Amplify Desmos Math NEW YORK

Inside you'll find:

- Unit Assessments

For Review Only. Not Final Format.

- Exit Tickets

Amplify Desmos Math NEW YORK

Grade 6

Assessment Sampler

About Amplify

Amplify is dedicated to collaborating with educators to create learning experiences that are rigorous and riveting for all students. Amplify creates K-12 core and supplemental curriculum, assessment, and intervention programs for today's students. A pioneer in $\mathrm{K}-12$ education since 2000, Amplify is leading the way in next-generation curriculum and assessment. All of our programs provide teachers with powerful tools that help them understand and respond to the needs of every student.

Amplify Desmos Math is based on the Illustrative Mathematics (IM) curriculum. IM 6-8 Math was originally developed by Open Up Resources and authored by Illustrative Mathematics, and is © 2017-2019 Open Up Resources. Additional adaptations and updates to IM 6-8 Math are © 2019 Illustrative Mathematics. IM 9-12 Math is © 2019 Illustrative Mathematics. IM 6-8 Math and IM 9-12 are licensed under the Creative Commons Attribution 4.0 International license (CC BY 4.0). Additional modifications contained in Amplify Desmos Math are © 2020 Amplify Education, Inc. and its licensors. Amplify is not affiliated with the Illustrative Mathematics organization.

Desmos ${ }^{\circledR}$ is a registered trademark of Desmos, Inc.
English Learners Success Forum is a fiscally sponsored project of the New Venture Fund (NVF), a 501(c)(3) public charity.

Universal Design for Learning Guidelines and framework are developed by the Center for Applied Special Technology. © 2018 CAST.

The Effective Mathematics Teaching Practices are developed by NCTM in Principles to Actions: Ensuring mathematical success for all. © 2014 NCTM.

Notice and Wonder and I Notice/I Wonder are trademarks of NCTM and the Math Forum.

No part of this publication may be reproduced or distributed in its original form, or stored in a database or retrieval system, without the prior written consent of Amplify Education, Inc., except for the classroom use of the worksheets included for students in some lessons.

Cover illustration by Caroline Hadilaksono.
Copyright by Amplify Education, Inc. 55 Washington Street, Suite 800, Brooklyn, NY 11201 www.amplify.com

Table of Contents

Assessment Overview

Unit Assessments | Including Pre-Unit Checks, Sub-Unit Quizzes, and End-of-Unit Assessments.

Unit 3 Unit Rates and Percentages ..
Unit 4 Dividing Fractions P P83
Unit 5 Decimal Arithmetic P109
Unit 6 Expressions and Equations M P144

Unit 8 Describing Data
Exit Tickets | Including Exit Tickets from all lessons in every unit.

Amplify Desmos Math New York program resources

Student bundle includes:

NY Student Edition, multivolume, consumable

NY Digital Experience (English and Spanish), featuring:

- Interactive Student Activity Screens
- Enriched feedback
- Collaboration tools

Teacher bundle includes:

NY Teacher Edition, multivolume, spiral-bound

NY Digital Experience (English and Spanish), featuring:

- Facilitation and progress monitoring tools
- Presentation Screens
- Instructional supports
- Assessment

Extra Practice and Assessment Blackline Masters

Program architecture

Course

Unit

Note: The number of sub-units and lessons vary from unit to unit; this depiction shows the general structure of a unit.

Lesson

Warm-up

Activity 1

Activity 2
(J) 15 min

으ํํํํํำํํํำกำ
(ㄱ) 15 min
으ํํํํํํำ กักำกำ กัคำ

Synthesis
(1) 5 min

กำำ
กักําก

Exit Ticket

(1) 5 min
\circ

Practice
(ㄱ) 5 min
ํํํํํํำํํํำำำ
-

Our robust assessments drive learning and inform instruction.

A variety of performance data in Amplify Desmos Math New York provides evidence of student learning, while helping students bolster their skills and understanding.

Throughout lessons, units, and the entire program, you'll find summative and formative assessments meant to provide insights into students' conceptual understandings. Student learning is never a surprise at the end of a unit-with Amplify Desmos Math New York, understanding is made continually visible.

Course-level assessments

Our beginning-of-year digital diagnostic tool measures what students know and how they think, providing teachers with targeted, actionable insights and instructional guidance. These assessments identify areas to target for students who need additional support and opportunities to extend for students who would benefit from more challenge.

- mCLASS beginning-of-year diagnostic
screener: This tool measures the critical skills and concepts aligned to standards that are predictive of future math success. Innovative problem types reveal the processes required for math reasoning and the problem-solving strategies that go beyond the conceptual and procedural knowledge of grade-level math. They also help teachers identify students at risk for math difficulty (including difficulties related to dyscalculia) and provide detailed information about what students know and in which areas they need support. This diagnostic is in the process of being fully validated through thirdparty research studies conducted by WestEd.
- Ongoing interim assessments: These pregenerated and assignment-ready practice sets review critical moments in instruction. Teachers can create their own assessments and practice sets through the online item bank.

c.

D.

2. This graph shows the cost in dollars, C, of w pounds of blueberries.

The relationship is proportional.
Select all of the true statements.
$\square 1$ pound of blueberries costs $\$ 2.75$.
$\square 2.75$ pounds of blueberries cost $\$ 1$.
$\square 5$ pounds of blueberries cost $\$ 15.50$.12 pounds of blueberries cost $\$ 33$.
\square The point $(3,9)$ is on the graphed line.

Digital and print assessment examples

Problem 2

(

Unit-level assessments

Our embedded unit assessments offer key insights into students' conceptual understanding of math. These assessments provide regular, actionable information about how students are thinking about and processing math, with both auto-scoring and in-depth rubrics that help teachers anticipate and respond to students' learning needs.

- Pre-unit check: Each unit begins with a check to determine student proficiency with prerequisite skills needed for success in the upcoming unit. This check is agnostic to the standards covered in the following unit and serves not as a deficit-based acknowledgement of what students do not know, but rather as an affirmation of the knowledge and skills with which they come in.
- Sub-unit quizzes: Student understanding never comes as an end-of-unit surprise with regular sub-unit quizzes. In these checks, students are assessed on a subset of conceptual understandings from the unit, with rubrics that help illuminate where students are and insight into what supports they need to get where they need to go.
- End-of-Unit Assessment: Students engage with rigorous grade-level mathematics through a variety of formats and tasks in the End-of-Unit Assessment. A combination of autoscored and rubric-scored items provide deep conceptual insight.

Lesson-level assessments

Amplify Desmos Math New York lessons are centered around sense-making and in-the-moment feedback. Daily moments of assessment provide valuable evidence of learning for both the teacher and student.

- Exit Tickets: Each lesson has an Exit Ticket focused on one of the key concepts in the lesson. Exit Tickets are carefully designed to minimize the time they take to complete while maximizing the insight the teacher receives on a daily basis in order to attend to student needs during the following class.
- Enriched feedback: We harness the power of digital math and graphing tools to show students the meaning of their thinking in context.

Enriched feedback motivates students and engages them in the learning process.
Student Screen Preview

Rather than telling a student if their paint ratio is right or wrong, we mix the colors for them.

Rather than telling a student if their slope is correct, we use it to land a plane.

Reporting tools monitor progress and provide insight into learning.

Amplify Desmos Math New York provides teachers and administrators with unified reporting and insights so that educators have visibility into what students know about grade-level math-and can plan instruction accordingly for the whole class, small groups, and individual students.

Our reports show proficiency and growth by domain, cluster, standard, and priority concept using performance data from unit assessments, then highlight areas of potential student need to allow teachers to modify their instruction and target differentiated support.

The program also includes reports on student usage, performance on benchmark assessments, school and district data, and information for caregivers. Our team will partner with you to meet the specific data and reporting needs of New York City Public Schools.

At-a-glance views of unitlevel assessment results inform instructional planning, and you can also drill down to item-level analysis.

Our standards report allows you to monitor proficiency at the class and individual student levels.

GRADE 6

Amplify Desmos Math NEW YORK

Assessment

Sampler

This section includes all unit-level assessments from Amplify Desmos Math New York for Units 1-8.

- Pre-unit Readiness Checks are designed to help teachers see which concepts and skills from previous units and grades need to be bolstered in order for students to be successful.
- Sub-unit Quizzes are formal measures of what students know and can do for the lessons that immediately precede the quiz.
- End-of-Unit Assessments are formal measures of what students know and can do for all the lessons in the unit, with an emphasis on the critical concepts and skills of the unit.
\qquad

1. What are some things you know about the area of shapes?

Each small square in the graph paper represents 1 square centimeter.
2. Determine the area of the rectangle.

3. Circle all of the rectangles that have an area of 20 square units.

4. Determine the height of this rectangle.

Height: \qquad centimeters

Unit 6.1, Readiness Check

5.1 Circle all the figures that look like parallelograms.

Explain your thinking.

Name \qquad
5.2 Circle all the figures that look like right triangles.

6. Determine the volume of this prism.

Volume: \qquad cubic units

Show or explain your thinking.

7. Which measure could be found by calculating the volume of an object?
A. The amount of paint needed to cover a box.
B. How many cubes will fit in a box.
C. How much a box weighs.
D. How many faces a box has.

Answer Key

1. Responses vary.

- Area is the amount inside of a shape, not around it.
- Area is length times width.
- Area is how many squares fit inside of a shape.

2. 12 square centimeters
3. A, D
4. 3.25 centimeters
$5.1 \quad C, E$
Explanations vary. C and E are parallelograms because both pairs of opposite sides are parallel.
$5.2 A, D$
5. 12 cubic units

Explanations vary. Volume is the number of cubic units in a prism, so I counted all the cubes and got 12 .
7. B

Unit 6.1, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problems 1 and 2 before Lesson 1
- Problem 3 before Lesson 2
- Problem 4 before Lesson 4
- Problem 5 before Lesson 3
- Problems 6 and 7 before Lesson 9

Problem 1

(Standard: 3.MD.C)
This question is intended to surface what students already know about the concept of area. This content first appears in Lesson 1: Shapes on a Plane, where students informally discuss and calculate areas.

Suggested Next Steps: If students struggle . . .

- Before Lesson 1, Activity 1, Screen 4, consider inviting students to share what they know about area.

Problem 2

(Standards: 3.MD.C.6, MP7)
This question is intended to surface what students already know about calculating area using the structure of a grid. This content first appears in Lesson 1: Shapes on a Plane, where students are asked to determine the area of the rectangle by making use of the structure of the grid.

Suggested Next Steps: If students struggle \qquad

- Before Lesson 1, Activity 1, Screen 4, consider using the dashboard's teacher view to display students' responses. Invite students to share strategies they used to calculate the area of the rectangle.

Problem 3

(Standards: 3.MD.C.7.B, 5.NF.B.4.B)
This question is intended to surface what students already know about calculating areas of rectangles without the aid of a grid. This content first appears in Lesson 2: Letters, where students use strategies to calculate areas of complex shapes.

