustrated.

\section*{Amps : Featured Activity}

\section*{Warm-up \\ Take a Poll}

Poll the class to determine what sport your students would like to add to the school to facilitate a conversation on collecting data from a sample.


\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In Activity 1, give students the means for the teams in Problem 3 so they can focus on the comparison of the data.
- In Activity 3, have students focus on the smaller data sets to compare.

\section*{Warm-up Poll the Class}

Students respond to a poll and suggest how to collect survey results.

Amps Featured Activity Take a Poll

Unit 8 | Lesson 11

Comparing Two Populations

Let's compare two populations of data.


Warm-up Poll the Class
\(>1\). Your school wants to organize one new sports team and can choose from the following sports. Which sport would you choose?

2. Suggest a way for the school to collect the data to decide which sport will get a new team. Explain your thinking.
Answers may vary. Some students may suggest asking all the students in Answers may vary. Some students may suggest asking all the students in
the school. This is an acceptable response at this time. In later lessons, populations and samples will be discussed.

\section*{1 Launch}

Activate students' background knowledge by asking students to share if they play a sport and what team they play for if it is not a school team.

\section*{(2) Monitor}

Help students get started by having them think about who should be included in the survey.

Look for points of confusion:
- Thinking that collecting responses from all the students in the school is necessary. Ask students how long they think that would take and then ask, "What if you expanded the survey to the whole school? The whole city? The whole state?"

Look for productive strategies:
- Thinking that collecting responses from groups of students is more efficient.

\section*{3 Connect}

Display the options from Problem 1 and conduct the Poll the Class routine.

Have individual students share which new sports team they prefer and their suggestion for collecting data. Begin with students who want to collect data from all the students in the school and finish with students who devised a plan to collect survey results from groups of students.

\section*{Ask:}
- "How might you use the previous lessons to help you organize your survey results?"
- "How might you organize, represent, and show the results of the data so that you can present it?"

Differentiated Support

\section*{Accessibility: Activate Background Knowledge}

Use the Poll the Class routine to determine what sport your students would choose to add to their school, from the ones shown in the Warm-up. Consider using the digital poll provided in the Amps slides.

\section*{Activity 1 Team Heights}

Students create dot plots and calculate means to compare the heights of two groups to prepare them for using the MAD to compare two populations of data in Activity 3.


\section*{1 Launch}

Have students work in pairs and assign each partner a team for Problem 1. Activate students' prior knowledge by asking them how to calculate the mean.

\section*{2 Monitor}

Help students get started by reviewing how to construct dot plots given the groups of data.

\section*{Look for points of confusion:}
- Forgetting to divide after adding the data when finding the mean. Ask, "Does it make sense that the mean is so much larger than the values in the set?"
(3) Connect

Have pairs of students share the dot plots they constructed as well as the mean for each team.

\section*{Ask:}
- "What do you notice about your dot plots?" Sample response: There is no overlap between the two dot plots. For the gymnastics team, the center of the distribution is about 63 in. For the volleyball team the center is about 78 in ., and the dots seem to be closer together.
- "On which team do you think the athletes are generally taller?"

Highlight how dot plots display the distribution and spread of the data.

Differentiated Support

\section*{Accessibility: Activate Prior Knowledge}

Remind students they constructed and analyzed dot plots in Grade 6 and calculated the means of data sets. Students may need a refresher of these concepts. Demonstrate how to plot 2 or 3 values from the Gymnastics data set and ask students to complete the dot plots.
Remind them that the mean of a data set is a measure of center that describes the data set with a single value and is also called the average.
mean \(=\frac{\text { sum of the data values }}{\text { number of data values }}\)

\section*{Accessibility: Vary Demands to Optimize Challenge}

Consider one of the alternative approaches to this activity:
- Provide pre-completed dot plots for students to use and have them begin the activity with Problem 2.
- Providing the calculations for the mean in Problem 3, so that students can spend more time comparing the means.

\section*{Extension: Math Enrichment}

Tell students that the coach of each team has added an additional player. Ask them to describe how the means might be affected. If the additional player's height is close to the mean height, the mean will likely not vary much. If it is far away from the mean height, the mean will likely change.

\section*{Activity 2 Family Heights}

Students calculate means to compare the heights of two families to prepare them for using the MAD to compare two populations of data in Activity 3.

Activity 2 Family Heights

Clare and Diego are curious to know which family has taller members. They each ask their family members for their heights and decide to compare the data they collected.

\section*{Clare's family heights (in.)}

Diego's family heights (in.)
\(\begin{array}{llllll}28 & 39 & 41 & 52 & 63 & 66\end{array} 71\)
\(\begin{array}{llllll}49 & 60 & 68 & 70 & 71 & 73 \\ 77\end{array}\)

The dot plots show the heights of Clare's and Diego's families.
 Clare's family heights (in.)


Diego's family heights (in.)
1. Which family has taller members? Explain your thinking. Sample response: Diego's family is taller because more of his family members have a height greater than 60 in
2. Determine the mean height for each family.
a Mean height of Clare's family: 51.43 in.
b Mean height of Diego's family: 66.86 in.
> 3. Compare the mean heights of the two families
Sample response: The mean height of Diego's family is greater than Clare's family. The difference between the means is 15.43 in .

\section*{1 Launch}

Have students work in pairs and assign each partner a different family for Problem 2.

\section*{Look for points of confusion:}
- Having no clear comparison between Clare's and Diego's families. Have students think about arguments to support the idea that Diego's family is taller and counterarguments why this might not be true.

3 Connect
Have pairs of students share the means they calculated for the two family teams.

\section*{Ask:}
- "How would you describe the distribution of the data in each dot plot?" Sample response: In each dot plot, the data are spread apart.
- "Do the data for these two teams overlap?" There is an overlap between 49 in . and 71 in .
- "In which family are the family members generally taller?" Diego's family
- "For which sets of data did you find it more straightforward to compare the distributions: the Olympic teams or the families?" Sample response: It was more straightforward to compare the data for the Olympic teams because there was less overlap between the two distributions.

Highlight that the differences between the means are more or less the same, but the difference in the spreads vary. The distributions for the Olympic teams have a smaller difference in spreads, meaning the teams' heights do not differ as much as the families' heights. The spread for the families is much greater.

\section*{Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

Provide the calculations for one or both means in Problem 2, so that students can focus on comparing the means in Problem 3.

\section*{Extension: Math Enrichment}

Have students complete the following problem:
How would the mean heights and their comparison change if the least value from each data set was removed? The new mean heights would be about 55.33 in. (Clare's family) and about 69.83 in. (Diego's family). Diego's family still has the greater mean, but not by as much. The difference between the means is now about 14.5 in.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students share their responses, draw their attention between the numerical calculations for the mean for each family and the distributions of the dot plots. Ask:
- "Look back at Activity 1. How does the difference between the means in Activity 2 compare to Activity 1?"
- "How do the distributions compare between Activities 1 and 2?"

Listen for, and amplify, student reasoning that recognizes the data are more spread out in Activity 2 than they are in Activity 1. Ask students if the mean is a good measure to indicate this variation and amplify student responses that indicate the mean is not a measure of variation.

\section*{Activity 3 Comparing Two Populations Using the MAD}

Students compare groups of data by calculating the difference between the means as the multiple of the MAD and use this value to determine whether two populations are very different from each other.


\section*{1 Launch}

Have students work in small groups and assign each team to a different group member. Provide students with the Graphic Organizer PDF, MAD Recording Sheet to help organize and calculate the MAD.

\section*{2 Monitor}

Look for points of confusion:
- Forgetting how to evaluate absolute value. Remind students the absolute value represents the distance of a value from 0 .

\section*{3 Connect}

Have students share their responses to Problem 3.

Display the Activity 3 PDF, Comparing Two Populations, and ask, "Is there a big difference between the variabilities of the Olympic teams and of the family teams?"

Highlight that the differences in the means for both data sets are close to 15 . However, the difference between the means is not enough information to know whether the data sets are very different. One way to express the amount of overlap is to divide the difference in means by the larger MAD. For the Olympic teams, the difference in means is about 5 times the measure of variability, and for the family teams it is about 1 time the measure of variability. This indicates that the Olympic teams have a large difference among the two distributions. As a general rule, these materials will consider the difference between the data sets to be significant if the difference in means is more than twice the larger MAD.
Note: Although the median and interquartile range (IQR) are not needed in this activity, it may be useful to review how to calculate those values as well.

\section*{Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

Assign each group a different data set for which to calculate the MAD, as opposed to each group calculating all four MADs. Display group's calculations and encourage groups to discuss and resolve any differences before they proceed with Problem 3.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, ask students to respond to the question posed in their Student Edition, "How do the numerical values for the MADs compare to the visual displays of the dot plots from Activity 1?" Consider displaying the dot plots from Activities 1 and 2 and annotate them with their respective MADs, so students can see them at a glance. Ask:
- "Does either set of dot plots show a greater visual difference? What do you notice about their corresponding means or MADs?"
- Does either set of dot plots show a greater visual overlap of data values? What do you notice about their corresponding means and MADs?"

\section*{English Learners}

Use colored pencils to highlight where the visual overlap appears to be for each set of dot plots.

\section*{Summary}

Review and synthesize how to compare populations using the mean and mean absolute deviation (MAD).

\section*{Summary}

\section*{In today's lesson.}

You decided whether two sets of data were very different from each other.
Comparing two individuals or objects is fairly straightforward. The question, "Which dog is taller?" can be answered by measuring the heights of two dogs and comparing them directly. Comparing two populations or two data sets requires some additional analysis.
Generally speaking, two data sets are said to be very different from each other if the difference in their means is more than twice the greater mean absolute deviation.
If the difference in means is greater than \(2 \cdot\) (the greater MAD), then the data set are very different.


\section*{Synthesize}

Highlight that variation or variability is something that can be measured. Students may recall the statistical tool mean absolute deviation (MAD) from Grade 6. While the mean can help understand where the center is, MAD can help understand how much variation (or spread) a data set has. When comparing two populations of data, more than just the mean is needed. Two populations can have the same mean, or similar means, and yet be very different because one population may have a greater spread than the other population.

\section*{Ask:}
- "What are some measures of center, and how are they calculated?" Two measures are the mean and median. The mean is calculated by finding the sum of the data values and then dividing by the tota number of data values. The median is calculated by finding the middle data value (or average of the two middle data values) after placing the data values in order.
- "Why is the mean useful for comparing two populations?" The mean helps describe whether the centers of the populations are similar or different
- "Why is the MAD also needed when comparing two populations?" The MAD helps describe the spread of each population, or how far away the data values in each population are from the mean.
- "What is the general rule you will use to determine whether two populations have a large difference or not?" If the difference in the means is greater than twice the MAD, then the two populations are considered to be very different from each other.

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "In what ways can you compare two populations?"
- "In what way did creating dot plots help you to visualize the similarities and differences between two populations?"

\section*{Exit Ticket}

Students demonstrate their understanding of how to determine whether two populations of data are very different from each other by comparing means and mean absolute deviations.


\section*{Success looks like ...}
- Language Goal: Calculating the mean and mean absolute deviation (MAD) for a data set, and interpreting these measures. (Speaking and Listening)
- Language Goal: Comparing and contrasting populations represented on dot plots in terms of their center, spread, and visual overlap. (Speaking and Listening, Writing)
- Language Goal: Justifying whether two populations are "very different" based on the difference in their means expressed as a multiple of the mean absolute deviation. (Writing)
» Comparing the prices of the RVs by expressing the difference in means of the two sets of prices as a multiple of the MADs.

\section*{Suggested next steps}

If students provide an incorrect response or explanation, consider:
- Reviewing how to determine whether two populations are different from Activity 3.
- Assigning Practice Problem 2.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
C. Points to Ponder...
- What worked and didn't work today? Which groups did and didn't have their ideas seen and heard today?
- In what ways did the Warm-up go as planned? What might you change for the next time you teach this lesson?

\section*{Math Language Development}

\section*{Language Goal: Justifying whether two populations are "very different" based on the difference in their means expressed as a multiple of the mean absolute deviation.}

Reflect on students' language development toward this goal.
- Do students' responses to the Exit Ticket problem indicate an understanding that the prices of RVs for sale at the two companies are very different?
- Do their explanations include math language, such as "the difference in means", "three times as great as the MAD", etc? How can you help them be more precise in their explanations?


\section*{Larger Populations}

Let's compare larger populations of data.


\section*{Focus}

\section*{Goals}
1. Language Goal: Comprehend that the terms population and sample refer to the whole group (population) and a part of the group under consideration (sample). (Speaking and Listening, Writing)
2. Language Goal: Describe a sample for a given population. (Speaking and Listening, Writing)
3. Language Goal: Explain that a sample may be used when it is unreasonable to gather data about an entire population. (Speaking and Listening)

\section*{Coherence}

\section*{- Today}

Students are introduced to the idea of using data from a sample of a population when it is impractical or impossible to gather data from every individual in the population. Students consider whether the people in their class would be an adequate sample for several different questions and associated populations. Students will use the quantifiable method they learned in the previous lesson. Note: This lesson's Practice contains a milestone for the Capstone project.

\section*{< Previously}

In Lesson 11, students compared dot plots and calculated the difference between two means as a multiple of the mean absolute deviation (MAD) to show when two data sets are different.

\section*{Coming Soon}

Students will learn what makes some samples more representative of a population than others. Students will also explore the best ways to obtain such samples

\section*{Rigor}
- Students build conceptual understanding of how a population and a sample of that population are related.

\section*{\(\Delta\)}

Activity 1


Activity 2


Summary


Exit Ticket
\begin{tabular}{l|l}
\begin{tabular}{l} 
(1) 10 min
\end{tabular} & © 10 min \\
\(\circ\) Independent & \(\cap \circ\) Pairs
\end{tabular}
() 5 min

ํํํํํํํ Whole Class
© 5 min
\(\bigcirc\) 응 Independent

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 1 PDF, pre-cut cards, one set per student
- Graphic Organizer PDF, MAD Recording Sheet, one per pair
- class list of first and last names

Math Language
Development

\section*{New words}
- population
- sample

\section*{Review words}
- mean
- mean absolute deviation (MAD)
- statistical question
- variability

\section*{Amps \(\quad\) Featured Activity}

\section*{Activity 2 \\ Aggregate Class Data}

Student-submitted data is quickly collected, aggregated, and shared with fellow classmates, automatically.


\section*{Building Math Identity and Community}

Connecting to Mathematical Practices
Students may rush to a conclusion that they have enough information about the population they are considering. Encourage students to think about their own thinking process to make sure their conclusions make sense given the context of the data.

\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In the Warm-up, omit Problem 3.
- For Activity 2, provide a class list with the letters in each name already counted. To save more time, provide the mean for the class data and perhaps the MAD, as well.

\section*{Warm-up Siblings and Pets}

Students consider ways they gather data to realize it is unreasonable to collect data from everyone addressed by the question.


\section*{1 Launch}

Activate students' prior knowledge by asking them to explain the term statistical question.

\section*{2 Monitor}

Help students get started by having them think about who should be included in answering the question.

\section*{Look for points of confusion:}
- Thinking that families with only one child are the population. Remind students that they need to ask all the family units with at least one child.

\section*{3 Connect}

Have pairs of students share how they would gather data to answer the question.

Highlight the difference between the data students would like to have to answer the question and the data students have available.

Define the term population as the set of individuals from which the data are taken. A sample is the part of the population from which the data are actually collected.

\section*{Ask:}
- "What is the population for the statistical question?" Every family unit in the world with at least one child.
- "What might be a sample you could use to answer the question?" Students in our class.
- "Why is it unreasonable to actually collect all the necessary data to answer the question?" There are too many people to collect data from.

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

To demonstrate how a sample is a subset of a population, ask everyone in the class to stand up. Say, "This is the population of our class." Then ask everyone to sit down with the exception of 5 students you select. When those 5 students are the only ones standing, say, "This is the sample." Add an illustration of this concept to the class display. For example, draw a diagram of a few smaller circles inside a larger circle. Label the larger circle "population" and smaller circles "sample."

\section*{Power-up}

To power up students' ability to reason about collecting data from a group, have students complete:
Your teacher wants to know what students are planning to do over the summer. Which would be the best way for them to collect this data?
A. Ask other teachers in the school what they have heard.
B. Ask their homeroom students only.
C. Ask all of the students who are involved in Chorus.
(D.) Ask six students from each class that they teach.

Use: Before the Warm-up
Informed by: Performance on Lesson 11, Practice Problem 6

\section*{Activity 1 Card Sort: Population or Sample?}

Students practice identifying populations and samples based on several scenarios.

Activity 1 Card Sort: Population or Sample?
Next, you will explore examples of samples and populations. One place you might encounter these terms is in polls, which are samples of public opinion. Statisticians, such as Courtney Kennedy of the Pew Research Center, frequently work with samples and populations, and must understand how (and why) they are similar or different.
In this activity, you will be given a set of cards. Decide which card identifies a population and which card identifies a sample. Match each scenario with the population and the sample. Record your matches in the table.
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Scenario } & Population & Sample \\
\hline \begin{tabular}{l} 
Jada noticed a picture of her teacher's pet cat and \\
dog on the teacher's desk. Jada wondered how \\
many teachers at her school have pets.
\end{tabular} & Card 4 & Card 7 \\
\hline \begin{tabular}{l} 
Bard was eating falafel patties at lunch and offered \\
to share some with Priya. When Priya reached in, \\
she pulled out two falafel patties that were stuck \\
together. Bard and Priya wondered how often falafel \\
patties get stuck together.
\end{tabular} & Card 8 & Card 2 \\
\begin{tabular}{l} 
Mai was curious about the average length of \\
popular songs from a playlist she listened to for one \\
week on her music-streaming app.
\end{tabular} & Card 5 & Card 1 \\
\hline \begin{tabular}{l} 
Kiran wondered which movie-streaming service, \\
Webflicks or Whooloo, is more popular.
\end{tabular} & Card 6 & Card 3 \\
\hline
\end{tabular}


Distribute the pre-cut cards from the Activity 1 PDF. Conduct the Card Sort routine.
(2) Monitor

Help students get started by having them match pairs of cards together before reading the scenarios.

\section*{Look for points of confusion:}
- Mixing up population and sample. Have students think about which card represents the larger group (population) and which card represents the smaller group (sample).

\section*{3 Connect}

Have pairs of students share the populations and samples for the scenarios.

\section*{Ask:}
- For each scenario, could there be another population other than the ones given?" No. The scenario should describe the population you are wanting to research.
- "For each scenario, could there be another sample other than the ones given?" Yes. A sample refers to a few of the individuals from the population that will be collected.
- "If you were to answer the question the student wonders about in each scenario, what are some advantages and disadvantages of using the sample?" Some samples are more convenient, but might miss large sections of the population and might not be an accurate representation.

Highlight that well-phrased questions should have known populations. A question that is not well-phrased should be reconsidered so that the purpose of the question is clear. However, there are usually many ways to find samples within the populations.

Differentiated Support

\section*{Accessibility: Vary Demands to Optimize} Challenge

Provide students with Cards 2, 4, 7, and 8. Have them focus on completing Problems 1 and 2 . As time permits, distribute the remaining cards.

\section*{Extension: Math Enrichment}

Have students generate their own scenario and write a description of the population and sample for that scenario. Ask them to share their descriptions with the class.

\section*{MLR2: Collect and Display}

Create a visual display with two columns labeled Population and Sample. Tape a class set of the cards from this activity onto the display where each card is taped under its appropriate category. Leave the display up for students to reference throughout the rest of this unit.

Featured Mathematician

\section*{Courtney Kennedy}

Have students read about featured mathematician Courtney Kennedy, the director of survey research at Pew Research Center, a nonpartisan think tank based in Washington, D.C.

\section*{Activity 2 John Jacob Jingleheimer Schmidt}

Students compare two groups by collecting data to draw a conclusion about a larger group.


\section*{1) Launch}

Ask students why knowing the length of names would be helpful (e.g., printing name cards for an event, diplomas, etc.) Have students complete Problems 1 and 2, then provide students with the class list and the Graphic Organizer PDF, MAD Recording Sheet. Have students share the number of letters in their names.

\section*{(2) Monitor}

Help students get started by providing the class list with the letters already counted.

\section*{Look for points of confusion:}
- Comparing the mean and MAD directly instead of finding the quotient between the difference of means and the MAD (Problems 4 and 5). Have students find the difference between the means, and then divide by the MAD. If it is less than 2 , there is not much difference.

\section*{(3) Connect}

Have individual students share their conclusions about the entire school's data based on the class data .

Highlight how the data they have might relate to a larger group. A sample might give some estimate of a larger population, but the estimate should not be assumed to be exact.

