
AmplifyScience

Participant Notebook

Grade K - Unit 3, Sunlight and Weather Internalization / Guided Planning

Unit Internalization / Guided Planning

Agenda

Part 1

Introduction & Framing

NGSS & 3D Learning

Phenomenon-Based Instruction

Unit Internalization

Part 2

Teaching and Learning in Amplify Science Instructional

Approach Reflection Planning a Lesson

Closing

Demo account for your workshop:

 $\mathsf{URL:} \ \textbf{learning.amplify.com} \ (\mathsf{Log} \ in \ with \ \mathsf{Google})$

Temporary username: ______@pd.tryamplify.net

Password: _____

Reflection

Use the provided spaces as a place for reflection throughout the session.

Session goals and student outcomes

What	Why	How

Year at a glance

Units per year

Unit types

Although every Amplify Science unit provides a three-dimensional learning experience, each unit emphasizes one of the following specific science and engineering practices.

Investigation

Investigation units focus on the process of strategically developing investigations and gathering data to answer questions. Students are first asked to consider questions about what happens in the natural world and why, and are then involved in designing and conducting investigations that produce data to help answer those questions.

Modeling

These Amplify Science units provide extra support to students engaging in the practice of modeling. Students use physical models, investigate with computer models, and create their own diagrams to help them visualize what might be happening on the nanoscale.

Engineering design

Engineering design solves complex problems by applying science principles to the design of functional solutions, and iteratively testing those solutions to determine how well they meet pre-set criteria. All Amplify Science engineering design units are structured to make the development of such solutions the central focus.

Argumentation (grades 3–5)

These Amplify Science units provide extra support to students engaging in the practice of argumentation. As students move up the K–5 grades, they focus on important aspects of argumentation in an intentional sequence.

Course structure

Key

Argumentation
Investigation

Engineering design
 Modeling

Kindergarten (66 lessons)

Needs of Plants and Animals **22 lessons** ① Pushes and Pulls **22 lessons** ⑤ Sunlight and Weather **22 lessons** Ø

Grade 1 (66 lessons)

Animal and Plant Defenses **22 lessons** Light and Sound **22 lessons** Spinning Earth **22 lessons 1**

Grade 2 (66 lessons)

Plant and Animal Relationships **22 lessons** ① Properties of Materials **22 lessons** ③ Changing Landforms **22 lessons** Ø

Grade 3 (88 lessons)

Balancing Forces **22 lessons** (1) Inheritance and Traits **22 lessons** (1) Environments and Survival **22 lessons** (2) Weather and Climate **22 lessons** (A)

Grade 4 (88 lessons)

Energy Conversions **22 lessons** Vision and Light **22 lessons** Earth's Features **22 lessons** Waves, Energy, and Information **22 lessons**

Grade 5 (92 lessons)

Patterns of Earth and Sky 22 lessons
Modeling Matter 22 lessons
The Earth System 26 lessons
Ecosystem Restoration 22 lessons
A

K-5 Program components

The K-5 program contains both physical and digital instructional materials. The table below describes materials and, when applicable, includes links to find additional information.

Teacher materials

Teacher's Guide	Contains all of the unit's lesson plans, differentiation strategies, and an assortment of instructional supports and resources at the unit, lesson, and individual activity level (also available in print for purchase): <u>bit.ly/amplifyk5navigation</u>
Classroom Slides	Each lesson has a downloadable and editable PowerPoint or Google Slides file to help guide teachers and students through the lesson: <u>bit.ly/amplifyslideshowto</u>
Classroom Wall materials	The printed Classroom Wall materials can be found in the unit kit. PDFs are also provided in the digital Teacher's Guide: <u>bit.ly/amplifyclassroomwall</u>
Embedded assessments	Includes formal and informal opportunities for students to demonstrate understanding and for teachers to gather information: <u>bit.ly/amplifyk5assessment</u>
Program Guide	A resource for finding out more about the program's structure, components, supports, how it meets the standards, and flexibility: <u>bit.ly/amplifyprogramguide</u>
Program Hub	Features remote learning resources, training videos, hands-on investigation videos, and Professional Learning resources: <u>bit.ly/amplifyprogramhub</u>

