START HERE

Amplify Math
TENNESSEE

Grades 6-8, Algebra 1

Program guide

For Tennessee

[^0]
\square

GO ONLINE

Visit tnmath.amplify.com for additional program information such as instructional routines, math language development, 5 Practices for Orchestrating Productive Discussions, and much more!

Amplify. desmos

[^1]
Table of contents

Meet Amplify Math
About Amplify Math 6
Guided by expert advisors, partners, and educators 8
Program scope and sequence 10
Clean and clear design 14
Layered lesson design 16
The Amplify Math lesson model 17
Narrative and storytelling 18
Highlighting diverse mathematicians 19
Taking the IM K-12 Math content further 20
Program resources 21
Supporting features
Access and equity 24
Differentiating instruction 32
Navigating the program
Navigating the print program 36
Flexible, social problem-solving experiences 40
Amplify Math digital experience 42
Navigating the digital program 44
Data and reporting
Classwork 52
Assessments and reporting 54
-

KoALA
SIERPINSKI TRIANGLE

$■$

Meet Amplify Math

About Amplify Math 6
Guided by expert advisors, partners, and educators 8
Program scope and sequence 10
Clean and clear design 14
Layered lesson design 16
The Amplify Math lesson model 17
Narrative and storytelling 18
Highlighting diverse mathematicians 19
Taking the IM K-12 Math content further 20
Program resources 21

About Amplify Math

Get all Tennessee students talking and thinking together about grade-level math.

Amplify Math is designed around the idea that a core math curriculum needs to serve 100 percent of students in accessing grade-level math every day. Tennessee school districts turn to Amplify Math when they are looking for:
\checkmark High-quality math instruction that strikes the right balance between conceptual understanding, procedural fluency, and application.
\checkmark Every student to develop their own math identity and see themselves as mathematicians.
\checkmark An equally dynamic print and digital experience that is easy to teach.

You can learn more about the program design and how Amplify Math will work in your classroom in the pages that follow. But first, we wanted to call out just a few things that set this core math program apart:

1

Productive discourse made easier to facilitate and more accessible for students

Clean and clear lesson design
The lessons all include straightforward "1, 2, 3 step" guidance for launching and facilitating discussions around the tasks. Thoughtful and specific differentiation supports are included for every activity. Every lesson ends with a summary and reflection moment, an Exit Ticket, and a practice problem set.

Additional Tennessee lessons are available to ensure every student masters the Tennessee Academic Standards for Mathematics.

Narrative and storytelling
All students ask, "Why do I need to know this? When am I ever going to use this in the real world?" Amplify Math helps students make connections with math and their everyday lives to help them see and appreciate the relevance of the math they're figuring out in class. Throughout the units, students will be introduced to historical and current narratives that show their connection to the content, the many places mathematics inhabits in our world, and how the work they do in class connects to our history and their own reality.

3 Flexible, social problem-solving experiences online
 Social learning experiences online

 powered by desmos

By partnering with Desmos, we've been able to deliver digital lessons, which we call Amps, that get students thinking, talking, revising, and celebrating their ideas. As students work in the interactive slides, new functionality may appear and they will often be asked to justify their actions and thinking. All of this is made visible to the teacher in real time.

Automatic, just-in-time supports
Our Power-ups provide just-in-time support at the point of use before your student begins an activity. Not teaching online? They're available in this Teacher Edition too. Phil Daro partnered with us on this feature to ensure we were giving all students-even the ones who might be three years behind in math, but only 15 minutes behind the day's lesson-the chance to experience success in math.

3 Real-time insights, data, and reporting that inform instruction

Classroom monitoring tools

Once a teacher launches an Amp, students will be automatically moved to the lesson of the day and will see the interactive screens. Teachers will have the ability not only to pace the lesson the way they want to, but also to see student work in real time. The monitoring tools offer teachers ways to overlay student work to spot misconceptions and also the ability to spotlight student work anonymously to discuss with the class.

Embedded and standalone assessments

Amplify Math includes both a suite of standalone assessments and embedded assessments that give teachers and leaders insights into where students are and how they might best be supported. The full reporting suite covers student and class performance based on work done in lessons, Exit Tickets, practice sets, performance by standards, and performance on Interim assessments.

Guided by expert advisors, partners, and educators

Working closely with our advisors and partners, educator advisory board, and field trial teachers, the curriculum team at Amplify focused Amplify Math on productive discourse and equitable experiences for students, making it possible to deliver high-quality, student-centered instruction that accelerates learning for all.

Based on the best

The core lesson content within Amplify Math is based on the highly rated IM K-12 Math™ curriculum authored by Illustrative Mathematics ${ }^{\circledR}$. Led by Bill McCallum, the Illustrative Mathematics developers struck the right balance between conceptual understanding,

- Illustrative Mathematics*

Advisors

Phil Daro
Board member: Strategic Education Research Partnership (SERP)
Area of focus:
Content strategy

Fawn Nguyen

Rio School District, California Area of focus:

Problem solving

[^2]
Flexible, social problem-solving experiences powered by Desmos

Digital lessons, when designed the right way, can be powerful in their ability to surface student thinking and spark interesting and productive discussions. To do this, lessons need to be social and flexible in their ability to celebrate student brilliance, ensuring students feel connected to one another and you, the teacher.
powered by desmos

We've partnered with Desmos to bring this vision to life with our complete library of Amps-social, collaborative lessons powered by Desmos technology.