\section*{Ask:}
- "Do you expect the mean length of first names for the school to be exactly the same as the mean length for the class?" Not the same, but close.
- "Do you expect the mean length of first names for the school to be larger, smaller, or about the same as the mean length for the class?" Unless there are one or two names which are considerably longer than most names, it should be close to the mean from the class.

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which the class data can be aggregated and shared.
If not using the Amps slides, provide the mean and MAD of the class data already calculated for students to record in the table for Problem 3. This will allow them to focus on comparing the means and MADs in Problems 4 and 5.

Accessibility: Guide Processing and Visualization
Provide students with copies of the Graphic Organizer PDF, MAD Recording Sheet, to help them visualize the calculations needed to determine the mean and MAD.

\section*{Math Language Development}

\section*{MLR8: Discussion Supports}

During the Connect, as students share their conclusions, display these sentence frame to help them structure their thinking:
- "The mean length of first names for the school will not be exactly the same as the mean length for the class because ...."
- "The mean length of first names for the ___
\(\qquad\) should be greater than/less than/about the same as the mean length for the \(\qquad\) because ...."

\section*{English Learners}

Encourage students to use the terms and phrases from the class display to strengthen their use of appropriate mathematical language.

\section*{Summary}

Review and synthesize why collecting data from an entire population is not always reasonable or efficient, and why using samples can help answer statistical questions about the population.

\section*{Summary}

\section*{In today's lesson.}

You saw that to answer a question about a population of data, it is sometimes unreasonable to collect data from the entire population. Instead, data is often collected from a sample of the population

A population is a set of people or objects that you want to study. A sample is a part of the population.

Here are some examples of populations and samples.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Population } & \multicolumn{1}{c|}{ Sample } \\
\hline All of the people in the world. & The leaders of each country in the world. \\
\hline All Grade 7 students in your school. & \begin{tabular}{l} 
The Grade 7 students in your school who \\
are in band.
\end{tabular} \\
\hline All apples grown in the U.S. & The apples in your school cafeteria. \\
\hline
\end{tabular}

Reflect:

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in this unit. Ask them to review and reflect on any terms and phrases related to the terms population and sample that were added to the display during the lesson.

\section*{Exit Ticket}

Students demonstrate their understanding of populations and samples by gathering data related to a population and a sample.


\section*{Success looks like ...}
- Language Goal: Comprehending that the terms population and sample to refer to the whole group (population) and a part of the group under consideration (sample).
(Speaking and Listening, Writing)
» Identifying the population for Shawn's question in Problem 1.
- Language Goal: Describing a sample for a given population. (Speaking and Listening, Writing)
- Language Goal: Explaining that a sample may be used when it is unreasonable to gather data about an entire population. (Speaking and Listening)
»Identifying a sample that Shawn could use to answer their question in Problem 3.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Wo. Points to Ponder ...
- What worked and didn't work today? During the discussion about Activity 1 , how did you encourage each student to listen to one another's strategies?
- Thinking about the questions you asked students today and what the students said or did as a result of the questions, which question was the most effective? What might you change for the next time you teach this lesson?

\section*{Suggested next steps}

If students struggle to identify the population or sample, consider:
- Reviewing Activity 3.
- Assigning Practice Problems 1 and 2.

If students struggle to explain why collecting data for a population would be difficult, consider:
- Reviewing Activity 2.
 Nam
4. Six coins are tossed. Determine the probability of each event. Show or explain your thinking.
a All of the coins land tails facing up. \(\underset{\substack{\frac{1}{64} \text { : } \\ 2 \rightarrow 64 \\ 2}}{2}\) Saple response: There are 64 possible outcomes \((2 \cdot 2 \cdot 2 \cdot 2 \cdot 2\). \(2=644\). There is only one way to get all the coins to land tails facing up
b At least 1 landing heads facing up.
\({ }^{63}{ }_{64}\); Sample response: There are still 64 possible outcomes and the rest of the outcomes involve at least one landing heads facing up.
5. A school is selling candles for a fundraiser. The school keeps \(40 \%\) of the total sales, and they pay the rest to the candle company. The table shows the price and number sold of each candle size. How much money will the school pay to the candle company? Show or explain your thinking.
The school paid \(\$ 1,249.80\) to the candle company; Sample response \(8 \cdot 11+45 \cdot 18+21 \cdot 25=2083\), so the school sold \(\$ 2,083\) worth of
( 6 . Describe what the terms shape, center, and spread mean in your own words. Use the following dot plot, which shows the ages of the first 20 people surveyed at a movie theater. as an example in your explanation.


Sample responses:
Shape describes the overall form of the data, including whether any symmetry is displayed. Most of the data values are around \(8-10\) years. It the values below 7 are excluded, the plot would show some symmetry.
With all the data values included, the data are not symmetric With all the data values included, the data are not symmetric. The center describes ars.
center is around 9 years.
The spread of the data describes the variability of the data. For this data, the ages go from 4 to 11 , which is a range of 7 years.
\begin{tabular}{|lclc|}
\hline Practice Problem Analysis & \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 2 & 2 \\
& \(\mathbf{2}\) & Activity 2 & 2 \\
Spiral & \(\mathbf{3}\) & Activity 2 & 2 \\
Formative 0 & \(\mathbf{6}\) & \begin{tabular}{l} 
Unit 8 \\
Lesson 9
\end{tabular} & 2 \\
\hline
\end{tabular}

\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.
(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{What Makes a Good Sample?}

Let's see what makes a good sample.


\section*{Focus}

\section*{Goals}
1. Calculate the mean of various samples, and compare them with the mean of the population.
2. Language Goal: Comprehend that the term representative refers to a sample with a distribution that closely resembles the population's shape, center, and spread. (Speaking and Listening, Writing)
3. Language Goal: Given dot plots that represent a population and several samples, determine whether each sample is representative of the population, and explain the reasoning. (Speaking and Listening, Writing)

\section*{Coherence}

\section*{- Today}

Students examine multiple samples of the same population and learn what it means for a sample to be representative of the population. Students study the structure of dot plots, attending to center, shape, and spread, to help them compare the samples and the population. The problems in this lesson use smaller populations so that students can compare each sample against the entire population. Note: This lesson's Practice contains a milestone for the Capstone project.

\section*{< Previously}

In Lesson 12, students began to think about the impracticality of studying entire populations and instead saw the usefulness of selecting samples of the population to study.

\section*{>Coming Soon}

In Lesson 14, students will critique different sampling methods to determine which sampling methods are fair which helps to reduce bias.

\section*{Rigor}
- Students build conceptual understanding of samples and representative samples by comparing characteristics of a sample to the characteristics of the population from which it came.
- Students apply their understanding of representative samples to sampling at a fish market.


\section*{Amps powered by desmos Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \\ \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- tracing paper (optional)

\section*{Math Language}

Development

\section*{New word}
- representative sample

\section*{Review words}
- center
- mean
- population
- sample
- shape
- spread
- variability

\section*{Amps \(\vdots\) Featured Activity}

\section*{Activity 1 \\ See Student Thinking}

Students are asked to explain their thinking after deciding if a sample is representative or not, and these explanations are available to you digitally, in real time.


\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students may resist thinking deeply of the structure of the data in order to compare the dot plots. Encourage students to consider the perspective of others when writing their descriptions. Have them consider if someone could visualize the shape, center, and spread of the dot plot based solely on their description.

\section*{- Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- Activity 3 may be omitted or assigned as an Are you ready for more? problem for students who finish Activity 2 early.

\section*{Warm-up Describing Distributions}

Students describe dot plots that they will use in Activity 2 to practice comparing the shape, center, and spread of distributions.


\section*{1) Launch}

Activate students' background knowledge by asking if they have ever been to a market, and if so, what type. If someone is familiar with a fish market, ask them to share what they know about them. If not mentioned, be sure to share that the same type of fish can come in different sizes and that fish are usually sold by weight.

\section*{2}

\section*{Monitor}

Help students get started by having them drawing a curve around the data and asking if it looks symmetric.

\section*{Look for points of confusion:}
- Thinking the February prices are not symmetric because the data are not centered on the number line at 2.2. Remind students that the number line could start and end so that the middle of the number line is 1.8 . If students can draw a curve around the data that looks symmetric, then the data appear to be symmetric.

\section*{Connect}

Display the dot plots.
Have students share their descriptions.
Ask:
- "When describing the center, did anyone use the mean? Median?"
- "Which data has more variability? How do you know?" The prices in May because they have a larger spread.
- "Which data appear more symmetric?" The prices in February appear more symmetric than the prices in May.
Highlight mathematically precise language and the structure of the dots plots as students share their comparisons.

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

During the Connect, as students share their descriptions of the distributions, display a three column table similar to the following. Record the words and phrases students use to describe the shape, center, and spread of the two distributions.

Shape
Center
Spread

\section*{(7) Power-up}

To power up students' ability to understand shape, center, and spread, have students complete:

Recall that the spread of a set of data describes its variability while the center describes its typical value.
Identify which statements are true based on the dot plot. Select all that apply.
(A.) The mean is 1.
(D.) The range is 4 .
B. The median is 1 .
(E.) The median is 0.5 .
(C. The MAD is 1.
F. The data is symmetric.
Use: Before the Warm-up
Informed by: Performance on Lesson 12, Practice
Problem 6 and Pre-Unit Readiness Assessment, Problem 8


\section*{Activity 1 Fish Market}

Students find the mean of samples and compare it to the mean of the population to determine which is a more representative sample using numerical evidence.

Amps Featured Activity
See Student Thinking

\section*{Activity 1 Fish Market}

A saltwater fisherman caught and sold 10 different fish. The mean selling price was \(\$ 379\) per fish.
1. The first two fish she sold were sold for \(\$ 50\) and \(\$ 410\). Are the prices of these two fish a good representation of the 10 fish? Explain your thinking. No; Sample response: The mean of this small sample is \(\$ 230\), which is much lower than the population's mean.
2. The fisherman sold three whole tuna fish for \(\$ 250, \$ 400\), and \(\$ 1,200\). Are the prices of these three fish a good representation of the 10 fish? Explain your thinking. No; Sample response: The mean of this sample is approximately \(\$ 617\), which is much higher than the population's mean.
3. The fisherman sold three groupers for \(\$ 410, \$ 350\), and \(\$ 375\). Are the prices of these groupers a good representation of the 10 fish? Explain your thinking. Yes; Sample response: The mean of this sample is approximately \(\$ 378\) which is close to the mean of the population.
> 4. The table shows the selling prices for all 10 fish. Now that you have seen the entire population, which sample from Problems 1-3 is a better representation of the 10 fish? Explain your thinking.

> \begin{tabular}{rllll} \multicolumn{6}{c}{ Prices of \(\mathbf{1 0}\) fish (\$) } \\ 50 & 200 & 250 & 275 & 280 \\ 350 & 375 & 400 & 410 & 1,200 \end{tabular}

Sample response: The sample from Problem 3 bes represents the population because the mean is closer to the population mean of \(\$ 379\). The spread is better represented by the sample from Problem 2.

\section*{}

If the fisherman decided to sell all her fish for \(\$ 379\) each, which sample from Problems 1-3 would give the buyer the best deal? Explain your thinking.
Sample responses:
- The tuna in Problem 2 have an average price of \(\$ 617\), but the buyer would only pay an average of \(\$ 379\). This option saves money, making it the better deal The tuna in Problem 2 would be a better deal because the total cost would be \(\$ 1,850\), but the buyer would only pay \(\$ 1,137\)

Reflect: How did showing respect for others guide your behavior during the activity?

1 Launch
Activate students' background knowledge by asking what the term representative means and encourage students to think about situations outside of mathematics.

\section*{(2) Monitor}

Help students get started by saying one way to think about if a sample is representative of the population is to compare the mean of the sample to the mean of the population.

\section*{Look for points of confusion:}
- Calculating the mean incorrectly. Remind
students of the process to find the mean.

\section*{Look for productive strategies:}
- Recognizing the \(\$ 1,200\) tuna is not like the other priced fish.
- Constructing a dot plot or another display of the data.

\section*{(3)}

Connect
Have students share their means and reasoning if the sample is representative of the population.

Highlight that the data set for this population is small enough that it is not necessary to use a sample; however, it is helpful to get an idea of how data from a sample compares to the population data.

Ask:
- "What is the population for this situation?" All of the fish sold.
- "What are the samples used in the calculations?" The first two fish sold, the tuna sold, and the grouper sold.
- "Why did the different samples have different means?" Because they used different fish.

\section*{Accessibility: Guide Processing and Visualization}

Demonstrate how to compare the sample mean with the population mean for Problem 1. Annotate the given mean selling price of \(\$ 379\) per fish given in the introduction as the population mean. Then show how to calculate the mean of the sample in Problem 1 and annotate it with the term sample mean.

\section*{Accessibility: Clarify Vocabulary and Symbols}

Be sure students understand what it means for the prices of the fish to be a "good representation" of the population of 10 fish. Ask, "What does it mean to 'represent' something?" Sample response: To be similar to, or to serve as a sign or symbol of that object.

\section*{Math Language Development}

\section*{MLR8: Discussion Supports-Revoicing}

During the Connect, as students share their reasoning, have their classmates restate or revoice what they heard using appropriate mathematical language. Ask the original speaker whether their peer was accurate. Call students' attention to words or phrases that clarified the original statement. This will provide students with an opportunity to produce language as they interpret the reasoning of others.

\section*{English Learners}

Encourage students to refer to the class display to use language to support their use of appropriate mathematical language.

\section*{Activity 2 Sampling the Fish Market (Part 1)}

Students compare three samples of population to the population itself to determine which is the most representative sample.


\section*{1. Launch}

Conduct the Think-Pair-Share routine.

\section*{Monitor}

Help students get started by describing the shape, center, and spread of the population. Then have them refer to their responses from the Warm-up.

\section*{Look for points of confusion:}
- Thinking the sample must perfectly match the population. Let students know that these samples all came from the population, but that one sample is a better match for the population than the others.

\section*{3 Connect}

Display the dot plots.
Have students share their selection and reasoning.
Ask, "What are some aspects that make for a 'good' sample? A sample that is 'not as good'?" A sample is "good" if it has a similar distribution to the population data. A sample is "not as good" if the data does not have a similar distribution to the population data. For example, Sample B is "not as good" because its center is not similar to the center of the population.
Define the term representative sample as having a distribution which closely resembles the distribution of the population in shape, center, and spread.
Highlight that a sample that only has the same mean as the population is not necessarily representative. It may miss other important aspects of the population like shape and spread. It is important to look at shape, spread, and center when determining whether a sample is representative of the population.

\section*{Differentiated Support \\ Accessibility: Optimize Access to Tools, Guide Processing and Visualization}

Provide students with tracing paper and suggest they trace the overall shape of the population. Consider demonstrating this action. Then have them move the tracing paper to the other dot plots to determine which dot plot might be the most similar.

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

During the Connect, create a table with column headings "Good sample" and "Not as good." Record the words and phrases students use to describe the samples. For example:

\section*{Good sample}

They have similar shapes. The peaks are in the same places. The centers are close to each other The variabilities are similar.

\section*{Not as good}

The shapes are very different. The peaks are not in the same places. The centers are not close to each other. The data are more/less spread out.

Use the words and phrases that you recorded that describe a good sample to help define the term representative sample.

\section*{Activity 3 Sampling the Fish Market (Part 2)}

Students use sample distributions to create a possible population distribution.


\section*{1 Launch}

Set an expectation for the amount of time students will have to work in pairs on the activity.
(2) Monitor

Help students get started by asking, "Which sample can help determine the spread of your data? The center? The shape?"
Look for points of confusion:
- Thinking the sample data can be combined represent the population. Remind students that different samples might have chosen the same fish, and therefore, there might be overlap in some of the data values.
- Not including the known data. Have students start by plotting the known "data values" on their population number line. Then have them add "data values" to it and make sure there are at least 12 "data values."

3 Connect
Display students' dot plots.
Have students share their methods for drawing the population distribution. Ask them to compare the student-generated distributions.
Highlight that gaining an understanding of the population data from a sample can be challenging, especially when it is not known whether samples are or are not representative of the population.

Ask, "What could be done to make the samples more representative of the population data without knowing what the population would be?" Sample response: Include more information in the samples to find how the samples were selected.

\section*{48 \\ Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

Suggest that students list out the fish weights from the three samples and then build their dot plot for the population using these values.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

Invite students to prepare a visual display of their dot plots. Then have students investigate each other's work and compare their dot plots. Listen for and amplify the language students use to describe the population, and how they explain why it might be challenging to understand what the population might look like, based on three very different samples. Ask:
- "Are any of the three samples representative of the population dot plot you or others created?"
- "Could there be other population dot plots for which these three dot plots are samples?"

\section*{Summary}

\section*{Review and synthesize how a sample that is representative of the population closely resembles the population distribution's shape, center, and spread.}


Math Language Development

\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in this unit. Ask them to review and reflect on any terms and phrases related to the term representative sample that were added to the display during the lesson

\section*{Synthesize}

Formalize vocabulary: representative sample

\section*{Ask:}
- "What does it mean for a sample to be representative of the population?" The sample has a similar center, shape, and spread as the population data
- "Why might it be important to get a representative sample, rather than a more convenient sample? If I am going to answer questions about the entire population, it is useful if the sample looks similar to the population data. If not, I may miss some important information
- "Usually, a sample is used because it is challenging to obtain data for the entire population. How do you know if the sample is representative of the population if you do not know the population?" Note: It is okay for students to wrestle with this question at this point. In the next lesson, they will explore ways to make their best attempt at getting a representative sample.

Highlight that a representative sample is the ideal type of sample they would like to collect, but, if they do not know the data for the population, it will be challenging to know if a sample they collect is representative or not. If they do know the population data, then a sample is probably unnecessary. In future lessons, they will explore methods of collecting samples that are more likely to produce representative samples (although it is still not guaranteed).

\section*{i. Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "When is a sample not representative of a population?"

\section*{Exit Ticket}

Students demonstrate their understanding by analyzing a sample of reviews compared to the population.

Andre is designing a website to display reviews of school lunches. Each menu item is rated from 0 to 5 stars. The website shows only 6 reviews at a time, so Andre needs to choose which reviews to show on the first page. The dot plots show the actual results and the sample Andre chooses to show.

Sample of lasagna's reviews

. Is the sample representative of the population? Why or why not? No; Sample response: This sample matches the spread of the population,
but it does not match the center or the shape.
2. If each rating also includes \(1-2\) sentences explaining the rating, what are some reasons to keep this sample? What are some reasons to change the sample? Sample responses.
- This sample could be kept because it shows the spread of reviews for the lasagna. It shows that not everyone liked the lasagna.
who rated it as 5 stars. There were more ratings of 0 stars then \(1,2,3\), or 4 stars.
Self-Assess
Self-Assess
Self-Assess

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\(W_{0}\). Points to Ponder ...
- What worked and didn't work today? How did students look for and make use of structure today? How are you helping students become aware of how they are progressing in this area?
- The focus of this lesson was for students to comprehend that the term representative sample refers to a sample that closely resembles the population's shape, center, and spread. How did this go? What might you change for the next time you teach this lesson?

\section*{Success looks like ...}
- Goal: Calculating the mean of various samples, and comparing them with the mean of the population.
- Language Goal: Comprehending that the term representative refers to a sample with a distribution that closely resembles the population's shape, center, and spread. (Speaking and Listening, Writing)
» Determining whether the 6 samples are representative of the population in Problem 1.
- Language Goal: Given dot plots that represent a population and several samples, determining whether each sample is representative of the population, and explaining the reasoning. (Speaking and Listening, Writing)
» Explaining whether the sample of 6 reviews is representative of the population in Problem 1.

\section*{Suggested next steps}

If students cannot think of a positive or a negative reason for keeping the sample, consider:
- Having them compare the distributions by their shapes, centers, and spreads.
- Assigning Practice Problems 2 and 3.

If students think the sample is representative of the population, consider:
- Having them compare the distributions by their shapes, centers, and spreads.
- Assigning Practice Problems 1, 2, and 3.

\section*{Math Language Development}

Language Goal: Justifying whether two populations are "very different" based on the difference in their means expressed as a multiple of the mean absolute deviation.