Suggested Next Steps: If students struggle . . .

- After Lesson 2's Warm-Up, consider reviewing this problem by inviting students to explain why each rectangle does or does not have an area of 20 square units.

Unit 6.1, Readiness Check Summary

Problem 4

(Standard: 4.MD.A.3)
This question is intended to surface what students already know about reasoning flexibly with area. This content first appears in Lesson 2: Letters, where students use strategies to calculate areas of complex shapes.

Suggested Next Steps: If students struggle

- After Lesson 2's Warm-Up, consider inviting them to share the relationship between the base, height, and area of a rectangle.

Problem 5

(Standards: 4.G.A.2, 5.G.B.4, MP6)
This question is intended to surface what students already know about how to identify parallelograms and right triangles. Students attend to precision as they defend their choices. This content first appears in Lesson 3: Exploring Parallelograms and Lesson 5: Exploring Triangles, where students informally calculate the areas of parallelograms.

Suggested Next Steps: If students struggle . . .

- After Lesson 3's Warm-Up, consider reviewing Problem 5.1 as a class. Create an anchor chart as a class with different types of triangles and quadrilaterals. Consider reviewing Problem 5.2 after Lesson 5's Warm-Up.
- Math Language Development While students have not formally been introduced to parallelograms yet, consider asking them what they think the word parallelogram means and what word they see that is part of this word (parallel).

Problem 6

(Standards: 5.MD.C.4, MP7)
This question is intended to surface what students already know about how to determine the volume of a rectangular prism. Students make use of the structure of the unit cubes shown in the prism. This content first appears in Lesson 9: Renata's Stickers, where students informally calculate the volume and surface area of rectangular prisms.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this screen as a class before Lesson 9's Warm-Up. Invite students to share strategies and create an anchor chart as a class with the definition of volume.

Unit 6.1, Readiness Check Summary

Problem 7

(Standard: 5.MD.C.3)
This question is intended to surface what students already know about volume. This content first appears in Lesson 9: Renata's Stickers, where students informally calculate the volume and surface area of rectangular prisms.

Suggested Next Steps: If students struggle

- Consider using physical manipulatives like unit cubes or tissue boxes to discuss the difference between volume and surface area as it arises during Lesson 9.
\qquad

1. Which shape has an area of 8 square centimeters? \qquad

2. Which is a height of the parallelogram?
A. 4 inches
B. 5 inches
C. 25 inches
D. 50 inches

3.1 Draw two different triangles that each have an area of 12 square units.

Triangle 1

1 unit														

3.2 Write a base and a height for each triangle. _

Triangle 1

Base: \qquad Height: \qquad \square

Triangle 2

Triangle 2

Base: \qquad Height: \qquad
\qquad
4.1 Determine the area of this polygon. Use appropriate units.

Show or describe your thinking.

4.2 Show or describe a different way to determine the area of the same polygon.

5. Determine the area of this polygon. Show all of your thinking. Use appropriate units.

Area: \qquad

Answer Key

1. C
2. A
3.1 Triangles vary.

3.2 Responses vary. The base and height should be positive numbers with a product of 24 .
4.1 20 square centimeters

Explanations vary. I counted all the whole squares and got 15 . Then I found the area of each triangle and added to get 20 .
4.2 Responses vary. I drew a box around the shape and found its area to be 25 square centimeters. Then I subtracted the areas of the two triangles and got 20 .
5. 60 square centimeters
－Consider revisiting Lesson 4，Activity 1. This problem corresponds most directly to the work students did in Lesson 4：Off the Grid．
Suggested Next Steps：If students struggle ．．．
In this problem，students calculate the area of a parallelogram，the length of a base，or a height given the other two measurements．
（Standards：6．EE．A．2．C，6．G．A．1）
Problem 2
－Consider revisiting Lesson 6，Activity 1. understand and communicate why shapes A, B ，and D do not have an area of 8 square centimeters． －Math Language Development Consider using the mathematical language routine Critique，Correct，Clarify to help students Suggested Next Steps：If students struggle
given area．This problem corresponds most directly to the work students did in Lesson 6：Triangles and Parallelograms．
In this problem，students calculate areas on a grid．Students make use of the structure of the grid to determine which shape has the
（Standards：6．G．A．1，MP7）
โ Шวโqoud

乙	†	9＇t＇ع‘ح＇レ	smejqodd
O＇でV＇ヨヨ｀9	$\forall V^{\prime} Z^{\prime} \forall^{\prime} \exists \exists \cdot 9$	ト・＊＊ツ・9	prepuets

Unit 6．1，Quiz：Summary and Rubric
－Consider revisiting Lesson 7，Activity 2 and Lesson 8，Activity 2.

students did in Lesson 7：Off the Grid Part 2 and Lesson 8：Piles of Polygons． In this problem，students calculate the area of a polygon without a grid．Students attend to precision by being careful about which
measurements they use to calculate the area of each part of the polygon．This problem corresponds most directly to the work （9dW＇レ＇甘‘ロ‘9 ：spıepuets） Problem 5
 This problem corresponds most directly to the work students did in Lesson 8：Piles of Polygons． In this problem，students describe strategies for calculating the area of a polygon composed of rectangles and triangles on a grid．
（レ＇V＇Ј＇9＇ \mathbf{V}^{\prime} Z＇V＇ヨヨ＇9 ：spıepuets） Problem 4 －Consider asking students what the area is for the base and height they wrote． －Students will have more opportunities to practice drawing in future lessons and units． Suggested Next Steps：If students struggle ．

（LdW ‘＇レ＇V＇૭’9 ：spsepuets） Problem 3
Unit 6．1，Quiz：Summary and Rubric

7düдие łOU P！ 0	sәן6ue！ ло әио дәәш sәцэұәуS 		＇st！un әıenbs ZI 」o еәле ч！！м sәןбие！и ұиәпиКиоэ чэұәуs кеш słиәрпłs moцs səцэŋәуS	＇st！un әגenbs ZI до еәле ч！！м 	$\begin{aligned} & \angle d W \\ & \therefore \cdot \forall \cdot G ` 9 \end{aligned}$	－＇ع
7düдие łou p！o	＇sцłбиә әр！s әчъ рә！！！！！！пш әлец Кеш гәцои！ OS łכәәәs очм słuәрпłя －әэ！๐чэ ґәәлоэи					Z
7dmente łou p！0	7૫Б！əц әцъ イq әןбие！и әцд „о әseq әчұ рә！／！！！$\ddagger п ш$ әлец кеш ＇әээ๐очэ ұэәдоэи｜					1
0	1	乙	ε	t		
	6u！	6u！doəләव	6u！	6u！pəəวхヨ／6u！łəәW	prepuels	melqodd
ouqny pue Kıemuns ：z！̣o＇r＇9 9						
＇7dmeŋte łou p！ 0	－ә｜биеия е Ł0 ұцб！ə pue əseq ә૫ł 6u！̣puełsıәрй рәң！u！！ sMOUS y，	депп！！puәdıəд әле әбие！д е ғо ұчб！әч рие әseq әчд ұечд риеґsıәрй дои кеш әббие！$е$ єо әр！s ןеиобе！р е әлпегәш очм sұиәрпнs＂ $6 \cdot \exists$ ＇sıодә ұиеэ！！！uб！s Ч！！М Бu！̣puełsıәpun әұәןdmoכu！sMous yגоM	＇рәұипоэs！ш әлец кеш чъБиә риоэәs е әипеәш К｜дэәноэи！рие цъбиә әио әдпяеәш Кдэәноэ очм sұиәрпіs＂ $6 \cdot \exists$ ＇sıодә әшоs чł！м＇6u！pueұs．əәрй jenłdәouos sMoчs yоом		ト・＊＇⿹｀9	$\varepsilon^{\prime} \varepsilon$
:---:	:---:	:---:	:---:	:---:	:---:	:---:
łou p！ 0	－ə｜бие！и е Ł0 ұцб！ə pue әseq әцł 6u！puełsıәрй рәң！ய！！ SMOYS y，OM	деппэ！риәdıәd әле әseq әцł ұецł puełsıәрй ұои кеш әןБие！в е ґо әр！s ןеиобе！р е әппsеәш очм słuәрпts＂ $6 \cdot \exists$ ＇sıодә ұиеэ！！！uம！s पІ！М 6u！̣puełsıәрй 	＇рәұипоэs！ш әлец кеш чъБиә риоэәs е әдпsеәш К｜дэәноэи！рие цъбиә әио әдпяеәш Кдэәноэ очм sұиәрпł＂＂6・ヨ ＇sıoдә ןenłdәэuos sMoчs yдом	†эәдоэ 	ト・＊＊⿹｀9	$\tau \times$
0	\downarrow	Z	ε	t		
	6u！uu！${ }^{\text {a }}$	6u！doןəләа	6u！	бu！pəəวхヨ／6u！¢əәW	paepuers	melqodd
łou p！0	74б！әц әц7 イq ио6イ৷од әчд „о әseq әчł рә！！d！$\ddagger \boldsymbol{\prime}$ әлец кеш ZL әт！им очм słиәрпіs ләмsие ұәәлоои	＇sıодә ұиет！！！ub！s प！！М Бu！puełsıәpun 	‘sıoддә әшоs पұ！м ‘＇6u！puełsıәрй smous yıoM	＇дәMSU® ұЈәлоう	$\begin{aligned} & 9 d W \\ & \qquad \cdot \forall \cdot \bigvee ’ 9 \end{aligned}$	G
:---:	:---:	:---:	:---:	:---:	:---:	:---:
＇7dшәне łou p！0	－риб e uo uo6人ןod е ґо еәле әцł Би！и！шиәәәр เо 6u！puezs．əәри рәџ！ய！！SMOYS צגOM	－səıenbs әцł „o عZ u！s！ədeys әцł әsпеэәq sıәłәш！ұиә๐ əuenbs ε ع＂ 6 ・ヨ ＇sıодә ұиеэ！！！uи！ पұ！M Bu！̣puełsıəpun әұәןdmoэu！sMoчs y⿺辶M	－səлenbs әчł рәдипоо । әsneכəq sıәдәш！ұиә๐ əıenbs 0Z＂${ }^{6}$ ・ヨ ＇sıoдəә әшоs ЧІІМ ‘＇6u！̣puełs．əәрй fenłdəouoo smous yıom	$0 Z=\mathrm{s}-\mathrm{sz}$ доб рие sәןИиецд омұ । иәц」＇sıəəәш！ әлеnbs SZ әq ot eare st！ рәґелпэеэ рие әdeцs әцґ pипол xоq е мәр I＇6・ヨ sдəłəய！！！uəว əયenbs 0Z L＇t mox 		でも
－qduәュе łou p！0	－риб e ио uob人jod e fo еәле әЧł Би！u！யuәəәр „о 6u！puełs．əәри рәџ！u！！sMOYs צגOM	＇sajenbs ә૫ł to £Z u！s！ədeчs әцґ әsпеэәд sıəдәш！！иәว әıenbs ε ع＂ $6 \cdot \exists$ чІ！М бu！puełs．əәри 	－səлenbs әцұ рәдипоо । әsneכəq sıәдәш！ұиә๐ әıenbs 0Z＂＂ 6 • ＇sıoдəә әшos ЧІ！М ‘＇6u！̣puełsıәрй ןentdəэиoo smous yıom	цәчҰ рәрре рие әןбие！и чэеә ло еәле әчҰ рипод । иәчц＇ऽi до6 pue səıenbs әочм әчł ॥е рәғипот I＇＇ 6 ’ヨ －ио！̣еueןdxә 		L＇t
0	\downarrow	Z	ε	t		
	6u！̣u！̣əəg	6u！doןəләа	6u！	6u！pəəวхヨ／6u！̣əəW	prepuets	யəəqodd
ouqny pue Kıemuns ：z！̣o＇r＇9 9

Unit 6.1, End-of-Unit Assessment: Form A

1. What is the area of triangle A ?
A. 40 square centimeters
B. 16 square centimeters
C. 20 square centimeters
D. 32 square centimeters
\qquad

Triangle Area: $b \times h \div 2$

2. Which is the length of the base of this parallelogram?
A. 15 inches
B. 8 inches
C. 9 inches
D. 24 inches

Area: 27 sq. inches

3. Draw two different parallelograms that each have an area of 18 square units.

Parallelogram 1

Parallelogram 2

1 unit														

Unit 6.1, End-of-Unit Assessment: Form A

4.1 What is the area of this shape?

Area: \qquad square units

Show or describe your thinking.