Student materials

Hands-on materials	The unit kit includes both consumable and non-consumable physical materials used for the hands-on activities that are carried out at strategic points throughout the unit. <u>bit.ly/amplifymaterials</u>
Investigation Notebooks	Contains instructions for student activities and space for students to record data, reflect on ideas from texts and investigations, and construct explanations and arguments: <u>bit.ly/amplifyk5fillable</u>
Student books	Informational texts written by the Lawrence Hall of Science allow students to practice reading within the science content area: <u>bit.ly/amplifystudentbooks</u>
Digital applications	Digital tools and simulations, available across grades 2–5, support and advance learning objectives by giving students opportunities to analyze data, visualize phenomena, and share their thinking: <u>bit.ly/amplifydigitaltools</u>

Curriculum add-ons

Spanish-language licenses	Spanish materials that mirror their English counterparts in both content and quality are also available for purchase: <u>bit.ly/amplifyspanish</u>
Interactive Classroom	A new digital interface for teachers and students designed for classrooms in which every student has a digital device: <u>bit.ly/amplifyinteractiveclassroom</u>

Three dimensional learning reference

3-D learning engages students in using scientific and engineering practices and applying crosscutting concepts as tools to develop understanding of and solve challenging problems related to disciplinary core ideas.

Science and Engineering Practices

- 1. Asking Questions and Defining Problems
- 2. Developing and Using Models
- 3. Planning and Carrying Out Investigations
- 4. Analyzing and Interpreting Data

- 5. Using Mathematics and Computational Thinking
- 6. Constructing Explanations and Designing Solutions
- 7. Engaging in Argument from Evidence
- 8. Obtaining, Evaluating, and Communicating Information

Disciplinary Core Ideas

Earth and Space Sciences:

- Earth's Place in the Universe
- Earth's Systems
- Earth and Human Activity

Life Sciences:

- From Molecules to
- Organisms
- Ecosystems
- HeredityBiological Evolution

Physical Sciences:

- Matter and its
 Interactions
- Motion and Stability
- Energy and their
 Applications

Engineering, Technology and the Applications of Science:

- Engineering Design
- Links among Engineering Technology, Science and Society

Crosscutting Concepts

- 1. Patterns
- 2. Cause and Effect
- 3. Scale, Proportion, and Quantity
- 4. Systems and System Models

- 5. Energy and Matter
- 6. Structure and Function
- 7. Stability and Change

Scientific and Engineering Practices

- Asking questions (for science) and defining problems (for engineering)
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking
- 6. Constructing explanations (for science) and designing solutions (for engineering)
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, and communicating information

Disciplinary Core Ideas

Life	Science	Physical Science
LS1:	From Molecules to Organisms: Structures and Processes	PS1: Matter and Its Interactions PS2: Motion and Stability: Forces and
LS2:	Ecosystems: Interactions, Energy, and Dynamics	Interactions PS3: Energy
LS3:	Heredity: Inheritance and Variation of Traits	PS4: Waves and Their Applications in Technologies for Information Transfer
LS4:	Biological Evolution: Unity and Diversity	
Eart	h & Space Science	Engineering & Technology
ESS1:	Earth's Place in the Universe	ETS1: Engineering Design
ESS2:	ESS2: Earth's Systems ETS2: Links Among Engineering, Technology,	
ESS3:	Earth and Human Activity	Science, and Society