Reflect on students' language development toward this goal.
- Do students' responses to the Exit Ticket problem indicate an understanding that the prices of RVs for sale at the two companies are very different?
- Do their explanations include math language, such as "the difference in means", "three times as great as the MAD", etc? How can you help them be more precise in their explanations?
Name:
Date:
Date:
Period:
Period:
Andre's school held a canned food drive. Suppose \(45 \%\) of all the students at of 25 students from the school and determines the sample's percentage of students who brought food. He expects the percentage of students bringing food for this sample to be \(45 \%\). Do you agree? Explain your thinking. Yes; Sample response: Because it is a representative sample, Andre
hould expect the percentage of students bringing food to be close to should expect the percentage
2. Kiran wants to know how often students at his school send text messages. The following sample consists of 30 students and is representative of the population.


a What do the six dots above 0 represent?
There are 6 students in the sample who do not send any text messages.
b Because this sample is representative of the population,
think a dot plot for the entire population might look like?
Sample response: The population will have more data on the left, with a center around 20 , and a large spread, with a range of 90 . Very few data values will be above 40 .
> 3. Capstone project helper. Design a short survey, 1-3 questions, that will help you answer the statistical question you created in the previous lesson. Be sure your survey meets the criteria shown in the table. Example survey questions are Did you get a new cell phone with in the last 3 months? How many apps do you have on your phone? Answers may vary.

\section*{(6)}
4. A chef is making a large pot of chicken soup and needs to taste it to make sure the amount of seasoning is correct. Why would it be a better idea for the chef to taste a sample of the soup instead of tasting the entire population of the soup?
Sample response: If the chef tastes the entire population of soup (the whole pot), there will be no soup left to serve customers.
5. How many different outcomes are in each sample space? Show or explain your thinking. You do not need to list the actual outcomes in the sample space.
a Aletter of the English alphabet followed by a digit ranging from 0 to 9 260 outcomes; Sample response: \(26 \cdot 10=260\)
b A baseball team's cap design is selected from 3 different colors, 2 different lasps, and 4 different placements for the team logo. A decision is also 8 outcomes; Sample response \(3 \cdot 2 \cdot 4 \cdot 2=48\)
c A locker combination, such as \(7-23-11\), uses three numbers. Each number ranges from 1 to 40 . Numbers can be used more than er combination 7-23-7.
64,000 outcomes: Sample response: \(40 \cdot 40,40=64000\)
6. List three ways to select a sample of Grade 7 students at your school. Sample responses:

Students who have math class during the first block or period.
Students who ride the bus.
Students who bring their lunch.
Students wearing jeans.
Students who participate in an extra-curricular activity
\begin{tabular}{|lclc|}
\hline Practice Problem Analysis & \\
\hline Type & Problem & Refer to & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & 2 \\
\hline Spiral & \(\mathbf{2}\) & Activity 1 & 2 \\
\hline Formative 0 & \(\mathbf{3}\) & Activity 2 & 1 \\
\hline & \(\mathbf{4}\) & \begin{tabular}{l} 
Unit 8 \\
Lesson 12 \\
Unit 8 \\
Lesson 7
\end{tabular} & 1 \\
\hline
\end{tabular}

\section*{Additional Practice Available}


For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Sampling in a Fair Way}

\section*{Let's explore ways to obtain representative samples.}


\section*{Focus}

\section*{Goals}
1. Language Goal: Describe methods to obtain a random sample from a population. (Speaking and Listening, Writing)
2. Language Goal: Justify whether a given sampling method is fair. (Speaking and Listening)
3. Recognize that random sampling tends to produce representative samples and support valid inferences.

\section*{Coherence}

\section*{Today}

Students consider different methods of selecting a sample and begin by critiquing different sampling methods for their benefits and drawbacks. The Warm-up shows that some methods may seem to be unbiased at first, but have a hidden bias that restricts the sample from being representative of the population. Students practice recognizing when a sampling method is likely to be biased, and they see that selecting a sample at random is more likely to produce a representative sample.
Note: This lesson's Practice contains a milestone for the Capstone project.

\section*{< Previously}

In Lesson 13, students explored the characteristics of samples that are representative of the population by studying the shapes, centers, and spreads of the samples and the population.

\section*{> Coming Soon}

In Lesson 15, students will estimate the measures of center of a population by using representative samples.

\section*{Rigor}
- Students improve their conceptual understanding of sampling by showing how a random sample is most likely representative of the population


Amps powered by desmos : Activity and Presentation Slides
For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \(\bigcirc\) Independent

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 2 PDF (for display)
- bags
- rulers
- straws, cut to the following lengths: 12 at \(1 \mathrm{~cm}, 8\) at 2 cm , 6 at \(3 \mathrm{~cm}, 5\) at \(4 \mathrm{~cm}, 4\) at 5 cm

Note: If you change the lengths of the straws, you will need to edit the mean for Activity 1, Problem 4.

\section*{Math Language \\ Development}

\section*{New words}
- random sample

Review words
- mean
- mean absolute deviation (MAD)
- population
- representative sample
- sample
- variability

\section*{Amps : Featured Activity}

\section*{Activity 1 \\ Digital Sampling}

Students digitally perform a sampling technique to discuss hidden bias.


\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- The Warm-up may be completed as a whole class.
- Activity 1 may be completed as a whole-class discussion.

\section*{Warm-up Comparing Methods for Selecting Samples}

Students reason about different sampling methods to determine if they are unbiased.

\section*{Sampling in a Fair Way}

Let's explore ways to obtain representative samples.


Warm-up Comparing Methods for Selecting Samples
Lin is running for president of the seventh grade. To predict her chances of winning, she thinks of the following methods she can use to survey a sample of the students who will vote in the election.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Method 1} & \multicolumn{1}{|c|}{ Method 2 } & \multicolumn{1}{c|}{ Method 3} \\
\hline \begin{tabular}{l} 
Survey everyone on her \\
basketball team.
\end{tabular} & \begin{tabular}{l} 
Survey every third student \\
waiting in the lunch line.
\end{tabular} & \begin{tabular}{l} 
Survey the first 15 students to \\
arrive a s school one morning.
\end{tabular} \\
\hline
\end{tabular}
1. What are the benefits of each method? Sample responses shown.

Method 1: This method is convenient because Lin knows everyone.
Method 2: This method reaches a larger group of people and is systematic to sample.
Method 3: This method is a group of people that are easily found.
> 2. Who might each method exclude? Sample responses shown.
Method 1: This method excludes students who do not play basketball.
Method 2: This method excludes students who bring their lunch
Method 3: This method excludes students who arrive on time or late to school
or include students that are not in the seventh grade.

\section*{1 Launch}

Activate students' background knowledge by asking students to share what they know about elections. Share information regarding the school's election process or how the electoral college works for the United States.

\section*{(2) Monitor}

Help students get started by asking them to explain each method in their own words and clarify any instances of misunderstanding.

\section*{Look for productive strategies:}
- Not thinking any of the methods are good sampling techniques and can explain the flaws in each method.

\section*{3 Connect}

Have students share the benefits and drawbacks of each of the sampling methods.

Highlight that people often have biases which may lead to over- or under-representing some groups in their samples whether the biases are obvious or not. Due to the (sometimes hidden) biases, the best method for selecting samples is to remove as much of the personal selection as possible.

Ask:
- "What are the benefits of each method?"
- "What might each method overlook?"
- "What are some important things to consider when selecting a sample?" Is there a group that this method shows preference for or does a group automatically get left out by this method?
- "Can you think of a better way to select a sample for this situation?" Sample response: Obtain an alphabetized list of all the 7th graders and ask every fourth student.

Power-up

To power up students' ability to describe how to obtain a sample from a population, have students complete:
Recall that a population is a set of people or objects that are to be studied and that a sample is a part of a population.
A researcher wants to know more about how seventh graders use cell phones. Which of the following would be a sample of seventh graders? Select all that apply.
A. Asking all students at 50 middle schools.
B. Sending a survey to a selection of schools and having them give it to seventh grade students.
C. Polling students at a seventh grade math contest.
D. Asking guardians of seventh graders to report on what they have noticed about their children.

Use: Before the Warm-up
Informed by: Performance on Lesson 13, Practice Problem 6

\section*{Activity 1 That's the First Straw!}

Students experience a hidden bias while collecting data to compare the means of the samples to the mean of the population.

Amps Featured Activity Digital Sampling
\(\qquad\)
Activity 1 That's the First Straw!

Students from your class will select cut straws from a paper bag, and use a centimeter ruler to measure the lengths of the straws selected.
1. As each straw is selected and measured, record its length, in centimeters, in the table. Sample responses shown.

Length of straws (cm)

2. Calculate the mean length of all the straws based on:
a The mean of the first sample. Sample response: 3.8 cm
b The mean of the second sample. Sample response: 4.2 cm
3. Were the means of the samples the same? Did the mean length of all the straws in the bag change in between selecting the two samples? Explain your thinking. Sample response: The means were similar between the two samples with a slight difference of 0.4 cm . The mean length of all the straws in the bag did not change in between selecting the samples.
4. The actual mean length of all the straws in the bag is 2.46 cm . How do the sample means compare to the actual mean length? Explain why this may have happened. Sample response: The samples produced means which were much higher than the actual mean. Because we selected the first straw we touched, we might have selected the longest straws.
5. Suppose you repeat this experiment again, yet this time you select a larger sample - such as 10 or 20 straws - instead of just 5 straws. Would your sample's mean be more accurate? Explain your thinking.
Sample response: If the sampling process is flawed, e.g., selecting the longest straws, then selecting a larger sample would not produce more accurate results.

\section*{1. Launch}

Cut straws according to measurements in the materials list and place them in a bag. Have five students take turns selecting the first straw they touch. Note: Taking out the first straw the student touches, rather than reaching around in the bag is important for this task. They should measure the straw to the nearest centimeter while the class records the data. Repeat this process for a second sample.

\section*{2 Monitor}

Help students get started by reviewing how to calculate the mean of a data set.

\section*{3 Connect}

\section*{Ask:}
- "Why do you think the population's mean is much smaller than the mean of your sample? What does this suggest about the rest of the data?" Most of the data are smaller than the sample.
- "What would it mean for the process of selecting straws to be fair (unbiased)?" There should be an equal chance for each straw to be selected.
- "Was this selection process fair (unbiased)?"

Display the contents of the bag, perhaps with a document camera.

Have students share their thoughts on whether each straw had an equal chance of being selected. Longer straws are more likely to be touched first, because the smaller ones fell to the bottom of the bag.

Highlight that increasing the sample size will not make the sample more representative. This is because if the sampling method is flawed, it may increase the over-representation of the longer straws and be even more misleading.

\section*{Differentiated Support}

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can use digital technology to understand sampling techniques and discuss hidden bias.

\section*{Accessibility: Vary Demands to Optimize Challenge}

Have different sets of students calculate the mean for each sample and ask them to share their results with the class.

\section*{Math Language Development}

\section*{MLR8: Discussion Supports}

Have pairs use a Think-Write-Pair-Share routine as they complete Problem 5. Ask them to individually think about how they will respond and craft an individual response before sharing their responses with their partner. Allow time for partners to discuss and agree on a final response and then ask pairs of students to share their responses with the class during the Connect.

\section*{English Learners}

Provide ample wait time for students to formulate a response in writing and orally before sharing with a partner and the class.

\section*{Activity 2 That's the Last Straw!}

Students analyze alternate methods of sampling to determine whether they will eliminate bias.


Activity 2 That's the Last Straw!

Imagine arranging the \(\mathbf{3 5}\) straws from Activity \(\mathbf{1}\) in order from shortest to longest, and then assigning each straw a number from 1 to 35 . For each method shown, decide whether it would be an unbiased - or fair - way to select a sample of 5 straws. Explain your thinking.
1. Select the straws numbered 1 through 5 .

No; Sample response: This would represent the five shortest straws and does not represent the population.
2. Write the numbers 1 through 35 on slips of paper of equal size. Place the slips into a bag. Without looking, select five slips from the bag. Select the straws that correspond to the numbered results for the sample. Yes; Sample response: Each straw has an equal chance of being selected.
3. Write the numbers 1 through 35 on slips of paper of equal size. Place the slips into a bag. Select one slip from the bag. Select the first straw based on this number. Use the next 4 numbers in order to complete the sample. For example, if you select 17 , then you would select straws \(18,19,20\), and 21 for the sample.
No; Sample response: This would not show the spread of the population.
> 4. Create a spinner with 35 equal-sized sections numbered 1 through 35 . Spin the spinner 5 times. Select the straws that correspond to the numbered results for the sample. Yes; Sample response: Each straw has an equal chance of being selected.

\section*{A. Are you ready for more?}

Describe another unbiased sampling method for selecting 5 straws. Answers may vary.

\section*{1. Launch}

Display the Activity 2 PDF and let students know the straws from the previous activity are represented with 1 being the shortest straw and 35 being the longest straw. Ask students, "What would it mean for the sampling method to be fair?"

\section*{(2) Monitor}

Help students get started by referring to the display and asking if the straws numbered 1 through 5 represent the population of the data.

\section*{Look for points of confusion:}
- Confusing a sample with a simulation. Let students know a sample is a group of data from a population of data; whereas, a simulation models a real-world event.

\section*{Look for productive strategies:}
- Finding the bias (hidden or not) in the experiments and being able to precisely describe the biases.

\section*{3 Connect}

Define the term random sample as a sample that has an equal chance of being selected from the population as any sample of the same size.

\section*{Ask:}
- "Which of the four methods proposed would be a random sample?"
- "What is the most common straw in the bag?"
- "When selecting one of the straws at random, what is the probability of selecting the most common straw?" \(\frac{12}{35}\)
Highlight that the goal is to have a sample representative of the population. One way to get close to a representative sample is to find a random sample. A random sample does not guarantee a representative sample, but it avoids methods that might over- or under-represent items of the population.

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Consider drawing, or showing, 5 straws that are very short and are arranged in order from shortest to longest. Demonstrate how selecting these 5 straws out of the entire population of 35 straws that are much longer would not represent the population. Have students continue with the rest of the activity.

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

During the Connect, ask students to describe situations in which they may have heard or used the term random. Consider displaying these phrases, which students may have heard or used in everyday life. Ask students what they think these phrases mean.
- "Some random dog greeted me on my way home."
- "Wow, that was random!"
- "I just randomly chose an appetizer from the menu."

Help students connect these everyday meanings of the term random to the definition of a random sample as "every sample (of the same size) has an equal chance of being selected."

\section*{Summary}

\section*{Review and synthesize why random sampling is a good way to eliminate bias.}


\section*{Synthesize}

Ask:
- "What makes a sample selected at random the best way to select individuals for a sample?" It avoids biases that might be introduced using other methods.
- "As part of an English project, you want to look at the length of lines in Shakespeare's plays. What are some methods of selecting a random sample of lines from these plays?" Assign each line in the plays a number and use a computer to select several random numbers that correspond to the lines.
- "Would the sampling techniques in Activity 2 work for other situations? For example, to select 50 people in a large city to represent the views of the city residents?" Although they would work in theory for large populations, it would be too time consuming to write over a million numbers (or names) on pieces of paper and put them in a bag. Similarly, a spinner that is divided into a million sections would be difficult to manage.

Highlight that representative samples are better for measuring the populations. Random samples are more likely to eliminate bias (over- or under-representing certain groups). Random samples are not always representative samples and can be challenging to obtain. For example, getting a random sample of ants would be difficult for scientists to gather.

\section*{Formalize vocabulary: random sample.}

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "When is a sample not representative of a population?

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in this unit. Ask them to review and reflect on any terms and phrases related to the term random sample that were added to the display during the lesson.