Name \qquad
4.2 Show or describe a different way to determine the area of the same shape.

Here is the expression Sol wrote to calculate the surface area of this rectangular prism.

5.1 Describe the mistake that Sol made.
5.2 What is the surface area of this prism? Explain or show your reasoning.
\qquad

Here is a net made of four identical triangles and a square.
6.1 If this net were folded, what type of polyhedron would it make?
6.2 What is the surface area of that polyhedron? Show or describe your thinking.

Joel is going to use this board to make a sign.
7.1 What is the area of the front of Joel's sign? Show or describe your thinking.
7.2 Joel found a kit of rainbow paint that covers 100 square inches. How many kits would he need to cover the front and the back of the sign?

22 in.

Reflection: Select a question to answer.
What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

1. B. 16 square centimeters
2. C. 9 inches
3. Parallelograms vary.

4.1 48 square units

Explanations vary. I divided the shape into two rectangles and a triangle. For the rectangles, I calculated $b \times h$ for each and then added them together and I got 40 square units. For the triangle, I calculated $b \times h \div 2$ and got 8 square units. The total area is $40+8=48$.
4.2 Explanations vary. I drew a square around the shape and used $b \times h$ to determine its area was 64 square units. Then I calculated the area of each triangle to subtract using $b \times h \div 2$ and got 4 square units per triangle. Next, I counted the squares in the remaining rectangle and got 8 square units. The area is $64-4-4-8=48$ square units.

5.1 Responses vary.

- Sol calculated the volume of the prism instead of the surface area. He should have calculated the area of each face and added them together.
- Sol wrote the wrong expression, he should have written:
$2 \times l \times w+2 \times l \times h+2 \times w \times h$.
5.2 52 square centimeters

Explanations vary. In this prism, $h=2$, $l=4$, and $w=3$. There are two faces whose areas are $h \times l=8$ square centimeters, two faces whose areas are $h \times w=6$ square centimeters, and two faces whose areas are $l \times w=12$ square centimeters. So the surface area is
$8+8+6+6+12+12=52$ square cm.
6.1 Square pyramid or rectangular pyramid
6.2 105 square centimeters

Explanations vary. The area of the square base is $l \times w=25$ square cm . There are four triangles whose areas are $b \times h \div 2=20$ square cm each. The surface area is $20+20+20+20+25$ $=105$ square centimeters.

$7.1 \quad 214.5$ square inches

Explanations vary. I made a rectangle around the sign whose area is $b \times h=11 \times 22=242$ square inches. Then I subtracted the area of the missing triangle, $b \times h \div 2=27.5$, to get 214.5 square inches.
7.25 kits or 4.29 kits
 the area of the parallelogram in Problem 2.
In this problem，students calculate the area of a parallelogram，the length of a base，or a height given the other two measurements．
This problem corresponds most directly to the work students did in Lesson 4：Off the Grid．
Suggested Next Steps：If students struggle ．．．

Problem 2
－Consider revisiting Lesson 7，Activity 2.

Off the Grid Part 2.
In this problem，students calculate the area of a triangle．This problem corresponds most directly to the work students did in Lesson 7：
（レ＇V＇⿹’9 ‘O＇Z＇V＇ヨヨ’9 ：spıepuets）
โ Шวโq0．」

で9＇レ｀9＇でG＇レ｀G		ドく＇で9 「での 「て＇レ	ドG「でも	smejqodd
ナ＊＊＇⿹｀9	ト・＊＊⿹｀9	О＇で甘゙ヨヨ＊9	＊＇で甘゙ヨヨ゙9	рлерuers

 understand and communicate Sol's mistake and how it could be corrected. ィ!
In this problem, students calculate the surface area of a rectangular prism. Students study another's work and describe the mistake in
their reasoning. This problem corresponds most directly to the work students did in Lesson 9: Renata's Stickers.
(Standards: 6.EE.A.2.A, 6.EE.A.2.C, 6.G.A.4, MP3) Problem 5 - Consider revisiting Lesson 8, Activity 2.

- Consider asking students how they could out the polygon Suggested Next Steps: If students struggle Lesson 8: Piles of Polygons. and the structure of the shape to determine the area of the shape. This problem corresponds most directly to the work students did in In this problem, students calculate the area of a polygon composed of rectangles and triangles. Students use the structure of the grid (Standards: 6.EE.A.2.A, 6.G.A.1, MP7) Problem 4 - Consider revisiting Lesson 3.
Consider asking students what the area for their base and height is and compare it to the area given in the problem. Parallelogranested Next Parallelograms. (Standards: 6.G.A.1, MP7)
In this problem, students re
parallelograms with the giv Problem 3

- Consider revisiting Lesson 7, Activity 2 and Lesson 8, Activity 2.
Consider asking students how they could cut the polygon into pieces that would be helpful.

In this problem, students apply area techniques to solve a problem in context. This problem corresponds most directly to the work
students did in Lesson 7: Off the Grid Part 2 and Lesson 8: Piles of Polygons.

Problem 7

- Consider revisiting Lesson 12, Activity 2. students to manipulate.
- Consider asking stur to visulize the fids and the net being fold together. Provide access to physical or digital materials for
area of these figures. This problem corresponds most directly to the work students did in Lesson 12: Face Value.
In this problem, students represent three-dimensional figures using nets made up of rectangles and triangles to calculate the surface
 Problem 6
Unit 6.1, End Assessment Summary and Rubric: Form A

7dшәни łou p！	sueлбоןәюелед ł0u әле łnq е！иә！！ ıо әио ұәәш sәцวəәуડ е！иә！！ ұәәш ұецұ suеגБоןәןедед moys səyગ્ғәуS Gu！̣puezsıәрии 	＇stıun әıenbs 8L to eәлe ие ч！！м шелбоןəןeıed әио sмедр ұиәрпłя ＇sweлбоןәןелед ұои әле децд st！un әıenbs 81 но еәле ие 47！м sәınб！！ омł sмедр ұиәрпłя ＇sıодә ұиет！！！ии！！ Ч！！М Бu！̣puełsıəpun әұәןdmoэu！ moys sәчэŋәуS	－sł！un əıenbs 8L 10 еале पұ！м sweлбоןәןелед ұиәпибиоэ цэұәуs кеш słuәрпłя ＇uо！иә！！ $\boldsymbol{\jmath}$ әио дәәш Чłоq ұецł sue»боןә｜｜елед MOYS sə૫ગŋəyS ＇sı0дә әسоs पІ！М Бu！puełsıəpun MOYS Sə૫ગŋәンS	stupun әıenbs 8I łо еәле mous цłoq səyכłəys	$\begin{gathered} \angle d W \\ \vdash \cdot \forall \cdot 9 \end{gathered}$	ε
＇7dmәие łou p！o	＇sцłБиә иәл！б әчъ рә！！d！\downarrow пи әлец イеш sәуэи！ SI łכәəәs очм słuәрпłS －әэ！๐чэ ұэәлоэи｜			səบэи！ 6 • 		Z
7dшәұе łou p！0	－шeлбоןәןелед e „о еале әчł рәґеןпэеэ әлец кеш sıәдәш！ұиәэ әлппи Z६ ґЈәәs очм sұиәрпıs 7цБ！әц әцұ se sıəұәш！ұиәว 0I pəsn әлец кеш sдәұәш！ұиәэ әлпй 0Z łЈəəəs очм słиәрпłS ‘әэ！๐чэ ұәәдоэи｜			sıәəәш！ұиәว əuenbs 9I • 		\downarrow
0	\downarrow	Z	ε	t		
	6u！uu！ 6 өg	6u！doןəләа		6u！pəәэхヨ／6u！əәәW	prepuers	merqodd

7duәə ł0u p！	＇\cdot＇t u！se uo！feue，dxə әшеs әцұ səsn ұиәрпłs＂6・ヨ －6u！puełsıәрй рә！！ sMous yıо	 s！әdeys әчł әsneэəq st！un əıenbs ZS＂ 6 ・ヨ －sıодә ұиет！̣！！uб！s ЧІ！М Бu！puełsıәри sMOYS y，	＇səıenbs әчł рәұипоэ । әsпеวәq st！un әıenbs 8t＂ $6 \cdot \exists$ ‘sıoдəə әسos पł！M ‘＇దu！puełsıəpun ןenłdәouos sMOUS Y⿺辶M	＇stıun әıenbs 87＝ 8 －七－七－七9 s！еәле әчц ＇st！un әлеnbs 8 доб рие әןБиеґәәл Би！！u！ешәд әңł и！səлеnbs әчł әıеnbs т $\downarrow 0$ рие $Z \div y \times q$ еәле әчł рәңеןпоеэ｜иәчн＇st！un әлеnbs ъ9 sем еәле st！әи！шиәәр 아 $Y \times q$ pəsn pue ədeys шод ұиәдәщ！р s！łечł uo！̣еиеןdxә 		て＇も
10u p！	－6u！puełsıәрй рәџ！ய！！ sMOUS y10M	－рәрецs Кןдед ұseә де s！ ұецł ұ！й әлеnbs Кıәлә рәдипоэ әлеч кеш st！un әıenbs ZS ә！！uм очм słиәрпня＂ $6 \cdot \exists$ ＇sıодә ұиeэ！！иuб！s Ч！！М 6u！puełsıәрй sMOUS y10M	＇səıenbs әцł рәұипоэ । әsneэəq st！un әıenbs 87 ＂ $6 \cdot \exists$ ‘sıодә әшоs पł！M ‘＇6u！̣puełsıəpun ןenłdəouoo sMOYS y，	$8 ヵ=8+0 \succsim$ s！еәле ןеұод әчц＇sł！un əıenbs 8 доб pue $Z \div y \times q$ әлеnbs 0ォ ұоб । рие ләчәбод шәчł рәрре иәчъ рие чэеә омұ оұи！әdeцs әчъ рәр！ィ！р／＇6•ق st！un əuenbs 87 －uo！̣eue，dxə 	$\begin{gathered} \angle d W \\ ‘ \vdash^{\prime} \cdot {f8bd52c32-0093-49b0-87eb-58e59cef3499} \exists \exists \end{gathered}$	L＇G
0	\downarrow	乙	ε	\dagger		
	6u！	6u！̣оןəләа		6u！pəәэхヨ／6u！	paepuets	melqodd