Sunil Singh
Educator, author, storyteller Area of focus:
Narrative and storytelling

Paulo Tan, Ph.D.

Johns Hopkins University School of Education

Area of focus:
Meeting the needs of all students

Program scope and sequence

Grade 6

Grade 8

Algebra 1
UNIT 1

UNIT 5
Introducing Quadratic Functions 23 Instructional Days 3 Assessment Days
Quadratic Equations 26 days total

Clean and clear design

Program structure

Amplify Math lessons ask students to grapple with relevant and interesting problems and situations. The contexts make sense to them and play to their curious and competitive nature. Whether using the print or digital lessons, teachers have easy-to-use tools that allow them insights into student thinking and opportunities to truly differentiate instruction.

Every unit outlines how the pillars of rigor-conceptual understanding, procedural fluency, and application-will be addressed over the course of each lesson.

Course structure

The grades 6-8 courses are made up of eight units each. Algebra 1 includes six units.

Note: Interim assessments may be administered according to your district/school's timeline; this depiction is just one of many possible administrations.

Unit structure

Amplify Math units have been developed around central topics and broken into sub-units addressing compelling historical and modern narratives and stories, making math both accessible and relevant. Solving problems in the sub-unit lessons, students develop strategies to build upon prior knowledge and deepen their understanding of mathematical concepts and skills. Teachers have multiple opportunities to assess student understanding, including Pre- and Post-Unit Assessments, Warm-ups, and Exit Tickets.

Note: The number of sub-units and lessons vary from unit to unit; this depiction shows the general structure of a unit.

Lesson structure

Amplify Math grades 6-8 lessons are designed to be completed in 45 minutes, with Algebra 1 lessons completed in 50 minutes.

©	Δ	(1)	(1)	8	(-)
Warm-up	Activity 1	Activity 2	Summary	Exit Ticket	Practice
(1) 5 min	(1) 15 min	(1) 15 min	(f) 5 min	(1) 5 min	(1) timing varies
				\bigcirc	\bigcirc

Note: The number of activities vary from lesson to lesson; this depiction shows the general structure of a lesson.

[^3]
Layered lesson design

Sparking and guiding productive classroom discussions doesn't need to feel impossible. Amplify Math provides teachers a layered lesson design with easy-to-follow instructional supports that make implementing productive discourse possible through experiences that tap into the social nature of middle and high schoolers.

Live progress and needs reporting

A social experience complete with personalized supports

```
Interesting
    relevant
problems
```

Amplify Math lessons are effective because they're multi-layered.

Interesting, relevant problems:
By starting with the Illustrative Mathematics' curriculum IM K-12 Math, an extensively field-tested and highly-rated curriculum, Amplify Math is full of interesting and relevant problems as well as proven teaching strategies. You'll see this in our lessons framed around compelling narratives, from both current and historical contexts.

A social experience complete with personalized supports:
By partnering with Desmos, we've been able to bring the IM K-12 Math content alive online. Students are given opportunities to collaborate with one another, and teachers gain better insights into student thinking in real time. If the teacher chooses to use Power-ups, students are offered personalized supports, based on their recent work in the digital platform, that serve as on-ramps to grade-level content.

3 Live progress and needs reporting:
And when teachers and students work digitally, Amplify Math can offer live progress updates and reporting that outlines student needs and suggested next steps, enhancing the experience for students and teachers.

The Amplify Math lesson model

Amplify Math grades 6-8 lessons are designed to be completed in 45 minutes, with Algebra 1 lessons completed in 50 minutes

Warm-up (5 minutes)

1
Each lesson begins with students diving into the math and interacting with each other during a warm-up task. Lessons include automatic, just-in-time supports called Power-ups.

Activities (30 minutes in grades 6-8; 35 minutes in Algebra 1)

Students dig into three to five tasks and share their observations and reasoning, allowing the teacher to use the strategy of sequencing and selecting to promote more math talk.

Summary and Reflection (5 minutes)

The teacher helps students connect their ideas with the overall mathematical picture of the lesson, unit, and course.

Exit Ticket and Practice (5+ minutes)

The lesson concludes with students completing an embedded, formative Exit Ticket. Additionally, teachers can assign practice problems to work on outside of class.

Narrative and storytelling

The role of narrative

Amplify Math organizes the units and sub-units around compelling narratives and stories (both historical and modern). Students are introduced to historical and current narratives that show a connection between the content and the many places mathematics inhabits in our world and how the work they do in class connects to our history and their own reality. Narrative:

- Makes math more approachable and engaging. Stories connect numbers to people. They show us the who, why, and when of math, and the motivations and even emotions of mathematicians. They help make math easier to teach by triggering students' curiosity, showing personal or historical relevance, and opening up new possibilities for classroom conversation and collaboration.
- Makes math relevant. Retellings of important historical moments and vignettes featuring modern applications of math help students understand how math has relevance outside of the math classroom.
- Highlighting diversity in mathematics. Stories can create more opportunities to highlight diversity in the rich history of mathematics. They can make for more inclusive spaces where students see themselves in the content.