\section*{Exit Ticket}

Students demonstrate their understanding of sampling by describing a sampling method and describing why random samples are beneficial.
A public health expert is worried that a recent outbreak of a disease may
be related to a crop of spinach harvested from a certain farm. She wants to test the plants at the farm, but it will ruin the crop if she tests all of them.
1. If the farm contains 5,000 spinach plants, describe a method that would produce a sample of 10 plants.
Sample response: Count the number of rows of spinach. Write those numbers on slips of paper, place them into a bag, and draw 10 slips from the bag without looking. Test 1 plant in each selected row.
2. Why would a random sample be useful in this situation?
Sample responses:
- If the public health expert tested all plants in one section, they might not find the disease. The disease could be in another section of the field. It would be important to test from as many sections of the field
as possible. as possible
- Testing all of the plants would ruin the crop and testing \(\mathbf{5 , 0 0 0}\) plants would be time-consuming and possibly expensive.
a I can describe ways to obtain a random sample from a population.
b Iknow selecting a sample at random is usually a good way to obtain a representative 123
```

Self-Assess ? <
Self-Assess ? <

Success looks like ...

- Language Goal: Describing methods to obtain a random sample from a population. (Speaking and Listening, Writing)
» Explaining how to produce a sample of 10 plants from 5,000 plants in Problem 1.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Co. Points to Ponder ...
What worked and didn't work today? What other ways are there to perform the experiment in Activity 1 ?

- The instructional goal for this lesson was for students to understand that statistics can be used to gain information about a population by examining a sample. Where in your students' work today did you see or hear evidence of them doing this? What might you change for the next time you teach this lesson?

Neme - Date - Period
4. At an office party, 100 people are divided into 5 groups with 20 people in each group. One person's name is randomly chosen, and everyone in their group wins a prize. Noah simulates this event by writing 100 different names on slips of papers, placing them in a bag, and then selecting one slip of paper without looking. Explain a way to simulate this event using fewer than 100 slips of paper. Sample response: Number each of the 5 groups 1 through 5 and write these numbers on slips of paper. Place the slips into a bag and select one slip of paper without looking.
5. Data collected from a survey of American teenagers, ages 13 to 17 , was used to estimate that 29% of teens believe in ghosts. This estimate was based on data from 510 American teenagers. Which of the following represents the population that this survey was studying?
A. All American teenagers.
B. The 510 teens that were surveyed.
C. All American teens who are between the ages of 13 and 17 .
D. The 29% of the teens surveyed who said they believe in ghosts.
6. Suppose the average shoe size of a Grade 7 student in a school is 5.5 . Each dot plot shows the shoe size for a sample of ten Grade 7 students. Which sample is more representative of the population of Grade 7 students at the school? Explain your thinking.
 to the population mean of 5.5 .

| Practice Problem Analysis | | | |
| :--- | :---: | :--- | :---: |
| Type | Problem | Refer to | DOK |
| On-lesson | $\mathbf{1}$ | Activity 2 | 1 |
| | 2 | Activity 2 | 1 |
| Spiral | $\mathbf{3}$ | Activity 1 | 1 |
| Formative 0 | $\mathbf{6}$ | Unit 8
 Lesson 9 | 2 |

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

Estimating Population Measures of Center

Let's think about when the mean is an appropriate measure of center, and when it is not.

Focus

Goals

1. Generalize that an estimate for the center of a population distribution is more likely to be accurate when it is based on a random sample with less variability.
2. Language Goal: Use the mean of a random sample to make inferences about the population, and explain the reasoning. (Speaking and Listening, Writing)

Coherence

- Today

Students calculate the mean and MAD for samples from different populations and consider the meaning of these quantities in terms of the situation. Students see that when there is less variability in the data, they can assume that the mean of that sample is a better estimate for the mean of a population than when a sample has greater variability. Note: This lesson's Practice contains a milestone for the Capstone project.

< Previously

In Lesson 14, students selected a sample and critiqued different sampling methods as to their benefits and drawbacks.

Coming Soon

In Lesson 16, students will see that if a sample is representative of the population, then they can use proportional reasoning to make predictions about the population.

Rigor

- Students apply their understanding of mean, MAD, and samples to make predictions and recommendations for a streaming media company.

Amps powered by desmos \quad Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 2 PDF (for display)
- Graphic Organizer PDF, MAD Recording Sheet

Math Language
 Development

Review words

- center
- mean
- mean absolute deviation (MAD)
- population
- random sample
- representative sample
- sample
- shape
- spread
- variability

Amps ! Featured Activity

Warm-up
 Take a Poll

Get a sense of your students' thinking and encourage a discourse by quickly polling the class.

Modifications to Pacing

You may want to consider this additional modification if you are short on time.

- In Activity 1, provide students with the mean and MAD to save them calculation time.

Warm-up Would You Rather?

Students compare the distributions of a random sample of salaries at two different companies to spur discussion about average and typical values.

1 Launch

Activate students' background knowledge by asking students what they know about the term salary. Describe how a salary differs from an hourly wage. Have students use the Think-Pair-Share routine. Provide them 1 minute of individual think time. Then have them complete the Warm-up with a partner. Conduct the Poll the Class routine to assess student thinking.

(2) Monitor

Help students get started by sharing that the median salary at both companies is about $\$ 65,000$.

Look for points of confusion:

- Thinking that the average salary is the middle value on the horizontal axis. Have students explain what the height of each bar represents.

Look for productive strategies:

- Finding a value that is typical for the data.
- Finding the means of the salaries at both companies.

(3) Connect

Display the class results for which company they would choose to work.

Have students share observations they made about the data - particularly focusing on the center, shape, and spread of the data.

Highlight that the shape of the data can tell students as much - and sometimes more about a data set as the measures of center.

Math Language Development

MLR2: Collect and Display

During the Connect, as students share their observations, collect the language they use that describe the center, shape, and spread of the data. For example, they may use these words and phrases: typical salary, average salary, greater variability, and most frequent salaries. Invite students to add to the display during the lesson and encourage students to refer back to the display during class discussions.

English Learners

Annotate the distributions with the terms and phrases students use to describe them. For example, annotate the peaks of each distribution with the phrase most frequent.

Power-up

To power up students' ability to compare data displayed by dot plots, have students complete:

A set of data has a mean of 5 and a range of 4 . Which dot plot represents the set of data? Be prepared to explain your thinking.

Data Set A

Use: Before the Warm-up
Informed by: Performance on Lesson 14, Practice Problem 6

Activity 1 Three Different Shows

Students analyze data from samples of viewers for different media streaming shows to better understand the population of viewers.

1 Launch

Tell students that each person in the group should analyze a different sample, then share their results with their group. Distribute copies of the Graphic Organizer, MAD Recording Sheet, to students who would benefit from using it.

2 Monitor

Help students get started by demonstrating how to work through one set of show data using the Graphic Organizer PDF, MAD Recording Sheet.
Look for points of confusion:

- Not using the absolute value when finding the MAD. Because this will cause their MAD to be 0 , ask if it makes sense that the MAD is 0 when all of the data are not the same value as the mean.

Look for productive strategies:

- Relating the ages of the viewers to the titles of the shows.
- Relating the MAD of the shows to the spread of the data on the dot plots.

3 Connect

Have students share their thinking for which dot plot represents the data from each show, beginning with students who reasoned using the titles, then moving to students who reasoned using the mean or MAD.

Display the dot plots, annotated with the mean and MAD associated with each.

Ask:

- "Describe the shape of the data on the dot plot for the show with the highest MAD."
- "Describe the shape of the data on the dot plot for the show with the lowest MAD."
Highlight that on a dot plot without labels for the number line, much cannot be said about the mean, but a lot can be learned from the MAD. The MAD corresponds directly to the spread of the data.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Provide students with the calculations for the mean and MAD for each show so that they can focus more time thinking about which show corresponds to each dot plot, as opposed to spending a lot of time on calculations.

Accessibility: Guide Processing and Visualization

Provide students with copies of the Graphic Organizer PDF, MAD Recording Sheet, to help them visualize the calculations needed to determine the mean and MAD.

Math Language Development

MLR8: Discussion Supports—Revoicing

During the Connect, as students share their matches and their thinking, demonstrate mathematical language use by using revoicing to restate a student statement as a question in order to clarify, apply appropriate language, and involve more students. For example, if a student says, "The cooking for health dot plot shows dots that are farther apart," revoice this by asking, "What do you mean by farther apart? Is there a measure that can describe this? Is it a measure of center or variation?"

English Learners

Model how you use the class display to apply appropriate mathematical language to the discussion.

Activity 2 Making a Recommendation

Students find that a sample with a relatively large MAD can make the mean less reliable as a measure of center for that population.

Activity 2 Making a Recommendation
Let's continue to analyze the data for two more shows on Webflicks. The table shows the mean and MAD for these shows. The measurements are in years representing the ages of viewers.

| Sample | Mean | MAD | Ages of viewers |
| :---: | :---: | :---: | :---: |
| Show 4 | 17.1 | 6.6 | $\mathbf{3 5}, \mathbf{3 2}, \mathbf{1 3}, \mathbf{1 2}, \mathbf{1 3}, \mathbf{1 2}, \mathbf{1 4}, \mathbf{1 3}, \mathbf{1 5}, \mathbf{1 2}$ |
| Show 5 | 13.5 | 6.6 | $\mathbf{4 2 , 1 8} \mathbf{1 1}, \mathbf{1 1}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 0}, \mathbf{1 0}, \mathbf{9 , 3}$ |

> 1. Based on the mean and the MAD, which show would you recommend for a 13-year old? Explain your thinking.
Sample response: I would recommend that a 13 -year old watch Show 5 , because the average age of viewers watching that show is very close to
13 years old.
2. You will be given the ages of viewers in the samples for each show. Record them in the table. Based on these ages, would you change your recommendation in Problem 1? Explain your thinking.
Sample response: Yes, I would change my recommendation to be Show 4, because most of the people watching Show 4 are about 13 -years-old, with ony a couple 13 exueptons. Nost it raised the mean to it raised the mean to be around 13 .
3. Study the means, the MADs, and the ages of viewers for Shows 4 and 5, compared to Shows 1 and 2 in Activity 1.
(a) What do you notice about the MADs for Shows 4 and 5 compared to Shows 1 and 2? Sample response: The MADs are lower for Shows 1 and 2 than for Shows 4 and 5 .
b What do you notice about the means and the ages of viewers for Shows 4 and 5, compared to Shows 1 and 2? Sample response: The data values for Shows 1 and 2 are closer together, and closer to their respective means, than for Shows 4 and 5 .

Af Are you ready for more?

Choose either Show 4 or Show 5 . Write a different set of ages that gives approximately the same mean and MAD Sample response: Show 4: 36, 31, 10, 14, 14, 11, 12, 16, 16, 11; Mean: 17.1; MAD: 6.56

1. Launch

Activate students' background knowledge by asking students why media companies might want to know the ages of the viewers watching their shows. Give groups a few minutes to finish Problem 1, then display the Activity 2 PDF to show the ages of viewers for Shows 4 and 5 .

(2) Monitor

Help students get started by prompting them to think about which number, the mean or the MAD, tells them about the ages of viewers.

Look for points of confusion:

- Thinking that Show 5 is a better recommendation because the mean is closer to 13 , even after seeing the ages of viewers. Ask students to explain why the mean is 13 , even though the typical age is 10 or 11 .

Look for productive strategies:

- Being skeptical about using either mean for the recommendation, given that the MADs are relatively large.

3 Connect

Have students share with a partner whether they would change their recommendation. Then have them record their response to Problem 2.
Highlight that because the MADs were relatively large, the means were not very reliable as a measure of center.
Ask:

- "Do certain values in the set of numbers seem non-typical for the set?"
- "Why do you think some people of this age might be viewing the show?"
- "How do these non-typical values affect the MAD of the set?" These non-typical values cause the MAD to increase.
- "How do these non-typical values affect the mean?" Outliers do not necessarily affect the mean if they are balanced on either side, but they could skew the data if they are unbalanced on one side.

\oplus
 Differentiated Support

Accessibility: Guide Processing and Visualization

After sharing the ages of viewers for Shows 4 and 5 , suggest that students arrange the values in order from least to greatest. Then suggest they circle the values they think are close to the age of 13 to help them better make sense of the data set.

Math Language Development

MLR1: Stronger and Clearer Each Time

During the Connect, after students record their response for Problem 2, invite them to meet with another pair of students to give and receive feedback on their responses to both Problems 2 and 3. Provide these prompts for feedback to help strengthen ideas and clarify language.

- "How would you describe the ages of the viewers for Shows 4 and 5?"
- "Do you think the means and MADs of these data sets describe the ages of the viewers? Why or why not?"
- "What mathematical language can you use in your responses?"

Allow time to complete a final draft based on feedback.

English Learners

Allow students time to formulate with their partner how they will improve their final draft before proceeding with the Connect discussion.

Summary

Review and synthesize how the mean of a sample is more likely to be close to the mean of the population when the MAD is a lower value.

Synthesize

Display the image of the two groups of dogs.
Ask, "Which sample of dogs is more likely to have a mean closer to the mean of the population?"

Have students share which set of dogs will have a greater MAD for their weights.

Highlight that if each set of dogs was selected from a population of dogs, students can make some inferences based on these samples.

(1) Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection on one of the Essential Questions for this unit. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "When is a sample not representative of a population?"

Exit Ticket

Students demonstrate their understanding of how representative the mean of a sample is by comparing the dot plots of samples from separate populations.

Success looks like ...

- Goal: Generalizing that an estimate for the center of a population distribution is more likely to be accurate when it is based on a random sample with less variability.
» Explaining that the mean of Sample 1 is more representative of the population mean because that data have a smaller spread in Problem 2.
- Language Goal: Using the mean of a random sample to make inferences about the population, and explaining the reasoning. (Speaking and Listening, Writing)

Suggested next steps

If students say that both samples are likely to be accurate, consider:

- Asking them about which sample would have a greater MAD.

If students say that Sample 1 has some outliers, consider:

- Asking them to compare the spread of each sample.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
O. Points to Ponder ...

- What worked and didn't work today? In earlier lessons, students calculated the mean absolute deviation. How did that support determining if samples were better predictors of the population?
- Who participated and who didn't participate in calculating the mean and mean absolute deviation today? What trends do you see in participation? What might you change for the next time you teach this lesson?

(3)

> 4. Capstone project helper. Organize the data you collected in the previous lesson for your survey. Use a separate sheet of paper to display your collected data in a table or chart.

Important items to conside Answers may vary

Your visual representation could
a dot plot, histogram, or table. Choose a display that you think shows your collected data.
5. A high school plans to take all of its students to see a documentary on climate change at a large movie theater. The school has 1,325 students. Each screen has enough seats for 250 students. How many screens are needed? Write and solve an inequality and explain what the solution means in context.
$250 x \geq 1325$
Write and solve the related equation.
$\begin{aligned} 250 x & =1325 \quad \text { Test a value less than 5.3. }\end{aligned}$ $\begin{array}{rr}250 & =1325 \div 250 \\ x & =5.3\end{array} \begin{aligned} 250(5) & \geq 1325 \\ 1250 & \geq 1325\end{aligned}$
a
At least 5.3 screens are needed to show the documentary. Because it is
not possible to have a fraction of a screen, at least 6 screens are needed (an integer value where $x \geq 6$).

[^4]a In Han's class, 3 out of 17 students take the bus to get to school. What fraction of the students take the bus? $\frac{3}{17}$
b In Clare's class, $\frac{2}{5}$ of the students walk to school. If there are 35 students in Clare's Class, how many students walk to school? 14 students; $\frac{2}{5} \cdot 35=14$

| Practice Problem | Analysis | | |
| :--- | :---: | :--- | :---: |
| Type | Problem | Refer to | DOK |
| On-lesson | $\mathbf{1}$ | Activity 1 | 2 |
| | $\mathbf{2}$ | Activity 2 | 3 |
| Spiral | $\mathbf{3}$ | Activity 2 | 2 |
| Formative 0 | 6 | Grade 6 | 3 |

Additional Practice Available

(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Estimating Population Proportions

Let's use samples to estimate population proportions.

Focus

Goals

1. Comprehend that the term population proportion refers to a number between 0 and 1 that represents the fraction of the data within a certain category.
2. Language Goal: Compare population proportions for the same category from different samples of a population. (Speaking and Listening)
3. Language Goal: Use the population proportion of a random sample that is within a certain category to make inferences about the population, and explain the reasoning. (Speaking and Listening, Writing)

Coherence

- Today

Students see that having a representative sample makes it possible to use proportional reasoning to make predictions about the population. Students understand that these predictions are only estimates. Note: This lesson's Practice contains a milestone for the Capstone project. Remind students that they should bring their project's visual representation and analysis for the next lesson. You may want to distribute the Capstone Project Rubric PDF at the end of this lesson.

$<$ Previously

In Lesson 15, students used samples to estimate measures of center of a population.

>Coming Soon

Lesson 17 is the Capstone lesson for this unit. Students should bring the presentation of their statistical study to class for this lesson.

Rigor

- Students apply their understanding of sampling and probability to estimate population proportions in a variety of real-world contexts.

Activity 1

Activity 2

Summary

Exit Ticket

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- Activity 1 PDF, pre-cut cards, one set per pair
- Capstone Project Rubric PDF, one per student
- bags, one per pair
- number of Grade 7 students in the school

Math Language
 Development

New words

- population proportion

Review words

- population
- random sample
- sample

Building Math Identity and Community
 Connecting to Mathematical Practices

Communicating one's opinion can be frightening at times. Remind students to show respect as others speak. Discussions can lead to a better understanding of where one stands on a particular issue. Encourage students to actively listen to what classmates are saying and try to understand their perspectives. Explain that all that is presented can be used to shape and reshape their own thinking.

Amps : Featured Activity

Activity 1
 Random Times

Students are randomly given travel times, making facilitation easier.

- Modifications to Pacing

You may want to consider these additional modifications if you are short on time.

- In Activity 1, Problem 4 may be omitted.
- In Activity 2, Problems 1 and 2 may be omitted.

Warm-up Getting to School

Students collect data and write corresponding ratios to prepare for the next activity.
Your class will answer this question: How many minutes does it take you to travel to school?