7duәәце łou P！	－uo！̣eueןdxə ue ұnout！м 10 uo！̣eueןdxә ¡コәлоОи！ प！！М גәмsue ¡วәдоэи｜	－әбие！и әио pue әлenbs әчд 」о seәле әчł 10 uns әцł рәцеןпэеэ әлец Кеш шо әıпй St әұ！им очм słиәрпłs＂ 6 ・ヨ ־еәле ıо би！̣риеısıәрии ן！！цее sәұеэ！ Łеңł ио！џеиеןdxә Чł！М גәмsue łכәлоэи｜ －uo！̣еue｜dxə әұәןdmoou！ 	－әбие！и чэеә до еәле әцд би！ұеппэеэ иәчм 乙 Кq рәр！л！р әлеч дои кеш шо әцеnbs S8I ә！！м очм słuәphłs＂ 6 ・ヨ －uo！̣eue，dxә әұәןdmos pue ןеэ！ Чџ！М дәмsue łәәцоэи！ －uo！̣eueןdxә u！SME｜f dOu！ 	＇sıəłəш！ $S Z+0 Z+0 Z+0 Z+0 Z$ әдenbs $0 Z=Z \div 4 \times q$ әц sеәде әsочм sәןరич！ı גnoł әде sдәңәш！ұиәว әцеnbs S0L 		て＇9
7duәə е łOU P！	－ Бu！puełsıəpun Ł0 әЈиәр！лә чеәМ	＇sәןКие！д рие sәןИиедэәд әде децд sәэен әлец sp！шелкд леןnбиеґоәл pue sus！̣d леןпбие！и чłоq ұечъ рәz！！ибоэәд әлец кеш＂us！ıd ıеןnбие！и，＂， әұ！им очм sұиәрпłs＇${ }^{6}$＇ヨ ＇sıодә ұиeэ！！！ub！s Чł！м ‘＇6u！̣puełsıәрun ןепұдәэиоэ әғә｜duoou！\ddagger nq бuildoןəләр е sмочs yлом	＇әшеи әцъ и！әseq әцд әрпןэи！ оұ иәцобıод әлец ұпq ＇pimeıKd e оұи！spiot ұәи әчъ ұецұ әт！иКоэәи Кеш＂р！шелК ${ }_{\text {＂}}^{\text {ә！！}}$ мм очм sұиәрп7s＂ $6 \cdot \exists$ ＇sıoдл дои！̣ш पұ！м＇Kıәısew pue бu！puełsıəpun ןenłdəouos smous yиом	p！weıKd лепnбuełכәд ло p！weлरd әлenbs 	$\nabla^{*} \forall^{\prime} \bigcirc \bigcirc 9$	L＇9
0	\downarrow	乙	ε	t		
	6u！uu！ 6 өg	6u！do｜əィəロ	Cu！पכeoıdd＊	6u！pəəэхヨ／6u！fəәw	prepueis	سəpqodd

\forall שxo」

＇7duәュе Ł0и p！	－6upuełsıәрun 10 әЈиәр！лә уеәМ	－u6！s до еәле ןедод әчł рәдеןпэет әлец кеш St！ 6 6Zゅ әұ！им очм słиәрпts＂6・ヨ ＇sıодәә ұиеэ！！！uи！ цІ！м ‘＇రupuełsıәpun бuildoןəләр е sмочs yиом	‘uб！s әцł „о әр！ дәлоэ оұ рәрәәи К｜ио Кәчъ ұцбпочд әлец кеш sұ！ィ ε әч！им очм sұиәрпнs＂ $6 \cdot \exists$ ＇І！ 7 子әлеәи әчł оұ имор рәрипод әлец кеш sч！» pue 6u！̣puełsıәри ןentdəәuoo smoys yдом		L＊＊＇ツ＇9	でし
＇7duәə е ł0u P！	－uo！̣eue，dxә ue ұnout！м 10 uо！ңеиеןdxә ŋэәдоэи！ पІ！М גәмsue џэәдоэи｜	－шeлбоןәןелед е se рлеоq әЧł 」о „о еәле әЧł рәґеןпэеэ әлец кеш sәчои！әлпиs L8I әт！мм очм słиәрпнs＂ $6 \cdot \exists$ ұецъ ио！̣еиеןdхә Ч！！М дәмsue łэәдоэи цІ！М дәмsuе ұәәдоэ	†！Би！ „о еәл әчд рәрре әлец кеш sәуои әлеnbs s＂692 әтим очм słuәрпнs＂ $6 \cdot \exists$ －uo！̣еие．｜dxә цџ！М дәмsие ұэәдоэи －uo！̣eue．dxə u！SME｜f dOu！ U Чł！М дәмsǔ ұәәлоう	－səуэи！әцепbs $Z \div y \times q$ ‘өбиецд би！！s！u әчł „о еәле $Z Z \times$ LI $=\psi \times q$ s！eәле әлочм иб！s әчъ риполе әбиеґэәл е әреш ।＇6・ヨ －u！ərenbs S † \ddagger LZ • †эәлоэ 		1－2
0	\downarrow	乙	ε	t		
	6u！uu！ $\mathrm{Seg}^{\text {a }}$	6u！doןəләа	6u！	6u！pəəэхヨ／6u！̣әәw	pappuers	melqodd

\qquad

1. A cookie recipe says there should be 3 times as much flour as there is sugar. I have 6 cups of sugar. Which expression represents how much flour I need?
A. $6+3$
B. $6-3$
C. $6 \cdot 3$
D. $6 \div 3$

A box of brownie mix calls for 2 eggs and $\frac{1}{2}$ cup of oil.
2.1 How many eggs and how much oil would you need for 2 boxes of brownie mix?
2.2 How many eggs and how much oil would you need for 3 boxes of brownie mix?

Here are three fractions: $\frac{2}{3}, \frac{4}{5}$, and $\frac{6}{9}$.
3.1 Two of these fractions are equivalent. Which ones are they?

Explain how you know.
3.2 Write two fractions that are equivalent to $\frac{3}{4}$.
4. Label each tick mark with its value on the number line.

5. At the store, a bag of 4 avocados costs $\$ 2$. How much does each avocado cost?

Explain your reasoning.

6. Complete each equation with a number that makes it true.
4 • \qquad $=20$
$8 \cdot$ \qquad $=32$
32 . \qquad $=8$
20 • \qquad $=4$

There are 5 children and 3 adults going on a trip.
7.1 What fraction of the people going on the trip are children? Explain your thinking.
7.2 What fraction of the people going on the trip are adults?

Answer Key

1. $6 \cdot 3$
2.1 4 eggs and 1 cup of oil
2.2 6 eggs and $1 \frac{1}{2}$ cups of oil (or equivalent)
$3.1 \quad \frac{2}{3}$ and $\frac{6}{9}$
Explanations vary. The numerator and denominator of $\frac{2}{3}$ can be multiplied by 3 to equal $\frac{6}{9}$. $\frac{2}{3} \times \frac{3}{3}=\frac{6}{9}$.
3.2 Responses vary. $\frac{6}{8}, \frac{30}{40}$
2.

5. $\$ 0.50$

Explanations vary. Since there are 4 avocados, each avocado must cost less than $\$ 1$. $4 \cdot \$ 0.50=\$ 2$.
6. $5,4, \frac{1}{4}, \frac{1}{5}$
$7.1 \quad \frac{5}{8}$
Explanations vary. There are $5+3=8$ people total on the trip, and 5 out of the 8 people are children.
$7.2 \quad \frac{3}{8}$

Unit 6.2, Readiness Check Summary

This readiness check can be given before the unit begins or spread out throughout the unit.
For teachers who choose to spread out the questions, consider assigning the following:

- Problem 1 before Lesson 1
- Problems 2 and 3 before Lesson 3
- Problem 4 before Lesson 5
- Problem 5 before Lesson 6
- Problem 6 before Lesson 10
- Problem 7 before Lesson 12

Problem 1
 (Standard: 4.OA.A.1)

This question is intended to surface what students already know about multiplicative relationships. This content first appears in Lesson 1: Pizza Maker, where students informally explore ratios in context.

Suggested Next Steps: If students struggle . . .

- Consider spending extra time on Screen 7 of Lesson 1. Invite students to share the strategies they used to determine the ingredients needed to make 6 pizzas.

Problem 2

(Standards: 4.OA.A.2, 5.NF.B.5)
This question is intended to surface what students already know about scaling recipes up and down. This content first appears in Lesson 3: Rice Ratios, where students scale ratios by doubling, tripling, and halving in context.

Suggested Next Steps: If students struggle . . .

- Consider reviewing Problem 2 after Activity 1 of Lesson 3. If possible, consider making connections between the strategies students use on this problem and the language of equivalent ratios.

Problem 3

(Standards: 4.NF.A.1, MP3)

This question is intended to surface what students already know about equivalent fractions. Students construct arguments as they justify whether two fractions are equivalent or not. This content first appears in Lesson 3: Rice Ratios, where students explain equivalent ratios.

Suggested Next Steps: If students struggle

- Consider reviewing Problem 3 after Activity 1 of Lesson 3. If possible, consider inviting students to share how equivalent fractions are similar to and different from equivalent ratios.

Unit 6.2, Readiness Check Summary

Problem 4

(Standards: 2.MD.B.6, MP6)

This question is intended to surface what students already know about number lines. Students attend to precision when labeling the number line. This content first appears in Lesson 5:
Balancing Act, where students use double number lines to solve problems with equivalent ratios.
Suggested Next Steps: If students struggle . . .

- Consider reviewing Problem 4 before Activity 1 of Lesson 5. Consider writing an incorrect solution and using a routine like Clarify, Critique, Correct.

Problem 5

(Standard: 4.NF.B.3)

This question is intended to surface what students already know about prices for groups of items. This content first appears in Lesson 6: Product Prices, where students calculate and use unit prices.

Suggested Next Steps: If students struggle . . .

- Consider spending extra time during Activity 1 of Lesson 6 sharing strategies for calculating unit prices.

Problem 6

(Standard: 5.NF.B.4)
This question is intended to surface what students already know about the relationship between dividing by a whole number and multiplying by a fraction. This content first appears in Lesson 10: Balloons, where students solve problems by reasoning about tables of equivalent ratios and double number line diagrams.

