Amplify Math TENNESSEE

Algebra 1

Teacher Edition

About Amplify

Amplify is dedicated to collaborating with educators to create learning experiences that are rigorous and riveting for all students. Amplify creates K-12 core and supplemental curriculum, assessment, and intervention programs for today's students.

A pioneer in K-12 education since 2000, Amplify is leading the way in next-generation curriculum and assessment. All of our programs provide teachers with powerful tools that help them understand and respond to the needs of every student.

Amplify Math is based on the Illustrative Mathematics (IM) curriculum. IM 6-8 Math ${ }^{\top T M}$ was originally developed by Open Up Resources and authored by Illustrative Mathematics, and is © 2017-2019 Open Up Resources. Additional adaptations and updates to IM 6-8 Math™ are © 2019 Illustrative Mathematics. IM 9-12 Math ${ }^{\text {TM }}$ is © 2019 Illustrative Mathematics. IM 6-8 Math $^{\top M}$ and IM 9-12 Math™ are licensed under the Creative Commons Attribution 4.0 International license (CC BY 4.0). Additional modifications contained in Amplify Math are © 2020 Amplify Education, Inc. and its licensors. Amplify is not affiliated with the Illustrative Mathematics organization.

Desmos ${ }^{\circledR}$ is a registered trademark of Desmos, Inc.
English Learners Success Forum is a fiscally sponsored project of the New Venture Fund (NVF), a 501(c)(3) public charity.

Universal Design for Learning Guidelines and framework are developed by the Center for Applied Special Technology. © 2018 CAST.

The Effective Mathematics Teaching Practices are developed by NCTM in Principles to Actions: Ensuring mathematical success for all. © 2014 NCTM.

Notice and Wonder and I Notice/I Wonder are trademarks of NCTM and the Math Forum.

No part of this publication may be reproduced or distributed in its original form, or stored in a database or retrieval system, without the prior written consent of Amplify Education, Inc., except for the classroom use of the worksheets included for students in some lessons.

Cover illustration by Caroline Hadilaksono.
© 2023 by Amplify Education, Inc. 55 Washington Street, Suite 800, Brooklyn, NY 11201 www.amplify.com

ISBN: 978-1-63643-877-1
Printed in [e.g., the United States of America] [\# of print run] [print vendor] [year of printing]

Unit 1 Linear Equations, Inequalities, and Systems

In this unit, students write and solve linear equations and inequalities to model the relationship between different quantities, recalling what is meant by a solution to an equation and interpreting solutions in context. They also solve systems of linear equations

PRE-UNIT READINESS ASSESSMENT

1.01 Homecoming in Style 4A

```
A1.N.Q.A.1, A1.N.Q.A.1c,
``` MP1, 2


Sulb-Unit 1 Writing and Modeling With
Equations and Inequalities
\begin{tabular}{|c|c|c|c|}
\hline 1.02 & Writing Equations to Model Relationships & 12A & \begin{tabular}{l}
A1.A.CED.A.2, \\
A1.A.CED.A.3, MP6, 8
\end{tabular} \\
\hline 1.03 & Strategies for Determining Relationships & 20A & A1.A.CED.A.2, A1.A.CED.A. 3 MP2, 3, 7 \\
\hline 1.04 & Equations and Their Solutions & 27A & A1.A.REI.A, A1.A.REI.B.2a, A1.A.CED.A.3, MP2 \\
\hline 1.05 & Writing Inequalities to Model Relationships & 34A & A1.A.CED.A.3, MP2, 4 \\
\hline 1.06 & Equations and Their Graphs & 41A & \begin{tabular}{l}
A1.A.CED.A.2, \\
A1.A.CED.A.3, A1.A.REI.D.5, \\
MP1, 4, 5, 6
\end{tabular} \\
\hline
\end{tabular}

> Sub-Unit Narrative:
> How did a tragic accident end a three-month strike? Revisit how equations and inequalities can be used to model real-world situations, and how they can help you make decisions.

\section*{Sub-Unit Narrative:}

How do first-gen Americans vault the hurdles of college? "Solving" an equation doesn't always mean finding an unknown value - sometimes it can mean changing the equation's very structure.

> Sub-Unit Narrative:
> What's after
> high school?
> Whether you work, intern, attend college, or do something else, inequalities can be used to model your time and money, helping you manage both of them.

\section*{Sulb-Unit 4 Systems of Linear Equations in Two Variables \\ 125}
1.17 Writing and Graphing Systems of Linear Equations 126A
1.17A Solving Systems of Linear Equations TN-22A
1.18 Solving Systems by Substitution 133A
1.19 Solving Systems by Elimination: Adding and Subtracting (Part 1) 140A
1.20 Solving Systems by Elimination: Adding and Subtracting (Part 2) 147A
1.21 Solving Systems by Elimination: Multiplying 154A
1.22 Systems of Linear Equations and Their Solutions 161A

Sulb-Unit 5 Systems of Linear Inequalities in Two Variables 169
1.23 Graphing Systems of Linear Inequalities 170A
1.24 Solving and Writing Systems of Linear Inequalities 177A
1.25 Modeling With Systems of Linear Inequalities 185A
CAPSTONE1.26 Linear Programming192AEND-OF-UNIT ASSESSMENT

\section*{Sub-Unit Narrative}

Are you a
"boomerang-er"?
For better or for worse life is full of constraints Discover new strategies for solving problems with multiple constraints, which you will see time and again

\section*{Sub-Unit Narrative}

Is there such a thing as too much choice? What happens when the decisions become more complicated? Look at the big picture and then fine-tune where the decision overlaps.

\section*{Unit 2 Data Analysis and Statistics}

Students will explore univariate and bivariate data sets, many of which relate to climate change. Along the way, they will investigate, calculate, and interpret descriptive statistics, including measures of center, variability, and association.

Unit Narrative:
Analyzing
Climate Change

Note: Lessons in gray are recommended to be omitted.

\section*{PRE-UNIT READINESS ASSESSMENT}

2.01 What Is a Statistical Question?

204A
A1.S.ID.B, MP2, 6

Sub-Unit 1 Data Distributions 211

2.03 The Shape of Distributions219A

2.05 Measuring Outliers 234A

A1.S.ID.A, MP2, 4, 7

A1.S.ID.A, MP3, 6
A1.S.ID.A.1, A1.S.ID.A.2, MP2, 4
A1.S.ID.A.1, A1.S.ID.A.2, A1.S.ID.A.3, MP2, 6, 7

A1.S.ID.A.2, MP5, 6

Sub-Unit 2 Standard Deviation
251
2.07 Standard Deviation...
2.08 Choosing Appropriate Measures (Part 1)..................260A
2.09 Choosing Appropriate Measures (Part 2).... \(\quad\). \(\quad\) 268A
2.10 Outliers and Standard Deviation276A

Sub-Unit 3 Bivariate Data 285
2.11 Representing Data With Two Variables286A
2.12 Linear Models ...- 293A
2.13 Residuals
2.14 Line of Best Fit

309A

\section*{A1.S.ID.B.4, MP3}

A1.S.ID.B.4, A1.S.ID.B.4,
A1.S.ID.C.5, MP2, 4, 6
A1.S.ID.B.4, A1.S.ID.B.4, A1.S.ID.B.4, A1.N.Q.A.1d, MP3, 7

A1.S.ID.B.4, A1.S.ID.B.4, MP3, 6

\section*{Sub-Unit Narrative:} How can we protect ourselves from a zombie virus? Remember dot plots, histograms, and box plots? Revisit them through temperature data, while describing the data's center and variability.

\section*{Sub-Unit Narrative:} Is Sandy the new normal?
Meet the most commonly used measure of variability: standard deviation.

Sub-Unit Narrative: What is "Day Zero"? You have seen linear models before, but now you will (finally!) see how to identify the "best" model, by looking carefully at what are called residuals

\section*{Sub-Unit 4 Categorical Data}317
2.15 Two-Way Tables. 318A
2.16 Relative Frequency Tables 324A
2.17 Associations in Categorical Data 331A

Sub-Unit 5 Correlation \(\quad 337\)
2.18 "Strength" of Association ...
\begin{tabular}{|c|c|c|}
\hline 2.19 & Correlation Coefficient (Part 1) & 346A \\
\hline
\end{tabular}

2.21 Correlation vs. Causation

361A

CAPSTONE 2.22 Cutting Through Misleading Statistical Claims
370A
END-OF-UNIT ASSESSMENT

Sub-Unit Narrative: What makes storms worse and has nothing to do with weather? Use two-way tables to see how the changing climate has affected marginalized people around the world.

\section*{A1.S.ID.B.4, A1.S.ID.C.6, MP3, 6 \\ A1.S.ID.B.4, A1.S.ID.B.4, A1.S.ID.C.6, MP3, 5 \\ A1.S.ID.B.4, A1.S.ID.C.7, MP3, 4}

Sub-Unit Narrative:
Who is the "water warrior"?
Finally, you can say just how strong or weak an association is using a new statistical measure: the correlation coefficient.

A1.S.ID.C.7, A1.S.ID.A.2, A1.S.ID.B.4, A1.S.ID.C.5, A1.S.ID.C.6, MP3, 5

Students will expand on their understanding of the key features and multiple representations of functions. Along the way, they will write, graph, and interpret linear functions, piecewise functions, absolute functions, and the inverse of functions.

PRE-UNIT READINESS ASSESSMENT
3.01 Music to Our Ears

380
A1.F.IF.A.1, A1.F.IF.B.4, MP4

Sub-Unit 1 Functions and Their
Representations

3.04 Interpreting and Using Function Notation406A
3.05 Using Function Notation to Describe Rules (Part 1) 413A
3.06 Using Function Notation to Describe Rules (Part 2) ... 420A

Sub-Unit 2 Analyzing and Creating
Graphs of Functions
\begin{tabular}{|c|c|c|c|}
\hline 3.07 & Features of Graphs & 428A & A1.F.IF.B.4, MP2, 6 \\
\hline 3.08 & Understanding Scale & 435A & A1.N.Q.A.1, A1.N.Q.A.1a, A1.F.IF.B.5, MP6 \\
\hline 3.09 & How Do Graphs Change? & 441A & A1.F.IF.B.6, A1.F.IF.C.9b, MP2, 3 \\
\hline 3.10 & Where Are Functions Changing? & 447A & A1.F.IF.B, A1.F.IF.B.5, MP2, 6 \\
\hline 3.11 & Domain and Range & 455A & A1.F.IF.A.1, A1.F.IF.B A1.F.IF.B.4, A1.F.IF.B.5, MP2, 6 \\
\hline 3.12 & Interpreting Graphs & 463A & A1.F.IF.B.4, A1.F.IF.B.6, A1.F.IF.C.9b, MP1, 2, 6 \\
\hline 3.13 & Creating Graphs of Functions & 469A & A1.F.IF.B.4, A1.F.IF.B.6, MP4, 6 \\
\hline
\end{tabular}

Sub-Unit Narrative: How did the blues find a home in Memphis? Remember representing functions with description, tables, graphs, and equations? Take another look as you visit Memphis, and meet another common tool to represent and interpret functions: function notation.

Sub-Unit Narrative: What's the function of a jazz solo? The way you describe a graph helps you gain insight on the relationship it represents. Average rate of change, domain, and range help to construct and interpret graphs more precisely.

\section*{Sulb-Unit 3 Piecewise Functions \(\quad 477\)}
3.14 Piecewise Functions (Part 1) 478A
3.15 Piecewise Functions (Part 2) 486A

3.17 Absolute Value Functions

Sulb-Unit 4 Inverses of Functions 507
3.18 Inverses of Functions 508A
3.19 Finding and Interpreting Inverses of Functions .515A
3.20 Writing Inverses of Functions to Solve Problems522A
3.21 Graphing Inverses of Functions

CAPSTONE
3.22 Freerunning Functions

537A

\footnotetext{
A1.F.IF.A.2, A1.F.IF.B.4,
A1.F.IF.B.6, A1.F.BF.A.1,
A1.F.IF.C.7, MP4, 6
}

\section*{Sub-Unit Narrative:} Where did the world meet soul?
Piecewise functions allow you to represent a relationship between two quantities as a set of rules. The absolute value function is a specific piecewise function that represents the distance from zero.

\section*{Sub-Unit Narrative:}

How do you get
Sunday shoppers to
hear your song?
What happens if you reverse the process used in a relationship between two quantities? What changes? What stays the same? You can explore these questions using inverses of functions.

\section*{Unit 4 Introducing Exponential Functions}

This is a unit of mathematical discovery, where the relationship between quantities is unlike any function students will have seen up to this point. Students encounter the explosiveness of exponential growth and and lingering of exponential decay through applications of infectious disease, vaccination, and prescription drug costs.

\section*{PRE-UNIT READINESS ASSESSMENT}

4.01 What Is an Epidemic?

546A
A1.F.LE.A.1, MP4, 5

Sub-Unit 1 Looking at Growth
553

4.03 Growing and Growing

561A

Sub-Unit 2 A New Kind of Relationship . 569

4.04 Representing Exponential Growth570A
4.05 Understanding Decay 577A

4.07 Exploring Parameter Changes of Exponentials

A1.A.SSE.A.1a,
A1.A.CED.A.2, A1.f.BF.A.1, A1.F.LE.A.1c, A1.F.LE.A.1, A1.F.LE.A.2, A1.F.LE.B.3, MP2, 5, 8
A1.A.SSE.A.1a,
A1.A.CED.A.2, A1.F.BF.A.1a,
A1.F.LE.A.1, A1.F.LE.A.1b,
A1.F.LE.A.1c, A1.F.LE.A.2, A1.F.LE.B.3, MP7, 8
A1.A.CED.A.2, A1.F.IF.C.7, A1.F.BF.A.1, A1.F.LE.A.1, A1.F.LE.A.1a, A1.F.LE.A.1c, A1.F.LE.A.2, A1.F.LE.B.3, A1.F.LE.A.
MP2, 4,5

A1.N.Q.A.1, A1.N.Q.A.1a,
A1.F.IF.C.7, A1.F.IF.B.4,
A1.F.LE.B.3, MP6

\begin{tabular}{llr}
Sub-Unit 3 Exponential Functions \\
4.08 Analyzing Graphs & 599 \\
4.09 & Using Negative Exponents \\
4.10 & Exponential Situations as Functions & 600 A
\end{tabular}
4.11 Interpreting Exponential Functions 624A
4.12 Modeling Exponential Behavior632A
4.13 Reasoning About Exponential Graphs 640A
4.14 Looking at Rates of Change.

646A

A1.F.IF.C.9, A1.F.LE.A. 1 A1.F.LE.A.1b, A1.F.LE.A.1c, MP4, 6, 7
A1.F.IF.C.9a, A1.F.LE.A.1, A1.F.LE.A.1b, A1.F.LE.A.1c, MP4

Sub-Unit Narrative: Where do baby bacteria come from? Examine nonlinear functions using tables and graphs, before defining an exponential relationship. You'll represent exponential growth using an equation and explore it in context.

\section*{Sub-Unit Narrative}

How did an enslaved person save the city of Boston?
Examine growth factors between 0 and 1 as you develop an understanding of exponential decay.

> Sub-Unit Narrative: What does growing and shrinking look like on a graph?
> Identify exponential relationships as exponential functions, and determine whether a graph is discrete.

Sulb-Unit 4 Percent Growth and Decay 655
\begin{tabular}{|c|c|c|c|}
\hline 4.15 & Recalling Percent Change & 656A & A1.A.SSE.A.1a, MP3, 4, 7 \\
\hline 4.16 & Functions Involving Percent Change & 663A & A1.A.SSE.A.1a, A1.F.BF.A.1a, A1.F.IF.B.6, A1.F.IF.C.7, MP4, 8 \\
\hline 4.17 & Compounding Interest & 670A & A1.A.SSE.A.1a, A1.F.BF.A.1a, A1.F.LE.A.2, A1.F.LE.B.3, MP3, 4 \\
\hline 4.18 & Expressing Exponentials in Different Ways & 677A & A1.A.SSE.A.1a, A1.A.SSE.A.1b, A1.F.IF.C.8, A1.F.BF.A.1a, A1.F.LE.A.2, MP4, 7 \\
\hline 4.19 & Different Compounding Intervals & 684A & A1.A.SSE.A.1b, A1.A.SSE.A.1, A1.F.IF.A.2, A1.F.IF.C.8, A1.F.BF.A.1a, A1.F.LE.B.3, MP4, 6, 7 \\
\hline
\end{tabular}

Sulb-Unit 5 Comparing Linear and
Exponential Functions
Exponential Functions \(\quad 693\)
4.20 Which One Changes Faster?

694A
4.21 Changes Over Equal Intervals

701A

\title{
Unit 5 Introducing Quadratic Functions
}

Unit Narrative:
Squares in
Motion

Students study quadratic functions. By analyzing and comparing patterns, tables, graphs, and equations, they gain an appreciation for the special features of quadratic functions and the situations they represent.