1. Record your classmates' responses in the table. Sample response shown.

| Time to travel to school (minutes) | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 10 | 15 | 8 | 5 | 15 | 10 | 5 | 20 | 5 |
| 15 | 10 | 3 | 10 | 18 | 5 | 25 | 5 | 5 | 12 |
| 10 | 30 | 5 | 10 | | | | | | |

1) Launch

Display the table from the Warm-up. Have students share their travel times to school, complete the class chart, and then complete Problem 2 independently.

2 Monitor

Help students get started by pointing out that the total number of students in the class is the denominator for the fractions in Problem 2.

Look for points of confusion:

- Interpreting "more than 25 minutes" as " 25 minutes or more" in Problem 2b. Help students realize that "more than" does not include 25 minutes and they should include only times greater than 25 minutes.

Connect

Have individual students share their fractions of the students that fit each category.

Ask:

- "Do more or fewer than half the students travel to school in exactly 5 minutes?"
- "Can you make a generalization based on the fraction of students who take more than 25 minutes to travel to school?" Because only a small fraction of the class takes more than 25 minutes to travel to school, this doesn't seem to be a large problem for the community.
- "If a student from high school said that 10 of his classmates spent more than 25 minutes to travel to school, can you make a generalization about his school?" No, because I do not know the total number of students that represent his classmates.

Highlight that, in order to understand how relatively large a certain category is, students need to find what fraction of the whole group it comprises.

Power-up
To power up students' ability to use proportional relationships to solve problems, have students complete:
On Noah's rugby team, $\frac{2}{3}$ of the players play at least one other sport. Use the ratio table to determine the number of players that play more than one sport if there are 18 players on his team.

| Total Players | 3 | 18 |
| :--- | :---: | :---: | :---: |
| Plays more than 1 sport | 2 | 12 |

[^5]
Activity 1 Travel Times

Students collect a random sample and use the fractions of responses for certain categories to make estimates about the population.
about the length of students' travel times in the morning. The students claimed the travel times are too long to start school at the designated time. The administration asked the group to survey a random sample of students how long it takes them to travel to school.
You will be given a set of cards. Each card shows the number of minutes it takes for one student to travel to school.

1. Work with your partner to select a random sample of 20 students' travel times, and record the travel times in the table. Sample responses shown:

| Time to travel to school (minutes) | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | 27 | 14 | 9 | 10 | 3 | 20 | 8 | 5 | 20 |
| 11 | 5 | 3 | 2 | 15 | 6 | 24 | 3 | 6 | 17 |

2. What fraction of your sample has a travel time of less than 15 minutes? Sample response: $\frac{14}{20}=\frac{7}{10}$, so $\frac{7}{10}$ of the students in the sample travel less than 15 minutes
3. Based on these results, estimate the number of all Grade 7 students
at your school who have a travel time of less than 15 minutes.
Sample response: There are 120 Grade 7 students at my school. $120 \cdot \frac{7}{7}=84$; So, I expect about 84 Grade 7 students have a travel time of less than 15 minutes.
4. Suppose another group in your class comes up with a different estimate for Problem 3.
a What is another estimate that would be reasonable? Sample response: 90 students
b What is an estimate you would consider unreasonable? Sample response: $\mathbf{3 0}$ students

1 Launch

Distribute an opaque bag containing the pre-cut cards from the Activity 1 PDF to pairs of students. Be prepared to give students the total number of 7th grade students in your school for Problem 3.

Monitor

Look for points of confusion:

- Placing the slip back in the bag after it is selected. Have students think about what they are simulating by selecting the numbers out of the bag. Ask if it would make sense to survey the same student again.
- Thinking the probability is greater than 1 in Problem 2. Remind students they are looking for the fraction of a desired category out of the whole group, which will be between 0 and 1 .

Look for productive strategies:

- Organizing the data cards into two piles with one containing the times less than 15 minutes.

(3) Connect

Have pairs of students share their responses for Problem 3.
Highlight how multiple samples can help revise their estimates in Problem 4 and give an idea of how accurate the individual estimates from the samples might be.
Define the term population proportion in statistics as a number between 0 and 1 that represents the fraction of the data that fits into the desired category.
Ask:

- "Using the class's data, how accurate do you think your group's estimate is?"
- "The actual population proportion for this population is 0.68 . How close was your estimate? Explain why your estimate was not exactly the same."
- "If each group had 40 travel times in their samples instead of 20 , do you think the estimate would be more or less accurate?"

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Have students select a random sample of 10 travel times, instead of 20 .

Extension: Math Enrichment

Have students include 20 additional travel times from the random sample. Ask them to explain whether (and how) their responses to Problems 2 and 3 will change by including these additional travel times. Answers will vary, based on the additional values included.

Math Language Development

MLR7: Compare and Connect

During the Connect, as students share their responses to Problem 3, display the fractions that different pairs of students calculated based on their responses. Tell them that these fractions are the sample proportions. As you define the term population proportion, have students compare their sample proportions with the actual population proportion, 0.68.

English Learners

Consider displaying a table, similar to the one shown, to illustrate the difference between sample proportions and the population proportion. Sample values are provided for the sample proportions.

| Sample
 proportions | Population
 proportion |
| :---: | :---: |
| $0.7,0.4$, | 0.68 |
| $0.65,0.8$ | |

Activity 2 A New Comic Book Hero

Students use a different context to practice exploring population proportions and making predictions about populations.

Activity 2 A New Comic Book Hero

A survey asked a randomly selected group of 20 people who read The Adventures of Super Sam this question: What superpower do you think a new superhero should have? The table shows the survey results.

| Response | Superpower | Response | Superpower |
| :---: | :---: | :---: | :---: |
| 1 | fly | 11 | freeze |
| 2 | freeze | 12 | freeze |
| 3 | freeze | 13 | fly |
| 4 | fly | 14 | invisibility |
| 5 | fly | 15 | freeze |
| 6 | freeze | 16 | fly |
| 7 | fly | 17 | freeze |
| 8 | super strength | 18 | fly |
| 9 | freeze | 19 | super strength |
| 10 | fly | 20 | freeze |

1. What fraction of this sample thinks a new superhero should be able to fly? $\frac{8}{20}$ or $\frac{2}{5}$
2. If there are 2,024 dedicated readers of The Adventures of Super Sam, estimate the number of readers who would want the new superhero to be able to fly. Explain or show your thinking About 810 readers; Sample response: $\mathbf{0 . 4} \boldsymbol{2 0 2 4}=809.6$
3. Based on the data from the survey, which superpower would you recommend the new superhero to have? Explain your thinking.
Sample response: I would recommend the new superhero Sample response: I would recommend the new superhero
have the freeze superpower because the majority of survey responses indicated that superpower.

Differentiated Support

Accessibility: Guide Processing and Visualization

Suggest that students use colored pencils to color code the responses by superpower. Alternatively, suggest they create a table, similar to the following, to list the number of responses for each superpower.

Number of responses

Fly

Freeze
Super strength Invisibility

Math Language Development

MLR3: Critique, Correct, Clarify

During the Connect, display an incorrect statement about this survey, such as "I would recommend the superhero have the flying superpower because the majority of responses indicated that superpower." Ask:

- Critique: "Do you agree or disagree with this statement? Explain your thinking using the results of the survey."
- Correct: "Write a corrected statement, based on the survey results."
- Clarify: "How did you correct the statement? Would you change your recommendation if there were more responses? Why or why not?"
Listen for students who recognize that the sample size is relatively small, so the recommendation may change if more data are available.

Summary

Review and synthesize how to estimate the population proportion based on a sample.

Synthesize

Highlight that samples are used when the population is too large or it would be too time consuming to survey every person. The proportion of the sample is used to estimate the population proportion.

Formalize vocabulary: population proportion
Ask:

- "How does a sample change the proportion if more data are added to the sample?" The sample should make the population proportion more accurate.
- "In order to say that more than half of the people in a sample responded with a certain answer, what would the population proportion for that answer be?" Any value greater than 0.5.

Reflect

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:

- "What is a population proportion and how is it calculated?"

Math Language Development

MLR2: Collect and Display

As students formalize the new vocabulary for this lesson, ask them to refer to the class display for this unit that you started in this unit. Ask them to review and reflect on any terms and phrases related to the term population proportion that were added to the display during the lesson.

Exit Ticket

Students demonstrate their understanding of estimating population proportions for a population based on a random sample.

宴 Printable

Exit Ticket

 GSWhen performing a chemical reaction, chemists in a lab have typically produced more than 48 g of a useful product in about 65% of the reactions. A chemical engineer wants to increase the amount of the useful product that is produced, so she purchased some new equipment she thinks will be helpful. She performs the reaction 15 times. The table shows the results.

Amount of the useful product (g)
$\begin{array}{lllll}47.1 & 48.2 & 48.3 & 47.5 & 48.5\end{array}$
$\begin{array}{lllll}48.1 & 47.2 & 48.2 & 48.4 & 48.3\end{array}$

1. She performs the reaction another 100 times. How many reactions should she expe to produce more than 48 g of the useful product? Show or explain your thinking. About 67 reactions; Sample response: $\frac{10}{15} \cdot 100 \approx 67$.
2. Can she say that she was able to increase the amount of the useful product, as compared to the other chemists in the lab? Explain your thinking. Yes; Sample response: She can say that more than 48 g of the useful product is produced in about 67% of the reactions.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
0_{0}. Points to Ponder...

- What worked and didn't work today? In this lesson, students used population proportions. How did that build on the earlier work students did with probability?
- Did students find Activity 1 or Activity 2 more engaging today? Why do you think that is? What might you change for the next time you teach this lesson?

(2)

Name: Date: \quad Period:
> 4. The science teacher and the Spanish teacher both give daily homework. The table shows the mean and MAD number of homework problems for a random sample of days. Which sample mean is more likely to represent the population mean for each class? Explain your thinking.

Sample mean: 5 problems Sample mean: 10 problems
Sample MAD: 4 problems Sample MAD: 1 problems

Sample response: The sample mean for the Spanish homework is more
likely to represent its corresponding population likely to represent its corresponding population mean. When the MAD is
greater, the data are more spread out, so the sample mean is less likely to be representative of the population mean.
5. Capstone project helper. Write an elevator pitch for your statistical study. An elevator pitch is a short description of your study (no more than 30 words). The term elevator pitch comes from the idea that you might only have a short elevator ride to tell someone about why the work you are doing is special and valuable.
Answers may vary.
> 6. Capstone project helper. Analyze the center, spread, and shape of the data center, spread, and shape of the data
you have collected using the display you you have collected using the display you
constructed in the previous lesson. Use constructed in the previous lesson. Use these values to write an answer to your
statistical question. Be sure to address the criteria shown in the table. Answers may vary.

| Practice Problem Analysis | | | |
| :---: | :---: | :---: | :---: |
| Type | Problem | Refer to | DOK |
| | 1 | Activity 1 | 1 |
| On-lesson | 2 | Activity 2 | 1 |
| | 3 | Activity 1 | 2 |
| Spiral | 4 | Unit 8 Lesson 12 | 2 |
| | 5 | Unit 8 Lesson 11 | 3 |
| Formative 0 | 6 | Unit 8 Lesson 17 | 3 |

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

Presentation of Findings

Let's share some new ideas, based on what we've learned during this unit.

Focus

Goals

1. Language Goal: Create a title for a statistical study that is appropriate, engaging, and informative. (Writing)
2. Language Goal: Analyze visual and written presentations of data from a sample. (Speaking and Listening, Reading and Writing)

Coherence

- Today

During this Capstone lesson, students share their statistical study from this last Sub-Unit. They learn how to write an engaging title and then participate in a Gallery Tour while leaving constructive feedback for their peers.

< Previously

To prepare for this Capstone lesson, students selected a statistical question, drew conclusions about their data, used math to model and solve real-world problems, and selected tools strategically.

> Coming Soon

In Grade 8, students will investigate patterns of association in more complex data sets, including modeling associations with linear relationships.

Rigor

- Students apply their knowledge of probability and sampling through their Capstone project presentation.
Δ

Activity 1
Δ

Activity 2

Summary

Exit Ticket

(1) 5 min
\bigcirc Independent

Amps powered by desmos : Activity and Presentation Slides

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \bigcirc Independent

Materials

- Exit Ticket
- Additional Practice
- markers
- sticky notes, about 10 per student

- Modifications to Pacing

You may want to consider this additional modification if you are short on time.

- In Activity 1, you may adjust the number of presentations for which students are expected to provide feedback.

Building Math Identity and Community

Connecting to Mathematical Practices

It may be challenging to receive feedback on something students have worked hard on, especially from their peers. Empathize with students about how difficult receiving feedback can be, while communicating how important it is to hear and incorporate others' perspectives into our work. Stress the importance to all students of being fair, constructive, and kind when providing feedback.

Warm-up Title Your Presentation

Students craft an engaging and appropriate title for their study by workshopping it with a classmate.

1 Launch

Share example titles from other statistical studies (real or invented). Provide students with some independent work time before having them work with a partner. Distribute markers so that students can add the title to their presentation.

(2) Monitor

Help students get started by asking them to tell you about their statistical study.

Look for points of confusion:

- Thinking that more words is better. Have students aim for $5-15$ words in their title.
- Getting stuck while brainstorming. Model exemplar titles, such as "Do Students Who Study More Get Better Grades?", "The Effect of Screen Time on Memory", and "Do Athletes Perform Better in Class?"

Look for productive strategies:

- Using colons to separate the main title and subtitles.
- Phrasing the title as a question.
- Students giving useful feedback to each other.

3 Connect

Display a list of the titles the class has created.
Highlight a particular piece of feedback from one student to another that helped them title their presentation.

Ask:

- "Do any of the titles stand out to you? Why?"
- "What is one title that makes you want to learn more?"

Power-up

To power up students' ability to analyze a set of data, have students complete:
Match each term with the part of the distribution that it describes - center, shape, or variability.

| a cluster | b IQR | |
| :---: | :---: | :---: |
| c mean | d mean absolute deviation | |
| e median | f peak | |
| g range | h symmetry | |
| c.e center | a, f. h shape | b. d. g variability |

Use: Before Activity 1
Informed by: Performance on Lesson 16, Practice Problem 6

Activity 1 Gallery Tour, With Feedback

Students learn about their classmates' statistical studies by observing their data and inference presentations. They give constructive feedback to improve their critical abilities.

1 Launch

Use the Gallery Tour routine; set up areas around the classroom to display student presentations. Demonstrate the type of feedback students might give each other before distributing the sticky notes to students.
During the Gallery Tour, use your sticky notes to leave feedback on your classmates' presentations. Each sticky note should include two comments:

+ One aspect you appreciated about the presentation
? One aspect about which you are still curious

Here is an example:

Sample Sticky Note

+ Using a dot plot made it
straightforward to see the shape
of the data that was collected.
? I'm curious about why people with newer phones have fewer apps.

Monitor

Help students get started by reading the feedback other students have left before writing their own.

Look for points of confusion:

- Repeating feedback already given. Have students aim to be additive with their feedback, building on others instead of echoing.

Look for productive strategies:

- Spending some time reading the presentation carefully before giving feedback.
- Placing a check mark to signal agreement with existing feedback.

3 Connect

Have individual students share pieces of specific feedback they received that they think will make their presentation better.

Highlight that every piece of academic research always goes through phases of editing and revising. This is an essential part of the process of studying something unique.

Accessibility: Guide Processing and Visualization

Demonstrate what additive feedback looks like, to illustrate how to build on the feedback of others, instead of mirroring the same feedback that others have given. Suggest that if they agree with the feedback from another person, they place a check mark on that sticky note indicating their agreement.

Activity 2 Time to Reflect

Students take time to read through their feedback carefully and answer questions that prompt them to think about revising and extending their study in meaningful ways.

Amps Featured Activity
Share Your Reflections

Activity 2 Time to Reflect

Read through the sticky notes for your presentation.

1. If you were to conduct your same study again, would you change anything? Explain your thinking. If there is nothing you would change,
defend your reasoning.
Answers may vary.
2. What other statistical questions interest you? Include any questions that you may not even have the ability to study at this moment. In a few years, you may be able to get someone to pay you to research
your question!
Answers may vary.
1) Launch

Create an environment conducive to reflection, perhaps using sound or lighting to produce this effect.
(2) Monitor

Help students get started by having them organize their feedback into useful categories. For example, they can place the sticky notes that gave feedback on the title into a category.

Look for points of confusion:

- Copying the feedback verbatim. Have students describe orally what the feedback means to them before writing

Look for productive strategies:

- Thinking about things that interest them outside of school - perhaps things that particularly impact themselves, their families, or their communities.
(3) Connect

Have pairs of students share what they wrote with each other.

Display a list of the statistical questions students are interested in studying further.

Highlight real-world scenarios that are research-based and emphasize that this process is one that involves thought and persistence. Explain that universities are good for learning, but they are also good at connecting students with avenues of research, peer and professional support, and funding for studies. Remind students that it is okay to not know exactly what they are interested in yet.

Differentiated Support

Accessibility: Vary Demands to Optimize Challenge

Allow students to orally respond to Problems 1 and 2 by sharing them with a partner, you, or the class.

Extension: Math Enrichment

If there is time left in the school year, have students select one of the statistical questions they are interested in studying further and repeat the following steps that were outlined in the following practice problems designated as Capstone project helpers.

| Capstone project steps: | Refer to: |
| :---: | :---: |
| 1. Pose a statistical question. | Lesson 12, Practice Problem 3 |
| 2. Create a survey. | Lesson 13, Practice Problem 3 |
| 3. Decide on a sample. | Lesson 14, Practice Problem 3 |
| 4. Collect and analyze data from the sample. | Lesson 15, Practice Problem 4, Lesson 16, Practice Problem 5 |
| 5. Present your findings. | Lesson 16, Practice Problem 6, Lesson 17. Warm-up and Activiti |

Unit Summary

Review and synthesize the major concepts of this unit.

Narrative Connections

Read the narrative aloud as a class or have students read it individually.

Synthesize