Suggested Next Steps: If students struggle . . .

- Consider reviewing Problem 6 before students begin Lesson 10. Consider asking a question like: How are the second and third equations related?

Problem 7

(Standard: 5.NF.B.5)

This question is intended to surface what students already know about relationships between parts and wholes. This content first appears in Lesson 12: Mixing Paint Part 2, where students explore part-to-part ratios.

Suggested Next Steps: If students struggle . .

- Consider spending extra time on Lesson 12's Warm-Up. Invite students to determine what fraction of the total paint is made of blue paint and yellow paint for different mixes.

Here are some personal pizzas.

1. Which statement is true?
A. The ratio of pizzas to mushroom slices is 4 to 2 .
B. The ratio of mushroom slices to pizzas is 2 to 1 .
C. There are two pizzas for every pepperoni.
D. There are six pepperoni for every pizza.

2. Select all of the ratios that are equivalent to $8: 6$.
$10: 8$$4: 3$
$\square 6: 4$
$40: 30$
$16: 12$

You can make pancakes with just eggs and bananas! Here is one recipe.
3.1 How many eggs do you need if you have 6 bananas?

Two-Ingredient Pancakes
Serves 4 People

- 6 eggs
- 2 bananas
3.2 How many eggs and how many bananas do you need to serve 6 people?
\qquad

4. A recipe for lemonade uses 5 scoops of mix for every 4 cups of water.

Mai says, "No matter how much lemonade you make, there is always one more scoop of mix than cups of water." Is she correct? Explain your reasoning.

At the stationery store, it costs $\$ 15$ for 6 notebooks.

5.1 Label each number line with a title and units to represent the situation.
5.2 Fill in the missing values on the double number line.
5.3 Write a question you could answer using the double number line.
5.4 Answer your question.

1. B. The ratio of mushroom slices to pizzas is 2 to 1 .
2.

$\checkmark 4: 3$
\checkmark 40:30
$\checkmark 16: 12$
$3.1 \quad 18$ eggs
3.2 9 eggs, 3 bananas
4. No.

Explanations vary. If you double the recipe, then you would have 10 scoops of mix and 8 cups of water. This doesn't follow Mai's rule.
5.1 Top number line: Number of Notebooks

Bottom number line: Cost (dollars)
5.2

5.3 Responses vary.

- How many notebooks can I buy for $\$ 20$?
- How much does it cost to buy 10 notebooks?
5.4 Responses vary depending on students' questions from 5.3.

- Consider revisiting Problem 1 of Lesson 2's notes.
- Consider asking students to write the ratios of mushrooms to pepperoni and pizzas to pepperoni then revisiting the choices. Suggested Next Steps: If students struggle . . .
did in Lesson 2: Ratio Rounds.
In this problem, students interpret language that describes a ratio. This problem corresponds most directly to the work students
(L'V'dy'9 :pıepuets)
Problem 1

G ' ε	乙	†'乙 '	smelqodd
$\forall{ }^{\prime} \varepsilon^{\prime} \forall^{\prime} d^{\prime}{ }^{\prime} 9$	$\varepsilon \cdot \forall \cdot d y^{\prime} 9$	$L^{\prime} \forall \cdot d y^{\prime} 9$	prepuets

 - Consider inviting to describe out loud what each number line represents, then labeling the number lines as a class.

(9dW ' \forall ' $\mathcal{\prime}$ ' \forall 'dy'9 :spıepuets) Problem 5
 - Consider moving on, as students will continue to work with ratio reasoning throughout this unit and the next unit. - Consider asking students to describe in words what they would need to do to the original recipe to create the new one.

 In this problem, students use ratio reasoning to solve real-world problems. This problem corresponds most directly to the work

(Standard: 6.RP.A.3.A)

 Problem 3Unit 6.2, Quiz: Summary and Rubric

＇7dшәне łou p！0	－рә！｜d！$!\mid n \omega$ ьо реәґsи！є кq 9 рәр！！！р әлец রеш sб6ә Z әдомм очм sұиәрпłS ләмsuе ґэәлоэиן			s6ీరə 8L 	$\forall^{\prime} \underbrace{\prime} \forall{ }^{\prime} \mathrm{d}^{\prime} 9$	－＇E
＇7duәュе łOU P！	＇sәэ！๐чэ ґэәлоэ әшоs Ч！！М รəэ！๐чจ ＇รәэ！！чว ¡эәлиоэи！Кןио	－әэ！๐ч๐ ¡эәมıоэu！әио pue səગ！๐чэ ґэәлиоэ ОМ৷	－әэ！ฺ๐ч ¡эәдıоэu！әuо pue 	$\begin{array}{r} Z I: 9 I \bullet \\ 0 \varepsilon: 0 \sqcap \bullet \\ \varepsilon: ฤ \end{array}$ 	$\varepsilon^{\prime} \forall^{\prime} d y^{\prime} 9$ ＇$\cdot \forall$＇dy＇9	Z
＇7duәュе łou p！0	＇о！ұед әцд „о ләрıо әцł рәsıәләл әлец Кеш＂．乙 о子 七 s！səэ！！s шоолчsnu of sezz！d до о！ұед ә૫ц，， рәұэәәг очм słиәрпнs －әэ！ฺчэ ґэәлоэи｜			＇I of Z s！sezz！d Ot Səo！｜s mooxysnu －әэ！๐чэ ұэәли๐	L•＊＇dy＇ 9	\downarrow
0	\downarrow	τ	ε	t		
	6u！uu！ 6 ®g	6u！doəəләа	6u！		prepuets	melqord

s！ıqny pue Kıewmes ：

7duәәе tou P！ 0	səəмsue ұэәдлоэи！Кןио		дәмsuе ңәәлоэи！әио pue дәмsuе џәәлоэ әио	（sıe\｜｜op）\ddagger soう • syooqəłon fo дəqunn • ＇sıәмsǔ łэәлио IIV	9dW ＇\forall＇$\cdot \forall$＇dy＇ 9	L＇G
7dme»е ł0u p！	＇so！̣eג 6u！pes Łо 6u！̣иеұsıәрй рәң！ш！！ sMous yıom	sлодә ұиеэ！！！uம！s 	sıодә әшоs ןenłdәэuos smoчs yдом	－ә！n sı！ew дәдем ıо sdno 8 рие х！ш ло sdooos 0L әлец ріпом пок иәч7 ‘әd！гәд －ио！̣еиеןdxә ұәәиоэ ЧІІМ ләмsuе џәәдоэ	$\begin{gathered} \varepsilon d W \\ \qquad \cdot \forall d y \cdot 9 \end{gathered}$	†
7duәәие ł0u p！	ґиә！рәлии！ чэеә оł 乙 рәрре әлец кеш seиеиед † рие sбБә 8 әдолм очм słиәрпұS －so！̣eג ұиәјел！̣nbə би！̣ィןоли！ swəøqod Бu！̣시 ๖๐ 6u！̣риеұsıәрии рәң！ш！ SMOYS y，				$\forall^{\prime} \mathcal{E}^{\prime} \forall^{\prime} \mathrm{d}^{\prime} 9$	て＇દ
0	\downarrow	乙	ε	t		
	6u！uu！ $\mathrm{Seg}^{\text {a }}$	6u！doןəләа		бu！pəәэххヨ／6u！ұәәW	prepuers	məq0．d

э！ıqny pue Kıewuns ：z！no＇Z＇9 t！un

7dmәне łou p！0	＇sməןqoıd әлןоs oł Səu！！дəqunu әø Ł๐ 6u！puełsıәpun рәң！ய！！ SMOUS yIOM	＇sıодә ұиеэ！！uи！ पџ！M Бu！̣puełsıəpun 	＇sıoдə әшоs чł！̣＇6u！̣ jenłdәouos smous yıом	$\varepsilon \cdot G$ шод suo！ ，słuəpnłs ио Би！puәdәр Kıe＾səsuodsəy дәмsue џәәлоう	$\forall{ }^{\prime} \varepsilon^{\prime} \forall^{\prime} \mathrm{d}^{\prime} 9$	$\downarrow^{\text {TS }}$
7dmәне łou p！0	＇sməŋqod әл｜оs 아 səu！！dəqunu әø เо 6u！puezsıәрии рәң！！u！ smous yom	＇əu！！дəqшnи әрппор әчъ би！sn рәлノоs әq 子，иел ұецł 7 дoo pue syooqәдои оұ рәдерәд ио！ұsәпи е sәұبмм ұиәрпня＂6・ヨ ＇sıодә ұиеэ！ पІ！М Бu！puełsıəpun әұәןdmoэu！sMoчs y⿺辶M	＇słsoo pue syooqәıои әэиәəəəə ł，usəop łnq әи！！ ıəqunu әवпор әЧł səsn децд uo！łsənb e səұ！ıм ұuәpnłs＂6•ق ＇sıодә әшоs पұ！мМ ‘＇Ku！puełs．əәpun ןenłdәouoo smoys yдом	¿02\＄ $10 \downarrow$ Knq I иeo syooqәıou Киеш мон • дәмsuе џәәдоう	$\forall{ }^{\prime} \varepsilon^{\prime} \forall^{\prime} \mathrm{d}^{\prime} 9$	$\varepsilon \cdot \mathcal{S}$
7dшәие ıOU P！	＇səu！！ ıəqunu ə｜qnop पІ！M suolpent！s о！̣ел Би！！ Ł๐ 6u！pueұsıәрии рәң！ш！！ sMous yom	»әqшпи ұэәцоэи！әио рие әи！！дәqயinи ұэәио๐ әио sмочs ұиәрпts＂ $6 \cdot \exists$ ＇sıодә ұиеэ！！！uб！s ЧІ！М Бu！̣ әұәןdmoэu！smoчs yıоМ	лои！ш чд！М sıәмsue ұวәлоэ ＇sıouә әшоs पұ！м＇6u！̣puełs．ıәрй jenłdәouoo smous yom	sz'0Z ‘0L ‘S $01 \text { ' } 8 \text { ' ' ' }$ ＇SләMSǔ łכәлиоэ II甘	$\forall{ }^{\prime} \varepsilon^{\prime} \forall^{\prime} \mathrm{d}^{\prime} 9$	Z＇G
0	\downarrow	乙	ε	\dagger		
	6u！uu！ $\mathrm{Seg}^{\text {a }}$	6u！doןəләа	6u！	6u！pəəэxヨ／6u！əəәW	рдерuers	шəq0．d

o！ıqny pue Kıemuns ：
\qquad

1. Makayla's recipe for Orange Surprise uses 2 cans of orange juice for every 3 liters of soda water. How much soda water would Makayla need if she used 12 cans of orange juice?
A. 8 liters of soda water
B. 13 liters of soda water
C. 15 liters of soda water
D. 18 liters of soda water
2. Select all of the ratios that are equivalent to $20: 12$.
60: 36
\square 10: 2
5: 2
30: 18
24: 16

Caleb's favorite shade of green uses a ratio of 5 cups of blue paint to 3 cups of yellow paint.
3.1 Caleb bought 12 cups of yellow paint. How much blue paint will he need to make his green?
3.2 Caleb needs 40 cups of green paint to paint his room. How much of each color will he need?