You'll see our narratives and stories play out at the unit, sub-unit, and lesson levels within the program as you review.

Highlighting diverse mathematicians

Helping students see themselves as mathematicians

Helping our students develop a strong, healthy, and flexible math identity is crucial if we are to prepare the next generation of creative problem solvers.

To that end, we've designed Amplify Math to show students three things:

1. They are mathematicians.
2. The math of today's world was largely shaped by a diverse range of mathematicians who deserve to be learned about.
3. Learning is never finished.

In support of the first two principles, we've embedded numerous featured mathematicians into the program. These diverse mathematicians and their work are introduced to students within the context of the lesson. Students are always shown the connection between the featured mathematician's work and the work they are doing in class. Learning about their lives and contributions, students see that there's no one face of math achievement.

Maryam Mirzakhani

Taking the IM K-12 Math content further

Illustrative Mathematics' curriculum IM K-12 Math ${ }^{\text {Tw }}$, is highly rated on EdReports.org, well regarded by teachers who know and use it, and growing in popularity with district leaders. The program is coherent and puts engaging, real-world problems at the center of instruction. While Amplify Math is based on and protects the most valuable aspects of the IM K-12 Math ${ }^{\text {™ }}$ program, we have decided to make certain changes and additions to better serve busy teachers

Amplify Math offers:

Clear, concise, and effective teacher supports.
Teachers want time back in their day, and we deliver that by making lessons easy to read through and understand while still providing just-in-time support to keep the classroom discussion moving. Amplify Math teachers will find they need to spend less time preparing to teach and can more easily navigate the provided guidance during instruction

A tested lesson design.

We've tested our lessons with field trial teachers to ensure we're not asking teachers and students to accomplish too much during a 45- or 50-minute session or a double period block.

Low-floor, high-ceiling unit launch lessons.
Each unit begins with a low-floor, high-ceiling lesson that introduces the unit's big idea through a compelling story that often relates to a student's community, culture, or identity.

Data-driven differentiation for all students.

Instead of generic instructional suggestions, Amplify Math's differentiated supports make math more accessible for all students, and include Power-ups to ensure just-in-time support for all students.

[^4]A more visual and social experience, providing teachers with real-time insights.

Amps, our social digital lessons powered by Desmos technology, make more visual, collaborative moments possible while providing teachers with real-time insights into student thinking.

A narrative and storytelling element.
Infusing math instruction with history and storytelling allows students to make connections with math and their everyday lives. It's also a way to help foster positive math identities for students who might not see themselves in other core math programs.

A comprehensive suite of assessments.
nsights, data, and reporting in Amplify Math drive performance for all learners and allow teachers to know where their students are, what they think, what they might not yet understand, and what needs to happen next.

Intuitive and easy-to-follow print resources.
Amplify Math's print resources are engaging and inviting for students. Streamlined and easy to follow, they allow teachers to focus on creating moments for student collaboration and discussion.

Program resources

Student materials

Student workbooks, two volumes

Hands-on manipulatives (middle school only; optional)

Additional Tennessee lessons

Digital Teacher Edition and class monitoring tools

(3) Amps
 powered by desmos

Amps, our exclusive collection of digital lessons powered by Desmos

Teacher Edition,

Additional Practice

and Assessment Guide blackline masters

two volumes

Teacher materials

Supporting features

Access and equity

Engaging all students in grade-level content every day

Amplify Math includes numerous, tightly connected supports to ensure all students can access grade-level content every day. Design features include:

- Consistent lesson structure.
- Automatically assigned differentiated just-in-time supports called Power-ups.
- Compelling historical and modern narratives and realworld situations.

The materials make use of instructional strategies that break down barriers that might stand between students and the content, including:

- Instructional and mathematical language routines
- Physical and digital manipulatives
- Visual aids
- Graphic organizers

Graphic organizers

Power-up

For students who need additional support naming and describing a rectangular prism (from Lesson 13, Practice Problem 6):

Consider providing students with a model of a rectangular prism built out of unit cubes Have them match each side on the three-dimensional model to the two-dimensional representation, numbering each side on their paper. Explain how the dotted lines show the sides that they cannot see when looking at the prism from this angle. Demonstrate these sides with the three-dimensional model.

Power-ups are automatically assigned supports for students who need an additional boost to their learning experience. These just-in-time supports give students the chance to experience success with the lesson's content.

Power-up reports group students based on performance and provide item analysis for the formative practice problem, along with suggested next steps.

Bringing in and including student background knowledge in the classroom

In many cases, Amplify Math creates optional opportunities for students to share background experiences and activate background knowledge as they relate to the math activities.

Celebrating and working from what students know and can do

When students feel they are able to bring their whole selves to math class, they are more likely to see both the utility and the beauty of mathematics. If they can see themselves, their experiences, their families, and their communities in the content, they are more likely to consider themselves doers of math.

Expose your students to a wide range of relevant scenarios, ideas, and people to ensure they can see themselves as players in the world of math.