\section*{LAUNCH}
PRE-UNIT READINESS ASSESSMENT

\section*{Sub-Unit 1 A Different Kind of Change . 727}
\begin{tabular}{|c|c|c|c|}
\hline 5.02 & A Different Kind of Change & 728A & A1.F.BF.A.1a, A1.F.LE.A.1, A1.F.IF.B.4, A1.F.LE.A.1a, A1.N.Q.A.1b, MP2, 7 \\
\hline 5.03 & How Does It Change? & 736A & A1.A.SSE.A.1, A1.F.BF.A.1a, A1.F.IF.C.9b, MP3, 7, 8 \\
\hline 5.04 & Squares & 745A & A1.F.BF.A.1a, MP2, 7, 8 \\
\hline 5.05 & Seeing Squares as Functions & 752A & A1.F.BF.A.1, A1.F.BF.A.1a, A1.F.IF.A.2, A1.A.SSE.A.1, A1.F.LE.A.1, MP1, 2, 3, 7 \\
\hline
\end{tabular}

Sub-Unit Narrative: What's the best shape for a crystal ball? Dive into quadratic expression by examining patterns of growth and change.

\begin{tabular}{|c|c|c|}
\hline Su & Jnit 2 Quadratic Functions 761 & \\
\hline 5.06 & Comparing Functions 762A & A1.F.BF.A.1a, A1.A.SSE.A.1, MP3, 5, 7 \\
\hline 5.07 & \begin{tabular}{l}
Building Quadratic Functions to Describe \\
Falling Objects 770A
\end{tabular} & A1.F.BF.A.1a, A1.F.BF.A.1, A1.A.SSE.A.1, A1.N.Q.A.1b, MP4, 7, 8 \\
\hline 5.08 & Building Quadratic Functions to Describe Projectile Motion ... 779A & A1.f.bF.A.1, A1.f.BF.A.1a, A1.F.IF.B.5, A1.F.IF.C.7, A1.N.O.A.1b, MP5, 8 \\
\hline 5.09 & Building Quadratic Functions to Maximize Revenue ...786A
IIT ASSESSMENT & A1.F.IF.B.5, A1.F.IF.C.7, A1.F.BF.A.1a, A1.F.IF.B. 4 MP4, 6 \\
\hline
\end{tabular}

Sub-Unit Narrative: What would sports be like without quadratics? Use quadratic functions to model objects flying through the air or revenues earned by companies.

Sub-Unit 3 Quadratic Expressions 795
\begin{tabular}{|c|c|c|c|}
\hline 5.10 & Equivalent Quadratic Expressions (Part 1) & 796A & A1.A.SSE.A.1, MP7 \\
\hline 5.11 & Equivalent Quadratic Expressions (Part 2) & 803A & A1.A.SSE.A, A1.A.APR.A, MP5, 6, 7 \\
\hline 5.11A & Operations With Polynomials & TN-28A & A1.A.APR.A.1, A.A.A.SSE.A.1a, MP3, 7,8 \\
\hline 5.12 & Standard Form and Factored Form & 811A & A1.A.SSE.A, A1.A.APR.A, MP7 \\
\hline 5.13 & Graphs of Functions in Standard and Factored Forms & 818A & A1.F.IF.B.4, MP7 \\
\hline
\end{tabular}

\section*{Sub-Unit Narrative:} How do you put the "quad-" in quadratics? Use area diagrams and algebra tiles to factor quadratic expressions as you explore equivalent ways to write them.

Sub-Unit 4 Features of Graphs of Quadratic
Functions
5.14 Graphing Quadratics Using Points of Symmetry …826A

A1.F.IF.C.7, A1.F.IF.C.7, A1.F.IF.A.2a, A1.F.IF.C.8, A1.F.IF.B.4, A1.F.IF.C.8a, MP7
A1.F.IF.B.4, A1.F.IF.C.7, A1.F.IF.B.5, MP2, 4
A1.F.BF.B.2, A1.F.IF.C.7, A1.F.LE.A.2, MP3, 7
A1.F.BF.B.2, A1.F.IF.C. 8 , A1.F.IF.C.7, MP7, 8
A1.F.IF.B.4, A1.F.IF.C.8, A1.F.IF.C.9a, A1.F.IF.A.2a, A1.F.IF.C.7, MP2, 6, 7
A1.F.IF.C.8, A1.F.IF.B. 4, A1.F.IF.C.8a, MP2, 7
A1.F.IF.C.7, A1.F.IF.B.4, A1.F.IF.C.8, A1.F.IF.C.7, MP6, 7 A1.F.IF.C. \(8, \mathrm{MP} 3,6,7,8\)
A1.F.BF.B.2, A1.F.IF.C.7, A1.F.IF.B.4, MP2, 4, 7

A1.A.SSE.A.1a, A1.F.BF.A. 1 A1.F.BF.A.1a, A1.A.SSE.A.1 MP2, 4

\section*{Sub-Unit Narrative}

Mirror, mirror on the wall, what's the fairest function of them all? Quadratics have their own beauty, and different forms help you identify features of their graphs.

\section*{Unit 6 Quadratic Equations}

In this unit, students write and solve quadratic equations and make sense of the solutions. They investigate the structure of quadratic equations and determine efficient strategies for solving them.

Unit Narrative: The Evolution of Solving Quadratic Equations
\begin{tabular}{llll}
& & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Sub & Unit 4 Roots and Irrationals & 1019 & \\
\hline 6.16 & Quadratic Equations With Irrational Solutions & 1020A & A1.A.REI.B.3a, A1.A.REI.D, MP5, 6 \\
\hline 6.17 & Rational and Irrational Numbers & . 1028A & \\
\hline 6.18 & Rational and Irrational Solutions & 1036A & A1.A.REI.B.3a, MP6, 1, 7 \\
\hline
\end{tabular}

Sub-Unit Narrative: Where does a number call its home?
Subtraction and division took you from whole numbers to rationals. Now you must look beyond them as you operate with irrational numbers.

\section*{Sub-Unit Narrative} What was the House of Wisdom?
Discover strategies for solving any quadratic equation. You will also determine which strategies are more efficient.

\section*{Tennessee Mathematics Standards, Algebra 1}
\begin{tabular}{|c|c|c|}
\hline A1.N & Quantities* & Lesson(s) \\
\hline A1.N.Q & Reason quantitatively and use units to solve problems. & \\
\hline A1.N.Q.A. 1 & Use units as a way to understand real-world problems.* & Unit 1, Lesson 1 Unit 3, Lesson 8 Unit 4, Lesson 7 \\
\hline A1.N.Q.A.1a & Choose and interpret the scale and the origin in graphs and data displays.* & \begin{tabular}{l}
Unit 3, Lesson 8 \\
Unit 4, Lessons 7, 10, 20
\end{tabular} \\
\hline A1.N.Q.A.1b & Use appropriate quantities in formulas, converting units as necessary.* & Unit 5, Lessons 2, 7, 8 \\
\hline A1.N.Q.A.1c & Define and justify appropriate quantities within a context for the purpose of modeling.* & \begin{tabular}{l}
Unit 1, Lessons 1, 25 \\
Please also see the Mathematical Modeling Prompts 1-9 as part of Additional Practice provided for Algebra 1.
\end{tabular} \\
\hline A1.N.Q.A.1d & Choose an appropriate level of accuracy when reporting quantities.* & \begin{tabular}{l}
Unit 2, Lesson 13 \\
Unit 4, Lessons 12, 22
\end{tabular} \\
\hline A1.A.SSE & Seeing Structure in Expressions* & Lesson(s) \\
\hline A1.A.SSE.A & Interpret the structure of expressions. & \\
\hline A1.A.SSE.A. 1 & Interpret expressions that represent a quantity in terms of its context.* & \begin{tabular}{l}
Unit 4, Lesson 19 \\
Unit 5, Lessons 3, 5-7, 10, 23 \\
Unit 6, Lessons 1, 2, 4, 9
\end{tabular} \\
\hline A1.A.SSE.A.1a & Interpret parts of an expression, such as terms, factors, and coefficients.* & \begin{tabular}{l}
Unit 4, Lessons 4, 5, 15-18 \\
Unit 5, Lessons 11A, 23
\end{tabular} \\
\hline A1.A.SSE.A.1b & Interpret complicated expressions by viewing one or more of their parts as a single entity.* & Unit 4, Lessons 18, 19, 21 \\
\hline A1.A.APR & Arithmetic with Polynomials and Rational Expressions & Lesson(s) \\
\hline A1.A.APR.A & Perform arithmetic operations on polynomials. & \\
\hline A1.A.APR.A. 1 & Add, subtract, and multiply polynomials. Use these operations to demonstrate that polynomials form a closed system that adhere to the same properties of operations as the integers. & Unit 5, Lesson 11A \\
\hline
\end{tabular}

\section*{Tennessee Mathematics Standards, Algebra 1}
\begin{tabular}{|c|c|c|}
\hline A1.A.CED & Creating Equations* & Lesson(s) \\
\hline A1.A.CED.A & Create equations that describe numbers or relationships. & \\
\hline A1.A.CED.A. 1 & Create equations and inequalities in one variable and use them to solve problems in a real-world context.* & \begin{tabular}{l}
Unit 1, Lesson 13 \\
Unit 6, Lessons 1, 2, 22
\end{tabular} \\
\hline A1.A.CED.A. 2 & Create equations in two variables to represent relationships between quantities and use them to solve problems in a real-world context. Graph equations with two variables on coordinate axes with labels and scales, and use the graphs to make predictions.* & \begin{tabular}{l}
Unit 1, Lessons 2, 3, 6, 7, 9, 26 \\
Unit 4, Lessons 4-6,
8-10 \\
Unit 6, Lesson 24
\end{tabular} \\
\hline A1.A.CED.A. 3 & Create individual and systems of equations and/or inequalities to represent constraints in a contextual situation, and interpret solutions as viable or non-viable.* & \begin{tabular}{l}
Unit 1, Lessons 2-6, 10, 11, 13, 16, 17, 22, 24-26 \\
Unit 6, Lesson 1
\end{tabular} \\
\hline A1.A.CED.A. 4 & Rearrange formulas to isolate a quantity of interest using algebraic reasoning. & Unit 1, Lessons 9-12 \\
\hline A1.A.RE] & Reasoning with Equations and Inequalities & Lesson(s) \\
\hline A1.A.REI.A & \multicolumn{2}{|l|}{Understand solving equations as a process of reasoning and explain the reasoning.} \\
\hline A1.A.REI.A. 1 & Understand solving equations as a process of reasoning and explain the reasoning. Construct a viable argument to justify a solution method. & \begin{tabular}{l}
Unit 1, Lessons 7, 8 \\
Unit 3, Lesson 6 \\
Unit 6, Lessons 2-5
\end{tabular} \\
\hline A1.A.REI.B & \multicolumn{2}{|l|}{Solve equations and inequalities in one variable.} \\
\hline A1.A.REI.B. 2 & Solve linear and absolute value equations and inequalities in one variable. & Unit 1, Lesson 14 \\
\hline A1.A.REI.B.2a & Solve linear equations and inequalities, including compound inequalities, in one variable. Represent solutions algebraically and graphically. & \begin{tabular}{l}
Unit 1, Lessons 4, 9, 10, 12A, 13 \\
Unit 6, Lessons 2, 4
\end{tabular} \\
\hline A1.A.REI.B.2b & Solve absolute value equations and inequalities in one variable. Represent solutions algebraically and graphically. & Unit 1, Lessons 12B,
\[
12 \mathrm{C}
\] \\
\hline A1.A.REI.B. 3 & Solve quadratic equations and inequalities in one variable. & Unit 6, Lessons 2, 4, 5, 9, 22, 24 \\
\hline A1.A.REI.B.3a & Solve quadratic equations by inspection (e.g., for \(x^{2}=49\)), taking square roots, completing the square, knowing and applying the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when a quadratic equation has solutions that are not real numbers. & Unit 6, Lessons 3, 5-11, 13, 15, 15A, 16, 18-22 \\
\hline A1.A.REI.B.3b & Solve quadratic inequalities using the graph of the related quadratic equation. & Unit 6, Lesson 15A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline A1.A.REI.C & Solve systems of equations. & \\
\hline A1.A.REI.C. 4 & Write and solve a system of linear equations in context.* & Unit 1, Lessons 17-22 \\
\hline A1.A.REI.D & Represent and solve equations and inequalities graphically & \\
\hline A1.A.REI.D. 5 & Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). & Unit 1, Lessons 6, 11, 12 Unit 6, Lesson 5 \\
\hline A1.A.REI.D. 6 & Explain why the \(x\)-coordinates of the points where the graphs of the equations \(y=f(x)\) and \(y=g(x)\) intersect are the solutions of the equation \(f(x)=g(x)\). Find approximate solutions by graphing the functions or making a table of values, using technology when appropriate.* & Unit 3, Lesson 6 \\
\hline A1.A.REI.D. 7 & Graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes. & Unit 1, Lessons 15, 16,
23-26 \\
\hline A1.F.IF & Interpreting Functions & Lesson(s) \\
\hline A1.F.IF.A & Understand the concept of function and use function notation. & \\
\hline A1.F.IF.A. 1 & Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f\) is a function and \(x\) is an element of its domain, then \(f(x)\) denotes the output of \(f\) corresponding to the input \(x\). The graph of f is the graph of the equation \(y=f(x)\). & Unit 3, Lessons 1-3, 5, 11 Unit 4, Lesson 10 \\
\hline A1.F.IF.A. 2 & Use function notation.* & \begin{tabular}{l}
Unit 3, Lessons 3, 5, 6, 14, 15, 22 \\
Unit 4, Lesson 19 \\
Unit 5, Lesson 5 \\
Unit 6, Lesson 21
\end{tabular} \\
\hline A1.F.IF.A.2a & Use function notation to evaluate functions for inputs in their domains, including functions of two variables.* & \begin{tabular}{l}
Unit 3, Lessons 4, 14 \\
Unit 4, Lesson 11 \\
Unit 5, Lessons 14, 18
\end{tabular} \\
\hline A1.F.IF.A.2b & Interpret statements that use function notation in terms of a context.* & \begin{tabular}{l}
Unit 3, Lessons 3, 4 \\
Unit 4, Lesson 11
\end{tabular} \\
\hline A1.F.IF.A. 3 & Understand geometric formulas as functions.* & \begin{tabular}{l}
Unit 3, Lesson 5 \\
Unit 6, Lessons 2, 5
\end{tabular} \\
\hline
\end{tabular}

\section*{Tennessee Mathematics Standards, Algebra 1}
\begin{tabular}{|c|c|c|}
\hline A1.F.IF.B & Interpret functions that arise in applications in terms of the context. & \\
\hline A1.F.IF.B. 4 & For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.* & \begin{tabular}{l}
Unit 3, Lessons 1-7, 11-14, 22 \\
Unit 4, Lessons 7, 8, 10, 13 \\
Unit 5, Lessons 1, 2, 9 , 13-15, 18-20, 22 \\
Unit 6, Lessons 1, 10
\end{tabular} \\
\hline A1.F.IF.B. 5 & Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* & \begin{tabular}{l}
Unit 3, Lessons 8, 10, 11, 14, 15 \\
Unit 4, Lessons 10-12 \\
Unit 5, Lessons 8, 9, 15
\end{tabular} \\
\hline A1.F.IF.B. 6 & Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over a specified interval. Estimate and interpret the rate of change from a graph.* & \begin{tabular}{l}
Unit 3, Lessons 9, 12, 13, 22 \\
Unit 4, Lessons 14, 16, 22
\end{tabular} \\
\hline A1.F.IF.C & Analyze functions using different representations. & \\
\hline A1.F.IF.C. 7 & Graph functions expressed algebraically and show key features of the graph, by hand and using technology.* & \begin{tabular}{l}
Unit 3, Lessons 5, 6 , 14, 22 \\
Unit 4, Lessons 6, 7, 11,
\[
13,16,20
\] \\
Unit 5, Lessons 8, 9,
\[
14-18,20-22
\]
\end{tabular} \\
\hline A1.F.IF.C. 8 & Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.* & \begin{tabular}{l}
Unit 4, Lessons 18, 19, 21 \\
Unit 5, Lessons 17-21 \\
Unit 6, Lesson 24
\end{tabular} \\
\hline A1.F.IF.C.8a & Rewrite quadratic functions to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a real-world context. & Unit 5, Lessons 14, 19 Unit 6, Lessons 9, 14 \\
\hline A1.F.IF.C. 9 & Compare properties of functions represented algebraically, graphically, numerically in tables, or by verbal descriptions.* & Unit 4, Lessons 2, 21 \\
\hline A1.F.IF.C.9a & Compare properties of two different functions. Functions may be of different types and/or represented in different ways.* & \begin{tabular}{l}
Unit 4, Lessons 3, 12, 20 \\
Unit 5, Lesson 18
\end{tabular} \\
\hline A1.F.IF.C.9b & Compare properties of the same function on two different intervals or represented in two different ways.* & \begin{tabular}{l}
Unit 3, Lessons 9, 12 \\
Unit 4, Lesson 14 \\
Unit 5, Lesson 3
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline A1.F.BF & Building Functions & Lesson(s) \\
\hline A1.F.BF.A & \multicolumn{2}{|l|}{Build a function that models a relationship between two quantities.} \\
\hline A1.F.BF.A. 1 & Build a function that describes a relationship between two quantities* & \begin{tabular}{l}
Unit 3, Lessons 5, 14, \\
17, 22 \\
Unit 4, Lessons 4, 6,
\[
8-10,12
\] \\
Unit 5, Lessons 5, 7, 8, 23
\end{tabular} \\
\hline A1.F.BF.A.1a & Determine steps for calculation, a recursive process, or an explicit expression, from a context.* & \begin{tabular}{l}
Unit 3, Lessons 5, 17 \\
Unit 4, Lessons 5, 16-19 \\
Unit 5, Lessons 2-9, 23
\end{tabular} \\
\hline A1.F.BF.B & \multicolumn{2}{|l|}{Build new functions from existing functions.} \\
\hline A1.F.BF.B. 2 & Identify the effect on the graph of replacing \(f(x)\) by \(f(x)+k, k f(x), f(k x)\), and \(f(x+k)\) for specific values of \(k\) (both positive and negative); find the value of \(k\) given the graphs. & \begin{tabular}{l}
Unit 3, Lessons 15, 17 \\
Unit 5, Lessons 16, 17 , 21, 22
\end{tabular} \\
\hline A1.F.LE & Linear and Exponential Models* & Lesson(s) \\
\hline A1.F.LE.A & \multicolumn{2}{|l|}{Construct and compare linear, quadratic, and exponential models and solve problems.} \\
\hline A1.F.LE.A. 1 & Distinguish between situations that can be modeled with linear functions and with exponential functions.* & \begin{tabular}{l}
Unit 4, Lessons 1-6, 12, 22 \\
Unit 5, Lessons 1, 2, 5
\end{tabular} \\
\hline A1.F.LE.A.1a & Know that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.* & \begin{tabular}{l}
Unit 4, Lessons 6, 21 \\
Unit 5, Lesson 2
\end{tabular} \\
\hline A1.F.LE.A.1b & Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.* & Unit 4, Lessons 2, 3, 5 \\
\hline A1.F.LE.A.1c & Recognize situations in which a quantity grows or decays by a constant factor per unit interval relative to another.* & Unit 4, Lessons 2-6 \\
\hline A1.F.LE.A. 2 & Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or input-output pairs.* & \begin{tabular}{l}
Unit 4, Lessons 4-6, 8-14, 17, 18, 20, 22 \\
Unit 5, Lesson 16
\end{tabular} \\
\hline A1.F.LE.B & \multicolumn{2}{|l|}{Interpret expressions for functions in terms of the situation they model.} \\
\hline A1.F.LE.B. 3 & Interpret the parameters in a linear or exponential function in terms of a context.* & Unit 4, Lessons 4-9, 11,
\[
13,17,19
\] \\
\hline
\end{tabular}