A sign at the store says 3 oranges cost $\$ 2.25$.
4.1 At this rate, what would 12 oranges cost?
4.2 At this rate, what would 7 oranges cost? Explain or show your thinking.
\qquad
5. While playing basketball, Ava's heart beat 80 times in 30 seconds.

While running, her heart beat 60 times in 20 seconds.
Which activity made Ava's heart beat faster? Explain your reasoning.

Jayden is saving up for $\$ 100$ concert tickets. For every 5 hours they work, they get paid $\$ 40$. They made a table to figure out how many hours they need to work to earn $\$ 100$, but it has a mistake.
6.1 What did Jayden do well?

Describe Jayden's mistake.

Hours	Dollars Earned
5	40
1	8
100	800

6.2 Determine how many hours Jayden needs to work to earn $\$ 100$.

Metropolis requires that for every 5 plots of land used for buildings, 2 plots of land must be left for green space.
7.1 A company bought 70 plots of land. How many plots can it use for buildings?
7.2 Write a question about this situation whose answer is 30 plots of land.

Reflection: Select a question to answer.
What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.

Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

1. $\mathbf{1 8}$ liters of soda water
2. \checkmark 60:36
\checkmark 30:18
3.120 cups
3.2 25 cups of blue paint and 15 cups of yellow paint
$4.1 \quad \$ 9$
$4.2 \quad \$ 5.25$
Explanations vary. I figured out that it costs $\$ 0.75$ for each orange, so 7 oranges would cost $\$ 0.75 \cdot 7=\$ 5.25$.
3. Running

Explanations vary. Ava's heart beat 3 times per second when she was running. If it beat 3 times per second when she was playing basketball, it would have been $3 \cdot 30=90$ times. Since it only beat 80 times, her heart must have been beating faster when she was running.
6.1 Responses vary. Something Jayden did well was calculate how much they earn each hour correctly. Jayden's mistake was calculating how much they would earn from 100 hours of work instead of how many hours they would need to work to earn $\$ 100$.
6.212 .5 hours or 13 hours (if they can only work hour-long shifts)
7.1 50 plots of land

7.2 Responses vary.

- How many building plots can you make if you used 12 plots for green space?
- How many building plots can you make from 42 plots of land?
- How many plots for green space do you need if you want 75 plots for buildings?
- Consider revisiting Lesson 4, Activity 2, Screen 6 -әqең до ‘سелбе!̣ әdeł

the work students did in Lesson 3: Rice Ratios and Lesson 4: Fruit Lab
In this problem, students use repeated reasoning to determine which ratios are equivalent. This problem corresponds most directly to
(8dW 'r' \forall 'dy'9 :sprepuets)
Problem 2 - Consider revisiting Lesson 5, Activity 2, Screen 10
- Consider inviting students to use a double number line to help visualize the problem
Suggested Next Steps: If students struggle .
Lesson 5: Balancing Act.
In this problem, students solve problems using equivalent ratios. This problem corresponds most directly to the work students did in
(ع'V'dy'9 :pıepuets)
โ ШวโqO.d

G 't	9	L' ' 1	乙	smejqodd
$q^{\prime} \varepsilon^{\prime} \forall \cdot{ }^{\prime} y^{\prime} 9$	$\forall^{\prime} \varepsilon^{\prime} \forall^{\prime} \mathrm{d}^{\prime} 9$	$\varepsilon \cdot \forall \cdot d d^{\prime} 9$	L'*'dy ${ }^{\prime} 9$	prepuets

- Consider asking students how to find each unit rate, or suggesting a visual representation such as a double number line.

In this problem, students construct arguments to justify which of two objects is moving faster using concepts of unit rate.
This problem corresponds most directly to the work students did in Lesson 8: World Records.
(Standards: 6.RP.A.3.B, MP3)
Problem 5
 students did in Lesson 6: Product Prices.
In this problem, students solve problems that involve calculating a unit price. This problem corresponds most directly to the work
(Standard: 6.RP.A.3.B)

 Act and Lesson 12: Mixing Paint Part 2. strategies related to part-part-whole thinking. This problem corresponds most directly to the work students did in Lesson 5: Balancing In this problem, students use ratio and rate reasoning to solve real-world problems, particularly understanding when it is useful to use (ع'丬'dy'9 :prepuets) Problem 3
\forall שגO』 :
- Consider revisiting Lesson 13, Activity 1. •sməŋqoıd әsə૫ł
 the work students did in Lesson 13: City Planning. abstractly and quantitatively to formulate a question, in context, that has a given answer. This problem corresponds most directly to In this problem, students use their creativity to solve rate and ratio problems involving part-to-part relationships. They have to reason (Standards: 6.RP.A.3, MP2) Problem 7

Lesson 9: Disaster Preparation and Lesson 10: Balloons. in

In this problem, students use a table of equivalent ratios to solve real-world problems. They analyze the work of another student,
(Standards: 6.RP.A.3.A, MP3)
Problem 6
Unit 6.2, End Assessment Summary and Rubric: Form A

7dшәұе łou P！0	 иеэ no人 ұецұ рәэ！̣ои әлец Кеш 9I：七Z ఛəәəs очм słuәpnłS ＇səว！๐ч๐ ґэәдоэи！słэәәәs Кןио ұиәрпłS				8dW ＇$\cdot \forall$＇ $\mathrm{d} y$＇ 9	乙
łOU P！O	－дәем ероs до ‘ ε рие ZI рәрре әлец Кеш słə！！！SI łગəəəs очм słuәpnłS －əә！̣！ әчł оㄱ I pәрре ло ‘sə！！！！？uenb чłоq оł 0І рәрре әлец кеш 			дәұмм epos fo sıət！！8L •	ع＇V＇dy ${ }^{\prime} 9$	\downarrow
0	1	Z	ε	t		
	6u！	6u！doןəләа	6u！upeordd \downarrow	бu！pəəวxヨ／6u！łəәW	prepuets	məq0．d

\forall سл⿵ ヨ :

łou p！0	－uoḷeue，dxә ue łnout！M 10 uо！̣еиеןdxә ¡эәиоэи！ ЧІ！М дәмsue ґэәиоэи	－sınoy 00I u！ureә pınom Кәчł цэпш моч рәґеןпэəэ Кәчъ sем әуедь！ш s，uәрКег Łечł ио！ңеие．dxヨ －uo！̣еиеןdxә 	－K｜ํәәиоэ әાવセł ә૫ł әsn ъои р！̣р Кәчъ sем әуеłs！u s，uәркер цэпш моч әұеןทэן sem｜ІәМ р！ иәрКер би！чłәшоя ио！̣еиеןdxә ұәәлоう	－00I\＄uxeә о子 рәрәәи Кәцъ s．nоч Киеш моч Ło peəłsu！s．nou 00L и！ихеә рюпом Кәчł чэпш моч би！！ұןпэן sem әyełs！u s，uәрКер גnoч лəd илеә Кәчł цэпய моч р！р иәрКег би！！ңәшоs pue ןеэ！ uo！！sənb әцł sıəмsue K｜｜nłssəoวns ұuəpnłs	EdW ＇\forall＇ε＇\forall＇dy＇ 9	－＇9
7duәəte łou p！0	＇иоппеие．dxә ue łnouł！M 10 uо！̣еиеןdxә ఛэәมоэи！ पІ！М дәмsue ๆวәлоэи｜	 pied Кןио әлец Кеш ॥eqłәyseq סu！Кеןd ә！！чм łеЧł әұ！им очм słuәpnłs дечұ ио！̣еиеןдхә Ч！！М дәмsue łэәдоэu｜ ＇uo！̣еиеןdxə әłəןdmoэu！ ЧЏ！М дәмsue łЈәлиО	uoḷeue，dxə ＇uоппеие．dxә U！SME｜t dOU！ पł！М גәMSUQ łכәлиО	＇6u！̣uund dəłsef SEM ұеәqમеәу дəч ‘səu！！ 08 ¡eәq К｜uo †！əכu！s ‘səш！！ 06 иәәq әлец pınoм + ！ puoכəs дəd səu！ł \＆łeəq ！！f ‘buluuñ puooəs ıəd 6uluuny • †эәлиО 	EdW ＇$a \cdot \varepsilon$＇\forall＇dy＇9	G
0	\downarrow	乙	ε	t		
	6u！	6u！̣оןəләа		6u！pəәэхヨ／6u！	prepueis	məq0．d

＇7dшәџе łou p！0		＇sлодә ұиет！！ииб！s Чд！̣＇万u！̣puetsıəpun бu！̣оןәләр е sмочs yдом	－əэeds uәəఎб јo sło｜d $0<$ Kuedmoove of \downarrow ң！nq əq ueo sбu！̣p！！nq fo słold Kuew mou рәңеןnэןеэ әлец кеш słoןd SLI ә！！ıм очм słuәpnłS ＇sбu！pu！nq fo słold $0 \angle$ ıoł pəәu pınom noर әכeds иәәдб до słold Kиеш моч рәңеןпэןеэ әлеч Кеш słold $8 Z$ әџ！мм очм słuәpnts ＇sıoдә доu！̣ पұ！̣м ןentdәouoo smous yдом	puel fo słold 0S • ＇ґэәлио рие 	ع＇＊＇dप＇9	$1 \cdot 2$
＇7dmәде łOU P！	－6u！̣иеłsıәpun 10 әЈиәр！лә чеәМ	－0t－00L рәғеן кеш sınоч 09 чиом оұ sрәәи иәркег ұечъ әџ！мм очм słuәpnıS ЧІ！М＇రu！̣puetsıəpun бu！̣doןəләр е sмочs удом	＂אәңsem pue бu！puetsıәрй ןепłdәэиоэ sмоцs уиом	（sh！ бuol－גnoч צגом кןиo ueว Кәцł ！！） s．nou \＆ sınou S＇ZI ＇łวәлоэ pue 	$\forall^{*} \varepsilon^{\prime} \forall^{\prime} \mathrm{d}^{\prime} 9$	$て ゙ 9$
0	1	Z	ε	t		
	6u！uu！ 6 өg	6u！dojəләа	6u！u＞eordd		prepuels	meıqodd

10u P！	－0\＆ıəqunu ə૫ł səpn｜ગu！ uo！tseno	－uo！̣ent！s иәл！！әчł әэиәдəәд səop łnq ‘pue｜„0 słold 0ε јо ләмsǔ ue әлец łou səop uo！！səno	－uo！̣ent！s иәл！！ әЧł әЈиәәəəд ł૦u səop łnq ‘puel fo słold 0ε ł૦ дəмsue ue sey uo！！feno	¿s6u！p！！nq lof słold SL 子uem noर ！！pəәu noर op әэeds ¿pue｜„o słoןd Zฤ سоц әуеш noर иет słoןd бu！̣p！！nq Kuew мон ¿әэeds นәәц6 ıоł słold ZI pəsn noर ！！әуеш no人 ueэ słold 反u！p！！nq Kuew мон －pueן to słold 	$\begin{gathered} \text { ZdW } \\ \text { ' } \forall \cdot d Y \cdot 9 \end{gathered}$	でし
0	1	Z	ε	t		
	6u！	6u！doıəләа	6u！	6u！pəəэxヨ／6u！ŋәәW	prepuels	melqord

Name \qquad

1.1 Kilometers and inches are two units used to measure length.

List two other units used to measure length.