Sub-Unit 3

${ }^{\text {敉呚 Whole Class }}$
Piecewise Functions

In this Sub-Unit, students create, graph, interpret, and analyze piecewise and absolute value functions, and relate them to the music of Atlanta.

Read and discuss
Read the narrative
aloud as a class or
have students read
it individually. If time permits, have students discuss in pairs or as a class:
-What do you notice or wonder about the narrative?

- What words or
phrases resonate with you?

Are you familiar with the civil rights history of Atlanta's Sweet Auburn neighborhood? What can you do to learn more?

- Can you think of ways the civil rights the development of music or vice versa?

Create spaces where their thinking can be explained and examined without being immediately graded as right or wrong.

MP5. MP6. HSS.D.A.

Students draw squares to geometrically calculate and interpret a data set's standard deviation.

Activity 1 Another Measure of Variability

52 . What simlarteres and differences so
2. What sislumaties and differecess dovou notice between catuluating the MAD and

Launch
Distribute graph paper, rulers, and colored pens/pencils to each student. Have students complete Problems 1 and 2 independently, then share their work with a partner. If differi to reach a consensus. Then have students complete Problem 3 with their partn

Monito

Help students get started by modeling the
nsir for pints of ario
Excluding the area of squares with double values
number of data values to the number of of squares
they sketched.
Squaring the values of the data set to determine
the areas of the squares. Refer to the Warm-up.
reminding students that they are working with
distances rather than data values.
Look for productive strategies:
"average squarese (MP5).
Understanding properties of
Generalizing a process to calculate the standard
deviation in Problem 3 (MP8).
Activity 1 continued >
(1)

```
Accessibility 
```

Accessibility
Before students begin the activit, remind them of the lQR (interquartie rang) and
Before students begin the activit, remind them of the lQR (interquartie rang) and
MAD (mean absolute deviation) and what they describe about data) set.A some
MAD (mean absolute deviation) and what they describe about data) set.A some
lol
lol
that compares and contrasts these three measures of variablity
that compares and contrasts these three measures of variablity
Interquartile range (IQR)
Interquartile range (IQR)
Standard deviation (SD)

```
    Standard deviation (SD)
```

\qquad
(1) Launch

Distribute graph paper, rulers, and colored pens/pencils to each student. Have students complete Problems 1 and 2 independently, then share their work with a partner. If differing responses arise, have them work together to reach a consensus. Then have students complete Problem 3 with their partner.

Connect

Have pairs of students share their resulting graphs for Problems 1 and 3, modeling their strategies for creating their graphs. Select and sequence students using productive strategies, highlighting anyone generalizing the process Discuss the process for calculating the side length of the "average square."

Note: There are two formulas for standard deviation. In this activity, students computed the average before taking the square root, dividing the sum of the squares by the number of data points. Standard deviation is more commonly computed by dividing the sum by one less than the number of data points.

3 Celebrate work while understanding what it tells you about how to advance the class discussion in productive ways.

Connect

Have students share their thinking and the strategies they used to determine solutions to the equation.

Highlight that students can use different strategies to determine the values of x or y.

Ask, "What do the ordered pairs (7, 9.6), $(100,84),(10,12)$ and $(70,60)$ represent?" Sample response: These represent solutions to the equation and would also be the coordinates of points that fall on the line when this equation is graphed on the coordinate plane.

Fostering a positive math identity

Amplify Math is a program that acknowledges and celebrates the experiences and heritages of all students. Activities and instructional supports have been designed to reflect and leverage the knowledge systems of diverse groups including, Indigenous, Black/African American, Latinx, and nonWestern peoples and cultures.

The inclusion of these activities and instructional supports in the program help:

- Students develop positive social identities based in the cultures in which they claim membership
- Students build empathy and respect for people both different and similar to them.

Reflect

Prior to synthesizing the concepts of the lesson, allow students a few moments for reflection. Encourage them to record any observations in their Student Edition. To help them engage in meaningful reflection, consider asking:

- "What was the most surprising thing when working with the digital instrument?
"What questions do you still have about the relationship between ratios and music?"

Synthesize

Display the Summary from the Student Edition. Have students read the Summary or have a student volunteer read it aloud.

Highlight that during this unit, students will continue working with ratios, focusing on proportional relationships and using ratios to model real-world relationships.

Ask:

- "Does anyone play a string instrument, and if so, which one? Have you ever noticed any ratios or markings on the instrument?" Sample response I play the guitar and it has frets on it.
- "If you were to build your own stringed instrument, how would you decide where to place your fingers to create different notes?" Sample response: I would mark $\frac{1}{2}$ and $\frac{2}{3}$ because I know those create a nice sound when played together.
- "How does music help people communicate with each other?"
"Can you think of any other ways that ratios may help people to communicate or exchange ideas?"

Summary The World in Proportion
Review and synthesize the relationship between ratios and making music.

Reflect
Prior to synthesizing the concepts of the lesson
allow students a few moments for reflection. Encourage them to record any observations in their Student Edition. To help them engage in
"What was the most surprising thing when working
with the digital instrument?"
What questions do you still have about the

Synthesize

Display the Summary from the Student Edition Have students read the Summary or have a tudent volunteer read it aloud.