\section*{Tennessee Mathematics Standards, Algebra 1}
\begin{tabular}{|c|c|c|}
\hline A1.S.ID & Interpreting Categorical and Quantitative Data* & Lesson(s) \\
\hline A1.S.ID.A & Summarize, represent, and interpret data on a single count or measurement varis & ble. \\
\hline A1.S.ID.A. 1 & Use measures of center to solve real-world and mathematical problems.* & Unit 2, Lessons 4, 5 \\
\hline A1.S.ID.A. 2 & Use statistics appropriate to the shape of the data distribution to compare center (median, mean, and/or mode) and spread (range, interquartile range) of two or more different data sets.* & Unit 2, Lessons 4-6, 22 \\
\hline A1.S.ID.A. 3 & Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points.* & Unit 2, Lesson 5 \\
\hline A1.S.ID.B & \multicolumn{2}{|l|}{Summarize, represent, and interpret data on two categorical and quantitative variables.} \\
\hline A1.S.ID.B. 4 & Represent data from two quantitative variables on a scatter plot, and describe how the variables are related. Fit a function to the data; use functions fitted to data to solve problems in the context of the data.* & \begin{tabular}{l}
Unit 2, Lessons 11-14, 19-22 \\
Unit 4, Lesson 22
\end{tabular} \\
\hline A1.S.ID.C & \multicolumn{2}{|l|}{Interpret linear models.} \\
\hline A1.S.ID.C. 5 & Interpret the rate of change and the constant term of a linear model in the context of the data.* & Unit 2, Lessons 12, 22 \\
\hline A1.S.ID.C. 6 & Use technology to compute the correlation coefficient of a linear model; interpret the correlation coefficient in the context of the data.* & Unit 2, Lessons 19,
\[
20,22
\] \\
\hline A1.S.ID.C. 7 & Explain the differences between correlation and causation. Recognize situations where an additional factor may be affecting correlated data.* & Unit 2, Lessons 21, 22 \\
\hline
\end{tabular}

\section*{Standards for Mathematical Practice}

\section*{MP1 Make sense of problems and persevere in solving them.}

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

Unit 1, Lessons 1, 6, 7, 10, 11, 12A, 13, 20, 26
Unit 2, Lesson 18
Unit 3, Lesson 12
Unit 5, Lesson 5
Unit 6, Lessons 1-3, 9, 10, 12, 14, 18, 19, 22

\section*{MP2 Reason abstractly and quantitatively.}

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize - to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents - and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand, considering the units involved, attending to the meaning of quantities, not just how to compute them, and knowing and flexibly using different properties of operations and objects.

Unit 1, Lessons 1, 3-5, 11, 12, 12A
12C, 13-15, 17, 22-25
Unit 2, Lessons 1, 2, 4, 5, 12
Unit 3, Lessons 3-7, 9-12, 14, 15
Unit 4, Lessons 4, 6, 9, 11, 14, 20
Unit 5, Lessons 2, 4, 5, 15, 18, 19, 22, 23

Unit 6, Lessons 1-4, 15A, 21, 22, 24

\section*{MP3 Construct viable arguments and critique the reasoning of others.}

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and, if there is a flaw in an argument, explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

Unit 1, Lessons 3, 8, 17A, 21
Unit 2, Lessons 3, 11, 13, 14, 19-22
Unit 3, Lessons 2, 4, 9, 14
Unit 4, Lessons 11, 15, 17, 20
Unit 5, Lessons 3, 5, 6, 11A, 16, 21
Unit 6, Lessons 5, 6, 13, 15, 20,
21, 24

\section*{Standards for Mathematical Practice}

\section*{MP4 Model with mathematics.}

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts, and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Unit 1, Lessons 5, 6, 10, 11, 13, 15-17, 22, 24-26

Unit 2, Lessons 2, 4, 12, 21
Unit 3, Lessons 1, 2, 13, 15, 17, 22
Unit 4, Lessons 1-3, 6, 8-20, 22
Unit 5, Lessons 1, 7, 9, 15, 22, 23
Unit 6, Lessons 1, 4, 12, 15A, 22
Please also see the Mathematical Modeling Prompts 1-9 as part of Additional Practice provided for Algebra 1.

\section*{MP5 Use appropriate tools strategically.}

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a compass, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

Unit 1, Lessons 6, 10, 17, 19, 20
Unit 2, Lessons 6, 20, 22
Unit 4, Lessons 1, 4, 6, 12, 20
Unit 5, Lessons 6, 8, 11
Unit 6, Lessons 3, 5, 16, 21

\section*{MP6 Attend to precision.}

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, expressing numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school, they have learned to examine claims and make explicit use of definitions.

Unit 1, Lessons 2, 6, 8, 11, 12A, 12B, 18, 23

Unit 2, Lessons 1, 3, 5, 6, 12, 14, 19
Unit 3, Lessons 3, 4, 6-8, 10-17, 22
Unit 4, Lessons 2, 7, 10, 12, 19
Unit 5, Lessons 9, 11, 18, 20, 21
Unit 6, Lessons 9, 10, 12-14, 16, 18, 20, 21

\section*{MP7 Look for and make use of structure.}

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students see \(7 \times 8\) equals the well-remembered \(7 \times 5+7 \times 3\), in preparation for learning about the distributive property. In the expression \(x^{2}+9 x+14\), older students can see the 14 as \(2 \times 7\) and the 9 as \(2+7\). They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see \(5-3(x-y)^{2}\) as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers \(x\) and \(y\).

Unit 1, Lessons 3, 7, 9, 11, 12, 12B, 14, 18, 19, 22

Unit 2, Lessons 2, 5, 13, 18
Unit 3, Lessons 3, 5, 16, 17
Unit 4, Lessons 2, 5, 12, 13, 15, 18 ,
19, 21
Unit 5, Lessons 2-7, 10-22
Unit 6, Lessons 3-5, 7-15, 18, 20 , 22, 24

\section*{MP8 Look for and express regularity in repeated reasoning.}

Mathematically proficient students notice if calculations are repeated and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through \((1,2)\) with slope 3 , middle school students might abstract the equation \(\frac{(y-2)}{(x-1)}=3\). Noticing the regularity in the way terms cancel when expanding \((x-1)(x+1),(x-1)\left(x^{2}+x+1\right)\), and \((x-1)\left(x^{3}+x^{2}+x+1\right)\) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Unit 1, Lessons 2, 8, 9, 14, 15
Unit 4, Lessons 4, 5, 14, 16
Unit 5, Lessons 3, 4, 7, 8, 11A 17, 21

Unit 6, Lessons 3, 6, 7, 8, 11, 14, 15, 19, 24

\section*{Practice Problem Analysis}

Teachers may omit the following Practice Problems from the indicated lessons as they address topics beyond the scope of the Tennessee Mathematics Standards.
\begin{tabular}{lc}
\hline \begin{tabular}{l}
Unit 2: Data Analysis \\
and Statistics
\end{tabular} \\
\hline Lesson & Problem(s) \\
\hline 6 & 5 \\
11 & 4 \\
13 & 4,5 \\
14 & 5 \\
20 & 3 \\
21 & 4 \\
22 & 1,2
\end{tabular}
\begin{tabular}{l}
Unit 3: Functions and \\
Their Graphs \\
\hline Lesson \\
\hline 1 \\
\hline 2
\end{tabular}
\begin{tabular}{l}
Unit 6: Quadratic \\
Equations \\
Lesson \\
\hline 1 \\
16
\end{tabular}

\section*{Compound Linear Inequalities}

\section*{Let's explore the solutions of two inequalities joined together.}

\section*{Focus}

\section*{Goals}
1. Interpret the solution to a compound inequality as the set of values that satisfies all parts of the statement.
2. Recognize the inequalities that are represented by a solution given on a number line.
3. Language Goal: Explain how to write a compound inequality to represent a real-world situation. (Speaking and Listening)

\section*{Coherence}

\section*{- Today}

Students revisit graphing simple inequalities and are introduced to compound inequalities. Students reason abstractly and quantitatively as they write and solve a compound inequality to analyze a situation in context, and see that the same solution set can be represented by different compound inequalities (MP2).

\section*{< Previously}

In Lesson 12, students activated prior knowledge of solutions to inequalities. They wrote inequalities in one variable and solved problems to make sense of solution sets of inequalities in context.

\section*{Coming Soon}

In Tennessee Lesson 12B, students will solve absolute value equations in one variable.

\section*{Rigor}
- Students build conceptual understanding of compound inequalities.
- Students develop procedural skills solving and graphing inequalities.

\section*{Standards}

\section*{Addressing}

\section*{A1.A.REI.B.2a}

Solve linear equations and inequalities, including compound inequalities, in one variable. Represent solutions algebraically and graphically.

Warm-up

Activity 3

Summary

Exit Ticket
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) 5 min & (1) 8 min & (ㄱ) 12 min & (1) 15 min & (1) 5 min & (1) 5 min \\
\hline \(\bigcirc\)) Independent & กำ Pairs & กํํ Pairs & กํํ Pairs & กำกำ Whole Class & \(\bigcirc \bigcirc\) \\
\hline MP2 & & MP1, MP2 & MP6 & & \\
\hline A1.A.REI.B.2a & A1.A.REI.B.2a & A1.A.Rel.b.2a & A1.A.REI.B.2a & A1.A.REI.B.2a & A1.A.REI.B.2a \\
\hline
\end{tabular}

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 3 PDF, pre-cut cards, one set per pair

\section*{Math Language Development}

New words
- compound inequality

\section*{Review words}
- inequality
- solution

\section*{Amps \(\vdots\) Featured Activity}

\section*{Activity 3 \\ Digital Card Sort}

Save time by having students use the digital card sort. Address class-wide misconceptions quickly by scanning student work and identifying common areas of confusion.

powereb by desmos

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students who feel more confident with reasoning abstractly and quantitatively may be able to lead discussions with their partner in Activity 2 (MP2). Remind students to "step up" if they have something to add to the conversation, but to "step back" to give other voices a chance to share.

\section*{Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- In Activity 1, omit Problems 2 and 3.
- In Activity 3, have students choose one problem to complete.

\section*{Warm-up How Tall Could Kiran Be?}

Students graph possible heights, with restrictions, on a number line to learn about a compound inequality.

\section*{1 Launch}

Read the introduction as a class before instructing students to mark their number lines independently.

\section*{Monitor}

Help students get started by reminding students there are 12 in . in 1 ft .

\section*{Look for points of confusion:}
- Marking exactly 68 or 72 in . on the number line. Ask, "Does it say that Kiran could be exactly as tall as his father or mother?"

\section*{Look for productive strategies:}
- Marking non-whole number values on the number line.

\section*{3 Connect}

Display the number line.
Have students share the points they marked. As they do so, add the points to the line for the class to see.

Ask:
- "If we marked all of the possible heights Kiran could be on the number line, what would that look like?"
- "How can we show that 68 in. or 72 in. should not be marked on the number line?"

Highlight that students can represent all of Kiran's possible heights using comparison symbols,
such as \(<,>, \leq\), and \(\geq\). In this way, Kiran's height \(x\) can be represented as \(68<x<72\) or \(68<x\) and \(x<72\) (MP2).

Define compound inequality as an inequality statement that joins two inequalities together.

\section*{\(\oplus\) \\ Differentiated Support}

\section*{Accessibility: Guide Processing and Visualization}

Suggest that students sketch a diagram of Kiran and his parents. Ask, "How does your diagram relate to the number line from our class data?"

Power-up
To power up students' ability to determine the solution set of an inequality in one variable, have students complete:

Graph the solution to the inequality \(x \geq 7\) on a number line.

Use: Before the Warm-up
Informed by: Performance on Lesson 12, Practice Problem 6

\section*{Activity 1 Graphing Solutions for Simple and Compound Inequalities}

Students revisit graphing simple inequalities to extend their understanding of graphing compound inequalities.

\section*{1. Launch}

Activate prior knowledge by asking, "What is the difference between the comparison symbols < and \(\leq\) ?"

\section*{2 Monitor}

Help students get started by suggesting that they first consider whether they will need to use an open or a closed circle at the boundary value.

\section*{Look for points of confusion:}
- Shading the wrong direction. Have students read the inequality statement aloud.
- In Problem 4, shading the entire line, treating it as an or statement. Say, " \(x\) must be both greater than -7 and less than or equal to 5 . Is your shaded value 10 true for both?"
- Not knowing where to start in Problem 5. Suggest to consider the statement in two pieces, \(2.5 \leq 4+0.5 x\) and \(4+0.5 x \leq 6\) and then solve each inequality.

\section*{Look for productive strategies:}
- Noticing the graphs in Problems 1 and 3 have the same solution. Realizing that, for Problem 5, the values shown are not the boundary values.

\section*{3 Connect}

Display the solutions for Problems 1-4 and ask whether any students disagree or have questions. Then display Problem 5 and have students share their solutions.

Highlight that, when a compound inequality contains an expression, students will need to set up two inequalities and then solve each one separately. Then they must consider how the solution must be true for both inequalities in a statement such as in Problem 5.
Ask:
- "Why do Problems 4 and 5 not contain a shaded arrow?"
- "How can you check that one or a few of your solutions are valid for Problem 5?"

Differentiated Support

\section*{Accessibility: Vary Demands to Optimize Challenge}

If students need more processing time, have students focus on completing Problems 1, 2, and 5 .

\section*{Accessibility: Clarify Vocabulary and Symbols}

Maintain a display of the inequality comparison symbols and their meanings.

\section*{Activity 2 Building a Bridge}

Students analyze a situation in context to write and solve a compound inequality (MP1, MP2).

\section*{1 Launch}

Read the introduction together as a class. To check for comprehension, ask clarifying questions such as: "If Tyler adds one more section, how much longer will his bridge be? Why can the bridge not be longer than 146 cm ?"

\section*{2 Monitor}

Help students get started by asking, "If each section of the bridge adds 11.5 cm , how long will a 2-section bridge be? A 3-section bridge?"

\section*{Look for points of confusion:}
- Ignoring the 8 cm section at the start. Say, "Notice that the sections Tyler is adding do not start right at the edge. How much left of the 100 cm does Tyler need to cover? How can you show that in your inequality?"
- Writing the solution as two separate inequalities. Though this is not incorrect, the goal is to write a compound inequality. Have students refer back to Problem 5 in Activity 1 for an example of a compound inequality written this way.

\section*{Look for productive strategies:}
- Noticing there is more than one way to write the compound inequality to represent the situation.

\section*{3 Connect}

Display a student's solution to Problem 1.
Have students share what each part of the compound inequality in their work represents Then, display a second student's work with a different compound inequality to compare and contrast.