1.2 Tablespoons and liters are two units used to measure volume.

List two other units used to measure volume.
2. Select all of the numbers that have the same value as $7 \times \frac{5}{4}$.8.3
$\frac{35}{4}$
\square
$8 \frac{3}{4}$
$\square \quad \frac{35}{28}$8.75
3. Vihaan and Natalia each walk at a constant speed.

- Vihaan walks 40 feet in 10 seconds.
- Natalia walks 23 feet in 4 seconds.

Who walks faster?
A. Vihaan
B. Natalia
C. They walk at the same speed.

Explain your reasoning.
\qquad
A bakery charges $\$ 3$ for 8 cookies.
4.1 At this rate, how many cookies can you buy with $\$ 15$?
4.2 At this rate, how much would it cost to buy 10 cookies?
5. List anything you know about percentages.

50\% off

Complete each sentence with a number that makes it true.
6.1 $\frac{1}{4}$ of 24 is \qquad .
$6.5 \quad \frac{1}{100} \times 300=$ \qquad .
$6.2 \quad \frac{3}{4}$ of 44 is \qquad .
$6.6 \frac{1}{100} \times 340=$ \qquad
$6.3 \quad \frac{1}{10}$ of 300 is \qquad $6.7 \quad \frac{3}{100} \times 340=$ \qquad .
6.4 $\frac{1}{10}$ of 340 is \qquad .
7. Select all of the expressions that have the same value.$\frac{1}{100} \times 400$$\frac{1}{10} \times 400$400 divided by 100$\frac{400}{100}$
$\square \frac{1}{400} \times 100$

Unit 6.3, Readiness Check

Answer Key

1.1 Responses vary. Meters, feet, centimeters, millimeters, miles.
1.2 Responses vary. Teaspoons, gallons, cups, quarts, pints, milliliters.
2. $\frac{35}{4}, 8 \frac{3}{4}, 8.75$
3. B. Natalia

Explanations vary. Vihaan walks $\frac{40}{10}=4$ feet per second, and Natalia walks $\frac{23}{4}=5.75$ feet per second.
4.140 cookies
$4.2 \quad \$ 3.75$
5. Responses vary. Percentages help you find parts of numbers, like when something is on sale, you are only paying a portion of the price. Percentages are like fractions, where 50% is like half of something.
$6.1 \quad 6$
6.233
6.330
6.434
6.53
$6.6 \quad 3.4$
$6.7 \quad 10.2$
7. $\frac{1}{100} \times 400,400$ divided by $100, \frac{400}{100}$

Unit 6.3, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problem 1 before Lesson 1
- Problem 2 before Lesson 3
- Problems 3 and 4 before Lesson 4
- Problem 5 before Lesson 8
- Problems 6 and 7 before Lesson 11

Problem 1

(Standards: 2.MD.A.2, 3.MD.A.2)
This question is intended to surface what students already know about different units for measuring length and volume. This content first appears in Lesson 1, where students make connections between units of measurement and the measurements of everyday objects. Lesson 1 will review many different units of measurement.

Suggested Next Steps: If students struggle. . .

- Consider adding student responses to the class display during Lesson 1.
- Consider creating an anchor chart as a class with different units of measurement, as well as measurement words such as "length", "volume", and "mass".

Problem 2

(Standard: 4.NF.B.4)
This question is intended to surface what students already know about multiplying a whole number by a fraction. This content first appears in Lesson 3, where students convert measurements from one unit to another in different measurement systems.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem as a class before Lesson 3, or spending extra time reviewing the Practice Problem Warm-Ups for Lessons 1-3.

Unit 6.3, Readiness Check Summary

Problem 3

(Standards: 6.RP.A.3, MP3)
This question is intended to surface what students already know about comparing rates from Unit 2. Students compare two rates and justify their conclusion. This content first appears in Lesson 4, where students use rate and ratio reasoning to compare rates expressed in different units.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem before Lesson 4. Invite students to share several strategies, including calculating a unit rate and creating equal amounts of feet or seconds.

Problem 4

(Standard: 6.RP.A.3)
This question is intended to surface different strategies students use to solve problems involving ratios of whole numbers. This content first appears in Lesson 4, where students use rate and ratio reasoning to compare rates expressed in different units.

Suggested Next Steps: If students struggle . . .

- Review this problem before Lesson 4. Invite students to share what the cost per cookie is.

Problem 5

(Standard: 6.RP.A)
This question is intended to surface what students already know about percentages from their personal experience. This unit is the first time that most students will learn about percentages formally in school. This content first appears in Lesson 8, where students learn the word percent and the symbol \% to mean "for every 100."

Suggested Next Steps: If students struggle . . .

- Give students an opportunity to revise their responses after Lesson 8.

Unit 6.3, Readiness Check Summary

Problem 6

(Standards: 4.NF.B.4, MP8)

This question is intended to surface what students already know about how multiplying a whole number by a fraction is similar to thinking about a fraction of a whole number. Students look for regularity in repeated reasoning as they identify and use patterns when multiplying fractions. This content first appears in Lesson 11 as students write expressions to calculate a percentage of a number.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem before students begin Lesson 11. Invite students to make connections between the word "of" as it relates to multiplication.
- Consider making an anchor chart for students to refer back to for the rest of the unit.

Problem 7

(Standards: 5.NF.B.3, MP8)
This question is intended to surface what students already know about equivalent expressions involving multiplication of whole numbers and fractions. Students look for and express regularity in repeated reasoning as they see that multiplying a number by a unit fraction is the same as dividing that number by the value in the denominator. This content first appears in Lesson 11, where students use expressions to calculate any percentage of a number.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem as a class before Lesson 11. Invite students to make connections between multiplying by $\frac{1}{100}$ and dividing by 100 .

Unit 6.3, Quiz: Lessons 1-7

1. Select all of the true statements.2 meters = 200 centimeters5 millimeters $=50$ centimeters300 meters $=3$ centimeters
Name \qquad

1 meter $=100$ centimeters

1 centimeter $=10$ millimeters4 centimeters $=400$ meters30 millimeters $=3$ centimeters
2. Which object weighs more? \qquad

7.5 kilograms

12 pounds

Explain or show how you know.
3.1 A shop charges $\$ 4.95$ for a large 9 -ounce frozen yogurt. What is the cost per ounce of the frozen yogurt?
3.2 The shop charges $\$ 6.72$ for an extra-large 12 -ounce frozen yogurt. Which size gets you more frozen yogurt per dollar?

Explain your thinking.
\qquad
A strawberry milk recipe uses 3 teaspoons of strawberry syrup for every 8 ounces of milk.
4.1 How many teaspoons of strawberry syrup per ounce of milk does this recipe use?
4.2 How many ounces of milk are needed per teaspoon of strawberry syrup?
4.3 There are 18 ounces of milk left in a container. How many teaspoons of strawberry syrup would you need if you used all the milk?

Explain or show your thinking.

Duri bought 4 gallons of gas for $\$ 10$.
5.1 Complete the table for buying gas at this rate.

Gas (gallons)	Price (dollars)
4	10
5	37.50

5.2 Write a question you could answer using the table.
5.3 Answer the question you wrote.

1. $\sqrt{ }$ meters $=200$ centimeters
$\checkmark 30$ millimeters $=3$ centimeters
2. Watermelon Explanations vary. There are $\frac{22}{10}$ pounds per kilogram, so 7.5 kilograms is equal to 7.5 $\frac{22}{10}=\frac{165}{10}$ or 16.5 pounds.
$3.1 \quad \$ 0.55$ per ounce
3.2 The large 9 ounce. Explanations vary. The large 9 -ounce yogurt is $\$ 0.55$ per ounce and the extra-large 12 -ounce yogurt is $\$ 0.56$ per ounce, so the large yogurt gets you more yogurt per dollar.
$4.1 \quad \frac{3}{8}$ teaspoons (or equivalent)
$4.2 \quad \frac{8}{3}$ ounces (or equivalent)
$4.3 \quad 6.75$ teaspoons. Explanations vary. The recipe uses $\frac{3}{8}$ teaspoons per ounce of milk, so you need $\frac{3}{8} \cdot 18=\frac{54}{8}$ or 6.75 teaspoons.
5.1

Gas (gallons)	Price (dollars)
4	10
5	12.50
15	37.50

5.2 Questions vary.

5.3 Responses vary.
－Consider having students use a double number line to help them organize the given information．

＇sped uəd Lesson 3：
In this problem，students convert measurements from one unit to another in a different measurement system．They construct a viable
argument to justify which object they conclude weighs more．This problem corresponds most directly to the work students did in
（ $\varepsilon d W$＇a＇ε＇\forall＇dy＇9 ：spıepuełS）
Problem 2 －Consider moving on，as students will have more practice with this in upcoming lessons． －Consider having students use a table to organize the given information． Suggested Next Steps：If students struggle ．．．
 did in In this problem，students use equivalent ratios to convert units of measurement．Students attend to precision when determining how
to compare measurements with meters，centimeters，and millimeters．This problem corresponds most directly to the work students （Standards：6．RP．A．3．D，MP6） โ Шวโqoud

て＇レ	ع＇ナ＇て＇	G	でも＇レ＇も＇レ・を	smejqosd
$a^{\prime} \cdot \forall^{\prime} \cdot{ }^{\prime} y^{\prime} 9$	$q^{\prime} \cdot \varepsilon^{\prime} \forall^{\prime} d y^{\prime} 9$	$\varepsilon \cdot \forall \cdot d y \cdot 9$	て＇V＇dy 9	prepuets

Unit 6．3，Quiz：Summary and Rubric

Consider suggesting that students use unit rates or fractions to understand the ratio relationship in the table.
Suggested Next Steps: If students struggle . . .
complete the table. This problem corresponds most directly to the work students did in Lesson 7: More Soft Serve. In this problem, students use unit rates to complete a table of equivalent ratios and make sense of those ratios in context. Students
(ZdW ' ε ' \forall 'dy'9 :spıepuetS) Problem 5 - Consider revisiting Lesson 5, Activity 2. Suggested Next Steps: If students struggle . . .

This problem corresponds most directly to the work students did in Lesson 5: Soft Serve. Students reason abstractly and quantitatively when they determine two unit rates and a new corresponding quantity in context.