Highlight that during this unit, students wil continue working with ratios, focusing on proportional relationships and using ratios to odel real-world relationships.

Ask:
"Does anyone play a string instrument, and if so. which one? Have you ever noticed any ratios or markings on the instrument?" Sample response, play the guitar and it has frets on
"If you were to build your own stringed instrument. how would you decide where to place your finger
to create different notes?? Sample response: would mark $\frac{1}{2}$ and $\frac{2}{3}$ because I know those create nice sound when played together.
"How does music help people communicate with each other?"
"Can you think of any other ways that ratios may
help poople to communicate or exchange ideas?"

- Have you had any personal experiences that are related to the narrative in any way?

Differentiating instruction

Multiple pathways to the math

Working with advisor Dr. Paulo Tan and experts at the English Learners Success Forum (ELSF), the Amplify Math curriculum team has developed intentional and point-ofuse differentiated supports that invite all students into the mathematical conversation.

PRINT ■ D DIGITAL \square

Pre-Unit Readiness Assessment

Amplify Math's Pre-Unit Readiness Assessment helps teachers identify student needs. The problems in the Pre-Unit Readiness Assessment cover the lessons' prerequisite skills to help teachers know where they might provide additional support before and during the lessons in the unit, informing instruction by identifying specific student needs for the unit. Using these insights, teachers can use the flexible built-in support to differentiate appropriately at point of use.

Differentiated Support

Accessibility: Guide Processing and Visualization
If available, play the audio of a heart beating for five seconds to demonstrate how to count a heartbeat. Alternatively, if students have difficulty finding and counting their pulse, play the audio of a heart beating for 20 seconds and have students use that value to complete the Warm-up

\uparrow Power-up

For students who need additional support determining the slope of a line (from the Pre-Unit Readiness Assessment, Problem 4):

Use Problem 4 from the Pre-Unit Readiness Assessment and have students draw several slope triangles. Remind students that the slope is the vertical change divided by the horizontal change.

Accessibility and extension supports

Every Amplify Math lesson begins with a warm-up activity. But some students may require additional support with unfinished learning to get them ready for the grade-level content addressed in a particular lesson. Based on students' performance on formative practice problems, students who need this support are automatically identified for teachers, and given differentiated Power-ups to the grade-level content.

Students are never labeled as above or below grade level in Amplify Math. The wide range of differentiated instructional supports are categorized as either accessibility or extension supports within the Teacher Edition. These supports can be implemented flexibly as students may not need support for every lesson, but instead a particular activity within a lesson.

Grounded in the Universal Design for Learning (UDL) framework and guidelines (CAST, 2018), our accessibility supports provide students with the help they may need on a given activity and makes the content accessible for all students.

Examples of accessibility supports include:

- Removing or restricting physical requirements (for example, providing measurements instead of having students do the measuring).
- Scaffolding directions.
- Chunking the task into smaller, more manageable parts.
- Providing checklists, tables, and graphic organizers.
- Optimizing access to tools, such as physical and digital manipulatives, and technology.
- Providing options for students to use annotations and color coding to highlight connections.

Extension support provides teachers with opportunities for students to examine grade-level mathematics at a deeper level as opposed to introducing future grade or course mathematics.

Extension support subcategories include:

- Math Enrichment
- Math Around the World
- Interdisciplinary Connections

Navigating the program

Navigating the print program 36
Flexible, social problem-solving experiences 40
Amplify Math digital experience 42
Navigating the digital program 44

Navigating the print program

Amplify Math provides teachers with easy-to-follow instructional supports that make implementing the program easier and enjoyable for both you and your students.

Lesson Brief

UNIT 1 | LESSON 3

Symmetry and Reflection

Let's describe ways figures reflect on the plane.

Lesson goals, coherence mapping, and a breakdown for how conceptual understanding, procedural fluency, and application are addressed are included for each lesson.

The standards the lesson is addressing, building on, and building toward are clearly outlined.

Common Core Standards Report shown. Tennessee Standards Report available for Back to School 2022.

$\begin{array}{l:l}\text { Amps powered by desmos } & \text { Activity and Presentation Slides }\end{array}$
For a digitally interactive experience of this lesson, log in to Amplify Math at learning.amplify.com.

Practice \cap Independent

Materials Math Language

- Exit Ticket
- Additional Practice
- geometry toolkits: rulers, tracing paper, protractors (optional) Development
.
- image
- line of reflection
- orientation
- preimage*
- prime notation
- reflection

Review words

- corresponding points
- perpendicular
- symmetry
- vertex
-Students may confuse preimage and image throughout the unit when discussing the original timaughount the unit when discussing the orginal image and the transtormedimage. ..ighifght the
prefixpre in preimage indicates the original image

Building Math Identity and Community
Connecting Mathematical Practices
Self-management: Students may not want to make the effort required to use precise units and measuring tools to measure the exact distance of corresponding points to the line of reflection (MP6). Ask them to identify what the stumbling block is. By identifying the cause of their negative emotions, students will be able to form a plan that will help them regulate heir behavior in response. For example, they might just need a peer to remind them how to use and read measurements on a ruler

Amps : Featured Activity

Activity 1
Real-Time Reflections
When students adjust the line of reflection,
an animation shows the reflected image giving students an opportunity to revise their response, if needed.