Highlight that inequalities can be rewritten in equivalent form, as with equations. However, in a compound inequality, students must consider how rewriting it will affect all parts of the inequality.
Ask, "Considering the situation, does the solution on the number line match the possible solutions to the word problem?"

\section*{Math Language Development}

\section*{MLR8: Discussion Supports}

During the Connect, as students share their methods for solving each problem, revoice their ideas in the form of a question using appropriate mathematical language or language from the context. For example:

If a student says
"Tyler can have 8 to 12 sections in his bridge."

Revoice their ideas by asking.
"When you say 8 to 12 , does that include 8 and 12 ?"

\section*{Activity 3 Card Sort: Many Inequalities, Same Solution}

Students match the solutions on graphs to multiple inequalities to identify equivalent inequalities (MP6).

Differentiated Support

\section*{Accessibility: Vary Demands to Optimize Challenge}

Chunk the task into more manageable parts by having students consider only one card at a time, keeping the rest face down.

\section*{1) Launch}

Distribute one set of cards from the Activity 3 PDF to each pair of students. Tell students that not all of the inequalities will match with a solution.

\section*{(2) Monitor}

Help students get started by suggesting they start by matching the inequalities in which \(x\) does not have a coefficient.

\section*{Look for points of confusion:}
- Thinking that if the boundary values on the graph do not match the values at the ends of the inequality they will not be a match. Remind students that equivalent inequalities can be written by rearranging the inequalities.
- Thinking that the word and always indicates a solution that does not continue indefinitely in one direction on the number line. Have students consider a simpler case, " \(x>1\) and \(x>2\)." Ask, "What would the solution look like on a number line?"

\section*{Look for productive strategies:}
- Noticing and using patterns in the multiples of the values to determine equivalent inequalities.

\section*{3 Connect}

Have students share their matches and their reasoning for the matches.
Display Card 5.
Highlight that a compound inequality can be written in the same way a system of equations is written. Similar to a system of equations, the solution to a compound inequality is the set of values that satisfy both inequalities. Though students saw that most of the compound inequalities in the lesson had a solution that was a segment on the number line, remind students that this is not always the case.

\section*{Ask:}
- "How does an or inequality differ from an and inequality? How are they similar?"
- "Can an or inequality be written to match the first graph? Third graph?"

\section*{Math Language Development}

\section*{MLR3: Critique, Correct, Clarify}

During the Connect, display the following incorrect statement,
"A compound inequality will always have two boundary values." Ask:
- Critique: "Do you agree or disagree with this statement? Why or why not?"
- Correct: "Write a corrected statement that is now true."
- Clarify: "What was the most likely misunderstanding that the person who wrote this incorrect statement had?" They did not consider that one part of the inequality might already include the entire set of solution values to the other part, as in Problem 3.

\section*{Summary}

Review and synthesize how to determine and represent the solution to a compound inequality.

\section*{Synthesize}

Have students share their favorite tips for solving inequalities.

Highlight that when representing the solution to a compound inequality on a number line, students can graph both solutions separately and check for where the graphs overlap. This overlap represents where both inequality statements are true. For an or inequality, the graphs are true where either solution exists

Formalize vocabulary: compound inequality

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "How is solving a compound inequality similar to or different from solving a system of equations?"

\section*{Exit Ticket}

Students demonstrate their understanding of compound inequalities by determining the solution, graphing the solution, and rearranging it into an equivalent compound inequality.

\section*{Success looks like ...}
- Goal: Interpreting the solution to a compound inequality as the set of values that satisfies all parts of the statement.
» Representing the appropriate set of values on the number line in Problem 1.
- Goal: Recognizing the inequalities that are represented by a solution given on a number line.
» Translating the inequality from Problem 1 into an equivalent inequality in Problem 2
- Language Goal: Explaining how to write a compound inequality to represent a realworld situation. (Speaking and Listening)

\section*{- Suggested next steps}

If students make a computational error while solving the inequality, consider:
- Reviewing whether they set up the solution properly first. If yes, give them an opportunity to identify the error in their solution.
If students correctly solve the inequality, but represent the solution incorrectly on the graph, consider:
- Reviewing Activity 1
- Assigning Practice Problem 1

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\(\mathcal{O}_{0}\) Points to Ponder ...
- What worked and didn't work today? During the discussion during Activity 1 , how did you encourage each student to listen to one another's strategies?
What routines enabled all students to do math in today's lesson? What might you change for the next time you teach this lesson?
on the graph.
\(\underset{-14-12-10}{C-1+4}\) \(--19<2 x-5<\)
\(\qquad\)
\begin{tabular}{|lcllll|}
\hline Practice Problem & Analysis \\
\hline Type & Problem & Refer to & Standard(s) & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & A1.A.REI.B.2a & 1 \\
\hline Spiral & \(\mathbf{2}\) & Activity 3 & A1.A.REI.B.2a & 2 \\
\hline Formative 0 & \(\mathbf{3}\) & Activity 3 & A1.A.REI.B.2a & 2 \\
\hline & \(\mathbf{4}\) & \begin{tabular}{l}
Unit 1 \\
Lesson 10
\end{tabular} & A1.A.CED.A.4 & 2 \\
\begin{tabular}{l}
Unit 1 \\
Lesson 10
\end{tabular} & A1.A.CED.A.4 & 2 \\
\begin{tabular}{l}
Unit 1 \\
Tennessee \\
Lesson 12B
\end{tabular} & 6.NS.C.7 & 2 \\
\hline
\end{tabular}
© Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{(3)}
neme
4. Match each equation in Column 1 with an equivalent equation in Column 2. Not all equations in Column 2 will be used.

Column 1
Column 2
a \(2 x-8=x+8\)
\(-6 x=x+8\)
c \(\quad x=-16\)
(\(2(x-8)=x+8\) b \(2 x-16=8+x\)
c \(x-2 x=8-(-8) \quad\) a \(2 x=x+16\)
5. The equation \(F=1.8(K-273)+32\) can be used to convert the temperature from degrees Kelvin \(K\) to degrees Fahrenheit \(F\). Write an equation that could be used to efficiently calculate the degrees in Kelvin.
Sample response: \(K=\frac{F-32}{1.8}+273\)
7. Explain why \(|10|\) and \(|-10|\) have the same value.

Sample response: The absolute value of 10 and -10 have the same value
because they are both the same distance from 0 on the number line.

\section*{Additional Practice Available}

For students who need additional practice in this lesson, assign the Algebra 1 Additional Practice.

\section*{Absolute Value Equations}

\section*{Let's solve equations involving absolute value.}

\section*{Focus}

\section*{Goal}
1. Language Goal: Determine the solutions of absolute value equations in one variable. (Reading and Writing)

\section*{Coherence}

\section*{- Today}

Students activate their prior knowledge about absolute value to make sense of the meaning of an absolute value equation. They look for and make use of structure in an algebraic approach and in a graphical approach for determining the solutions of an absolute value equation (MP7). They then apply the strategy of their choosing to practice solving absolute value equations.

\section*{< Previously}

In Tennessee Lesson 12A, students determined the union and intersection of intervals by solving and graphing compound inequalities in one variable.

\section*{> Coming Soon}

In Tennessee Lesson 12C, students will solve absolute value inequalities in one variable.

\section*{Rigor}
- Students develop a conceptual understanding of absolute value equations and how to represent them on a number line.
- Students build fluency by solving equations and evaluating absolute value expressions for a given value.

\section*{Standards}

\section*{Addressing}

A1.A.REI.B.2b
Solve absolute value equations and inequalities in one variable. Represent solutions algebraically and graphically.

\section*{Activity 1}

\section*{Activity 2}

Summary

Exit Ticket
\begin{tabular}{|c|c|c|c|c|}
\hline (\() 10 \mathrm{~min}\) & (\() 10 \mathrm{~min}\) & (J) 20 min & (1) 5 min & (1) 5 min \\
\hline \(\bigcirc\) ○ Independent & \(\bigcirc \bigcirc\) & \(\bigcirc \bigcirc\) & กํำกำ Whole Class & \(\bigcirc\) ○ Independent \\
\hline MP6 & MP7 & & & \\
\hline A1.A.REI.B.2b & A1.A.REI.B.2b & A1.A.REI.B.2b & A1.A.REI.B.2b & A1.A.REI.B.2b \\
\hline
\end{tabular}

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\cap\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Anchor Chart PDF, Absolute Value
- Anchor Chart PDF, Two Ways to Solve Absolute Value Equations
- chair

\section*{Amps : Featured Activity}

\section*{Math Language \\ Development}

\section*{Review words}
- absolute value

\section*{Activity 1}

Two Ways to Solve Absolute
Value Equations
Students examine and compare two

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students may feel overwhelmed or be undecided about which strategy to choose and apply in Activity 2 when solving absolute value equations (MP7). Help them practice taking control of their own impulses by suggesting they try both methods to determine which makes more sense to them and then check in with their peers for the strategies they are using and why they chose them.
different strategies for solving absolute value equations, then decide which strategy they prefer. They then solve subsequent absolute value equations using the strategy they chose

\section*{- Modifications to Pacing}

You may want to consider this additional modification if you are short on time.
- In Activity 2, Problems 2 and 4 may be omitted.

\section*{Warm-up Math Talk}

Students mark points on a number line a given distance from 0 to activate prior knowledge about absolute value and to prompt the use of precise mathematical language (MP6).

Unit 1 | Tennessee Lesson 12B

\section*{Absolute Value Equations \\ Let's solve equations involving absolute value.}

Warm-up Math Talk
Mark all points that are the following distances from 0 on each number line. Be prepared to explain your thinking.

\section*{1. Launch}

Bring a chair to the front of the room and stand on one side of it. Have students describe your position with respect to the chair. Then have them estimate the distance between you and the chair. Stand the same distance from the chair, but on the other side. Again, have students describe your position and then distance, with respect to the chair. Ask, "How did your answers change when I moved from one side of the chair to the other side?"

\section*{(2) Monitor}

Help students get started by prompting them to think of 0 as the chair in your demonstration.

\section*{Look for points of confusion:}
- Plotting two points in Problem c. Ask, "Which point or points are 0 units from 0?"
- Plotting points in Problem d. Ask, "Is it possible to have a distance of -5?"

\section*{Look for productive strategies:}
- Recognizing distance must be greater than or equal to 0 .
- Using the term absolute value.

\section*{3 Connect}

Display the blank number lines from the Warm-up. Have students share their responses and plot their solutions on the number lines displayed.
Ask:
- "Why does Problem c only have one solution?"
- "Is it possible to have a distance that is negative?"
- "What equation would you write to represent the solution shown in Problem a?"

Highlight that each of the number lines in Problems a-c represent the absolute values of the given numbers, or their distances to 0 . Display the Anchor Chart, Absolute Value and keep it posted for the duration of this lesson.

\section*{(7) \\ Power-up}

To power up students' ability to recognize that absolute value is the the distance of a number from zero, have students complete:

On the number line, plot the points that satisfy the equation \(|x|=5\).

Use: Before the Activity 1
Informed by: Performance on Lesson 12A, Practice Problem 6

\section*{Activity 1 Two Ways to Solve Absolute Value Equations}

A1.A.REI.B.2b
Students consider an algebraic and a graphical approach to solving absolute value equations and select the method that makes the most sense to them.

Amps Featured Activity Two Ways to Solve Absolute Value Equations
Name: \(\qquad\)
Date: Par

Activity 1 Two Ways to Solve Absolute Value Equations

Diego and Jada are trying to solve the equation \(|x+2|=8\). Their work is shown
\begin{tabular}{|c|c|}
\hline Diego's method & Jada's method \\
\hline \begin{tabular}{l}
\[
|x+2|= \begin{cases}x+2, & \text { if } x+2 \geq 0 \\ -(x+2), & \text { if } x+2<0\end{cases}
\] \\
So I need to consider two cases: \\
- If \(x+2 \geq 0\), then \(x+2=8\). \\
- If \(x+2<0\), then \(-(x+2)=8\).
\end{tabular} & Since absolute value represents the distance a number is from \(0,|x+2|=8\) must mean that the expression \(x+2\) is 8 units away from 0 . That means \(x+2\) is equal to either 8 or -8 . \\
\hline
\end{tabular}
1. Do you agree with Diego or Jada? Explain or show your thinking. I agree with both Diego and Jada. Sample response:
In Diego's method, when you solve for \(x\) in the first case, the result is \(x=6\). When you solve for \(x\) in the second case, the result is \(-\mathbf{1 0}\). Both of these values satisfy the absolute
value equation. value equation.
In Jada's method, when you set \(x+2\) equal to 8 , the result is 6 , and, when you set it equal to -8 , the result is \(\mathbf{- 1 0}\). Her solutions are the same as Diego's solutions.
2. Use any method to solve the equation \(|x+4|=10\).

Sample responses:
Diego's method:
If \(x+4 \geq 0\), then \(x+4=10\), which results in \(x=6\).
If \(x+4<0\), then \(-(x+4)=10\), which results in \(x=-14\)
Jada's method:

\section*{(1R2) Math Language Development}

\section*{MLR7: Compare and Connect}

Invite student pairs to create a visual display of the strategy they used for solving the equation in Problem 2. Allow students time to quietly circulate and compare their strategy to a student pair who used a different strategy and discuss their observations with their partner. Listen for observations of advantages and disadvantages of the different approaches.

\section*{1 Launch}

Have students complete the activity independently before comparing their responses with their partner.

\section*{2 Monitor}

Help students get started by reminding them about the definition of absolute value.

\section*{Look for points of confusion:}
- Negating \(x\) only when applying Diego's method. Note the parentheses are used when Diego rewrites the absolute value equation This means the entire expression is being negated.

\section*{Look for productive strategies:}
- Using substitution to check their answer.
- Solving the equation in Problem 2 using both methods to check their answer.
(3) Connect

Display both methods and discuss any questions students may have about either method.
Have pairs of students share their reasoning for Problem 1 and their solutions for Problem 2. Have students explain why Diego should check his answers.

Ask:
- "How does Diego use the algebraic representation of \(|x|\) to determine the solutions?
- "How does Jada use a number line to determine the solutions?"
- "Why did you choose the method you did? Can you use it to solve any absolute value equation?"
Display the Anchor Chart PDF, Two Ways to Solve Absolute Value Equations.

Highlight that Jada's method is beneficial for visually seeing the distance to 0 and eliminates the need to check the answers. Diego's algebraic approach can be used for more complicated equations, such as \(|2 x-1|+x=1\), which are not easily represented on a number line.

\section*{Activity 2 Solving Absolute Value Equations}

Students solve absolute value equations using the strategies from the previous activity to practice different ways to solve equations.

Activity 2 Solving Absolute Value Equations
Solve each equation. Show your thinking.
>1. \(|x-22|=59\)
\(x=81\) or \(x=-37\)
Sample responses:
\[
\begin{array}{rlrl}
\text { For } x-22 \geq 0: & & \text { For } x-22 & <0 \text { : } \\
x-22=59 & -(x-22) & =59 \\
x=81 & x & =-37 \\
\text { Check: } & & \text { Check: } \\
|81-22|=59 & & |-37-22|=59 \\
|59|=59 & & |-59|=59
\end{array}
\]

2. \(|x+3.2|=9.7\)
\(x=6.5\) or \(x=-12.9\)
Sample responses:
- For \(x+3.2 \geq 0\) : \(x+3.2=9.7\) \(x=6.5\)
Check: \(|6.5+3.2|=9.7\) \(|9.7|=9.7\) For \(x+3.2<\mathbf{0}\) : \(-(x+3.2)=9.7\) \(x=-12.9\)
Check: \(|-12.9+3.2|=9.7\) \(|-9.7|=9.7\)

3. \(|-6 x|=5.4\)
\(x=-0.9\) or \(x=0.9\)
Sample responses:
- For \(-6 x \geq 0\) : \(-6 x=5.4\)
\(x=-0.9\)
Check: \(|-6(-0.9)|=5.4 \quad|-6(0.9)|=5.4\)
\(|5.4|=5.4 \quad|-5.4|=5.4\)

\section*{1. Launch}

Display Problem 1 and ask students, "What two equations would you use to solve this equation algebraically?" Keep the Anchor Chart PDF, Two Ways to Solve Absolute Value Equations displayed for the duration of the activity, and encourage students to choose one method to solve the equations.

\section*{(2) Monitor}

Help students get started by reminding them to check their solutions by substituting the solutions into the original absolute value equation.

\section*{Look for points of confusion:}
- Not knowing what to do with the numbers outside of the absolute value symbol in Problems 5 and 6. Prompt students to rearrange the equation so that the expression inside the absolute value symbol is on one side of the equation and its distance from 0 is on the other, as with the previous problems.
- Determining solutions \(x=2\) and \(x=10\) in Problem 6. Prompt students to use substitution to check their solutions.

\section*{Look for productive strategies:}
- Checking their answers against the absolute value intervals when using the algebraic method.
- Isolating the absolute value expression.
- Recognizing that Problem 6 has no solution because absolute value cannot be negative.