Display the Summary from the Student Edition Have students read the Summary or have a student volunteer read it aloud.

Highlight that it is very useful to spend some time reflecting on one's own learning at the conclusion of a unit. This helps to retain information and make connections that one may not have been able to while focusing on each individual lesson.

Ask students to take a few minutes to recall what they've learned about probability and sampling throughout this unit.

Reflect

After synthesizing the concepts of this unit, allow students a few moments for reflection. To help them engage in meaningful reflection, consider asking:

- "How are probabilities used to help people make predictions and decisions about the future?"
- "When have you seen or used probability in your own life?"

Exit Ticket

Students demonstrate their understanding of the unit concepts by reflecting on what stood out to them and sharing any unresolved questions they may have.

冒 Printable

Exit Ticket
6S
8.17

Reflect on what you have learned in Unit 8.

1. Three things I learned:

Answers may vary.
wo theresting or surprising:
Answers may vary.
. One question I still have:
Answers may vary.

Success looks like ...

- Language Goal: Creating a title for a statistical study that is appropriate, engaging, and informative. (Writing)
- Language Goal: Analyzing visual and written presentations of data from a sample. (Speaking and Listening, Reading and Writing)
» Explaining how sample data were analyzed in Problems 1 and 2.

Suggested next steps

If students cannot think of three things they learned, consider:

- Allowing them to review what they have written in their Summary notes throughout the unit

If students cannot think of two things they
 found interesting or surprising, consider:

- Changing the question to "two things that were different than usual during this unit" and have them respond.

Professional Learning

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
0_{0} Points to Ponder ...

- What worked and didn't work today? What was especially satisfying about the Capstone project?
- When you compare and contrast today's work with work students did earlier this year, what similarities and differences do you see? What might you change for the next time you teach this lesson?

| Practice Problem Analysis | | | |
| :---: | :---: | :---: | :---: |
| Type | Problem | Refer to | DOK |
| Spiral | 1 | Unit 8 Lesson 3 | 2 |
| | 2 | Unit 8 Lesson 10 | 2 |
| | 3 | Unit 8 Lesson 8 | 3 |
| | 4 | Unit 6 Lesson 7 | 3 |
| | 5 | Unit 4 Lesson 6 | 2 |
| | 6 | Unit 8 Lesson 8 | 3 |

(9)

Name: \quad Date: _Yeriod:
4. Write an equation, using at least two different operations, for which
the value of x is 5 .
Sample response: $3(x+4)=27$
5. An item at a store is discounted by 15%. Select all the equations representing the discounted price p for an item that originally costs c.
A. $p=0.15 c$
(B.) $p=0.85 c$
C. $p=1-0.15 c$
D. $p=c \div 0.15$
(E.) $p=c-0.15 c$
> 6. Andre wants to buy a small box of muffins from Pi Bakery. The bakery offers the muffin choices shown. How many unique combinations are possible if the bakery offers these 3 muffins and the small box fits 4 muffins in the box? Explain your thinking.

There are 15 possible unique combinations; Sample response: Let L represent lemon muffins, B represent blueberry muffins, and N represent
banana nut muffins. banana nut muffins.

| LLLL | LLNN | BBBB |
| :--- | :--- | :--- |
| LLLB | LBBB | BBBN |
| LLLN | LBBN | BBNN |
| LLBB | LBNN | BNNN |
| LLBN | LNNN | NNNN |

Additional Practice Available

For students who need additional practice in this lesson, assign the Grade 7 Additional Practice.

Glossary/Glosario

English
absolute value The value that represents the distance between a number and zero. For example, because the distance between -3 and 0 is 3 , the absolute value of -3 is 3 , or $|-3|=3$.

Addition Property of Equality A property stating that, if $a=b$, then $a+c=b+c$.
additive inverse The additive inverse of a number a is the number that, when added to a, gives a sum of zero. It is the number's opposite.
adjacent angles Angles that share a common side and vertex For example, $\angle A B C$ and $\angle C B D$ are adjacent angles.

area The number of unit squares needed to fill a two-dimensional figure without gaps or overlaps.
arrow diagram A model used in combination with a number line to show positive and negative numbers
 and operations on them

Associative Property of Addition A property stating that how addends are grouped does not change the result. For example, $(a+b)+c=a+(b+c)$.

Associative Property of Multiplication A property stating that how factors are grouped in multiplication does not change the product. For example, $(a \cdot b) \cdot c=a \bullet(b \cdot c)$.
\qquad

B

balance The amount that represents the difference between positive and negative amounts of money in an account.
bar notation Notation that indicates the repeated part of a repeating decimal. For example, $0 . \overline{6}=0.66666$
base (of a prism) Either of the two identical, parallel faces of a prism that are connected by a set of rectangular faces.
base (of a pyramid) The face of a pyramid that is opposite from the vertex, where all the triangular faces connect.

Español

valor absoluto Valor que representa la distancia entre un número y cero. Por ejemplo, dado que la distancia entre -3 y 0 es 3 , el valor absoluto de -3 es 3 , o $|-3|=3$.

Propiedad de igualdad en la suma Propiedad que establece que si $a=b$, entonces $a+c=b+c$.
inverso aditivo El inverso aditivo de un número a es el número que, cuando se suma a a, resulta en cero. Es el opuesto del número.
ángulos adyacentes Ángulos que comparten un lado y un vértice.
Por ejemplo, $\angle A B C$ y $\angle C B D$ son ángulos adyacentes

área Número de unidades cuadradadas necesario para llenar una figura bidimensional sin dejar espacios vacíos ni superposiciones.
diagrama de flechas Modelo que se utiliza en combinación con una línea numérica
 para mostrar números positivos y negativos, y operaciones sobre estos.

Propiedad asociativa de la suma Propiedad que establece que la forma en que se agrupan los sumandos en una suma no cambia el resultado. Por ejemplo, $(a+b)+c=a+(b+c)$.

Propiedad asociativa de la multiplicación Propiedad que establece que la forma en que se agrupan los factores en una multiplicación no cambia el producto. Por ejemplo, $(a \bullet b) \cdot c$ $=a \cdot(b \cdot c)$.
balance Cantidad que representa la diferencia entre cantidades positivas y negativas de dinero en una cuenta bancaria.
notación de barras Notación que indica la parte repetida de un número decimal periódico. Por ejemplo, $0 . \overline{6}=0.66666 \ldots$.
base (de un prisma) Cualquiera de las dos caras idénticas y paralelas de un prisma que están conectadas por un conjunto de caras rectangulares.
base (de una pirámide) La cara de una pirámide que se opone al vértice, donde todas las caras triangulares se conectan.

Glossary/Glosario

English

Español

center of a circle The point that is the same distance from all points on the circle.
certain A certain event is an event that is sure to happen. (The probability of the event happening is 1.)
chance experiment An experiment that can be performed multiple times, in which the outcome may be different each time.
circle A shape that is made up of all of the points that are the same distance from a given point.
circumference The distance around a circle.
coefficient A number that is multiplied by a
 variable, typically written in front of or "next to" the variable, often without a multiplication symbol.
commission A fee paid for services, usually as a percentage of the total cost.
common factor A number that divides evenly into each of two or more given numbers.
commutative property Changing the order in which numbers are either added or multiplied does not change the value of the sum or product.
complementary angles Two angles whose measures add up to 90 degrees. For example, $\angle R S T$ and $\angle T S U$ are complementary angles.

constant of proportionality The number in a proportional relationship by which the value of one quantity is multiplied to get the value of the other quantity.
coordinate plane A two-dimensional plane that represents all the ordered pairs (x, y), where x and y can both represent values that are positive, negative, or zero.
corresponding parts Parts of two scaled copies that match up, or "correspond" with
 each other. These corresponding parts could be points, segments, angles, or lengths.
centro de un círculo Punto que está a la misma distancia de todos los puntos del círculo.
seguro Un evento seguro es un evento que ocurrirá con certeza. (La probablidad de que el evento ocurra es 1.)
experimento aleatorio Experimento que puede ser llevado a cabo muchas veces, en cada una de las cuales el resultado será diferente.
círculo Forma compuesta de todos los puntos que están a la misma distancia de un punto dado.
circunferencia Distancia alrededor de un círculo.
coeficiente Número por el cual una variable

es multiplicada, escrito comúnmente frente o junto a la variable.
comisión Pago realizado a cambio de algún servicio, usualmente como porcentaje del costo total.
factor común Número que divide en partes iguales cada número de entre dos o más números dados.
propiedad conmutativa Cambiar el orden de los operandos en una suma o multiplicación no cambia el valor final de la suma o el producto.
ángulos complementarios Dos ángulos cuyas medidas suman 90 grados. Por ejemplo, $\angle R S T$ y $\angle T S U$ son ángulos complementarios.

constante de proporcionalidad En una relación proporcional, el número por el cual el valor de una cantidad es multiplicado para obtener el valor de otra cantidad.
plano de coordenadas Plano bidimensional que representa todos los pares ordenados (x, y), donde tanto x como y pueden representar valores positivos, negativos o cero.
partes correspondientes Partes de dos copias a escala que coinciden, o "se corresponden" entre sí. Estas partes
 correspondientes pueden ser puntos, segmentos, ángulos o longitudes.

English

cross section A cross section is the new face seen when slicing through a threedimensional figure. For example, a rectangular pyramid that is sliced parallel to the base has a smaller rectangle as the cross section.

Español

corte transversal Un corte transversal es la nueva cara que aparece cuando una figura tridimensional es rebanada. Por ejemplo, una pirámide rectangular
 que es rebanada en forma paralela a la base tiene un rectángulo más pequeño como corte transversal.

D

debt Amount of money that has been borrowed and owed to the person or bank from which it was borrowed.
deposit Money put into an account.
diagonal A line segment connecting two vertices on different sides of a polygon. The diagonal of a square connects opposite vertices.

diameter The distance across a circle through its center. The line segment with endpoints on the circle, that passes through its center. (See also circle.)
discount A reduction in the price of an item, typically due to a sale.

Distributive Property A property that states the product of a number and a sum of numbers is equal to the sum of two products: $a(b+c)=a b+a c$.
deuda Cantidad de dinero que ha sido pedida prestada y se le debe a la persona o al banco que la prestó.
depósito Dinero colocado en una cuenta.
diagonal Segmento de una línea que conecta dos vértices en lados diferentes de un polígono. La diagonal de un cuadrado conecta vértices opuestos.

diámetro Distancia a través de un círculo que atraviesa su centro. Segmento de línea cuyos extremos limitan con el círculo y que pasa por su centro. (Ver también círculo.)
descuento Reducción del precio de un artículo, usualmente debido a una venta de rebaja.

Propiedad distributiva Propiedad que establece que el producto de un número y una suma de números es igual a la suma de dos productos: $a(b+c)=a b+a c$.

E

equally likely as not An event that has equal chances of occurring and not occurring. (The probability of the event happening is exactly $\frac{1}{2}$.)
equation Two expressions with an equal sign between them. When the two expressions are equal, the equation is true. An equation can also be false, when the values of the two expressions are not equal.
equivalent equations Equations that have the same solution.
equivalent expressions Two expressions whose values are equal when the same value is substituted into the variable for each expression.
equivalent ratios Any two ratios in which the values for one quantity in each ratio can be multiplied or divided by the same number to get the values for the other quantity in each ratio.
equivalent scales Different scales (relating scaled and actual measurements) that have the same scale factor.
error interval A range of values above and below an exact value, expressed as a percentage.
tan probable como improbable Evento que tiene las mismas posibilidades de ocurrir que de no ocurrir.
(La probabilidad de que ocurra es exactamente $\frac{1}{2}$.)
ecuación Dos expresiones con un signo igual entre sí. Cuando las dos expresiones son iguales, la ecuación es verdadera. Una ecuación también puede ser falsa, cuando los valores de las dos expresiones no son iguales.
ecuaciones equivalentes Ecuaciones que tienen la misma solución.
expresiones equivalentes Dos expresiones cuyos valores son iguales cuando se sustituye el mismo valor en la variable de cada expresión.
razones equivalentes Dos razones entre las cuales los valores de una cantidad en cada razón pueden ser multiplicados o divididos por el mismo número para obtener así los valores de la otra cantidad en cada razón.
escalas equivalentes Diferentes escalas (que relacionan medidas a escala y reales) que tienen el mismo factor de escala.
intervalo de error Rango de valores por sobre y por debajo de un valor exacto, expresado como porcentaje.

Glossary/Glosario

English

event A set of one or more outcomes in a chance experiment.
expand To expand an expression means to use the Distributive Property to rewrite a product as a sum. The new expression is equivalent to the original expression.

Español

evento Conjunto de uno o más resultados de un experimento aleatorio.
expandir Expandir una expresión significa usar la Propiedad distributiva para volver a escribir un producto como una suma. La nueva expresión es equivalente a la expresión original.
factorizar Factorizar una expresión significa usar la Propiedad distributiva para volver a escribir una suma como un producto. La nueva expresión es equivalente a la expresión original.

G

gratuity See the definition for tip.
greater than or equal to $x \geq a, x$ is greater than a or x is equal to a.
hanger diagram A model in which quantities are represented as weights attached to either side of a hanger. When the hanger is balanced, the sum of the quantities on either side must be equal.
gratificación Ver propina.
mayor o igual a $x \geq a, x$ es mayor que $a \circ x$ es igual a a.

H

diagrama de colgador Modelo en el cual ciertas cantidades son representadas como pesos sujetos a cada lado de un colgador. Cuando el colgador está en equilibrio, la suma de las cantidades en cualquiera de los lados debe ser igual.

I

imposible Un evento imposible es un evento que no tiene posibilidad de que ocurra. La probabilidad de que ocurra es 0 .
desigualdad Enunciado que relaciona dos números o expresiones que no son iguales. Las expresiones "menor que", "menor o igual a", "mayor que" o "mayor o igual a" describen desigualdades.
enteros Números completos y sus opuestos.
operaciones inversas Operaciones que se cancelan entre sí. La suma y la resta son operaciones inversas.
La multiplicación y la división son operaciones inversas.

English

Español

less than or equal to $x \leq a, x$ is less than a or x is equal to a.
like terms Terms in an expression that have the same variables and can be combined, such as $7 x$ and $9 x$.
likely A likely event is an event that has a greater chance of occurring than not occurring. (The probability of happening is more than $\frac{1}{2}$.)
long division A method that shows the
0.375 steps for dividing base ten whole numbers $8 \longdiv { 3 . 0 0 0 }$ and decimals, dividing one digit at a time, from left to right.

$$
\begin{array}{r}
-24 \\
\hline 60
\end{array}
$$

$$
\begin{array}{r}
-56 \\
\hline 40
\end{array}
$$

$\begin{array}{r}-40 \\ \hline 0\end{array}$
menor o igual a $x \leq a, x$ es menor que a o x es igual a a.
términos semejantes Partes de una expresión que tiene la misma variable y que pueden ser sumadas, tales como $7 x$ and $9 x$.
probable Un evento probable es un evento que tiene más posibilidad de ocurrir que de no ocurrir. (La probabilidad de que ocurra es mayor que $\frac{1}{2}$.)
división larga Método que muestra los pasos necesarios para dividir números enteros en base diez y decimales, por medio de la división de un dígito a la vez,
-24
de izquierda a derecha.
-40
-0
magnitude The absolute value of a number, or the distance of a number from 0 on the number line.
markdown An amount, expressed as a percentage, subtracted from the cost of an item.
markup An amount, expressed as a percentage, added to the cost of an item.
multi-step event When an experiment consists of two or more events, it is called a multi-step event.
multiplicative inverse Another name for the reciprocal of a number; The multiplicative inverse of a number a is the number that, when multiplied by a, gives a product of 1 .
magnitud Valor absoluto de un número, o distancia de un número con respecto a 0 en la línea numérica.
descuento Monto, expresado como porcentaje, que se resta al costo de un producto.
sobreprecio Monto, expresado como porcentaje, que se agrega al costo de un producto.
evento de varios pasos Cuando un experimento consiste en dos o más eventos, es llamado un evento de varios pasos.
inverso multiplicativo Otro nombre para el recíproco de un número. El inverso multiplicativo de un número a es el número que, cuando se multiplica por a, tiene como producto 1 .
negative numbers Numbers whose values are less than zero.
nonproportional relationship A relationship between two quantities in which the corresponding values do not have a constant ratio. (In other words, a relationship that is not a proportional relationship.)
números negativos Números cuyos valores son menores que cero.
relación no proporcional Relación entre dos cantidades, en la cual los valores correspondientes no tienen una razón constante. (En otras palabras, una relación que no es una relación proporcional.)

Glossary/Glosario

English

Español

opuestos Dos números que están a la misma distancia de 0 , pero que están en lados diferentes de la línea numérica.
orden de las operaciones Cuando una expresión contiene múltiples operaciones, estas se aplican en cierto orden consistente (el "orden de las operaciones") de forma que la expresión sea evaluada de la misma manera por todas las personas.
par ordenado Dos valores, escritos como (x, y), que representan un punto en el plano de coordenadas.
origen Punto representado por el par ordenado $(0,0)$ en el plano de coordenadas. El origen es donde los ejes x y y se intersecan.

resultado El resultado de un experimento aleatorio es una de las cosas que pueden ocurrir cuando se realiza el experimento. Por ejemplo, los posibles resultados de tirar una moneda al aire son cara o cruz.
percent change How much a quantity changed (increased or decreased), expressed as a percentage of the original amount.
percent decrease The amount a value has gone down, expressed as a percentage of the original amount.
percent error The difference between approximate and exact values, as a percentage of the exact value.
percent increase The amount a value has gone up, expressed as a percentage of the original amount.
percentage A rate per 100. (A specific percentage is also called a percent, such as " 70 percent.")
perimeter The total distance around the sides of a two-dimensional figure.

cambio porcentual Cuánto ha cambiado una cantidad (aumentado o disminuido), expresado en un porcentaje del monto original.
disminución porcentual Cantidad en que un valor ha disminuido, expresada como porcentaje del monto original.
error porcentual Diferencia entre valores aproximados y valores exactos, expresada como porcentaje del valor exacto.
aumento porcentual Monto en que un valor ha incrementado, expresado como porcentaje del monto original.
porcentaje Tasa por cada 100. (Un porcentaje específico también es Ilamado por ciento, como por ejemplo " 70 por ciento.")
perímetro Distancia total alrededor de los lados de una forma bidimensional.

English

$\mathbf{p i}$, or $\boldsymbol{\pi}$ The ratio between the circumference and the diameter of a circle.
polygon A closed, two-dimensional shape with straight sides that do not cross each other.
population A set of people or objects that are to be studied. For example, if the heights of people on different sports teams are studied, the population would be all the people on the teams.
population proportion A number in statistics, between 0 and 1 that represents the fraction of the data that fits into the desired category.
positive numbers Numbers whose values are greater than zero.
prism A three-dimensional figure with two parallel, identical faces (called bases) that are connected by a set of rectangular faces.
probability The ratio of the number of favorable outcomes to the total possible number of outcomes. A probability of 1 means the event will always happen. A probability of 0 means the event will never happen.
profit The amount of money earned, minus expenses.
properties of equality Rules that apply to all equations. These include properties of addition, subtraction, multiplication, and division, which state that, if an equation is true, then applying the same operation to both sides will give a new equation that is also true.
proportional relationship A relationship in which the values for one quantity are each multiplied by the same number (the constant of proprtionality) to get the values for the other quantity.
pyramid A three-dimensional figure with one base and a set of triangular faces that meet at a singular vertex

Español

pi, o ir Razón entre la circunferencia y el diámetro de un círculo.
porcentaje Tasa por cada 100. (Un porcentaje específico también es llamado "por ciento", como por ejemplo "70 por ciento".)