Modifications to Pacing
You may want to consider these additional modifications if you are short on time.
In Activity 2, Problem choices D, E and F may be omitted.
Activity 3. Problem 1 may be omitted In this activity, students practice drawing reflections. Students will have other opportunities to practice drawing reflections in the Practice.

[^5]Suggested timing for the lesson and each activity is included for quick reference.

The benefits of teaching one or more of the activities online are outlined for each lesson.

Every lesson pacing guide includes modification suggestions.

Lesson

The student-facing content is presented to the left.

A short description of the activity and its targeted goal is outlined at the top.

Easy 1-2-3 guidance for teachers shortens the amount of time required to plan. The "look for" prompts are helpful to scan while teaching.

Differentiation supports, including our just-in-time supports called Power-ups, provide practical guidance for scaffolding or extending the learning for all students.

Each lesson ends with an Exit Ticket which includes a self-assessment for students.
In the Additional Practice book, students
25-26 Unit1 REidTTansommations and Congruence
25-26 Unit1 REidTTansommations and Congruence
will find a worked-out example and four to six practice problems per lesson.

Flexible, social problem-solving experiences

Digital lessons, when designed the right way, can be powerful in their ability to surface student thinking and spark interesting and productive discussions. To bring our vision of what digital lessons can and should be to life, we've partnered with Desmos to create our complete library of Amps-social, collaborative lessons powered by Desmos technology that make sense to students and work harder for teachers.

Intuitive and engaging student experience

The student experience is intuitive and engaging because the content and the tools are interesting and exciting. Students work together and interact with the mathematics in real time to quickly see that reasoning and revising are important parts of math class.

Powerful teaching and monitoring tools

Imagine knowing where your students are, what they think, what they might not get yet, and what needs to happen next, all in real time. This is all possible with Amplify Math.

Amplify Math digital experience

Classroom monitoring tools

For students, Amplify Math's digital experience is fun and dynamic, with plenty of opportunities for students to talk through their reasoning, work with their peers, and gain new understanding. Teachers gain insight into student reasoning with real-time insights, data, and reporting the drive performance for all learners.

powered by desmos

Launch

Teachers launch an activity and ensure students understand what's being asked.

Teacher experience

When you launch a lesson, you'll have access to easy-to-skim teacher notes and all of the controls necessary to manage the lesson.

2 Monitor

Students interact with each other to discuss and work out strategies for solving a problem.

After students have started working, you will access the Class Progress screen to see where students are in the lesson and even control which problems they have access to.

When you launch an Amp, you will be kickstarting small group and whole-class discussions where students can see how their thinking can impact a situation and learn how their peers are justifying their actions and decisions.

3 Connect

Students construct viable arguments and critique each other's reasoning, then synthesize with the teacher at the end.

All student responses can be viewed easily on the All Students screen. You can often view a composite view of responses and spotlight student work anonymously.

4 Review

After class, teachers can provide feedback on submitted student work and run reports.

After students complete work that's ready for grading, you can head to Classwork to quickly provide feedback.

Once students have completed an Exit Ticket, a practice problem set, or an assessment, you can run reports at the class, student, and standards levels to check in on student progress.

Navigating the digital program

Amplify Math's digital experience is fun and dynamic, with plenty of opportunities for students to talk through their reasoning, work with their peers, and gain new understanding. Teachers gain insight into student reasoning with real-time insights, data, and reporting the drive performance for all learners.

Log in

1. Click on Teacher

Access your Amplify Math digital content using your unique login credentials or by visiting the digital review site tnmath.amplify.com.

2. Click on "Get Started"

3. Choose your grade

Unit organization

Amplify Math is organized by units. Grades 6-8 contain 8 units and Algebra 1 contains 6 units.

Navigating to and teaching a lesson

After selecting a unit, review the unit's planning resources. These resources include the Unit Overview, Unit Narratives, Professional Learning, Differentiated Support, and unit materials.

Navigating to the lesson content

Lessons are found in the Sub-Unit. Each lesson contains all the resources needed to plan and teach.

Sub-Unit 1: Area of Special Polygons

11 Lessons

Sub-Unit 1: Area of Special Polygons
© JUMP DOWN TO SUB-UNIT OVERVIEW

Lesson 3:	Lesson 4:	Lesson 5:
Tiling the Plane	Composing and Rearranging to Determine Area	Reasoning to Determine Area
Lesson 6:	Lesson 7:	Lesson 8:
Parallelograms	Bases and Heights of Parallelograms	Area of Parallelograms

Reasoning to Determine Area

Lesson 8:

Area of Parallelograms

Teaching a lesson online

Similar to the unit level，here you can scroll down and learn more about the lesson．On the right side you＇ll find a list of downloadable resources．
When you＇re ready，click the Teach button．

T］Teach

Focus
Goal
1．Compare areas of the shapes that make up a geometric pattern． （Language Goals：Speaking and Listening）

2．Comprehend that the term area refers to how much of the plane Writing）

[^6]

The tab that opens allows you to preview the lesson. You can look at any slide by scrolling across the bottom carousel. Teacher notes are provided on the right. Your students will see anything in the large center portion of the screen.