Activity 2 continued >

Differentiated Support

\section*{Extension: Students Ready For More}

Write an absolute value equation that results in solutions that are opposites (inverses) of each other.

\section*{Activity 2 Solving Absolute Value Equations (continued)}

Students solve absolute value equations using the strategies from the previous activity to practice different ways to solve equations.

Activity 2 Solving Absolute Value Equations (continued)
```

8 4. 25 + |x | = 65
x=40 or }x=-4
Sample responses

```

```

5. }|2x+6|-17=4
x=27 or }x=-3
Sample responses:
    - For 2x+6 \ 0:
2x+6-17=43
-2x-6-17=4
- }|2x+6|-17+17=43+1
|2x+6| = 60
x=27
Check:
Check:
|2(27)+6|-17=43 |2(-33)+6|-17=43
|60|-17=43 |-60| - 17=43
```


```

6. }|3-\frac{1}{2}x|+3=
No solutions
Sample responses
    - For 3-\frac{1}{2}x\geq0:
3-\frac{1}{2}x+3}\begin{array}{rl}{=1}<br>{x}\&{=10}
For 3-\frac{1}{2}x<0:
-3+\frac{1}{2}x+3}=
```

```

            Check:
        Check:
        |3-\frac{1}{2}(10)|+3=1 |3-\frac{1}{2}(2)|+3=1
            |-2|+3=1 |2|+3=1
    ```

```

                            The distance cannot be equal to -2.
    ```


Review and synthesize the strategies for solving absolute value equations.

\section*{Summary}

\section*{In today's lesson.}

You recalled what is meant by the absolute value of a number and used this knowledge to make sense of solving equations involving absolute value.

You saw that there are typically two solutions to an absolute value equation. Because it is possible for the expression inside the absolute value symbol to be equal to two different values, you can solve the absolute value equation by writing and solving two related equations.
You saw two different strategies for determining these equations.
Consider the equation \(|x+3|=12\) :

Here is one strategy.
Case 1 .
the equation is the equation is
\(x+3=12 \quad-(x+3)=12\)
\(x=9 \quad x=-15\)
Check:
\(|9+3|=12\)
\(|12|=12\) Check: \(|-15+3|=12\)
\(|-12|=12\)

Here is another strategy.
\begin{tabular}{ll}
\(x+\mathbf{1 2}\) & \(x+3=12\) \\
\(x+3=-12\) & \(x=9\) \\
\(x=-15\) & Check: \\
Check: & \(|9+3|=12\) \\
\(|-15+3|=12\) & \(|12|=12\)
\end{tabular}

When an absolute value equation includes operations outside of the absolute value symbol, you can use the properties of real numbers to isolate the absolute value expression.

Remember to check your solutions by substituting them into the original absolute value equation.

\section*{Synthesize}

Display the Summary from the Student Edition.
Have students share how they would derive the two related equations needed to solve the absolute value equation using each method.

\section*{Ask:}
- "Which method do you prefer? Why?"
- "Have you changed your opinion from Activity 1 after solving more problems?"
Highlight the importance of checking the solutions when solving absolute value equations algebraically. Remind students that the absolute value expression must equal a nonnegative number to have a solution.

\section*{(I) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "How does your preferred strategy for solving absolute value equations follow from the definition of the term absolute value?"

\section*{Exit Ticket}

Students demonstrate their understanding of solving absolute value equations in one variable.

\section*{Success looks like... \\ - Language Goal: Determining the solutions of absolute value equations in one variable. (Reading and Writing) \\ » Using two related equations to solve the given} equation and substituting to check the solutions.
\(x=12\) or \(x=-11,5\)
Sample response
\begin{tabular}{rlrl}
For \(4 x-1\) & \(\geq 0:\) & & For \(4 x-1<0:\) \\
\(4 x-1\) & \(=47\) & & \(-(4 x-1)=47\) \\
\(x\) & \(=12\) & & \(x=-11.5\) \\
Check: & & Check: \\
\(|4(12)-1|=47\) & & \(|4(-11.5)-1|=47\) \\
\(|47|=47\) & & \(|-47|=47\)
\end{tabular}

I can solve an absolute value equation.
123

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.Points to Ponder . . .
- What worked and didn't work today? Thinking about the questions you asked students today and what the students said or did as a result of the questions, which question was the most effective?

In this lesson, students solved absolute value equations. How did that build on the earlier work students did with solving linear equations? What might you change the next time you teach this lesson?

(Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Absolute Value Inequalities}

\section*{Let's solve inequalities involving absolute value.}

\section*{Focus}

\section*{Goal}
1. Solve an absolute value inequality in one variable and represent the solution graphically.

\section*{Coherence}

\section*{- Today}

Students consider the values that satisfy an absolute value inequality to determine their equivalent compound inequalities. They use this strategy of rewriting equivalent inequalities to solve absolute value inequalities in the subsequent activities and match their solutions to the number lines that represent them. Students also reason quantitatively about when an absolute value inequality would have no solution and when it would have all real numbers as a solution (MP2).

\section*{< Previously}

In Tennessee Lesson 12A, students solved and graphed the solutions of compound inequalities and, in Tennessee Lesson 12B, students solved absolute value equations.

\section*{> Coming Soon}

In the next Sub-Unit, students will solve and graph linear inequalities in one- and two variables.

\section*{Rigor}
- Students develop a conceptual understanding of absolute value inequalities and how to represent their solutions on a number line.
- Students build fluency by solving compound inequalities and representing the solutions graphically.

\section*{Standards}

\section*{Addressing}

A1.A.REI.B.2b
Solve absolute value equations and inequalities in one variable. Represent solutions algebraically and graphically.

Warm-up

Activity 1

Activity 2

Summary

Exit Ticket
\begin{tabular}{|c|c|c|c|c|}
\hline (J) 5 min & (J) 20 min & (J) 15 min & (J) 5 min & (J) 5 min \\
\hline \(\stackrel{\bigcirc}{\cap}\) Independent & \(\bigcirc \bigcirc \bigcirc 冂(\) Pairs & \(\bigcirc \bigcirc \bigcirc 冂\left({ }^{\circ}\right.\) Pairs & ํำำ ํํํํํ Whole Class & \(\bigcirc \bigcirc\) ○ Independent \\
\hline & MP2 & MP2 & & \\
\hline A1.A.REI.B.2b & A1.A.REI.B.2b & A1.A.REI.B.2b & A1.A.REI.B.2b & A1.A.REI.B.2b \\
\hline
\end{tabular}

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 2 PDF, pre-cut cards, one set per pair
- Anchor Chart PDF, Solving Inequalities (from Grade 7, as needed)

\section*{Math Language \\ Development}

\section*{Review words}
- absolute value
- compound inequality

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

Students may become frustrated when trying to make matches in Activity 2 or if they are unable to make sense of the graph on Card D. Encourage students to use strategies that will help them to narrow down their choices, such as sorting the cards into smaller groups or using the process of elimination to rule cards out, to increase the likelihood of making a correct match (MP2).

\section*{Amps ! Featured Activity}

\section*{Activity 2 \\ Digital Card Sort}

Students determine the solutions of absolute value inequalities and then match the solutions to their graphical representations.
 desmos

\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In Activity 1, Problems 2 and 3 may be omitted.
- In Activity 2, remove Cards A and M.

\section*{Warm-up Compound Inequalities?}

Students graph the values that satisfy two different absolute value inequalities to determine their equivalent compound inequalities.

\section*{1 Launch}

Display the equation \(|x|=6\) and have students draw a number line to represent it, prompting them to annotate the distance to 0 . Ask, "What would it mean for the absolute value of \(x\) to be less than 6 ?"

\section*{2 Monitor}

Help students get started by prompting them to start with the graph of the related absolute value equation.

\section*{Look for points of confusion:}
- Not knowing how to determine the values that satisfy the absolute value inequality. Have students consider different points in the intervals determined by the graph of the related absolute value equation.

\section*{Look for productive strategies:}
- Substituting integer values into the inequality.

\section*{3 Connect}

Display a number line for each problem and select two students to graph their solutions.
Have students share how they determined the intervals that satisfy each inequality and the compound inequalities they wrote for each number line.

Highlight that \(|x| \leq 6\) means that \(x\) must be a distance of 6 units or less from 0 , which can be written as \(x \geq-6\) and \(x \leq 6\), or simply \(-6 \leq x \leq 6\). Then highlight that \(|x|>2\) means that \(x\) is greater than 2 units from 0 , which can be written as \(x<-2\) or \(x>2\).

\section*{(7) Power-up}

To power up students' ability to write a compound inequality to represent a graph, have students complete:
Write a compound inequality for the graph shown. Then explain why this is a solution to \(|x|>8\).

\(x<-8\) or \(x>8\); Sample response: All the numbers graphed in the solution set have an absolute value greater than 8 .

Use: Before the Warm-up
Informed by: Performance on Lesson 12B, Practice Problem 6

\section*{Activity 1 Solving Absolute Value Inequalities}

Students solve absolute value inequalities by writing and determining the solutions to the equivalent compound inequalities.

\section*{1. Launch}

Display Problem 1. Invite a student to sketch a number line showing the distance from 0 represented by the inequality, then annotate each interval with the expression inside the absolute value symbol. Highlight that the expression is less than or equal to 3 , the distance from 0 .

\section*{(2) Monitor}

Help students get started by prompting them to draw a number line representing the absolute value inequality first.

\section*{Look for points of confusion:}
- Not knowing how to solve linear inequalities. Provide access to the Anchor Chart PDF, Solving Inequalities from Grade 7.

\section*{Look for productive strategies:}
- Sketching a number line to represent the absolute value equation.
- Writing intersections for the odd-numbered problems and unions for the even-numbered problems.
- Isolating the absolute value expression in Problems 5 and 6.

Activity 1 continued >

Differentiated Support

\section*{Accessibility: Students With Disabilities}

Engagement: Develop Effort and Persistence
Activate prior knowledge by reminding students that they have already successfully determined solutions to compound inequalities, noting that solving absolute value inequalities is only one additional step.

Supports accessibility for: Social-emotional skills; Conceptual processing

Math Language Development

\section*{MLR7: Compare and Connect}

As students share their strategies, call students' attention to the steps other students took, noting what they did first, second, third, and so on. Draw connections between the equivalent inequalities students wrote and the graphs they drew, highlighting that both represent two inequalities that were solved individually.

\section*{Activity 1 Solving Absolute Value Inequalities (continued)}

Students solve absolute value inequalities by writing and determining the solutions to the equivalent compound inequalities.

Activity 1 Solving Absolute Value Inequalities (continued)

\section*{3 Connect}

Have pairs of students share the strategies they used to solve each inequality. Select students who wrote or graphed the equivalent compound inequality first before solving for \(x\).

Highlight that the equivalent inequalities for the odd-numbered problems are all intersections and the equivalent inequalities for the evennumbered problems are all unions, except Problem 6, which has no solution. Remind students that an absolute value expression is a nonnegative value, so it can never be less than a negative value.
Ask, "How could you check that your solutions are correct?"

Highlight the three intervals formed by the boundary values in the solution set of each problem. Choose one problem to use as a model and have students sketch a graph of the solution. Note the difference between the graph of the equivalent inequality and the graph of the solution. Then have students select a test point from each interval (in the solution) and substitute them into the absolute value inequality to verify the solution is correct.

\section*{Activity 2 Card Sort: Absolute Value Inequalities}

Students determine solutions to absolute value inequalities so that they are able to match the inequalities with the graphs that represent their solutions.

\section*{1. Launch}

Distribute one set of pre-cut cards from the Activity 2 PDF to student pairs. Prompt students to solve the inequalities on the cards first before attempting to make any matches.

\section*{(2) Monitor}

Help students get started by reminding them that the cards show the graphs of the solutions, not of the equivalent inequalities.

\section*{Look for points of confusion:}
- Substituting boundary values into the absolute value inequalities. Remind students that the solution to an inequality is a range of values.

\section*{Look for productive strategies:}
- Writing or sketching the graph of the equivalent compound inequality.
- Sorting the cards with absolute value inequalities by their inequality signs.
- Isolating the absolute value expression.
- Using test points from the intervals formed to check their solutions.

\section*{3 Connect}

Have pairs of students share the matches they made and their strategies for solving the given inequalities.

Ask, "What solution does the graph on Card D represent? Which card matches Card D?"
Highlight that an absolute value expression will always be greater than a negative number because it is nonnegative. The solution for Card \(J\) is all real numbers because it does not matter what value is substituted. The result will be greater than or equal to 0

Differentiated Support

\section*{Accessibility: Students Who Need Help}

Consider grouping students that require more processing time together and reducing the number of matches they need to make.

\section*{Summary}

Review and synthesize how to solve an absolute value inequality.

\section*{Synthesize}

Have students share the strategy they would use when solving an absolute value inequality.

Highlight why writing an equivalent inequality is helpful for solving. It enables students to solve a more familiar inequality.

Ask, "When does an absolute value inequality have no solutions? When is the solution all real numbers?"

Highlight how a number line representing the solutions of an absolute value inequality shows the interval(s) of the solution set and that substituting a test point from each interval into the inequality is a way to check whether the solution set is correct.

\section*{(I) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "How can you determine whether the inequality that is equivalent to an absolute value inequality gives a union or an intersection?"

\section*{Exit Ticket}

Students demonstrate their understanding of solving absolute value inequalities and representing their solutions graphically.
1. \(|x-23| \leq 2\)
\(x-23 \leq 2 \quad x-23 \geq-2\)
\(x \leq 25 \quad x \geq 21\)

2. \(|-x+32|>2\)

\(\qquad\) Lesson \(12 C\) Absolute Value Inequalities

\section*{Success looks like ...}
- Goal: Solving an absolute value inequality in one variable and representing the solution graphically.
» Determining the correct solutions to the given absolute value inequalities and graphing the solutions in Problems 1-2.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.Points to Ponder ...
- What worked and didn't work today? What trends do you see in participation?
- In this lesson, students solved absolute value inequalities. How did that build on the earlier work students did with compound inequalities? What might you change the next time you teach this lesson?

\begin{tabular}{|lclll|}
\hline Practice Problem Analysis & & \\
\hline Type & Problem & Refer to & Standard(s) & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 2 & A1.A.REI.B.2b & 2 \\
\hline Spiral & \(\mathbf{2}\) & Activity 1 & A1.A.REI.B.2b & 2 \\
\hline Formative 0 & 5 & \begin{tabular}{l}
Activity 1 \\
Unit 1 \\
Tennessee \\
Lesson 12B
\end{tabular} & A1.A.A.REI.B.2b & 3 \\
\hline
\end{tabular}
(3) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{(3)}

3. Tyler makes a mistake when solving the inequality \(|-3 x|+12>30\). His work is shown. \(|-3 x|+12>30\) can be rewritten as \(|-3 x|>18\).
The equivalent inequality is \(-18<-3 x<18\).
\(-18<-3 x \quad-3 x<18\)
\(6>x \quad x>-6\)
The solution is \(-6<x<6\).
Find Tyler's error(s). Then determine the correct solution to the inequality
Sample response: Tyler's compound inequality is not correct. The correct
equivalent inequality is \(-3 x<-18\) or \(-3 x>18\).

4. Solve the equation \(5|2 x+15|-5=100\). Then check your solution(s).
\(5|2 x+15|=105\)
\(|2 x+15|=21\)
For \(2 x+15 \geq 0\) : For \(2 x+15<0\) :
\(2 x+15=21\)
2x \(\begin{aligned} \\ x\end{aligned}\)
Check:
\(5|2(3)+15|-5=100\)
\(\begin{aligned} 2(3)+15 \mid-5 & =100 \\ 5|6+15|-5 & =100\end{aligned}\)
\(\begin{aligned}|6+15|-5 & =100 \\ 5|21|-5 & =100\end{aligned}\)
\(5|21|-5=100\)
\(5(21)-5=100\)
\(\begin{aligned} 105-5 & =100 \\ 100 & =100\end{aligned}\)
\(-(2 x+15)=21\)
Check: \(x=-18\)
Check:
\(5|2(-18)+15|-5=100\)
\(5|-36+15|-5=100\)
\(\begin{aligned} 5|-21|-5 & =100 \\ 5(21)-5 & =100\end{aligned}\)
\(\begin{aligned} 5(21)-5 & =100 \\ 105-5 & =100\end{aligned}\)
\(\begin{aligned} 105-5 & =100 \\ 100 & =100\end{aligned}\)
5. Write at least one solution for the inequality \(x+5 \leq 19\). Explain or show your thinking.

Sample response: \(x=10 ; \quad 10+5 \leq 19\)
\(+5 \leq 19\)

\section*{Additional Practice Available}

For students who need additional practice in this lesson, assign the Algebra 1 Additional Practice.

\section*{Solving Systems of Linear Equations}

\section*{Let's solve systems of linear equations.}

\section*{Focus}

\section*{Goals}
1. Language Goal: Correlate the solution of an equation with variables on both sides of the solution to a system of two linear equations. (Speaking and Listening)
2. Language Goal: Generalize a process for solving systems of equations and calculate the values that are a solution to a system of linear equations. (Speaking and Listening, Writing)

\section*{Coherence}

\section*{- Today}

Students solve a system of linear equations, where the equations are written in slope-intercept form. Students associate solving a system of linear equations with solving an equation when they set two \(y\)-values equal to each other to solve for \(x\). They build fluency in solving systems of equations, and critique the reasoning of others as they complete Partner Problems (MP3)

\section*{< Previously}

In Lesson 17, students were reminded that a solution to a system of equations is the pair of values that meet the constraints of both equations. In Grade 8, students solved equations with variables on both sides.