población Una población es un conjunto de personas o cosas por estudiar. Por ejemplo, si se estudia la altura de las personas en diferentes equipos deportivos, la población constaría de todas las personas que conforman los equipos.
proporción de la población En estadística, número entre 0 y 1 que representa la fracción de los datos que cabe en la categoría deseada.
números positivos Números cuyos valores son mayores que cero.
prisma Forma tridimensional con dos caras iguales y paralelas (llamadas bases) que se conectan entre sí a través de un conjunto de caras rectangulares.
probabilidad La razón entre el número de resultados favorables y el número total posible de resultados. Una probabilidad de 1 significa que el evento siempre ocurrirá. Una probabilidad de 0 significa que el evento nunca va a ocurrir.
ganancia Monto del dinero obtenido, menos los gastos.
propiedades de igualdad Reglas que son aplicables a todas las ecuaciones. Incluyen las propiedades de suma, resta, multiplicación y división, las cuales señalan que si una ecuación es verdadera, al aplicar la misma operación a ambos lados se obtendrá una nueva ecuación que también es verdadera.
relación proporcional Relación en la que los valores de una cantidad se multiplican cada uno por el mismo número (la constante de proporcionalidad) para encontrar los valores de la otra cantidad.
pirámide Forma tridimensional con una base y un conjunto de caras triangulares que se intersecan en un solo vértice.

Glossary/Glosario

English

Español

R
radius A line segment that connects the center of a circle with a point on the circle. The term radius can also refer to the length of this segment. (See also circle.)
random sample A sample that has an equal chance of being selected from the population as any sample of the same size
rate A comparison of how two quantities change together.
ratio A comparison of two quantities by multiplication or division.
rational numbers The set of all numbers, positive and negative, that can be written as fractions. For example, any whole number is a rational number.
reciprocal Two numbers whose product is 1 are reciprocals of each other. (For example, $\frac{3}{5}$ and $\frac{5}{3}$ are reciprocals.)
regular polygon A polygon whose sides all have the same length and whose angles all have the same measure.

relative frequency The relative frequency is the ratio of the number of times an outcome occurs in a set of data. The relative frequency can be written as a fraction, a decimal, or a percentage.
repeating decimal A decimal in which there is a sequence of nonzero digits that repeat indefinitely.
representative sample A sample is representative of a population if its distribution resembles the population's distribution in center, shape, and spread.
retail price The price a store typically charges for an item
right angle An angle whose measure is 90 degrees.
radio Segmento de una línea que conecta el centro de un círculo con un punto del círculo. Radio también puede referirse a la longitud de este segmento. (Ver también círculo.)
muestra al azar Muestra que tiene la misma posibilidad de ser seleccionada de entre la población que cualquier otra muestra del mismo tamaño.
tasa Comparación de cuánto cambian dos cantidades en conjunto.
razón Comparación de dos cantidades a través de la multiplicación o la división
números racionales Conjunto de todos los números positivos y negativos que pueden ser escritos como fracciones. Por ejemplo, todo número entero es un número racional.
recíproco/a Dos números cuyo producto es 1 son recíprocos entre sí. (Por ejemplo, $\frac{3}{5}$ y $\frac{5}{3}$ son recíprocos.)
polígono regular Polígono cuyos lados tienen todos la misma longitud y cuyos ángulos tienen todos la misma medida.

frecuencia relativa La frecuencia relativa es la razón del número de veces que ocurre un resultado en un conjunto de datos. Se puede escribir como una fracción, un decimal o un porcentaje.
número decimal periódico Decimal que tiene una secuencia de dígitos distintos de cero que se repite de manera indefinida.
muestra representativa Una muestra es representativa de una población si su distribución asemeja la distribución de la población en centro, forma y extensión.
precio de venta al público Precio que una tienda comercial usualmente cobra por un producto.
ángulo recto Ángulo cuya medida es de 90 grados

English

Español

impuesto de venta Costo adicional, como una tasa del costo de ciertos bienes y servicios, aplicado por el gobierno.
interés simple Monto de dinero que se agrega a un monto original, usualmente pagado al titular o a la titular de una cuenta bancaria de ahorros.
espacio de muestra Lista de cada resultado posible de un experimento aleatorio.
escala Razón, a veces mostrada como segmento, que indica de qué forma las medidas de un dibujo a escala representan las verdaderas medidas del objeto mostrado.
dibujo a escala Dibujo que representa un lugar, objeto o persona real. Todas las medidas en el dibujo a escala corresponden en la misma escala a las medidas del objeto real.
factor de escala Valor por el cual las longitudes de cada lado se multiplican para producir cierta copia a escala.
copia a escala Copia de una figura donde cada longitud de la figura original es multiplicada por el mismo valor, para producir longitudes correspondientes
 en la copia.
muestra Una muestra es una parte de la población. Por ejemplo, una población podría ser todos/as los/as estudiantes de séptimo grado en una escuela. Una muestra de esa población son todos/as los/as estudiantes de séptimo grado que están en una banda.
simulación Un experimento que es utilizado para estimar la probabilidad de un evento en el mundo real.
solución a una ecuación Número que puede sustituir una variable para volver verdadera una ecuación.
solución a una desigualdad Cualquier número que puede sustituir una variable para volver verdadera una desigualdad
ángulo Ilano Ángulo cuya medida es de 180 grados.Por ejemplo, $\angle E F H$ es un ángulo llano.
ángulos suplementarios Dos ángulos cuyas medidas suman 180 grados. Por ejemplo, $\angle E F G$ y $\angle G F H$ son ángulos
 suplementarios.
área de superficie Número de unidades cuadradas necesarias para cubrir todas las caras de una figura tridimensional sin dejar espacios vacíos ni superposiciones

Glossary/Glosario

English

Español

T
diagrama de cinta Modelo en el cual las cantidades están representadas como
 longitudes (de cinta) colocadas de forma

| x | x | x | 3 |
| :--- | :--- | :--- | :--- |
| 18 | | | | continua, y que pueden ser usadas para mostrar suma, resta, multiplicación y división.

término Un término es una parte de una expresión. Puede ser un número individual, una variable o el producto de un número y una variable.
decimal exacto Un decimal que termina en un valor posicional específico.
propina Cantidad dada a un mesero o mesera en un restaurante (o a una persona que presta cualquier otro servicio) que se calcula como porcentaje de la cuenta.
diagrama de árbol Diagrama que representa todos los resultados posibles.

U

unit rate How much one quantity changes when the other changes by 1 .
unlikely An unlikely event is an event that has small chance of occurring. (The probablity of the event happening is less than $\frac{1}{2}$.)
variable A letter that represents an unknown number in an expression or equation.
velocity A quantity that represents the speed and the direction of motion. In general, speed, like distance, is always positive, but velocity can be either positive or negative.
vertical angles Opposite angles that share the same vertex. They are formed by a pair of intersecting lines. Their angle measures are equal. For example, $\angle A O B$
 and $\angle C O D$ are vertical angles
volume The number of unit cubes needed to fill a threedimensional figure without gaps or overlaps.
tasa unitaria Cuánto cambia cierta cantidad cuando la otra cambia por un factor de 1 .
improbable Un evento improbable es un evento que tiene pocas posibilidades de ocurrir. (La probabilidad de que ocurra es menor que $\frac{1}{2}$.)
variable Letra que representa un número desconocido en una expresión o ecuación.
velocidad Cantidad que representa la rapidez y la dirección de un movimiento. En general, la rapidez, como la distancia, es siempre positiva, pero la velocidad puede ser tanto positiva como negativa.
ángulos verticales Ángulos opuestos que comparten el mismo vértice. Están compuestos de un par de líneas que se intersecan. Sus medidas de ángulo son iguales. Por ejemplo, $\angle A O B$ y $\angle C O D$ son
 ángulos verticales.
volumen Número de unidades cúbicas necesario para llenar una figura tridimensional sin dejar espacios vacíos ni superposiciones.

A

Abing (Hua Yanjun), 98
Absolute value, 399
Acoustic hotspots, 541
Addition, 428, 429
arrow diagram to represent, 423
Associative Property of Addition, 673 Commutative Property of Addition, 673
expressions, 454
number line to represent, 424, 426, 427
of positive and negative numbers, 402-408
of rational numbers, 387, 409-416, 442-449, 503
of signed numbers, 414, 415
Additional Practice, 10, 18, 25, 31, 38, $45,53,60,66,73,79,85,91,100,107$, $113,120,126,132,139,145,153,159$, 167, 175, 182, 188, 195, 201, 208, 217, 226, 233, 241, 247, 253, 260, 267, 274, 280, 286, 293, 302, 309, 316, 322, 330, 337, 344, 351, 359, 366, 372, 378, 385, 394, 401, 408, 416, 422, 428, 434, 441, 449, 457, 464, 470, 476, 483, 491, 498, $505,513,521,528,539,548,554,561$, 567, 573, 579, 588, 594, 600, 607, 613, 622, 630, 636, 643, 649, 655, 664, 671, 678, 684, 691, 699, 707, 714, 721, 727, 733, 739, 748, 755, 762, 768, 775, 784, 790, 797, 804, 811, 817, 825, 834, 840, 846, 853, 859, 868, 875, 882, 888 , 896, 902, 909, 915, 921, 927, 933
Addition Property of Equality, 535

Additive Identity, 673

Additive inverses, 414, 426, 511
Agua fresca recipe, 114
Akhmatova, Anna, 48
Alice in Wonderland, 11
Aliens, 219
Amps Featured Activities, 3F, 4B, 5-6, 12B, 15, 19B, 20-21, 26B, 27-28, 32B, 33-34, 39B, 42, 48B, 49, 54B, 56-57, 61B, 62, 67B, 68-69, 74B, 76, 80B, 81-82, 86B, 87-88, 93F, 94B, 96, 102B, 104, 108, 108B, 114B, 121B, 127B, 133B, 140B, 146B, 147-148, 154B, 162B, 168B, 176B, 177-178, 183B, 189B, 196B, 197-198, 202B, 204-205, 211E, 211F, 212B, 220B, 221, 227, 227B, 234B, 237-238, 242, 242B, 244, 248B, 254B, 262B, 268B, 275B, 281B, 282, 287B, 288, 295F, 296B, 297-298, 304B, 308A, 310B, 311, 317B, 323B, 327, 331B, 336A, 338B, 346B, 347, 352B, 356,

360B, 361-362, 367B, 373B, 379B 382, 387Н, 388B, 390, 396B, 397, 402B, 403, 409B, 413, 417B, 418, 423B, 425, 429B, 430, 435B, 437, 442B, 445, 452B, 453, 458B, 459, 465B, 466, 471B, 473, 477B, 478, 486B, 487, 492B, 497A, 499, 499B, 506B, 512A, 514B, 516, 522B, 523, 531H, 532B, 542B, 549B, 555B, 562B, 568B, 574B, 582B, 589B, 595B, 601B, 608B, 616B, 623B, 631B, 637B, 644B, 650B, 665B, 672B, 679B, 685B, 693F, 694B, 702B, 708B, 715B, 722B, 728B, 734B, 742B, 749B, 756B, 763B, 769B, 778B, 785B, 791B, 798B, 805B, 812B, 819F, 820B, 828B, 835B, 841B, 847B, 854B, 862B, 869B, 876B, 883B, 890B, 897B, 903B, 910B, 916B, 922B, 928B
Ancient Egypt, VIPs in, 581
Angles, 718
apply understanding to hands of
clock, 734-739
complementary, 708-721,790 missing, 724
equations to determine, 728-733
octagon, 706
of parallelogram, 717
pattern block, 703-704
relationships of, 702-707
right, 747
supplementary, 708-721,790
of triangles, 704, 706, 716
vertical, 722-727
Antarctica, 443-444
Anticipating the Student Experience With Fawn Nguyen, 3G, 93G, 211G, 295G, 387I, 5311, 693G, 819G
Appalachian Trail, 451, 453
Archimedes, 235, 236
Area, 31, 38, 43,797, 834
of bases, 840
of circle. See also Circumference.
application, 275-278
circumference and, relation
between, 268-273
covering, 264
estimating, 263, 265
determining, 271
formula, 272
relating area to circumference, 270
decomposing bases for,
791-797
determination of, 792
of rectangle, 464, 792
of square, 840,875
of trapezoidal prism, 817
of triangle, 840
scaling, 39-45
Area model diagrams, 661,
669, 670
factoring and expanding with, 666

Arrow diagram, 405, 406, 407-408, 422, 516, 517
to represent addition and
subtraction, 423, 426
Assessments, 3F, 3H, 93F, 93H, 211F, 211G, 295F, 295H, 387C, 387D, 387F, 387H, 531C, 531E, 531H, 531J, 693C, 693D, 693F, 693H, 819C, 819F, 819H
Associative Property of Addition, 673
Astrobees, 657
Atoms, 415

B

Balance, 420, 532-539
Balanced relationships hanger diagrams to represent, 542-548

Baret, Jeanne, 395
Bar notation, 494, 496, 497

Bases

area of, 840
of different solids, 791-797
heart-shaped, area of, 793-794
Basketball court (scale drawings), 50
Batey, Mavis, 827
Bedroom, floor plans, 55
Billboard, scale drawing, 59
Black, Sam, 861
Blazing Shoal, 861
Bletchley Park, 827
Bohr, Neils, 392
Bower, Doug, 219
Brand, logo designing and,
86-89
Bread baking, 123
Building, scale drawings, 53
Building Math Identity and Community, 3H, 4B, 12B, 19B, 26B, 32B, 39B, 48B, 54B, 61B, 67B, 74B, 80B, 86B, 93H, 94B, 102B, 108B, 114B, 121B, 127B, 133B, 140B, 146B, 154B, 162B, 168B, 176B, 183B, 189B, 196B 202B, 211G, 212B, 220B, 227B, 234B, 242B, 248B, 254B, 262B, 268B, 275B, 281B, 287B, 295H, 296B, 304B, 310B 317B, 323B, 331B, 338B, 346B, 352B, 360B, 367B, 373B, 379B, 387J, 388B, 396B, 402B, 409B, 417B, 423B, 429B, 435B, 442B, 452B, 458B, 465B, 471B, 477B, 486B, 492B, 499B, 506B, 514B, 522B, 531J, 532B, 542B, 549B, 555B, 562B, 568B, 574B, 582B, 589B, 595B 601B, 608B, 616B, 623B, 631B, 637B, 644B, 650B, 665B, 672B, 679B, 685B,

Index

Building Math Identity and Community, (continued) 693H, 694B, 702B, 708B, 715B, 722B, 728B, 734B, 742B, 749B, 756B, 763B 769B, 778B, 785B, 791B, 798B, 805B 812B, 819H, 820B, 828B, 835B, 841B 847B, 854B, 862B, 869B, 876B, 883B, 890B, 897B, 903B, 910B, 916B, 922B, 928B

Burj Khalifa, 397
Buzjani, Abu al-Wafa', 418

C

Caesar cipher, 848
Capture the dots game, 288
Card game, 388-394
Carroll, Lewis, 11
CastleDay (game), 45
Center of the circle, 224.
See also Circles.
Centimeters, 133
Certain, likelihood of events, 829, 832
Chance experiments, 828-834
comparing, 847
Change, percent, 323-330
Cheng, Eugenia, 96, 97
Cheskers, 7
Chorley, Dave, 219

Circles

analyzing circle claims, 283
approximating, 269
area of (See Area, of a circle).
art of the circle, 223
center of the circle, 224
circumference, 234-241
(See also Circumference).
crop circles, 219
defined, 224
exploring, 220-226
interest in, 215, 261, 291
measuring, 222
π (pi) See π (pi).
Circles in a Circle (Kandinsky), 223
Circumference, 234-241
See also Area, of circle applying, 248-253 approximating, 244 and area, 281-285 area and, relation between, 268-273 defined, 239
formula, 251
measuring, 237-238
refining your estimation, 235-236 relating area to circumference, 270 rotations and distance, 256 rotations and speed, 257
things that roll, 255
wheels and, 254-259
Clarke, Joan, 827
Clockwork, 734-739
Coin, tossing, 871
Combining like terms, 672-684
Commerçon, Philibert, 395
Commission, 353, 356, 357
Commutative Property of
Addition, 673

Comparison

graphs for, 176-182
proportional relationships,
114-120
relationships, 196-201
Complementary angles,
708-721, 790 degree measures of, 755
Complex fractions, 495
Computed tomography (CT) scan, 777
Concert tickets, 141
Constant of proportionality, 104, 105
108-113, 137, 157, 161, 699
determining, 189-195
on graph, 173
Conversions, table of, 79
Coordinate plane, 434, 436
Coordinate plane, graphs on, 176-182

Corresponding parts, 23
Crop circles, 219
Cross sections
defined, 782
drawing, 781
Cross-curricular Connections. See Differentiated Instruction; Extension; Interdisciplinary Connections.
Cubes, 783, 784
rolling, 871-872
surface area of, 147-148
total edge length of, 147-148
volume determination with, 786
volume of, 147-148
Currency exchange, 108-109
Curtido (food dish), 121

D

Data sets

comparing, 890-896
mean absolute deviation
of, 899
mean of, 899
"Death Zone," 485

Debts, 420
dealing with, 418
money and, 417-422
Decimal point, placement of, 140

Decimals

percentages involving,
304-309
fractions with, 492-498
repeating, 493-494, 496
terminates, 496
Deep ocean exploration,
501-502
Denali (mountain peak), 143
Denver, John, 437
Deposits, 420, 613
Depths, extreme, 397
Diagonal, square, 228-229, 231, 232
Diagonal and perimeter,
228-229
Diameter, 224. See also Circles.
formula, 251
measuring, 237-238
Differentiated Instruction Accessibility, 771

Activate Background Knowledge,
147, 172, 876, 890
Activate Prior Knowledge, 70, 110,
263, 289, 436, 472, 493, 500, 501,
$507,516,518,535,583,646,660,695$,
806, 891
Bridge Knowledge Gaps, 734
Clarify Vocabulary and Symbols,
222, 507, 808, 829, 830, 836, 837,
848, 904
Guide Visualization and
Processing, 15, 33, 34, 49, 55, 56, 62, 76, 95, 104, 110, 115, 116, 122, 123, 128, $142,149,155,156,177,179,184,185$, 211G, 213, 220, 223, 230, 244, 249, 250, 256, 257, 264, 270, 271, 276, 277 , 282, 288, 390, 398, 402, 405, 410, 412, 419, 424, 430, 431, 443, 445, 446 453, 454, 459, 461, 478, 488, 495, $500,501,510,515,523,524,531 \mathrm{~J}$, $534,543,550,556,576,583,584$. 585, 590, 591, 596, 597, 602, 604, 609, 617, 618, 640, 645, 646, 651, 652, 660, 661, 667, 668, 673, 675, 680, 694, 702, 704, 711, 716, 717, 722, 728, 729, 730, 743, 750, 756, 757, 758, 759, 769, 770, 778, 781, 792, 793, 798, 799, 801, 805, 807, 808, 812, 819H, 821
836, 843, 847, 848, 854, 863, 865 ,
870, 871, 872, 899, 904, 905, 912, 917, 918, 924, 929
Optimize Access to Technology, 49, 68, 94, 96, 128, 169, 177, 185, 228, 269, $270,288,390,397,403,413,418,437$, 445, 453, 459, 466, 473, 478, 487, 516, 523, 531J, 533, 544, 545, 549, 556,
$557,563,569,575,584,590,596,624$,
632, 633, 638, 644, 661, 666, 667,
673, 680, 686, 687, 688, 693H, 703, 709, 710, 716, 728, 736, 743, 751, 764, 765, 771, 779, 786, 806, 813, 821, 830, $837,842,849,855,856,871,877,884$, 899, 911
Optimize Access to Tools, 5, 7, 35, 49, 63, 87, 141, 147, 220, 223, 275, 389, 390, 391, 430, 446, 454, 461, 515, 693H, 722, 745, 749, 779, 786, 812, 843, 855, 856, 870, 876, 879, 883, 884, 905
Vary Demands to Optimize Challenge, 3H, 5, 13, 15, 20, 22, 27 , $28,33,34,35,40,49,50,63,68,75$, 81, 87, 103, 109, 110, 117, 123, 134, 135, $149,156,162,163,164,169,171,172$, 184, 185, 190, 191, 197, 204, 212, 213, 214, 221, 228, 230, 235, 237, 243, 255, 277, 283, 289, 403, 425, 437, 467, 479, 487, 494, 544, 545, 558, 564, 570, 610, 618, 619, 626, 627, 638, 645, 659, 668, 675, 681, 687, 703, 709, 710, 711, 716, $717,718,723,724,736,744,745,749$, 756, 763, 764, 765, 769, 778, 780, 781, $787,798,799,808,829,831,848,855$, 864, 872, 879, 891, 892, 893, 898, 906, 911, 917, 923, 930
Extension
Interdisciplinary Connections, 67, 179, 202, 238, 443, 447, 474, 619, 735, 736, 737
Math Around the World, 203, 244, $298447,474,551,735,736,737,822$ Math Enrichment, 13, 22, 28, 35, 42, 56, 62, 76, 81, 87, 103, 109, 116, 117, $122,123,134,141,147,156,163,171$, 185, 190, 191, 213, 222, 236, 237, 238, 243, 244, 269, 270, 276, 283, 288, 289, 291, 389, 391, 397, 405, 412, 418, 425, 430, 436, 443, 454, 466, 467, 479, 488, 494, 495, 524, 534, 543, 550, $557,558,563,564,569,570,575,576$. 591, 597, 604, 617, 624, 627, 632, 633, 651, 659, 660, 666, 686, 687, 688, 711, $717,718,723,724,745,750,751,757$, 759, 763, 770, 771, 780, 781, 791, 792, 793, 799, 801, 806, 807, 813, 821, 831, 837, 842, 843, 863, 864, 865, 872, 877, 884, 891, 892, 898, 923, 930

Discount, 613 See Markdowns;
Markups.

Distance estimation, maps and, 65

Distances

determination of, 435, 439
differences and, 436
Distributions, 903
Distributive Property, 461, 554, 559,
660, 663
to solve equations, 570,571
to write equivalent expression, 707 to write expressions, 665-671

Division

equations, 472
long, 491, 493, 494
of rational numbers, 387, 471-476, 503
to solve equations, 570

Dogs

in different directions,
562
strength of, 534
walkers, 533
Domino, 7
Dot plots, 891, 892, 895, 903,
917
to show samples from population, 905-906

Dragonstorm, 861

E

Earhart, Amelia, 701
Effective Teaching Practices, 3H, 93H, 211G, 295H, 387J, 531J, 693H, 819H
Electrons, 415
Elevations, 397, 400, 415, 476, 516-517
Encrypted messages, probability to decode, 847-859
English Learners, 4, 5, 7, 12, 13, 15, 19 20, 22, 27, 32, 34, 39, 40, 48, 49, 54
$56,61,62,63,68,70,75,76,87,95$,
$103,104,108,109,110,116,117,121$,
122, 123, 127, 128, 129, 133, 134, 135,
$140,155,156,163,164,168,169,171$,
177, 184, 197, 203, 212, 213, 214, 221 ,
223, 227, 228, 230, 235, 250, 255, 263,
269, 271, 277, 282, 283, 299, 304, 305,
306, 310, 312, 317, 318, 319, 323, 324,
326, 327, 331, 332, 333, 334, 338, 339,
340, 341, 346, 347, 348, 353, 356,
$361,363,367,368,369,374,375,380$,
387J, 390, 396, 397, 403, 405, 409,
410, 417, 419, 423, 424, 430, 431, 436,
$443,446,452,453,461,467,478,479$,
487, 493, 500, 515, 518, 531J, 534,
$543,545,550,555,557,558,563,575$,
$576,583,589,590,595,596,601,602$,
604, 610, 617, 626, 632, 633, 638, 640,
$645,652,675,680,695,703,704,715$,
$716,717,723,742,743,744,751,758$,
764, 765, 770, 771, 779, 780, 786, 793,
801, 807, 808, 813, 819H, 820, 829,
830, 831, 835, 836, 842, 843, 849,
862, 863, 864, 865, 870, 871, 877, 879,
893, 899, 904, 911, 916, 917, 918, 923
Equally likely as not, likelihood of events, 832, 833

Equal to (=), 413, 565, 617,639
Equations, 199, 471, 689
chain, 575
comparing relationships with, 146-153
division, 472
equivalent. See Equivalent equations.
hanger diagrams and, 549-561
matching, 508-509, 520, 585
multiplication, 472
mystery, 574
with negative numbers, 562-567
percent change
problem solving, 338-344
representing with, 334
percent increase and decrease with,
331-337
proportional relationships, 93 ,
121-126, 161
involving speed, 127-132
problem solving involving,
140-145
reasoning about, 589-600
representing contexts with, 514-521
and solutions, 510
to solve for unknown angles,
728-733
to solve problems with negative
numbers and percents, 608-613
solving
with hanger diagrams, 551,
557-558
with parentheses, 555-561,
568-573
practicing, 574-579
with rational numbers, 506-513
string, 589, 595
trading, 576
true/false, 189
use to solve problems, 601-607
writing, 514-521
tape diagrams for, 582-600

Equivalent addition expression

product matching with, 456
subtraction match with
corresponding, 427
Equivalent equations, 564, 565, 566,
586, 588
Equivalent expressions, 469, 511,
531, 554, 672-678, 690,
720, 790
matching, 667
subtraction in, 658-664
writing, 668
with parentheses and negative
numbers, 679-684
using Distributive Property, 707
Equivalent ratios, 100
Equivalent scales, 83