Core and Component Ideas

Life Science	Earth & Space Science	Physical Science	Engineering & Technology
LS1: From Molecules to Organisms:	ESS1: Earth's Place in the Universe	PS1: Matter and Its Interactions	ETS1: Engineering Design
Structures and Processes	ESS1.A: The Universe and Its Stars	PS1.A: Structure and Properties of	ETS1.A: Defining and Delimiting an
LS1.A: Structure and Function	ESS1.B: Earth and the Solar System	Matter	Engineering Problem
LS1.B: Growth and Development of	ESS1.C: The History of Planet Earth	PS1.B: Chemical Reactions	ETS1.B: Developing Possible Solutions
Organisms		PS1.C: Nuclear Processes	ETS1.C: Optimizing the Design Solution
LS1.C: Organization for Matter and Energy	ESS2: Earth's Systems	DS2: Motion and Stability Fores	ETS2: Links Among Engineering,
Flow in Organisms	ESS2.A: Earth Materials and Systems	PS2: Motion and Stability: Forces and Interactions	
LS1.D: Information Processing	ESS2.B: Plate Tectonics and Large- Scale System Interactions	PS2.A: Forces and Motion	Technology, Science, and
LS2: Ecosystems: Interactions, Energy,	ESS2.C: The Roles of Water in Earth's	PS2.B: Types of Interactions	Society ETS2.A: Interdependence of Science,
and Dynamics	Surface Processes	PS2.C: Stability and Instability in	Engineering, and Technology
LS2.A: Interdependent Relationships	ESS2.D: Weather and Climate	Physical Systems	ETS2.B: Influence of Engineering,
in Ecosystems	ESS2.E: Biogeology	i nysicai systems	Technology, and Science on
LS2.B: Cycles of Matter and Energy		PS3: Energy	Society and the Natural World
Transfer in Ecosystems	ESS3: Earth and Human Activity	PS3.A: Definitions of Energy	
LS2.C: Ecosystem Dynamics, Functioning,	ESS3.A: Natural Resources	PS3.B: Conservation of Energy and	
and Resilience	ESS3.B: Natural Hazards	Energy Transfer	
LS2.D: Social Interactions and Group	ESS3.C: Human Impacts on Earth	PS3.C: Relationship Between Energy	Note: In NGSS, the core ideas
Behavior	Systems	and Forces	for Engineering, Technology,
	ESS3.D: Global Climate Change	PS3.D:Energy in Chemical Processes	and the Application of Science
LS3: Heredity: Inheritance and Variation		and Everyday Life	are integrated with the Life
of Traits		PS4: Waves and Their Applications in	Science, Earth & Space Science,
LS3.A: Inheritance of Traits		Technologies for Information	and Physical Science core ideas
LS3.B: Variation of Traits		Transfer	
LS4: Biological Evolution: Unity		PS4.A: Wave Properties	
and Diversity		PS4.B: Electromagnetic Radiation	
LS4.A: Evidence of Common Ancestry and		PS4.C: Information Technologies	
, Diversity		and Instrumentation	
LS4.B: Natural Selection			
LS4.C: Adaptation			
LS4.D: Biodiversity and Humans			

Crosscutting Concepts

- 1. Patterns
- 2. Cause and effect: Mechanism and explanation
- 3. Scale, proportion, and quantity
- 4. Systems and system models
- 5. Energy and matter: Flows, cycles, and conservation
- 6. Structure and function
- 7. Stability and change

K-5 Navigation structure

				unit	ALC: N
nits (each unit	t includes 3–6 chapter	s)			
chapter -	chapter	chapter	chapter	chapter	chapter -
hapters (e	ach chapter includes 2	2-10 lessons)			

Unit Level resources

The Unit Level resources aim to quickly familiarize teachers with the unit's content, structure, and materials. It is recommended that teachers read through the Planning for the Unit documents, and consult the Teacher References as necessary. Some of the Unit Level resources include:

Planning for the Unit

Unit Overview	Describes what's in each unit and how students learn across chapters
Unit Map	An overview of what students figure out by chapter and how they figure it out
Progress Build	Explains the learning progression of ideas students figure out in the unit
Materials and Preparation	Lists materials included in the unit's kit, items to be provided by the teacher, and briefly outlines preparation requirements for each lesson
Science Background	Adult-level primer on the science content students figure out in the unit

Teacher References

Lesson Overview Compilation	Lesson Overview of each lesson in the unit, including lesson summary, activity purposes, and timing
3-D Statements	Describes 3-D learning across the unit, chapters, and in individual lessons
Assessment System	Describes components of the Amplify Science Assessment System
Embedded Formative Assessments	Includes full text of formative assessments in the unit
Books in This Unit	K-5: Summarizes each unit text and explains how the text supports instruction
Articles in This Unit	6-8: Summarizes each unit text and explains how the text supports instruction
Apps in This Unit	2-8: Outlines functionality of digital tools and how students use them

Printable Resources

Coherence Flowcharts	Visualization of how all of the different parts of a chapter connect and flow into one another so that students are able to figure out the unit phenomenon
Investigation Notebook	Digital version of the Investigation Notebook, for copying and projecting. The PDFs are fillable, so students can also complete their work digitally.
Article Compilation	6-8: Downloadable PDF with all of the unit's science articles in one document
Copymaster Compilation	Downloadable PDF with all of the unit's copymasters in one place
Print Materials	A digital copy of the Print Materials included in the Unit Kit

Unit Map

Why are the playgrounds at two schools different temperatures? Why does one playground flood?