Go ahead and click "Start Class" in the bottom right corner. You should see the class you already created.

3 You should notice that there's now a purple frame around the student-facing content. You're teaching! You can advance the lesson by clicking the arrows in the bottom right hand corner.

When you're ready, click "View Work" at the top.

A new tab has opened. This is the tab you'd drag to the presenting screen if you were teaching. It will advance when you advance your Teacher Edition screen. For now, head back to the last tab.

4 Here is where you'll be able to see your students' work in real time. There are two students in this class. Certain slides will let you see a composite view of student work. You can change slides by using the arrows in the upper left hand corner.

Select "ALL SLIDES" to view the Class Progress View.

5 Here you will see all of your students and their work in the lesson. If the system can check for a right or wrong answer, you'll see an " X " or a check under that slide. Semi-shaded rectangles mean students have started work, but not finished or submitted anything.

If you're having students go into the lesson ahead of time and work, their progress will be saved and you can review it here. If you're teaching synchronously, work will populate here as it's done.

(0) Amps

powered by desmos

We've partnered with Desmos to create our complete library of Amps-social, collaborative digital lessons that recast technology from simply mirroring what can be done in a workbook to presenting captivating scenarios where students work together and see how their decisions change things in real time.

Data and reporting

Classwork 52
Assessments and reporting 54

Classwork

In addition to the full suite of assessments, Classwork is a space where teachers are able to view student work, review students' auto-scores for math problems, and give manual scores for any student open responses in the math curriculum.

Classwork allows teachers to:

- View and grade student work and access student work to better understand students' progress as a class and individually.
- Teachers can view direct student work.
- Teachers can see overall scores for student work per class and per student.
- Teachers can see auto-scoring and validations for various problem types per student.
- Teachers can input manual scores for student work.
- Teachers can print bulk or individual student work to track progress and talk about progress.
- Gain a comprehensive understanding of individual students' progress and work in order to better plan for each individual student's learning needs.

MyWork is a student version of Classwork where students can access the work they have completed, see work that has been assigned to them, and go back and resubmit any work.

Assessments and reporting

Amplify Math offers a comprehensive suite of assessments, accessible in print and digital formats, for multiple opportunities to monitor and evaluate student learning and progress. If students take assessments in the Amplify platform, reports can be run at the student, standard, assignment, school, and district levels.

Course-level	Unit-level	Lesson-level		
Diagnostic				
Pre-Unit Readiness				
Assessment			\quad	Formative
:---				
Interim				
assessments		Exit Tickets		
:---				
Lesson practice				
Additional practice				

Common Core Standards Report shown. Tennessee Standards Report available for Back to School 2022.

Performance reports include:

1. An overview of class performance on unit assessments, Exit Tickets, and practice sets.
2. Performance by class, student, and problem.
3. Item-level analysis to illuminate class-wide misconceptions and to see individual student work on every problem.

Stine Math 8 - Period $3 \quad$ V

Unit Performance Reports Benchmark Reports Standards Reports

Unit 8.8: Associations in Data

Assessments Exit Tickets

Student Exit Tickets responses

Lesson 18: Two Related Quantities, Part 2 v
 en

Standards mastery reports include：

1．Student－and class－level performance at the standard，cluster，or domain level．

2．Student growth on individual standards，with data from specific activities and problems for each student，and the entire class．

3．Progress toward mastery with detail on how students performed against the standard in the past，and where they will encounter it in the future．

Common Core Standards Report shown． Tennessee Standards Report available for Back to School 2022.
$\bullet \bullet \bullet$

Standard	Descripion	Class verage（\％）	$\begin{array}{r} \text { Standard } \\ \text { progress }(\%) \end{array}$
6．EE．A． 1	Write and evaluate numerical expressions involving whole－numbe．．．	80	100
6．EE．A． 2	Write，read，and evaluate expressions in which letters stand for nu．．．	79 －	98
6．EE．A． 3	Apply the properties of operations to generate equivalent express．．．	76 －	95
6．EE．A． 4	Identify when two expressions are equivalent（i．e．，when the two ex．．．	78 －	80
6．EE．B． 5	Understand solving an equation or inequality as a process of answ．．．	75 －	75
6．EE．B． 6	Use variables to represent numbers and write expressions when so．．．	59 区	70
6．EE．B． 7	Use variables to represent numbers and write expressions when so．．．	82	65
6．EE．B． 8	Write an inequality of the form $x>c$ or $x<c$ to represent a constrai．．．	84 －	45
6．EE．C． 9	Use variables to represent two quantities in a real－world problem th．．．	74 －	25