\section*{> Coming Soon}

In Lesson 18, students will consider different algebraic strategies for solving a system of equations.

\section*{Rigor}
- Students solve systems of linear equations to build fluency.

\section*{Standards}

\section*{Addressing}

\section*{A1.A.REI.C. 4}

Write and solve a system of linear equations in real-world context.

\begin{tabular}{|c|c|c|c|c|}
\hline (1) 5 min & (ㄱ) 15 min & (1) 20 min & (1) 5 min & (1) 5 min \\
\hline กํํ Pairs & กํํํ Pairs & กํํ Pairs & กัําْํา Whole Class & \(\bigcirc\) Independent \\
\hline & & MP3 & & \\
\hline A1.A.REI.C. 4 & A1.A.REI.C. 4 & A1.A.REI.C. 4 & A1.A.REI.C. 4 & A1.A.REI.C. 4 \\
\hline
\end{tabular}

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 1 PDF (for display)
- Anchor Chart PDF, Solving Linear Equations (from Grade 8, as needed)
- Anchor Chart PDF, Sentence Stems, Explaining My Steps

\section*{Math Language \\ Development}

\section*{Review words}
- slope-intercept form
- solution to a system
- substitution
- system of equations

\section*{Building Math Identity and Community \\ Connecting to Mathematical Practices}

As partners work to agree on a solution, they may struggle to effectively communicate. (MP3). Consider providing a copy of the Anchor Chart PDF, Sentence Stems, Explaining My Steps to help students understand each other's thinking when solving systems of equations.

\section*{Amps : Featured Activity}

\section*{Activity 1}

See Student Thinking
Students are asked to explain their thinking when describing how to solve a system of equations. These explanations are digitally available to you in real time.
 desmos

\section*{- Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In Activity 2, consider having students complete the first row and assigning the remaining problems as additional practice.

\section*{Warm-up Clean up on Quadrant Four}

Students study the graph of a system of equations as a reminder that they do not need to graph lines to solve the system and to generate ideas for solving a system algebraically.

\section*{Unit 1 | Tennessee Lesson 17A}

\section*{Solving Systems of Linear Equations}

\author{
Let's solve systems of linear equations.
}

Warm-up Clean up on Quadrant Four
While Priya was doing her homework, her mom accidently spilled coffee on it! Priya was graphing a system of equations to determine the solution but can no longer see where the lines intersect. Her work is shown.
Determine the ordered pair that makes both equations true
\(\left\{\begin{array}{l}y=-3 x+10\end{array}\right.\)
\(\{y=-2 x+6\)
Show or explain another method Priya could use to determine the solution.
Sample responses:

From the graph, it looks like the \(x\)-value is between 2 and 5 , so she can substitute different \(x\)-values until she gets the same \(y\)-value for both equations.
She can write one equation \(-3 x+10=-2 x+6\) and solve for the \(x\)-value before solving for the \(y\)-value.
1) Launch

Conduct the Think-Pair-Share routine.

\section*{(2) Monitor}

Help students get started by asking them how they can use the graph or equations to determine another method Priya could use.

\section*{Look for productive strategies:}
- Using the visible points on the lines and the slope to estimate the ordered pair.
- Substituting values to guess the ordered pair.

\section*{(3) Connect}

Display the equation and graph from the Warm-up.

Have pairs of students share their responses. Select pairs of students with varying responses. Record responses for all to see.

Ask, "Which method could you use to solve the system if you were given only the equations, and not the graph?" Sample response: Write one equation by setting the \(y\)-values equal to each other.

Highlight that, to find the point of intersection, students need to determine the value of \(x\) so that both equations have the same \(y\)-value. One way to do this is to write one equation by setting the \(y\)-values equal to each other.

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Provide students with a partially completed table, such as the following, to help them identify the value of \(x\) for which both equations have the same \(y\)-value.
\begin{tabular}{c:c|c}
\(y=-3 x+10\) & \(x\) & \(y=-2 x+6\) \\
\hline 4 & 2 & 2 \\
\hline 1 & 3 & 0
\end{tabular}

\section*{Power-up}

To power up students' ability to solve a system of linear equations without graphing, ask:
"What is the ordered pair that is a solution to the system \(\left\{\begin{array}{l}y=4 x+2 \\ y=x-7\end{array}\right.\) ?" \((-3,-10)\)
Use: After Activity 1
Informed by: Performance on Lesson 17, Practice Problem 6

\section*{Activity 1 What's the Solution?}

Students develop a method to solve a system of linear equations algebraically when both equations in the system are written in slope-intercept form.

\section*{1. Launch}

Have students complete Problem 1 individually. Then have them share responses with a partner before completing Problems 2 and 3 .

\section*{2 Monitor}

Help students get started by having them review Elena's work step by step.

Look for points of confusion:
- Not understanding Elena's work. Use the graph from the Warm-up to point out that the point of intersection is where the \(y\)-values are equal. Then circle \(-3 x+10\) and \(-2 x+6\), and tell students that these represent the \(y\)-values algebraically.
- Having trouble describing a method to calculate \(y\). Ask students to refer to the suggestions made in the Warm-up. For students who need more support, give them explicit instructions on how to substitute \(x=4\) in one of the equations in the system.

\section*{3 Connect}

Have students share their responses for Problem 2.
Highlight that students can substitute the \(x\) value into either equation from the original system to determine the \(y\)-value but should check their answer using both equations to determine if their solution is correct. Also highlight that when students solve a system with two linear equations, the final response should have two variables written as an ordered pair \((x, y)\).
Display the Activity 1 PDF. Ask, "Why are the \(y\)-values the same when the \(x\)-value is substituted into either equation?" Sample response: Because there is one point of intersection, no matter which line we look at, the coordinates \((x, y)\) are the same.

\section*{(1) Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

Consider allowing students to verbally describe Elena's method for Problem 1, instead of writing a full explanation at first. Scribe their thinking onto a display, creating a complete sentence for them to see.

\section*{Math Language Development}

\section*{MLR8: Discussion Supports}

During the Connect, as students share their responses to Problem 2, display the Anchor Chart PDF, Sentence Stems, Explaining My Steps to help organize their thinking.

Ask:
- "Does it matter which equation you use to substitute the \(x\)-value to check the solution?"
- "Is the solution \((4,-2)\) a solution to one or both equations? How do you know?"

Students solve systems of linear equations to build procedural fluency.

Activity 2 Partner Problems
With your partner, decide who will solve the systems of equations in Column A and who will solve the systems of equations in Column B. After each row, share your responses with your partner. Although the problems in each row are different, your responses should be the same. If they are not the same, work together to correct any errors or resolve any disagreements.
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Column A } & \multicolumn{1}{c|}{ Column \(\mathbf{B}\)} \\
\hline 1. \(\left\{\begin{array}{l}y=-3 x+9 \\
y=2 x+4 \\
-3 x+9=2 x+4 \\
-3 x-2 x=4-9 \\
-5 x=-5\end{array}\right.\) & \begin{tabular}{l}
\(y=-4 x+10\) \\
\(y=8 x-2\)
\end{tabular} \\
\(x=1\) & \(-4 x+10=8 x-2\) \\
\(y=2(1)+4\) & \(-4 x-8 x=-2-10\) \\
\(y=6\) \\
Solution: \((1,6)\) & \(-12 x=-12\) \\
& \(x=1\) \\
& \(y=-4(1)+10\) \\
& \(y=6\) \\
& Solution: \((1,6)\) \\
\hline
\end{tabular}

\footnotetext{
2. \(\left\{\begin{array}{l}y=5 x+7 \\ y=6 x+4\end{array}\right.\)
\(\{y=-2 x+28\)
\(5 x+7=6 x+4\)
\(-2 x+28=-x+25\)
\begin{tabular}{l|l}
\(5 x-6 x=4-7\) & \(-2 x+x=25-28\)
\end{tabular}
\(-x=-3 \quad-x=-3\)
\(x=3\)
\(x=3\)
\(y=5(3)+7\)
\(y=22\)
\(y=-2(3)+28\)
\(y=22\)
Solution: (3, 22)
}

\section*{1. Launch}

Conduct the Partner Problems routine Remind students that solving a system of equations means that they should have two variables written as an ordered pair for their final response. Consider providing students with additional paper to thoroughly show their thinking.
(2) Monitor

Help students get started by having them write and solve a single equation using the given system of equations.

\section*{Look for points of confusion:}
- Struggling to solve a linear equation. Provide students with a copy of the Grade 8 Anchor Chart PDF, Solving Linear Equations.
- Writing one value for their solution. Tell students that they are looking for the same \(x\) - and \(y\)-values that will make both equations true.
- Writing an incorrect solution. Have partners check each other's work by first checking whether the \(x\)-value is correct, and then the \(y\)-value.

\section*{Look for productive strategies:}
- Substituting their \(x\)-value in both equations to check if the \(y\)-values will produce the same value.

\section*{3 Connect}

Have pairs of students share any problems in which they did not have the same solution as their partner, and how they came to an agreement on their final solution (MP3).
Highlight that one way students can solve a system of equations is to write a single equation to solve for one variable, then use that value and substitute it into either original equation to solve for the other variable.
Ask, "After you solve a system of equations, how could you check whether the solution is correct?" Substitute the \(x\) - and \(y\)-values into all the equations in the system. and check to see if all the equations are true.

\section*{Accessibility: Guide Processing and Visualization}

To support students' organizational thinking, provide the following checklist for them to refer to while solving:
- Write and solve one equation for one variable.
- Substitute your answer into either equation from the original system of equations.
- Solve for the other variable.
- Write your final solution as an ordered pair \((x, y)\).

\section*{Extension: Math Enrichment}

Have students write a system of equations in which the ordered pair \((-1,-2)\) is a solution to the system. Sample response: \(\left\{\begin{array}{l}y=5 x+3 \\ y=-2 x-4\end{array}\right.\)

\section*{Math Language Development}

\section*{MLR8: Discussion Supports}

During the Connect, as students share how they can check whether a solution is correct after solving a system of equations, press for details in their reasoning. For example:
\begin{tabular}{|l|l|}
\hline If a student says \(\ldots\) & \multicolumn{1}{c|}{ Press for details by asking ... } \\
\hline \begin{tabular}{l}
"I substituted the \\
\(x\)-value into the \\
equation."
\end{tabular} & . "Can you substitute the \(x\)-value into either equation?" \\
\hline \begin{tabular}{l}
one of the equations, would this be a solution to the \\
system? Why or why not?"
\end{tabular}
\end{tabular}

\section*{English Learners}

Use gestures, such as pointing to the equations and variables during the discussion.

\section*{Summary}

Review and synthesize the steps to solving a system of linear equations algebraically, when both equations are written in slope-intercept form.

\section*{Synthesize}

Ask, "How can you solve a system of equations graphically? Algebraically?"

Highlight that students solved systems of equations with specific types of equations. Tell students that in future lessons they will solve systems of equations with different forms of linear equations.

\section*{(1) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "How is solving a system of linear equations similar to solving an equation with variables on both sides? How is it different?"

Students demonstrate their understanding by solving a system of linear equations algebraically.

\section*{Success looks like ...}
- Language Goal: Correlating the solution of an equation with variables on both sides of the solution to a system of two linear equations. (Speaking and Listening)
» Writing and solving a single equation to solve for the \(x\)-value.
- Language Goal: Generalizing a process for solving systems of equations and calculating the values that are a solution for a system of linear equations. (Speaking and Listening, Writing)
» Substituting the \(x\)-value in either equation to solve for the \(y\)-value.
» Including both the \(x\) - and \(y\)-value as the solution.

\section*{Suggested next step}

If students do not correctly solve for \(x\), consider:
- Having them solve the equation \(-3 x-5=4 x+30\).
- Having them graph both equations.
- Reviewing Problem 1 in Activity 1.

If students incorrectly solve for \(y\), consider:
- Highlighting \(x\) in either equation in the system, and having them rewrite the equation by substituting -5 for \(x\).
- Reviewing Problem 2 in Activity 2.

\section*{If students only solve for one variable,} consider:
- Reminding students that the solution to a system of equations includes both the \(x\) - and \(y\)-value.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

Points to Ponder ...
- What worked and didn't work today? During the discussion in the Warm-up, how did you encourage each student to listen to one another's strategies?
What challenges did students encounter as they worked on Activity 1 ? What might you change for the next time you teach this lesson?

\begin{tabular}{|lclll|}
\hline Practice Problem Analysis & & \\
\hline Type & Problem & Refer to & Standard(s) & DOK \\
\hline On-lesson & \(\mathbf{1}\) & Activity 1 & A1.A.REI.C.4 & 2 \\
\hline Spiral & \(\mathbf{2}\) & Activity 2 & A1.A.REI.C.4 & 2 \\
\hline Formative 0 & 5 & \begin{tabular}{l}
Activities 1 \\
and 2
\end{tabular} & A1.A.REI.C.4 & 2 \\
\hline \begin{tabular}{l}
Unit 1 \\
Tennessee \\
Lesson 12B
\end{tabular} & A1.A.REI.B.2b & 2 \\
\hline \begin{tabular}{l}
Unit 1 \\
Lesson 18
\end{tabular} & A1.A.REI.C & 2 \\
\hline
\end{tabular}

O Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{(3) \\ Nem}
> 3. The solution to a system of equations is \((1,5)\). Select two equations that might make up the system.
A. \(y=-3 x+6\)
(B.) \(y=2 x+3\)
C. \(y=-7 x+1\)
(D.) \(y=x+4\)
E. \(y=-2 x+9\)
4. Solve each equation. Show your thinking and check your solution.

\begin{tabular}{|c|c|c|c|}
\hline \(=45\) & & \(|2 x|=72\) & \\
\hline \(|x-2|=58\) & & For \(2 x \geq 0\) : & For \(2 x<0\) : \\
\hline For \(x-2 \geq 0\) : & For \(x-2<0\) : & \(2 x=72\) & \(2 x=-72\) \\
\hline \(x-2=58\) & \(x-2=-58\) & \(x=36\) & \(x=-36\) \\
\hline \(x=60\) & \(x=-56\) & Check: & Check: \\
\hline Check: & Check: & \(|2(36)|=72\) & \(|2(-36)|=72\) \\
\hline \(|x-2|-13=45\) & \(|x-2|-13=45\) & \(|72|=72\) & \(|-72|=72\) \\
\hline \(|60-2|-13=45\) & \(|-56-2|-13=45\) & \(72=72\) & \(72=72\) \\
\hline \(|58|-13=45\) & \(|-58|-13=45\) & & \\
\hline \(58-13=45\) & \(58-13=45\) & & \\
\hline \(45=45\) & \(45=45\) & & \\
\hline
\end{tabular}
5. Solve the system of equations without graphing. Show your thinking. Sample response show
\(\left\{\begin{array}{l}y=4 x+2 \\ y=x-7\end{array}\right.\)
\(4 x+2=x-7\)
\(4 x+2=x-7\)
\(4 x-x=-7-2\)
\(\begin{aligned} 4 x-x & =-7-2 \\ 3 x & =-9\end{aligned}\)
Substitute the \(x\)-value into the
\(\begin{aligned} x & =-9 \\ x & =-3\end{aligned}\)
Solution: (\(-3,-10\))

\section*{Additional Practice Available}

For students who need additional practice in this lesson, assign the Algebra 1 Additional Practice.

\title{
Operations With Polynomials
}

\author{
Let's add, subtract, and multiply polynomials.
}

\section*{Focus}

\section*{Goals}
1. Language Goal: Reason about the sums, differences, and products of polynomials. (Speaking and Listening, Writing)
2. Write a polynomial in standard form and identify its degree, leading term, and constant term.
3. Language Goal: Comprehend that when polynomials are combined by addition, subtraction, or multiplication, the result is a polynomial. (Reading and Writing, and Speaking and Listening)

\section*{Coherence}

\section*{- Today}

Students are introduced to polynomials. They learn that polynomials can be written in standard form to help identify the leading coefficient and degree of the polynomial. Students reason about the sums, differences, and products of polynomials (MP7) and experiment with these operations to determine whether polynomials are closed under addition, subtraction, and multiplication (MP8).

\section*{< Previously}

In Lesson 11, students used area diagrams and algebra tiles to visualize the multiplication of two linear terms.

\section*{Coming Soon}

In Lesson 12, students will formally define two forms of quadratics standard form and factored form. They will transition from using area diagrams to multiplying the terms in each factor of a quadratic expression written in factored form.

\section*{Rigor}
- Students build conceptual understanding of operations with polynomials.
- Students build procedural fluency of adding, subtracting, and multiplying polynomials.

\section*{Standards}

\section*{Addressing}

A1.A.APR.A. 1
Add, subtract, and multiply polynomials. Use these operations to demonstrate that polynomials form a closed system that adhere to the same properties of operations as the integers.