The students at Woodland and Carver Elementary schools are not comfortable outside during their recess times. The Carver students are too cold in the morning, and the Woodland students are too hot in the afternoon. The school principals need student weather scientists to help them explain the difference in playground temperatures. Students gather data from models of the sun and of Earth's surface and observe their own playgrounds to figure out how sunlight causes changes in the temperature of different surfaces. Students then use models to figure out why Woodland's playground sometimes floods.

Chapter 1: What is the weather like on the playgrounds?

Students figure out: The weather at Carver Elementary and Woodland Elementary is similar. Both schools have many sunny days and some cloudy, windy, or rainy days. The type of weather at each school must not be causing the difference in their playgrounds' temperatures.

How they figure it out: Students learn to describe types of weather, then observe and record the weather at their own school. They read a book that helps them describe temperature and use thermometers to take measurements. Students then construct graphs to analyze weather data from each school.

Chapter 2: Why do the playgrounds get warm?

Students figure out: The surfaces of the playgrounds get warm because sunlight shines on their surfaces during the day.

How they figure it out: Students use models of the sun and of Earth's surface to measure the temperature of a surface when light is and is not shining on it. Students read about models and how scientists use them. Students measure the temperature of their own playground surface in sunlight and in shade and they act out how sunlight shining on a surface makes the surface warmer.

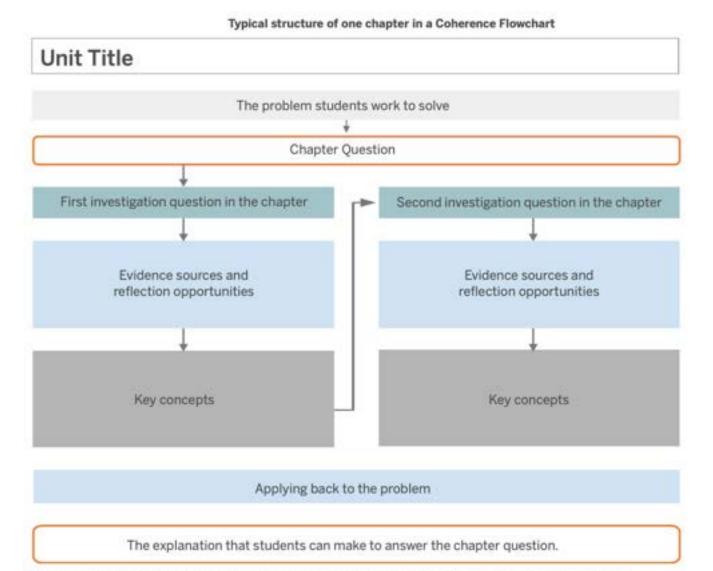
Chapter 3: Why are the playgrounds warmer in the afternoon?

Students figure out: The playgrounds at both schools are warmer in the afternoon than in the morning because sunlight has been shining on the surfaces for a longer time.

How they figure it out: Students use models to measure the temperature of a surface as light shines on it for different lengths of time. They analyze morning and afternoon temperature data from their own playground and act out how sunlight shining on a surface over time makes it get warmer and warmer.

Chapter 4: Why is Woodland Elementary School's playground always warmer during recess?

Students figure out: Woodland Elementary's playground has a darker surface than Carver Elementary's playground. Woodland's playground is warmer because dark surfaces get warmer than pale surfaces when the sun shines on them.


How they figure it out: Students use models to measure the temperature of dark and pale surfaces as light shines on them. Students also read a book about a lizard who travels to different surfaces throughout the day. Students compare the temperatures of pale and dark surfaces on their own playgrounds and evaluate how possible solutions would affect the temperature on each playground.

Chapter 5: Why does only Woodland Elementary School's playground flood?

Students figure out: Woodland's playground floods after severe rain because it has a solid surface that does not absorb water, while Carver's playground has a gravel surface that rainwater can soak into.

How they figure it out: Students use models to test four differences between the two playgrounds that could cause flooding. They evaluate solutions that would help Woodland prepare for severe rain in the future and create posters describing preparations for other kinds of severe weather.