Students	$\begin{array}{r} \text { Pre-Req } \\ \text { standard } \\ \text { average }(\%) \end{array}$	$\begin{array}{r} \text { Standard } \\ \text { average (\%) } \end{array}$	Progress thru standard（\％）	$\frac{2.6 \text { Lesson }}{\text { Exit Ticket }}$	2．6 Practice	
					Problem 1	Problem 3
All students	714	74 \＃	80	32\％\times	20\％	49\％区
Anthony Bryk		100	21	1／2	1／3	1／2
Mihaly Csikszentmihalyi	$80 \sim$	－	0			
Carol Dweck	72 －	75 A	22	1／2	0／3	1／2
Jamie Escalante	69 －	69 －	21	0／2	0／3	1／2
Fatima al－Fihri	60 －	60 －	22	1／3	1／3	1／2
Herbert Ginsburg	23 区	23 区	23	0／2	0／3	
Eric Donald Hirsch	$80 \sim$	$80 \sim$	29	1／2	1／3	0／2
Jovita Idár	79 －	79 －	21	1／2	1／3	1／2
Kenneth Koch	$81 \sim$	－	0			
Magdalene Lampert	72 －	72 ＊	18	1／2	1／3	0／2
Maria Montessori	70 －	70 －	19	0／2		
Michelle Obama	61%	61 －	17	1／2		
Seymour Papert	23 x	$23 \times$	19	1／2		
Linda Roberts	62 －	62 －	18	0／2		
Dorothy Strickland	69 －	69 －	17	1／2		
Peter Venkman	$80 \times$	80 区	21	1／2		

Interim assessment reports include:

1. Progress toward mastery and preparation for highstakes assessments.
2. Student- and class-level performance data from interim assessments to help teachers diagnose student needs and administrators see school-wide trends.
$\bullet \cdot$
Stine Math 8 - Period $3 \rightarrow$

Benchmark Reports Standards Report
| class overiew Benchmark Assessments
By Problem Class average on the Benchmark assessments
Number of students at each level per Benchmark. Student work may need to be manually scored.

Student Benchmark Assessment responses

Benchmark Assessment 1

\square
Class Overview
Class Overview By Problem

All problems	Percentage					星	(1)
Students -	Total	P1	P2	P3	P4	P5	P6
All students	73\%	35\%	100\%	50\%	100\%	100\%	73\%
Mihaly Csikszentmihalyi	\square						
Kenneth Koch	\square						
Herbert Ginsburg	8/11	1/2*	1/1	1/2*	1/1	2/2	2/3
Jovita Idár	8/11	1/2*	1/1	$1 / 2^{*}$	1/1	2/2	2/3
Michelle Obama	8/11	1/2*	1/1	$1 / 2$ *	1/1	2/2	2/3
Dorothy Strickland	8/11	1/2*	1/1	$1 / 2$ *	1/1	2/2	2/3
Anthony Bryk	6/11	0/2*	1/1	$1 / 2^{*}$	1/1	1/2	2/3
Carol Dweck	5/11	0/2*	1/1	$1 / 2$ *	0/1	1/2	2/3
Fatima al-Fihri	5/11	1/2*	1/1	$1 / 2$ *	1/1	2/2	3/3
Magdalene Lampert	5/11	1/2*	1/1	$1 / 2^{*}$	1/1	2/2	3/3
Seymour Papert	5/11	1/2*	1/1	$1 / 2 *$	1/1	2/2	2/3
Peter Venkman	5/11	1/2*	1/1	1/2*	1/1	2/2	2/3
Jamie Escalante	4/11	1/2*	1/1	$1 / 2$ *	1/1	2/2	2/3
Eric Donald Hirsch	4/11	$1 / 2 *$	1/1	1/2*	1/1	2/2	2/3
Maria Montessori	4/11	1/2*	1/1	$1 / 2 *$	1/1	2/2	2/3
Linda Roberts	4/11	$1 / 2^{*}$	1/1	1/2*	1/1	2/2	2/3

Notes

For more information on Amplify Math, visit tnmath.amplify.com.

Amplify. desmos

[^0]: featuring 0 Amps powered by desmos

[^1]: Amplify ${ }^{\circ}$ and Amps $^{\text {Tw }}$ are trademarks of Amplify Education, Inc
 Desmos ${ }^{\circ}$ is a trademark of Desmos, Inc.
 IM K-12 Math ${ }^{\text {T" }}$ and IIlustrative Mathematics ${ }^{\circ}$ are trademarks of Illustrative Mathematics, which is not affiliated with Amplify
 Amplify is not an IM Certified Partner.

[^2]: Amplify ${ }^{\circ}$ and Amp" are trademarks of Amplify Education, Inc.
 Desmos ${ }^{\circ}$ is a trademark of Desmos, Inc.
 IM K-12 ${ }^{\text {TM }}$ Math and IIlustrative Mathematics ${ }^{\circ}$ are trademarks of IIlustrative Mathematics, which is not affiliated with Amplify. Amplify is not an IM Certified Partner.*

[^3]: Key:
 \bigcirc Independent $\stackrel{\circ}{\circ}$ ㅇํ Small Groups กำำ Pairs ํํํํํํ Whole Class

[^4]: EdReports and associated marks and logos are the trademark property of EdReports.org. Inc.

[^5]: 19B \qquad

[^6]: Materials

 扇 Exit Tickets：Lesson 1.03

 Student Edition Pages：Lesson 1.03
 （局）Student Edition Pages with Annotations Lesson 1.03

 呞 Teacher Edition Pages：Lesson 1.03

 圑 Black Line Master：Lesson 1．03，Activity 1