Also Addressing: A1.A.SSE.A.1a

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \(\bigcirc\) Independent

\section*{Materials}
- Exit Ticket
- Additional Practice
- Warm-up PDF, Parts of a Polynomial (for display)
- Anchor Chart PDF, Sentence Stems, Critiquing (as needed)
- Anchor Chart PDF, Sentence Stems, Stronger and Clearer Each Time (as needed)
- colored pencils (as needed)

\section*{Math Language \\ Development}

\section*{New words}
- degree
- leading coefficient
- polynomial
standard form
Review words
- area diagram
- coefficient
- constant term
- Distributive Property
- like terms

\section*{Amps Featured Activity}

\section*{Activity 2 \\ Digital Area Diagrams}

Students use digital area diagrams to multiply polynomials.

\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In Activity 1, Problem 3 may be assigned as additional practice
- In Activity 2, Problems 3 and 4 may be omitted.
- In Activity 3, provide students with polynomials to add, subtract, or multiply.

Students compare expressions to learn about polynomials and standard form.

\section*{1 Launch}

Conduct the Notice and Wonder routine.

\section*{(2) Monitor}

Help students get started by having them examine the coefficients and exponents in each expression.

\section*{Look for productive strategies:}
- Noticing the expressions are equivalent (MP7).
- Using vocabulary, such as coefficients and exponents to describe what they notice and wonder.

\section*{3 Connect}

Have students share their responses.
Display the Warm-up PDF.
Define the term polynomial as a function or expression that is a sum of terms, each of which is a product of a constant and variable raised to a whole number power. A polynomial is written in standard form when all the terms are ordered from greatest exponent to least exponent. The degree of a polynomial is the greatest exponent on a variable in the polynomial. The leading. coefficient is the coefficient of the term with the greatest exponent. Remind students that the constant term is a value that does change, and does not contain a variable.

Highlight that Expressions 1 and 2 are equivalent, but Expression 2 is a polynomial written in standard form. Also highlight that -1 is the constant term in both expressions.

Ask, "Why might it be helpful to write a polynomial in standard form?" Sample response: It could be easier to identify the leading coefficient and the degree of the polynomial or to check whether two polynomials are equivalent.

Power-up
To power up students' ability to expand quadratic expressions that are written in factored form, have students complete:

Draw an area model and write an equivalent expression for \((x+5)(x+7)\)
Sample response:
\(x^{2}+12 x+35\)
Use: Before Activity 2
Informed by: Performance on Lesson 11, Practice Problem 6

\section*{Activity 1 Adding and Subtracting Polynomials}

Students critique the reasoning of others to understand how to add and subtract polynomials (MP3).

Name: \(\quad\) Date: \(\quad\) Period: —_
Activity 1 Adding and Subtracting Polynomials
1. Kiran and Elena evaluated the expression \(\left(8 x^{3}+7 x^{2}+3 x+2\right)+\left(5 x^{2}+2 x^{3}+9\right)\).

Each student's work and explanation are shown.
\begin{tabular}{|c|c|}
\hline Kiran & Elena \\
\hline \(\left(8 x^{3}+7 x^{2}+3 x+2\right)\) & \(\left(8 x^{3}+7 x^{2}+3 x+2\right)\) \\
\hline \(+\left(5 x^{2}+2 x^{3}+9\right)\) & \(+\left(2 x^{3}+5 x^{2}+9\right)\) \\
\hline \(13 x^{5}+9 x^{5}+12 x+2\) & \(10 x^{3}+12 x^{2}+3 x+11\) \\
\hline I lined up the terms in columns. Then I added the coefficients and exponents for each term in the same column. & I lined up the like terms in columns. Then I added the coefficients and kept the variable and exponents the same. \\
\hline
\end{tabular}

Which student is correct? Explain your thinking.
Elena is correct; Sample response: When combining like terms, you add the coefficients, and keep the variable and exponent the same.
2. Bard and Clare each evaluated the expression \(\left(10 x^{3}+6 x^{2}+5\right)-\left(8 x^{3}+2 x^{2}+1\right)\). Each student's work is shown.
\begin{tabular}{l|l|}
\hline \multicolumn{1}{|c|}{ Bard } & \multicolumn{1}{c|}{ Clare } \\
\hline \multicolumn{1}{|c|}{\(\left(10 x^{3}+6 x^{2}+5\right)\)} & \(\left(10 x^{3}+6 x^{2}+5\right)\) \\
\hline\(\frac{-\left(8 x^{3}+2 x^{2}+1\right)}{2 x^{3}+4 x^{2}+4}\) & \(\frac{-\left(8 x^{3}+2 x^{2}+1\right)}{2 x^{3}+8 x^{2}+6}\) \\
\hline I lined up the like terms in \\
columns. Then I subtracted \\
each term in the same column. & I lined up the like terms in \\
columns. Then I subtracted. \\
\hline
\end{tabular} \begin{tabular}{l}
Which student is correct? Explain your thinking. \\
Bard is correct; Sample response: Because parentheses represent grouping, all of the \\
terms from the second polynomial should be subtracted from the first polynomial.
\end{tabular}

\section*{1) Launch}

Have students complete Problems 1-2 individually. Then have them share responses with a partner before completing Problem 3.

2 Monitor
Help students get started by reviewing how Kiran and Elena each arrived at their answers.

\section*{Look for points of confusion:}
- Thinking that Kiran is correct. Remind students that terms with different powers of \(x\) cannot be added. Consider relating \(x^{3}\) to apples and \(x^{2}\) to bananas; they are not like terms and cannot be combined.
- Thinking that Clare is correct. Remind students that the negative sign can be distributed to each term inside the parentheses.
- For Problem 3d, misunderstanding \(x^{2}\) as \(0 x^{2}\) because they do not see a coefficient. Tell students that \(x^{2}=1 x^{2}\) and have them write a 1 for the coefficient.

\section*{Look for productive strategies:}
- For Problem 3, rewriting polynomials in standard form before matching each to an equivalent expression.

Differentiated Support

\section*{Accessibility: Guide Processing and Visualization}

Distribute colored pencils and suggest that students color code the like terms using different colors.

\section*{Math Language Development}

\section*{MLR7: Compare and Connect}

During the Connect, as students share their responses for Problems 1 and 2 draw connections between Elena's and Bard's responses. Ask:
- "What do you notice that is similar about each person's work?"
- "What do you notice that is different about each person's work?"

\section*{English Learners}

Display or provide access to the Anchor Chart PDF, Sentence Stems, Critiquing.

\section*{Activity 1 Adding and Subtracting Polynomials (continued)}

Students critique the reasoning of others to understand how to add and subtract polynomials (MP3).

Activity 1 Adding and Subtracting Polynomials (continued)
3. Match each expression in Column A with an equivalent expression from Column B .
Column A
\begin{tabular}{ll}
a \(\left(7 x^{2}+5 x^{3}+5\right)+\left(2 x^{3}-3\right)\) & column B \\
b \(\left(11 x^{3}+7 x^{2}+4\right.\) \\
C \(\left(10 x^{2}+1\right)-\left(4 x^{3}+3 x^{2}+3\right)-\left(3 x^{3}+2 x^{2}-1\right)\) & b \(7 x^{3}+2 x^{2}+1\) \\
d \(\left(12 x^{3}+7 x^{2}+7\right)+\left(-5 x^{3}+x^{2}-6\right)\) & d \(7 x^{3}+8 x^{2}+1\) \\
a \(7 x^{3}+7 x^{2}+2\)
\end{tabular}

3 Connect
Have students share their strategies for determining which students were correct for Problems 1 and 2.

Display student work showing the matches for Problem 3. Have students share their strategies for matching the equivalent expressions. Select students who distributed the negative sign before combining like terms and students who rewrote polynomials in standard form to determine matches.

Highlight that when adding and subtracting polynomials, students can combine terms with the same variable and exponent. Remind students that when subtracting polynomials, every term in the polynomial should be subtracted.

\section*{Activity 2 Multiplying Polynomials}

Students create area diagrams to help reason about multiplying polynomials and to write the product in standard form.

\section*{1 Launch}

Have students complete Problems 1-3, and assign Problem 4 based on student readiness.

\section*{2 Monitor}

Help students get started by modeling how to write the sides of an area diagram and calculate a term inside the diagram.

\section*{Look for points of confusion:}
- Not combining like terms for Problems 2-4. Confirm that the product is correct, but remind students that like terms can be combined.
- Multiply the exponents. Remind students of the Product rule \(a^{m} \cdot a^{n}=a^{m+n}\).
- Struggling to organize work in Problem 4. Have students use an area diagram to multiply the first two factors. Once they determine the product, ask,
"How can you use another diagram to determine the product of all three factors?"

\section*{Look for productive strategies:}
- Annotating the area diagram to multiply and combine like terms.
- Understanding how to write the expression in standard form without using an area diagram.

\section*{(3) Connect}

Have students share the strategy they used to determine each product. Select any students that applied the Distributive Property when determining their response.
Display the area diagrams that students used to solve Problem 4.
Ask "What property allows you to use the area diagram to multiply?"
Highlight that the area diagrams provide a visual representation of the Distributive Property. Each term in the first factor is multiplied by each term in the second factor. This pattern is extended when multiplying three or more factors (MP7).

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can use digital area diagrams to multiply a polynomial by a polynomial.

\section*{Accessibility: Guide Processing and Visualization, Vary Demands to Optimize Challenge}

Consider providing blank area diagrams for students to complete. If students need more processing time, have them focus on completing Problems 1-3, and only work on Problems 4-5 if they have time available.

\section*{Extension: Math Enrichment}

Have students complete the following problem:
Write the polynomial \(2 x^{2}+x-45\) as a product of two factors by creating an area diagram.
Sample response: \((2 x-9)(x+5)\)

\section*{Activity 3 Experimenting With Polynomials}

Students experiment with adding, subtracting, and multiplying polynomials to see that polynomials are closed under these operations (MP8).

Activity 3 Experimenting With Polynomials

Your teacher will assign you and your partner to work on a question about polynomials.
- Try combining some polynomials to answer your question by making up your own polynomials. Keep a record of what polynomials you tried, and the results.
- When you think you have an answer to your question, explain your thinking using equations, visuals, calculations, words, or in any way that will help others understand your response.
1. If you add or subtract two polynomials, will the result always be a
polynomial? Yes.
Sample responses:
- \(\left(4 x^{3}+9 x^{2}+5\right)+\left(8 x^{3}+2 x^{2}+1\right)=12 x^{3}+11 x^{2}+6\)
- \(\left(10 x^{4}+7 x^{3}+5\right)-\left(2 x^{4}+x^{3}+2\right)=8 x^{4}+6 x^{3}+3\)

When adding or subtracting polynomials, the coefficients may change, but the variables and their exponents stay the same. The sum or difference of polynomials will result in a sum of terms.
2. If you multiply two polynomials, will the result always be a polynomial? Yes. Sample response: \(\left(3 x^{2}+5 x+7\right)\left(x^{3}+2 x\right)=3 x^{5}+5 x^{4}+13 x^{3}+10 x^{2}+14 x\)
\begin{tabular}{c|c|c|c}
& \(3 x^{2}\) & \(5 x\) & 7 \\
\(x^{3}\) & \(3 x^{5}\) & \(5 x^{4}\) & \(7 x^{3}\) \\
\(2 x\) & \(6 x^{3}\) & \(10 x^{2}\) & \(14 x\)
\end{tabular}

Multiplying a pair of terms in a polynomial would result in a multiple of a Multiplying a pair of terms in a polynomial would result in a multiple of a
power of \(x\). The number of terms in the resulting polynomial may change, but power of \(x\). The number of terms in the resulting polynomial may change, but
the result will be a sum of multiples of powers of \(x\), in which each exponent is a nonnegative whole number.

\section*{(1) Launch}

Write and display several whole numbers, Ask, "If you add/subtract/multiply two whole numbers is the result always a whole number?" Tell students they will investigate whether adding, subtracting, and multiplying two polynomials will always result in a polynomial. Assign pairs of students to complete either Problem 1 or Problem 2.

\section*{(2) Monitor}

Help students get started by having students write two polynomials to add, subtract, or multiply.

\section*{Look for points of confusion:}
- Using expressions that are not polynomials. Remind students of the definition of a polynomial. Have them rephrase the definition in their own words and check the expressions they used.

\section*{Look for productive strategies:}
- Experimenting with a variety of polynomials, including: monomials, binomials, trinomials, and other polynomials with a variety of degrees.

\section*{(3) Connect}

Have pairs of students share their responses. Select students who answered Problem 1 and Problem 2. Have students share their strategies for determining their responses.

Ask, "Does \(\left(5 x^{3}+4 x^{2}+9\right)-\left(5 x^{3}+4 x^{2}+7\right)\) result in a polynomial?" Yes. The result is 2, a constant term which has a degree of 0 .

Highlight that polynomials are closed under addition, subtraction, and multiplication. This means that if polynomials are added, subtracted or multiplied together, the result is always a polynomial.

Accessibility: Guide Processing and Visualization

Provide students with four different polynomials with varying coefficients and exponents. Have students select different pairs of polynomials to add, subtract, or multiply.

\section*{Math Language Development}

\section*{MLR1: Stronger and Clearer Each Time}

After students complete Problems 1 or 2, have pairs meet with 1-2 other pairs of students to share their responses. Encourage reviewers to ask clarifying questions such as:
- "What is the same and what is different between each method?"
- "Is the result always the same when adding, subtracting, or multiplying polynomials?"
- "What does this tell you about adding, subtracting, or multiplying polynomials?"

Have students revise their responses, as needed.

\section*{English Learners}

Display or provide access to the Anchor Chart PDF, Sentence Stems, Stronger and Clearer Each Time.

\section*{Summary}

\section*{Review and synthesize adding, subtracting, and multiplying polynomials.}

\section*{Synthesize}

Display the Summary.
Ask, "How are adding, subtracting, and multiplying polynomials similar? How are they different?"

Have students share how they can write a polynomial in standard form and how they can identify a polynomial's leading coefficient and degree.

\section*{Highlight}
- When adding and subtracting polynomials, students can combine terms with the same variable and exponent.
- When multiplying monomials by polynomials, every term from each factor should be multiplied.
- Polynomials are closed under addition, subtraction, and multiplication.

\section*{Formalize vocabulary:}
- degree
- leading coefficicient
- polynomial
- standard form

\section*{Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What strategies did you find helpful when adding, subtracting, and multiplying polynomials?"

\section*{Math Language Development}

\section*{MLR2: Collect and Display}

As students formalize the new vocabulary for this lesson, ask them to refer to the class display that you started in this unit. Ask them to review and reflect on any terms and phrases related to the terms degree, leading coefficient, polynomial, and standard form that were added to the display during the lesson.

Students demonstrate their understanding by subtracting and multiplying polynomials.

\section*{Success looks like ...}
- Language Goal: Reasoning about the sums, differences, and products of polynomials. (Speaking and Listening, Writing)
» Remembering to subtract \(4 x^{3}\) and \(20 x^{5}\) in Problem 1.
» Drawing an area diagram to determine the product in Problem 2.
- Goal: Writing a polynomial in standard form and identifying its degree, leading term, and constant term.
» Correctly writing both problems in standard form.
- Language Goal: Comprehending that when polynomials are combined by addition, subtraction, or multiplication, the result is a polynomial. (Speaking and Listening, Writing)

\section*{- Suggested next steps}

If students do not correctly write the difference of Problem 1 in standard form, consider:
- Having them distribute the negative.
- Rewriting the problem vertically and lining up the like terms before simplifying.
- Reviewing Activity 1.

If students do not correctly write the product of Problem 2 in standard form, consider:
- Having them draw an area diagram.
- Reviewing Activity 2.

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.
\(\mathrm{C}_{0}\) Points to Ponder ...
What worked and didn't work today? In earlier lessons, students found the product of two binomials. How did that support students as they multiplied two polynomials today?

What challenges did students encounter as they worked on Activity 3? How did they work through them? What might you change for the next time you teach this lesson?

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Practice Problem Analysis} \\
\hline Type & Problem & Refer to & Standard(s) & DOK \\
\hline \multirow{3}{*}{On-lesson} & 1 & Activity 1 & A1.A.APR.A. 1 & 2 \\
\hline & 2 & Activity 2 & A1.A.APR.A. 1 & 2 \\
\hline & 3 & Activity 3 & A1.A.APR.A. 1 & 2 \\
\hline Spiral & 4 & \begin{tabular}{l}
Unit 1 \\
Tennessee Lesson 12C
\end{tabular} & A1.A.REI.B.2b & 2 \\
\hline Formative 0 & 5 & \begin{tabular}{l}
Unit 5 \\
Lesson 12
\end{tabular} & A1.A.APR.A. 1 & 2 \\
\hline
\end{tabular}
(1) Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available}

For students who need additional practice in this lesson, assign the Algebra 1 Additional Practice.

\section*{Solving Quadratic Inequalities}

\section*{Let's solve quadratic inequalities using the graphs of the related} quadratic equations.

\section*{Focus}

\section*{Goal}
1. Use related quadratic equations to determine solutions to quadratic inequalities.