Error, percentages
acceptable, 373
intervals, 373-378
measurement, 367-372
Error analysis, 568
Euler, Leonard, 249

Index

Events

defined, 832
likelihood of, 829
multi-step, 864
simulating, 876-882
real-world, simulating, 883-888
Exchange rate, currency, 108, 109
Expanding, 666-670
Experiments
chance, 828-834
comparing, 847
multiple events, sample spaces for, 862-868
with multi-step events, 869-875
outcomes of, 873
simulation for, 883-888
Expressions, 689
addition, 454
equivalent. See Equivalent
expressions.
evaluation of, 488, 490, 527
locating, 608
matching pair of, 487
multiplication, 454
ordering, 490
with rational numbers, 486-491
with temperatures, 431 value determination, 521 writing, 443-444

Distributive Property for, 665-671 patterns of growth, 685-691
writing scenarios about, 445
Expressions, matching, 352
Extremes, 397

F

Factoring, 666-670
with area model diagrams, 666
Fairness, 820-825
sampling and, 910-915
Fawcett, Jane, 827
Featured mathematicians,
Archimedes, 235, 236
Buzjani, Abu al-Wafa', 418
Cheng, Eugenia, 96, 97
Golomb, Solomon, 7
Hart, Vi, 745
Iwao, Emma Haruka, 243, 261
Kennedy, Courtney, 898
Peano, Giuseppe, 619
Riehl, Emily, 536
Storer, Thomas, 696
Thales of Miletus, 758
Turing, Alan, 850
Urschel, John, 205
Wall, Sheila, 444
Wallman, Katherine, 299
Washington, Ebonya, 355
Fermat, Pierre de, 823, 931

Flag, scale drawing, 59
Floor plans, 51, 58
bedroom, 55
Fostering Diverse Thinking, 93H, 129, 206, 215
Formula, for simple interest, 354
Fractional percentages, 349

Fractions

complex, 495
with decimals, 492-498
writing as repeating decimals, 497

G

Game time, 821-822
Gatewood, Emma, 451
Godzilla (movie), 47, 75
Gold, trading for salt, 135-136
Golomb, Solomon, 7
Gowers, Timothy, 35
Graphington Slopes, 876-878
Graphs, 199, 440, 457
to compare relationships,
176-182
constant of proportionality on, 173
of proportional relationships, 93
interpretation of, 168-175
on same coordinate plane, 176-182
Gratuity. See Tip.
Greater than (>), 413, 615, 616, 617,
619, 620, 639
Greater than or equal to $(\geq), 618,619$, 620
Greatest product, 466
Great Trail, 459
The Goat Problem, 213-214

H

Hales-Jewett theorem, 35
Hallway speed limit, 62

Hanger diagrams

and equations, 549-561
manipulating, 544-545
to represent balanced relationships, 542-548
Hang Son Doong
("Mountain River Cave"), Vietnam,
516-517
Haraguchi, Akira, 261
Harriot, Thomas, 615, 619
Hart, Vi, 745
Haruka, Emma, 243
Harvard Dialect Survey, 296

Headlines

editing, 380-381
reporting responsibly, 382
selection of, 379
writing, 379-385
Heart-shaped base, 806
area of, 793-794

Heights

extreme, 397
family, 892
of team members, 891
Heraclitus, 392
Hexagons, 473, 695, 697, 703, 815
properties of, 699
Hillary, Edmund, 522
Histograms, 916
Historical moment, 222, 249, 522
Homo sapiens, 541
Hounsfield, Godfrey, 777
Hua Yanjun (Abing), 98

I

Ibn Battuta, Abu Abdullah
Muhammad, 101
Ice, Cloud and Land Elevation
Satellite-2 (ICESat-2) mission, 443,
444
Impossible, likelihood of events, 829,
832, 833
Inequalities, 531
complicated, solving, 637-643
interpreting, 644-649
matching, 645
modeling with, 650-655
solutions to, 616-643, 691, 846 number lines to represent, 624-629, 637-640
statements, 621
with tables, 624-626
true and false, 623
understanding, 618
writing, 621, 634, 644-649
Instructional Routines, 3G, 3I, 4, 12,
$15,19,26,32,33,39,42,48,54,63$,
67, 74, 80, 86, 88, 93E, 93G, 94, 115
$117,122,123,127,146,154,155,156$,
162, 164, 176, 183, 197, 205, 211E,
211G, 221, 222, 228, 229, 237, 242,
244, 250, 264, 268, 269, 281, 288
295E, 295G, 296, 304, 305, 310, 317,
$319,323,324,327,331,333,338,340$,
346, 347, 352, 356, 363, 367, 369
375, 382, 387G, 387I, 531G, 531I, 693E,
693G, 819E, 819G
Interest, 356, 357
simple, 354-355
Intervals, error, 373-378

Inverse operations, 674
Iwao, Emma Haruka, 243, 261

K

Kaleidoscope (Odita), 12
Kandinsky, Vasily, 223
Kayak paddling, 129
Kennedy, Courtney, 898
Kettle Valley Rail Trail, 459
KWL (Know, Want to know, Learned) chart, 95

L

Length, side, 43
Less than (<), 413, 615, 617, 619, 620, 639
Less than or equal to (\leq), 619,620
Leyton-Utter, Josh, 861
Lifetime timeline, 437-438
Likelihood, of event, 829
Likely, likelihood of events, 832, 833
Like terms, combining, 672-684
Lists, 862
Loan, 417
Logo, designing, 86-89
large- and small-scale, 87-88 promotional item and, 87,88 scale drawings, 87
Long division, 491, 493, 494
The Ladies' Diary, 212

M

Mandala, 233
Maps, 51, 56-57 in problem solving, 61-66
Mariana Trench, 397
Markdowns, 312-313, 332, 355, 357
Markups, 312-313, 332, 356, 357
Materials, 3E, 4B, 12B, 19B, 26B, 32B, 39B, 48B, 54B, 61B, 67B, 74B, 80B, 86B, 93E, 94B, 102B, 108B, 114B, 121B, 127B, 133B, 140B, 146B, 154B, 162B, 168B, 176B, 183B, 189B, 196B, 202B, 211E, 212B, 227B, 234B, 242B, 248B, 254B, 262B, 268B, 275B, 281B, 287B, 295E, 296B, 304B, 310B, 317B, 323B, 331B, 338B, 346B, 352B, 360B, 367B, 373B, 379B, 387G, 388B, 402B, 409B, 417B, 423B, 429B, 435B, 442B, 452B, 458B, 465B, 471B, 477B, 486B, 492B, 499B, 506B, 514B, 522B, 531G, 532B, 542B, 549B, 555B, 562B, 568B, 574B,

582B, 589B, 595B, 601B, 608B, 616B, 623B, 631B, 637B, 644B, 650B, 665B 672B, 679B, 685B, 693E, 694B, 702B 708B, 715B, 722B, 728B, 734B, 742B, 749B, 756B, 763B, 769B, 778B, 785B, 791B, 798B, 805B, 812B, 819E, 820B, 828B, 835B, 841B, 847B, 854B, 862B, 869B, 876B, 883B, 890B, 897B, 903B, 910B, 916B, 922B, 928B
Math Around the World 47, 474, 551 735, 736, 737, 822
Math Enrichment. See Differentiated Instruction, Extension: Math Enrichment. Math Language Development, 3E, 12B, 19B, 24A, 26B, 32B, 39B, 44A, 48B, 54B, 61B, 67B, 74B, 80B, 86B, 93E, 94B, 102B, 108B, 112A, 114B, 121B, 127B, 133B, 140B, 146B, 154B, 158A, 162B, 168B, 176B, 183B, 189B, 196B, 200A, 202B, 211E, 220B, 227B, 234B, 242B, 248B, 254B, 262B, 268B, 273A, 275B, 281B, 285A, 287B, 295E, 296B, 304B, 310B, 315A, 317B, 323B, 331B, 338B, 346B, 352B, 360B, 367B, 373B 379B, 387G, 387J, 388B, 402B, 409B, 417B, 421A, 423B, 429B, 435B, 442B, 452B, 458B, 465B, 471B, 477B, 482A, 486B, 492B, 499B, 506B, 514B, 522B, 531G, 531J, 532B, 542B, 549B, 555B, 562B, 568B, 572A, 574B, 582B, 589B, 595B, 601B, 606A, 608B, 616B, 623B, 631B, 637B, 644B, 648A, 650B, 665B 672B, 679B, 685B, 693E, 693H, 694B, 702B, 708B, 715B, 722B, 728B, 734B, 742B, 749B, 756B, 763B, 769B, 778B, 785B, 789A, 791B, 798B, 805B, 810A, 812B, 819E, 819H, 828B, 833A, 835B, 841B, 847B, 854B, 862B, 869B, 876B, 883B, 890B, 895A, 897B, 903B, 908A, 910B, 916B, 922B, 928B

English Learners. See English Learners.
MLR1: Stronger and Clearer Each
Time, 13, 27, 68, 103, 117, 214, 270, 319 410, 604, 693H, 708, 771, 786, 799, 843, 877, 918
MLR2: Collect and Display, 4, 7, 12, 16, 23, 36, 51, 70, 83, 110, 111, 118, 146, 184, 191, 212, 223, 224, 228, 239, 271, 282, 348, 388, 397, 399, 406, 409, 414, 420, 454. $459,462,472,474,493,496,563,565,601$, 620, 640, 669, 676, 695, 703, 705, 710, 712. 723, 725, 742, 758, 779, 782, 808, 820, 832 . $835,838,841,865,866,880,897,898$, 900, 903, 905, 907, 912, 913, 916, 925 MLR3: Critique, Correct, Clarify, 3H, 5 , 19, 28, 34, 49, 56, 134, 149, 156, 164, 203, 249, 323, 333, 353, 361, 424, 431, 506, 533, 616, 680, 709, 759, 787, 792, 924 MLR4: Information Gap, 155, 295H, 375,652
MLR5: Co-craft Questions, 116, 135, 221, 235, 256, 387J, 396, 405, 417, 419, 543, 632, 633, 770, 793, 870
MLR6: Three Reads, 123, 129, 142, 244, $324,331,347,374,380,443,500,515$,

531J, 575, 576, 602, 610, 645, 646, 813 848, 862
MLR7: Compare and Connect, 39, 55, $61,63,87,93 H, 121,122,127,128,168$, $169,177,190,204,213,237,254,257$, 263, 264, 268, 277, 287, 317, 326, 332, $368,369,390,398,403,413,418,445$ $446,452,453,461,467,473,487,501$, $507,516,518,534,544,545,550,551$, $556,557,558,569,570,583,584,585$, 590, 596, 609, 617, 618, 626, 651, 661, 667, 681, 686, 688, 730, 744, 751, 765, $780,807,819 H, 829,830,831,842$, 849, 863, 864, 871, 879, 892, 893, 906, 923
MLR8: Discussion Supports, 15, 20, 22, 32, 40, 42, 48, 54, 62, 74, 75, 76, 81 , $95,104,108,109,133,140,141,163,171$, 197, 211G, 222, 227, 230, 234, 242, 250, 255, 269, 283, 299, 304, 305, 306, 310 $312,318,334,338,339,340,341,356$, $389,423,425,429,430,436,466,471$, $478,479,508,510,555,562,589,595$, 608, 638, 665, 666, 673, 675, 704, 715, $716,717,718,724,729,743,764,785$, 801, 836, 899, 904, 911, 917

Mathematical Language Routines. See Math Language Development.

Mean, 899, 904, 927

as measures of center, 916-921

Mean absolute deviation (MAD), 893, 894, 899, 917-920, 927

Measurements, estimating

67. See also Scale drawings; Scaling

Measures of center, 916-921
Meters, 133
Micrometer screw gauge, 368
Miniature model, 8
Modifications to Pacing, 4B, 12B, 19B, 26B, 32B, 39B, 48B, 54B, 61B, 67B, 74B, 80B, 86B, 94B, 102B, 108B, 114B, 121B, 127B, 133B, 140B, 146B, 154B, 162B, 168B, 176B, 183B, 189B, 196B 202B, 212B, 220B, 227B, 234B, 242B, 248B, 254B, 262B, 268B, 275B, 281B, 287B, 296B, 304B, 310B, 317B, 323B, 331B, 338B, 346B, 352B, 360B, 367B, 373B, 379B, 387F, 388B, 396B, 402B, 409B, 417B, 423B, 429B, 435B, 442B 452B, 458B, 465B, 471B, 477B, 486B, 492B, 499B, 506B, 514B, 522B, 531E, 532B, 542B, 549B, 555B, 562B, 568B, 574B, 582B, 589B, 595B, 601B, 608B, 616B, 623B, 631B, 637B, 644B, 650B, 665B, 672B, 679B, 685B, 693D, 694B, 702B, 708B, 715B, 722B, 728B, 734B, 742B, 749B, 756B, 763B, 769B, 778B, 785B, 791B, 798B, 805B, 812B, 819D, 820B, 828B, 835B, 841B, 847B, 854B, 862B, 869B, 876B, 883B, 890B, 897B, 903B, 910B, 916B, 922B, 928B

Index

Money

and debts, 417-422
earning, 632-633
Monster movies, 47
Movement, rational numbers to represent, 452-457
Movies, scale drawings in, 47, 75
Mt. Everest, 49, 397
climbing, 485, 522
preparations for, 523
route for, 522
summiting, 522-528
Mt. Fuji, 397
Multi-step events, 864
experiments with, 869-875
simulating, 876-882
Multifaceted objects, 798
Multiplication. See also Product.
equations, 472
expressions, 454
of rational numbers, 387, 458-470, 503
of signed numbers, 454, 455, 460, 462
Music (making), 94-100
Mystery equation, 574

N

Nakajima, Haruo, 47, 75
NASA, 657
National Oceanic and Atmospheric
Administration (NOAA), 501
Negative numbers, 441, 442, 443, 460,
465, 475
addition with positive numbers,
402-408
application to money, 417-422
division of, 472, 474
equations with, 562-567
interpreting, 396-401
multiplication of, 454, 455
problem solving, 608-613 solving equations including, 506-512 write equivalent expressions with, 679-684
Nonproportional relationships, 117, 118 graph of, 168

Noonan, Fred, 701
Norgay, Tenzing, 522

Number(s)

negative. See Negative numbers. positive. See Positive numbers. rational. See Rational numbers.
signed, 410-411

Number lines, 394, 399, 402-404,
406, 410, 425, 452, 516, 517
building, 398
creation of, 437-438
decimals on, 841
determining distance based on, 435
to explain reasoning, 413
to represent addition, 424,
426, 427
to represent solution to inequalities, 624-629
to represent subtraction, 424, 426, 427
and solutions to inequalities, 616-620

0

Octagons

angles of, 706
Odita, Odili Donald, 12
Office building, 813-814

Okeanos Explorer (NOAA ship),

501
Operations. See also Addition; Division:
Multiplication; Subtraction. missing, 579
order of, 461
Opposites, 392, 399, 409,
414
Order of operations, 461
Orpheus, 501-502
Outcomes, 832, 838
Overlapping circles, 223

P

Paddling, kayak, 129
Parallelogram, 695, 739
angles of, 717

Parentheses

solving equations with, 555-561, 568-573
write equivalent expressions with, 679-684

Pascal, Blaise, 823, 931
Pattern blocks, 5, 703-705
Patterns of growth, 685-691
Peano, Giuseppe, 619
Pentagon, 739
Pentomino, 7, 10
Percentages, 295, 383
contexts, 352-359, 360
defined, 361-362
determining 100\%, 317-322
error, acceptable, 373
intervals, 373-378
measurement, 367-372
involving decimals, 304-309
markup/markdown, 312-313, 332
as powerful numbers, 303
to represent the United States,
296-302
comparison, 299-302
State data analysis, 297-298
of 60, 305-305
tape diagrams and, 306, 310
of 20, 310
unknown, determining, 360-366 usage of, 300
Percentages, problem solving,
608-613
Percent change, 323-330, 383
problem solving with equations,
338-344
representation with equations, 334
Percent decrease, 310-316
determination of, 323-330
with equations, 331-337
problem solving, 317-322
Percent increase, 310-316
analysis of, 331
determination of, 323-330
with equations, 331-337
problem solving, 317-322
Perimeter, 9, 30, 38, 40-41, 43
square, 228-229, 231
of rectangle, 464
of square, 875
Pets, 897
Philadelphia Convention Center, 861
Plane, 781, 782
Polling, 890
Polygon, 15, 44-45, 491, 694-700, 739
building, 742-748
comparing, 742
decomposing, 795
Polymath Project, 35
Polyurethane, 50
Population, growth and decline, 318

Populations

comparing, 890-896
defined, 900
examples of, 898,900
larger, 897-902
measures of center, estimation of, 916-921
proportions, samples to estimate,
922-927
sample, dot plots to show, 905-906

Positive numbers, 441, 442, 443, 460, 465, 475, 565. See also Signed numbers.
addition with negative numbers, 402-408
application to money, 417-422
division of, 472, 474
multiplication of, 454, 455
Possible, likelihood of events, 829, 832
Precision, 8
Precision timekeeping, 736
Presentation, of findings, 928-933
Price, retail, 312
Printing copies, 12
Prisms, $41,778,791,815$
rectangular, 121
square, 808
surface area of, 798-805
trapezoidal, 817
volumes of, 785-790, 840
Probabilities, 835-840, 869, 874, 876, 878, 931
to decode encrypted messages, 847-859
estimating, 841-846
for rolling cube, 871-872
simulation to determine, 879
of spinning, 869-870
for tossing coin, 871
Problem solving, maps in, 61-66
Product. See also Multiplication. greatest, 466
matching with equivalent addition expression, 456
Professional Learning, 3G, 9A, 24A, 30A, 37A, 44A, 52A, 59A, 65A, 72A, 78A, 84A, 90A, 93G, 99A, 106A, 112A, 119A, 125A, 131A, 138A, 144A, 152A, 158A, 166A, 174A, 181A, 187A, 194A, 200A, 207A, 211G, 216A, 225A, 232A, 240A, 246A, 252A, 259A, 266A, 273A, 279A, 285A, 292A, 295G, 301A, 308A 315A, 321A, 329A, 336A, 343A, 350A, 358A, 365A, 371A, 377A, 384A, 387I
393A, 400A, 407A, 415A, 421A, 427A,
433A, 440A, 448A, 456A, 463A, 469A, 475A, 482A, 490A, 497A, 504A, 512A, 520A, 527A, 531I, 538A, 547A, 553A, 560A, 566A, 572A, 578A, 587A, 593A, 599A, 606A, 612A, 621A, 629A, 635A, 642A, 648A, 654A, 663A, 670A, 677A, 683A, 690A, 693G, 698A, 706A, 713A, 720A, 726A, 732A, 738A, 747A, 754A, 761A, 767A, 774A, 783A, 789A, 796A, 803A, 810A, 816A, 819G, 824A, 833A, 839A, 845A, 852A, 858A, 867A, 874A, 881A, 887A, 895A, 901A, 908A, 914A, 920A, 926A, 932A
Profit, 312, 314

Promotional item, logo and, 87, 88
Proportional relationships, 103, 401, 457, 737, 859
building, 172
comparing, 114-120
defined, 105
equations, 93, 121-126, 161
involving speed, 127-132 problem solving involving, 140-145
graphs of, 93 interpretation of, 168-175
problem solving, 154-159 with tables, 93, 102-113
ways to determine, 199
Proportions, populations
samples to estimate, 922-927
Protons, 415
Pupusa (national dish of EI
Salvador), 121
Puzzle, scaling, 35
Pyramids, 778
rectangular, 779
π (pi), 236, 239, 291
approximating, 243
approximating circumference, 244
describing, 261
historical overview, 249
understanding, 242-247

Q

Quadrilateral, scaled copy, 30, 38
Quadrilaterals, 739, 743, 744, 747,
780
Quality control, 375
Questeros, 862
Quotients, 475

R

Radius, 224, 284. See also Circles. formula, 251
Raleigh, Walter, 615
Range, of data set, 567
Rational numbers, 399, 526 addition of, 387, 409-416, 442-449, 503
division of, 387, 471-476, 503
expressions with, 486-491
multiplication of, 387, 458-470, 503
negative rates, 477-483 problems solving with, 499-505 to represent time and movement, 452-457
solving equations with, 506-513 subtraction of, 387, 423-449, 503

Ratios, 94-100 equivalent, 100 right, 102-103
Reasoning, to solve problems with negative numbers and percents, 608-613

Reciprocal scale factors, 36

Rectangles, 695, 709-710, 780 patterns with, 146
area of, 464, 792
perimeter of, 464
Rectangular prism, 41
Relationships
comparing, 146-153, 196-201 nonproportional, 117, 118, 168 proportional. See Proportional relationships.
two graphs for each, 183-188
Relative frequency, 848, 851
Rep-tiles, 5-6
Repeating decimal, 493-494, 496 writing fractions as, 497
Representative sample, 907, 908,
910-915
Retail price, 312, 314
Rhombus, 6, 695, 739
anlges of, 704
blue, 703, 704
brown, 703, 704
identical, 816
properties of, 699
Riehl, Emily, 535, 536
Right angle, 747
Road trip, 134
Roller coaster, 617
Rotation, 258. See also Wheels. circumference and distance, 256 speed and, 257
The Return of Godzilla (movie), 75

S

Sales tax, 346-351, 357
defined, 349
rates, 347
tipping, 348
Salt, trading gold for, 135-136
Sample, 898
defined, 900
to estimate population proportions, 922-927
examples of, 900
and fairness, 910-915 good, making of, 903-909 representative, 907, 908, 910-915 selecting, comparing methods for, 910

Index

Sample spaces, 836, 838, 839
for experiments with multiple events, 862-868
for tossing coin, 871
Scale. See also Scale drawings. changing, in scale drawings, 67-73
equivalent, 81-82, 83 same drawing, different scales, 76 without units, 74-79

Scaled copies, 12-18
area, 39-45
making, 26-31
Scaled figures, 110, 112

Scale drawings

basketball court, 50
changing scales in, 67-73
creating, 54-60
different scales, 68-69
logo designing, 87 in movies, 47,75 same plot, different drawings, 70 tall structures, 49 units in, 80-85

Scaled triangles, 22

Scale factor, 23, 70
determining, 34
reciprocal, 36
size of, 32-38
Scaling. See also Scale drawings. area, 39-45 logo designing, 86-89 polygons, 15 puzzle, 35
School of Night, 615
Science fair, 805
Secret message, 855
decoding, 856
Sextant, 701
Shape, area and, 287-290
Siblings, 897
Side length, 43
square, 231, 232
Signed numbers, 410-411.
See also Negative numbers; Positive numbers.
addition of, 414, 415 multiplication of, 454, 455, 460, 462
Simple interest, 354-355

Simulation

defined, 880
designing, 883-888
multi-step events, 876-882
Size, of scale factor, 32-38
Snow, measurement of, 116

Solar panel system, energy production by, 419

Solutions to inequalities,

616-643
number lines to represent, 624-629, 637

Sorting, tape diagrams, 584
Space, 287-290
capture the dots game, 288
enclosing the largest space, 289-290

Speed, 458

Speed, and proportional relationships equations,
127-132
Speed limit, 62
Spinner, 869-870
Spin to win, 831
Square, 9, 37, 695, 698, 703
angles of, 704
area of, 265, 840, 875
diagonal and perimeter, 228-229
measuring, 227-231
missing parts of a square,
230
perimeter of, 875
properties of, 699
Storer, Thomas, 696
Stringed instrument, 94-100
Stunt choreography, 47
Subtraction, 428, 430
arrow diagram to represent, 423, 426
in equivalent expressions, 658-664 match with corresponding equivalent addition expression, 427
number line to represent, 424, 426 427
of rational numbers, 387, 423-449, 503
Subtraction Property of Equality, 535
Supplementary angles, 708-721, 790
Surface area, 834
applications of, 812-817
of prisms, 798-805
volume vs., 805-811
Surface area, of cubes, 147-148
Swimming time, 324-325

T

Tables, 108, 862
comparing relationships with, 114-120
to convert currency, 109 and proportional relationships, 93, 102-113

Tall structures, 49
Tape diagrams
for markup/markdown, 312-313
matching scenarios, 317
and percentages, 306, 310
drawing, to represent scenarios, 590-591, 596-597
matching equation with, 585
reasoning about, 589-600
to solve problems with negative numbers and percents, 608-613 sorting, 584
to write equations, 582-600
Tax, sales. See Sales tax.
Tea making, 169-170
Team building, 695-696
Technology. See Accessibility; Amps Featured Activities.
Temperatures, 396, 443-444, 463
changing, 402-408
comparing, 405
expressions with, 431
Terminates, decimal, 496
Terminology, invention of, 535-536
Thales of Miletus, 758
Thermometer, 396
The Tortoise and the Hare, 119
Three-dimensional solids, 778-784
Time
backward and forward in, 453
in degrees, 735
rational numbers to represent,
452-457
velocity and, 459-460
Time estimation, maps and, 61, 63, 64
Tip, 348, 349, 356, 357
Trading gold for salt, 135-136
Trapezoids, 699, 703, 780, 783 anlges of, 704
Tree diagrams, 862, 866
Triangles, 699, 703, 739, 741, 743
angles of, 704, 706, 716
area of, 840
building, 744, 745, 749-755
with common measures, 756-762
compass to estimate length, 769
drawing, 763-775
identical, 756
one side/two angles, 759
rep-tiles, 6
scaled, 22
scaled copy, 33, 37, 53, 60
side lengths, 751, 753, 754, 816
three sides/three angles, 757
two sides/one angle, 758
unique, 766

Tsubaraya, Eiji, 47

Turing, Alan, 849, 850, 857
Turing machines, 850
Tyson, Neil deGrasse, 48

U

U.S. Commerce Department, 345

Unique triangle, 766

United States

percentages to represent, 296-302 comparison, 299-302
State data analysis, 297-298
Units
in scale drawing, 80-85 scales without, 74-79
Unknown percentages, determining, 360-366
Unlikely, likelihood of events, 832, 833
Urschel, John, 205
Utah, maps of, 56-57

V

Valentine, Jean, 827
Variable, 604
Velocity, and time, 459-460
Vertical angles, 722-727
Vocabulary. See Math Language Development.
Volume, of cubes, 147-148
Volumes
applications of, 812-817
of prisms, 785-790, 840
surface area vs., 805-811
of trapezoidal prism, 817

W

Wall, Sheila, 443, 444
Wallman, Katherine, 299
Wampum, 104
Washington, Ebonya, 355
Welcoming committee, 202-208
Westland Lysander, 51
Wheels, circumference and, 254-259 rotations and distance, 256 rotations and speed, 257 things that roll, 255
Winning chance, game, 823
Withdrawals, 420, 613
"Y-cruncher," 243

Z

Zero, 388-394
Zipline, 128

[^0]: Sub-Unit Narrative:
 How do you climb the world's most dangerous mountain? Put it all together adding, subtracting, multiplying, and dividing with rational numbers - while exercising your algebraic thinking muscles in a sneak preview of the next unit.

[^1]: Sub-Unit Narrative:
 Did a member of the School of Night infiltrate your math class?
 Expressions are not always equal, so we must reckon with inequalities. Thankfully, finding their solutions will feel familiar.

[^2]: 404
 Unit 5 Rational Number Arithmetic

[^3]: Lesson 1: The Launch lesson provides a re-entry point to balance and solving equations, but may be omitted if needed.

[^4]: 6. Han and Clare want to know how students in their classes travel to school.
[^5]: Use: Before Activity 2
 Informed by: Performance on Lesson 15, Practice Problem 6 and Pre-Unit Readiness Assessment, Problem 3