Coherence Flowchart structure

Instruction is framed by questions about the unit's anchor phenomenon and the related problem students are solving. Chapter Questions then guide students in figuring out the phenomenon, piece by piece. Within each chapter. Investigation Questions focus students on a manageable piece of content that will help them figure out the Chapter Question. Each question motivates activities, and each activity provides specific evidence related to the Investigation Question. Students synthesize the understanding constructed over multiple activities, and this understanding is formalized through key concepts. Often a key concept leads students to an additional Investigation Question students need to pursue to answer the Chapter Question. At the end of the chapter, students' new understanding is applied back to the unit's anchor phenomenon and leads students to a new Chapter Question or a final explanation.

Unit Anchor Phenomenon	Sunlight and Weather: Solving Playground Problems
Problem students work to solve	Students at Carver Elementary School are too cold during morning recess, while students at Woodland Elementary School are too hot during afternoon recess.
	Why are the playgrounds at two schools different temperatures?
Chapter-level Anchor Phenomenon Chapter 1 Question	Different playgrounds have different weather on different days What is the weather like on the playgrounds? (introduced in 1.4)
Investigation Questions	How do we describe weather? (1.1-1.3) (Note: See Lesson Overviews for lesson-level Investigative Phenomena)
Evidence sources and reflection opportunities	 Read the first half of What Is the Weather Like Today? (1.1) Participate in Think and Walk to label photographs with appropriate weather icons (1.1) Participate in Weather Types movement routine (1.1) Observe and describe local weather using weather words (1.2)
	 Observe and describe local weather using weather words (1.2) Read the second half of What Is the Weather Like Today? (1.2) Measure temperature in cups of water (1.2) Observe, measure, and record local weather, including temperature (1.3)
Key concepts	 Weather can be sunny, cloudy, windy, rainy, or snowy. (1.1) Weather can be sunny, cloudy, windy, rainy, snowy, and different temperatures. (1.2)
Application of key concepts to problem	 Graph playground weather data from Woodland and Carver Elementary Schools (1.4) Shared Writing to answer the Chapter 1 Question (1.4)
Explanation that students can make to answer the Chapter 1 Question	The weather at Carver Elementary and Woodland Elementary is similar. Both schools have many sunny days and some cloudy, windy, or rainy days. The type of weather at each school must not be causing the difference in their playgrounds' temperatures.

Classroom Slides reference

Classroom Slides are a resource designed to make planning and teaching with Amplify Science faster and easier. Each lesson has editable slides optimized for **Microsoft PowerPoint Version 16 and Google** to help guide teachers and their students through the lesson with easy-to-follow images, videos, questions, and instructions.

This reference sheet has basic information to get you started. For a more in-depth how-to? Go to: https://tinyurl.com/amplifyslideshowto

Helpful tips:

The text on the slides is color coded! Black text on the slides denotes suggested teacher talk. Orange text on the slides denotes a student action.

Icons on the slide cue the teacher about what is happening in the lesson. Here's what the icons on the slides mean:

You may occasionally also come across the following student action icons:

In addition to the text and visuals on the slide, each slide's notes field contains additional information, including possible student responses, follow-up prompts, and instructional steps. In most cases, the content on the slide is meant to come before the actions and suggested teacher talk written in the notes. Here's what the icons in the notes field mean:

Unit level internalization notes

Lesson level internalization notes

Additional Amplify resources

Program Guide

Additional insight into the program's structure, intent, philosophies, supports, and flexibility.

https://my.amplify.com/programguide

California Edition: http://amplify.com/science/california/review

Louisiana Edition: https://my.amplify.com/programguide/content/louisiana/welcome/elementaryschool/

Amplify Help

Frequently updated compilation of articles with advice and answers from the Amplify team.

my.amplify.com/help

Caregivers Site

https://amplify.com/amplify-science-family-resource-intro/

Amplify Support

Contact the Amplify support team for information specific to enrollment and rosters, technical support, materials and kits, and teaching support, weekdays 7AM-10PM EST and weekends 10AM-6PM EST.

Email: help@amplify.com

Email: edsupport@amplify.com (pedagogical questions)

Phone: 800-823-1969

Or, reach Amplify Chat by clicking the

icon at the bottom right of the digital Teacher's Guide.

When contacting the support team:

- Identify yourself as an Amplify Science user.
- Note the unit you are teaching.
- Note the type of device you are using (Chromebook, iPad, Windows, laptop).
- Note the web browser you are using (Chrome or Safari).
- Include a screenshot of the problem, if possible. Copy your district or site IT contact on emails.

Amplify Science