\section*{Coherence}

\section*{- Today}

Students build on their understanding of quadratic equations to develop strategies to solve quadratic inequalities. They make sense of problems and model with mathematics as they solve problems in context (MP4).

\section*{< Previously}

In Unit 5, students explored the characteristics of graphs of quadratic functions. In prior lessons in Unit 6, students wrote and solved quadratic equations using the Zero Product Principle and by completing the square.

\section*{Rigor}
- Students build a conceptual understanding of quadratic inequalities.
- Students develop procedural skills as they determine solutions to quadratic inequalities.
- Students apply their understanding of solving quadratic inequalities.

\section*{Standards}

\section*{Addressing}

\section*{A1.A.REI.B.3b}

Solve quadratic inequalities using the graph of the related quadratic equation.

Also Addressing: A1.A.REI.B.3a

\section*{> Coming Soon}

In Lesson 16, students will solve quadratic equations with irrational solutions.

Warm-up
\begin{tabular}{c|c}
(1) 5 min & © 10 min \\
ค Independent & กㅇํ Pairs \\
& MP2 \\
A1.A.REI.B.3b & A1.A.REI.B.3b
\end{tabular}

Activity 2
Activity 1

A1.A.REI.B.3b
(๑) 15 min
คํ Pairs
\begin{tabular}{l}
A1.A.REI.B.3b, \\
A1.A.REI.B. 3 a
\end{tabular}

Activity 3
() 10 min
ㅇํ Pairs
MP4
A1.A.REI.B.3b

Summary

Exit Ticket
(1) 5 min
\(\bigcirc\) Independent

A1.A.REI.B.3b

\section*{Amps powered by desmos : Activity and Presentation Slides}

For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

\section*{Practice \(\bigcirc\) Independent}

\section*{Materials}
- Exit Ticket
- Additional Practice
- Activity 3 PDF (as needed)
- Anchor Chart PDF, Sentence Stems, Explaining My Steps (for display)
- colored pencils (as needed)
- graph paper

\section*{Amps ! Featured Activity}

\section*{Activity 1 \\ Interactive Graph}

Students interact with graphs of quadratic functions to determine whether a value is a solution to the related quadratic inequality.

\section*{Building Math Identity and Community}

Connecting to Mathematical Practices
Students who are more confident with the mathematical topic of this lesson may be able to lead discussions within their groups in Activity 1 (MP2). Remind students to "step up" if they have something to add to the conversation, but also to "step back" to give other voices a chance to share.

\section*{Modifications to Pacing}

You may want to consider these additional modifications if you are short on time.
- In Activity 1, assign pairs of students to complete either Problem 1 or Problem 2.
- In Activity 2, Problems 3 and 4 may be omitted.
- Activity 3 may be assigned as additional practice.

\section*{Warm-up Notice and Wonder}

\section*{Students examine two functions to help visualize when a function is greater than zero and less} than zero.

Unit 6 | Tennessee Lesson 15A

\section*{Solving Quadratic Inequalities}

Let's solve quadratic inequalities using the graphs of the related quadratic equations.

\section*{Warm-up Notice and Wonder}

Study the two functions shown. What do you notice? What do you wonder? Function \(f(x)\)

Function \(g(x)\)

1. Inotice.

Sample responses:
- Parabola \(f(x)\) opens upward and parabola \(g(x)\) opens downward.
- The sections of the graph that are below the \(x\)-axis are a different color than the sections of the graph that are above the \(x\)-axis.
2. I wonder

Sample response:
- Why the sections of the graphs are colored differently.
- Whether the zeros of the graph are represented by both colors.
1. Launch

Conduct the Notice and Wonder routine.

\section*{(2) Monitor}

Help students get started by asking them to examine how the parts of the graph are colored.

\section*{Look for productive strategies:}
- Noticing that the graph of function \(f(x)\) opens upward and the graph of function \(g(x)\) opens downward.
- Noticing that the color of the graph changes before or after the zeros of the graph.
- Remembering that the coefficient of \(a\) in \(a x^{2}\) for \(f(x)\) is positive, and the coefficient of \(a\) in \(a x^{2}\) for \(g(x)\) is negative.

\section*{3 Connect}

Display the graphs of the functions \(f(x)\) and \(g(x)\).
Have students share their responses. Select students with varying responses.

Ask:
- "Does the graph of function \(f(x)\) /function \(g(x)\) open upward or downard? What does that tell you about the sign of \(a\) when the equation is written in standard form?"
- "What are the zeros of function \(f(x)\) /function \(g(x)\) ?"

Highlight that function \(f(x)\) and function \(g(x)\) are quadratic functions. Tell students that they will explore how to solve quadratic inequalities using the related quadratic function. Tell students that the sections of the graph colored in blue are when the function \(f(x)\) and the function \(g(x)\) are greater than 0 . The sections of the graph colored in orange are when the function \(f(x)\) and the function \(g(x)\) are less than 0 .

Power-up
To power up students' ability to approximate irrational numbers, have students complete:

Determine whether the statement is true or false.
1. \(4<\sqrt{25}<6\) True
2. \(\sqrt{4}<5<\sqrt{6}\) False
3. \(\sqrt{24}<\sqrt{25}<\sqrt{26}\) True

Use: Before the Warm-up
Informed by: Performance on Lesson 15, Practice Problem 6

\section*{Activity 1 Quadratic Equations and Inequalities}

Students analyze graphs of quadratic functions to develop strategies for solving a related quadratic inequality.

Amps Featured Activity
Interactive Graph
Name: \(\quad\) Date: \(\quad\) Period: \(\square\)

Activity 1 Quadratic Equations and Inequalities

The graphs and equations of the functions from the Warm-up are shown. Use the graph or the equation to solve each problem. Show or explain your thinking.
1. For what values is \((x+2)(x-4)=0\) ? -2 and 4; Sample responses:
- I used the Zero Product Principle.
- I looked at the \(x\)-intercepts of the graph.
2. For what values is \((x+2)(x-4)<0\) ?
\(-2<x<4\); Sample responses
- The graph of the function intersects the \(x\)-axis twice, at points \((-2,0)\) and (4,0), and opens upward, so between values -2 and 4 the function is negative.
I I used the graph and examined when \(f(x)<0\).
3. For what values is \((-3 x+6)(x+1)=0\) ? -1 and 2; Sample responses:
- I used the Zero Product Principle.
- I looked at the \(x\)-intercepts of the graph.
4. For what values is \((-3 x+6)(x+1)<0\) ?
\(x<-1\) or \(x>2\); Sample responses:
- The graph of the function intersects the \(x\)-axis twice, at points \((-1,0)\) and \((2,0)\), and opens function is negative.
- I used the graph and examined when \(g(x)<0\).

Function \(f(x)=(x+2)(x-4)\)

\(-10\)

\section*{1 Launch}

Activate students' prior knowledge of inequalities. Tell students that a quadratic inequality is similar to a quadratic equation, but uses an inequality sign, instead of an equal sign.

\section*{2 Monitor}

Help students get started by reminding them how to solve a quadratic equation using the Zero Product Principle.

\section*{Look for points of confusion:}
- Struggling with Problem 2 or 4 . Have students trace the part of the graph where the function is negative. Ask them to identify a few values in which the function is negative, then identify all the values that are negative.
- Writing only a few values for the solutions to Problems 2 or 4 . Ask students to identify additional values for which the inequalities are less than 0 . Allow for this response and revisit these students during the Connect.

\section*{Look for productive strategies:}
- Solving each equation or inequality algebraically or graphically.

\section*{(3) Connect}

Have students share their strategies for solving Problems 2 and 4. Select students who used the direction in which the parabola opens to help them determine their response (MP2).
Ask, "What features of the graph were helpful when determining when the function was negative?"

\section*{Highlight}
- Students can use the zeros of the function, and the direction in which the parabola opens to solve a quadratic inequality.
- How to write the solution using inequality symbols.

\section*{Differentiated Support}

\section*{Accessibility: Vary Demands to Optimize Challenge}

If students need more processing time, have them focus on completing Problem 1 and only work on Problem 2 if they have time available.

\section*{Accessibility: Optimize Access to Technology}

Have students use the Amps slides for this activity, in which they can interact with graphs of quadratic functions to determine whether a value is a solution to the related quadratic inequality.

\section*{(n)} Math Language Development

\section*{MLR7: Compare and Connect}

During the Connect, ask students to articulate the connection between the solutions to the equation \((x+2)(x-4)=0\) and the inequality \((x+2)(x-4)<0\). Invite students to compare how the zeros of the graph are used to determine each solution.

\section*{English Learners}

Annotate the zeros of the graph.

\section*{Activity 2 What is the Solution?}

Students develop procedural skills as they determine the solutions to quadratic inequalities.

Activity 2 What is the Solution?

Determine the solution to each quadratic inequality. Use the graph to help your thinking.
1. \((-2 x+2)(x+3) \leq 0\)
\(x \leq-3\) or \(x \geq 1\);
Sample response:
The graph of the function intersects the \(x\)-axis twice, at points \((1,0)\) and \((-3,0)\), and opens downward.

2. \(3 x^{2}-3 x-6<0\)
\(-1<x<2\);
Sample response:
\(3 x^{2}-3 x-6=3\left(x^{2}-x-2\right)=3(x+1)(x-2)\)
The graph of the function intersects the
\(x\)-axis twice, at points \((-1,0)\) and \((2,0)\),
and opens upward.

3. \((2 x-3)^{2}>0\)
\(x<1.5\) or \(x>1.5\);
Sample response:
The graph of the function intersects the
\(x\)-axis once, at the point \(\left(\frac{3}{2}, 0\right)\) and
opens upward.

> 4. \(x^{2}+4<0\)
No real solutions;
Sample responses:
- The graph of the function opens upward, but does not intersect the \(x\)-axis.
The sum of a nonnegative number \(x^{2}\) and a positive number 4 can not be less than 0 .

Unit 6 Quadratic Equations

\section*{1 Launch}

Review each of the inequalities. Draw students attention to each inequality symbol and the way each quadratic inequality is written.
(2) Monitor

Help students get started by having them sketch the graph by identifying the zeros and determining whether the graph opens upward or downward.

\section*{Look for points of confusion:}
- Graphing the function in detail. Tell students they do not need to identify the minimum/maximum in this situation. Instead, allow them to sketch the graph using the zeros and direction the parabola opens.
- Forgetting to include the zeros for Problem 1. Remind students that the symbol means that it will include the zeros.
- Struggling to solve Problem 2. Have students write the inequality in factored form before sketching the graph.
- Struggling to solve Problem 4. Encourage students to reason about the inequality. Ask, "Can four more than a non negative number, \(x^{2}\) result in a negative number?"

\section*{3 Connect}

Have students share their strategies for solving each inequality. Select pairs of students with varying responses.

Highlight the different strategies that could be used to solve quadratic inequalities.

Ask, "How do you think the solution to Problem 3 would change if the sign was changed, \((2 x-3)^{2} \geq 0\) ?"

Differentiated Support
Accessibility: Vary Demands to Optimize Challenge, Guide Processing and Visualization
If students need more processing time, consider having them focus on Problems 1 and 2. Have students use colored pencils to indicate values on the graph that correspond with their solution.

\section*{Activity 3 Selling Shirts}

Students apply their understanding of the quadratic inequality by determining the amount that should be charged per shirt based on a monthly profit goal (MP4).

\section*{1 Launch}

Read the prompt aloud. Answer any questions students may have. Provide students with graph paper.
(2) Monitor

Help students get started by having them work individually to write an inequality that represents the scenario. Have them share their inequalities and discuss any discrepancies before completing the remainder of the problem.

Look for points of confusion:
- Writing a correct inequality, but struggling to solve it. Students may write \(-d^{2}+25 d-100>0\), but struggle to factor \(-d^{2}+25 d-100\) because of the negative coefficient of \(d^{2}\). Provide students with the equivalent inequality \(d^{2}-25 d+100<0\) and have them determine the solution algebraically or graphically. Note: Students will learn how to solve quadratic equations with a negative coefficient in Lesson 20.
- Writing the symbols >or < in their inequality. Remind students that at least \(\$ 100\) includes \(\$ 100\)

Look for productive strategies:
- Graphing \(p=25 d-d^{2}\) or \(p=-d^{2}+25 d-100\).

\section*{3 Connect}

Have students share the strategies they used to determine their response. Select students with varying strategies.

Display, the Activity 3 PDF.
Highlight the values when \(5 \leq x \leq 20\) on the graph. Tell students that these points represent the amount Jada's aunt should charge to make a monthly profit of at least \(\$ 100\).

\section*{\(\oplus\) \\ Differentiated Support}

Accessibility: Vary Demands to Optimize Challenge
If students need more processing time, consider providing them with a copy of the Activity 3 PDF to help them make sense of the problem.

\section*{Math Language Development}

\section*{MLR8: Discussions Supports}

During the Connect, display the Anchor Chart PDF, Sentence Stems, Explaining My Steps for students to use to help them organize their thinking as they explain how they determined their response.

\section*{Summary}

Review and synthesize solving quadratic inequalities.

\section*{Synthesize}

Ask, "What strategies did you find helpful when solving quadratic inequalities?"

Have students share which features of the graph they could use to help them determine solutions for a quadratic inequality.

Highlight that when solving quadratic inequalities, students can write a related quadratic equation to determine the zeros of the function. They can determine whether the graph opens upward or downard before sketching the graph and identifying which parts of the graph represent the solution to the inequality.

\section*{(1) Reflect}

After synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any notes in the Reflect space provided in the Student Edition. To help them engage in meaningful reflection, consider asking:
- "What is similar about solving quadratic inequalities and linear equalities? What is different?"

\section*{Exit Ticket}

Students demonstrate their understanding by determining the solution to a quadratic inequality.

\footnotetext{
Success looks like...
- Goal: Using related quadratic equations to determine solutions to quadratic inequalities.
» Graphing a related quadratic equation.
» Determining the solution to a related quadratic equation to help determine the solution to the inequality.
}

\section*{Professional Learning}

This professional learning moment is designed to be completed independently or collaboratively with your fellow mathematics educators. Prompts are provided so that you can reflect on this lesson before moving on to the next lesson.

0 Points to Ponder ..
- What worked and didn't work today? In this lesson, students solved quadratic inequalities. How did that build on the earlier work students did with solving quadratic equations?
- What challenges did students encounter as they worked on Activity 3? How did they work through them? What might you change for the next time you teach this lesson?

-
height of a ball from the ground. in feet, \(t\) second after it was thrown. Determine when the ball was higher than 8 ft from the ground. Use the graph to help your thinking.
The ball was higher than 8 ft from 0 seconds to 0.5
seconds.
Sample response: The graph of the function intersects \((h=8)\) at points \((0,8)\) and \((0.5,8)\), and opens
downward.

> 3. Write each polynomial in standard form. State the degree, leading coefficient, and constant term of the polynomial.
(a) \(\left(6 x^{3}+5 x^{2}-2\right)+\left(4 x^{3}-3 x^{2}\right)=10 x^{3}+2 x^{2}-2\) Degree: 3 Leading coefficient: 10 Constant term: -2
b \(\left(7 x^{4}+x^{2}+1\right)-\left(8-x^{2}\right)=7 x^{4}+2 x^{2}-7\) Degree: 4
Leading coefficient: 7
Constant term: -7

C \(\left(9 x^{3}+3 x^{2}+5\right)-\left(4 x^{2}+1\right)=36 x^{5}+12 x^{4}+9 x^{3}+23 x^{2}+5\)
Degree: 5
Degree: 5
Leading coefficient: 36
Constant term: 5
> 4. Every irrational number lies between two consecutive whole numbers.
For each of the following irrational numbers, write the two consecutive
whole numbers between which it is located.
(a) \(\sqrt{3}\)

1 and 2 ; 1 and 2 ;
Sample response: \(\sqrt{1}<\sqrt{3}<\sqrt{4}\)
b \(\begin{aligned} & \sqrt{38} \\ & 6 \text { and } 7 \text {; }\end{aligned}\)
6 and 7 ; (c) \(\sqrt{17-1}\) Sample response:

3 and 4; Sample response \(\sqrt{17}\) is
between 4 and 5 . Subtracting between 4 and 5 . Subtracting 1
from 4 results in 3 and subtracting
1 from 5 results in 4 .
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Practice Problem Analysis} \\
\hline Type & Problem & Refer to & Standard(s) & DOK \\
\hline \multirow{2}{*}{On-lesson} & 1 & Activity 2 & A1.A.REI.B.3b & 2 \\
\hline & 2 & Activity 3 & A1.A.REI.B.3b & 3 \\
\hline Spiral & 3 & \begin{tabular}{l}
Unit 5 \\
Tennessee \\
Lesson 11A
\end{tabular} & A1.A.APR.A. 1 & 2 \\
\hline Formative 0 & 4 & Unit 6 Lesson 16 & 8.NS.A. 2 & 2 \\
\hline
\end{tabular}
© Power-up: If students need additional support with the key prerequisite concept or skill this problem addresses, consider assigning the Power-up in the next lesson.

\section*{Additional Practice Available}

For students who need additional practice in this lesson, assign the Algebra 1 Additional Practice.
\[
\|
\]```