In this problem, students calculate and interpret the two unit rates for the same relationship and use them to solve problems.
(ZdW 'g'E'V'dy'9 ' Z 'V'dy'9 :spıepuetS) Problem 4

- Consider asking students how to find a unit rate, or suggest they use a visual representation to organize the given information.

their reasoning with a viable argument. This problem corresponds most directly to the work students did in Lesson 4: Model Trains. In this problem, students use ratios and unit rates to make comparisons. Students compare unit prices of two scenarios and justify (عdW ‘g'દ'V'dy'9 'Z'V'dप'9'9 :spıepuełS) Problem 3

7dшәне łou p！	＇s＇L ueył ләБле s！ZI łецł рәэ！дои әлец Kеш u！ydund әцł ұכәәәs очм słиәрпts＂ $6 \cdot \exists$ －wəュsイs ұиәшәлnseəш ұиәдә！！ e u！̣ дəपłoue of t！un əuo سодई słuәшәиnseәш дәлиоэ от моч до 6u！̣риеұsıәрии рәң！！u！！SMOYS yגOM	＇sıодәә ұиеэ！！！uద！！ әұəןdسoэu！ smous yıом	s．ддлә әшos jenłdәәuos sмочs уиом	＇spunod s 9I 10 $\frac{0 I}{\mathrm{~S} 9 \mathrm{I}}=\frac{0 \mathrm{I}}{\mathrm{ZZ}} \cdot \mathrm{~S} \cdot \angle \mathrm{Ot}$ ןenbə s！sweıбо！！ S ：L os ‘سелбоן！ 1 ıəd spunod $\frac{0 L}{Z Z} \text { әк әдәцц' " } 6$ иоןәшәәдем －ио！！ңеиеןdxә ұэәлоэ 	EdW ＇$\square \cdot \varepsilon$＇$\forall$＇dy＇ 9	乙
＇7dшәџе łou p！	＇sәэ！๐чэ ґэәдоэ ＇ऽəગ！๐૫๐ 	－әэ！๐ч๐ ¡эәлиоэu！әuо pue 	－ә๐！๐чэ ఛวәлоэu！әио pue pue әЈ！очэ ұэәдоэ әио	sдəłəш！ұиә๐ $\varepsilon=$ sдəəəш！！！！um 0ε sıəұәш！ $00 Z=\text { sıəłəu Z • }$ 	9dW ＇a＇ε＇\forall＇d＇ 9	\downarrow
0	\downarrow	Z	ε	t		
	6u！uu！ 6 ¢g	6u！doןəләа	6u！чэeosddv	6u！pəəэxヨ／6u！！əәW	рлериетS	melqodd

7dmә»е łOu p！	suos！uedmoэ әуеш ot sereג t！un pue soḷed əsn of MOU „о 6u！pueұsıәрии рәң！ய！！ smoys you	sıодә ұиеэ！！！uம！s पІ！м ‘＇6u！puełs．əәpun әұәృdwoכu！SMOYS צ10M	иецъ дәчБ！$\frac{1}{\text { s！әЈипо }}$ ıəd 7 soo st！əsneכəq цпбоК әБле－едхә әЧł Słગəə риe әz！s μ ипбоイ чэеә „о әэипо ıәd ұиәрнłs＇6・ヨ ‘sıодә әшоs पұ！м ‘＇6u！puezsıәрй ןеnłdәэиoo sMOYS YıOM	делор ıәд ципбок әлош noर słәб ципбоイ әБıе әцł оs ‘әэипо әэипо－ZI әДıе－едхә әчł рие әэипо ıəd SS＇0\＄S！みnßo人 әэипо－6 әбле әчц＇6・ヨ әכuno 6 әБље әЧノ ＇uо！̣еиеןdxә ұәәдоэ 	EdW ＇ 9 ＇ε＇\forall＇dप＇ 9	て＇દ
＇qdmәџе łOU P！	sәдед диии „о 6u！puełsıәрии рә！！u！！ smoys yıoM	$\frac{.56^{\circ} t}{6}$ рәғерпэет әлец кеш Z8＇I\＄ әұолм очм sұиәрпts＇ $6 \cdot \exists$ ＇sıодә ұиеэ！！！ub！s पұ！м Бu！puełsıәриn 	＇sıодә әшоs पұ！м ‘＇6u！puezsıәрй ןEnłdəouoo sMous yom		て＇V＇dप्d＇9	L＇E
0	\downarrow	Z	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	бu！pəəэхヨ／6u！ŋəәW	paepuets	məq0ıd

o！̣qny pue Kıewuns ：z！̣o＇＇＇9 9

＇7dmeŋte łOU P！	－dnıks „о suoodseәł әдош 0I рәәи I！！ท Ү！！w fo səouno әлош 0I уи！ч7 кеш suoodseәt عI әдом очм słиәрпнs＂ $6 \cdot \exists$ swəøqoud әлןos ol sәłед t！un əsn of mou „о бu！̣риеұsıәрй рәџ！ш！！ sMous yom	．$\frac{\varepsilon}{8}$ イq 8L рә！！d！\downarrow пи әлец Кеш suoodseәт 8т әұомм очм sұиәрпłs＂ 6 ・ヨ งsодлә ұиеэ！！！ub！s әұәןdmoэu！sMoчs yィоМ	＇sıодә әшоs पІ！м ‘＇6u！puęsıәрй ןепłdәэиoo smous yıom	＇suoodseət SL＇9 $10 \frac{8}{\square \mathrm{~S}}=8 \mathrm{~L} \cdot \frac{8}{\varepsilon}$ рәәи nоर os ‘หו！ய ло әэuno ıəd suoodseət $\frac{8}{\varepsilon}$ suoodseəł SL＇9 ＇uo！！̣euejdxә ұэәдоэ Чł！М גәMSUQ łЈәлиО	$\begin{gathered} Z d W \\ { }^{\prime} \cdot \varepsilon^{\prime} \forall d y \cdot 9 \end{gathered}$	
＇7dmәие łOU P！	＇sәдед Łо 6u！̣иеъsıәрй рә！！w！！ sMOYS yIOM	－опел әчд до ләрл әцұ рәsıәләл әлец кеш $\frac{8}{\varepsilon}$ әдолм очм słиәрпня＂＂ $6 \cdot \exists$ ＇sıоגә ұиеэ！！！ии！！ Ч！！М Бu！̣иеъsıәрй әәәןdmoэu！SMOYs y10M	＇s．ддәә әшоs पІ！М ‘＇6u！puełs．əәpun smous yдом	（ұиәјел！̣nbə ı）səouno $\frac{\varepsilon}{8}$ ‘әммиие ұәәиоэ	て＇V＇dપ્C＇9	でも
＇7dmәие łou p！o	－sәłeג เ๐ 6u！pueұs．әрии рәң！ш！！ sMous youm	－о！̣ед әчł ৷о дәрло әчұ рәsıәләд әлец Кеш $\frac{\varepsilon}{8}$ әұолм очм sұиәрпня＇＂ 6 • \exists ＇sィодә ұиет！！！ub！s ЧІ！М Бu！̣puełsıәрй әәәןdmoэu！sMOчs y10M	‘sıодә әшоs पІ！м ‘＇6u！puełsıәрй ןEnłdəouoo sMOYS yoM	（ұиәјем！̣nbә 10）suoodseət $\frac{8}{\varepsilon}$ ләмsuе ұәәлоう	て＇Ө＇dy ${ }^{\prime} 9$	L＇t

＇7duәәие tou p！	＇ұхәұиоэ и！so！̣еג Łо 6u！̣puełsıәри рә！！ш！！ sMous youm	＇sıодә ұиеэ！！！uб！s цџ！М Бu！̣ әәәןdmoэu！SMOчs y10M	＇sıoддә әшоs ןепłdəouoo sMOYS Y⿺辶M	＇z＇s mort uo！！sənb sıәмsue K／Inıssəoวกs łиəpnts ＇дәмsǔ ұәәлоう	$\varepsilon \cdot \forall{ }^{\prime} \mathrm{d}^{\prime} 9$	$\varepsilon \cdot \underline{S}$
＇7dməџе ł0u p！	＇ұхәұиоэ и！so！̣ед Łо 6u！̣иеъsıәри рә！！ய！！ sMOYS youm	 рәдәмsǔ әq łоииет иo！！səno	－ұхәұиоэ иәл！！әцł әәиәдәəд łou səop łnq ‘əəqеł әчъ бu！̣n рәдәмsue әq uev uo！！səno	¿s．e｜｜op 0Z\＄पІ！M Knq noर uev se6 ృo suo॥еб Киеш мон ¿łso se6 ıо иоןеб I səop чənய мон бuilsn pəィןos әq pןnoっ K｜｜nłssəวэns ұuəpnłs	ع＇＊＇dy＇9	Z＇G
¡dme»！ łOU P！ 0	－（乙 мол u！LI sә！！мм ұиәрпұs＇•6•ә） sишіןоэ иәәмұәа d！чsuо！ұејәд әчд se uо！ұеכ！！！！！！пиш „о реәғsu！ио！！！ppe səsn ұиәрпł＇＂6•ق －səu！｜ ıәqunu әфпnop पІ！M suo！̣ent！s „о 6u！pueұsıәрии рәр！ш！！ smous yom	งรодәә ұиеэ！！！uம！s पІ！М Бu！puełsıәpun 	＇sıoдəә әшоs पІ！М ‘＇6u！puełsıәрй sMOYS Y⿺辶M		$\begin{gathered} \text { ZdW } \\ \qquad \underbrace{\prime} \forall \mathrm{d}^{\prime} \cdot 9 \end{gathered}$	$\stackrel{L}{\text { c }}$

\qquad

1. Sydney's fitness app says she has completed 70% of her goal for the week. Her goal is 50 miles. How far has she biked?
A. 1.4 miles
B. 20 miles
C. 35 miles
D. 71.4 miles
2. Mateo's pasta sauce recipe uses 8 tomatoes for every 3 teaspoons of oil. Select all of the true statements.

The recipe uses $\frac{3}{8}$ teaspoons of oil per tomato.
The recipe uses $\frac{3}{8}$ tomatoes per teaspoon of oil.
He needs 3 tomatoes for every 8 teaspoons of oil.
He needs $\frac{3}{4}$ teaspoons of oil for every 2 tomatoes.
He needs 9 tomatoes for every 4 teaspoons of oil.
3. 3 pounds of blueberries cost $\$ 10.50$ at a grocery store. Complete the table.

Blueberries (lb.)	Price (dollars)
3	10.50
7	35.00

4. Zion is reading a 300 -page book. He is 41% finished.

How many pages of the book has he read so far?
\qquad
5. A store is selling pumpkins. Small pumpkins weigh less than 10 pounds. Big pumpkins weigh 10 pounds or more.

Pablo wants to buy a pumpkin that weighs 4 kilograms. Is this

10 kilograms ≈ 22 pounds pumpkin small or big?

Explain your thinking.

It took Amari 2 hours to paint the first 14 feet of a 70 -foot-long fence.
6.1 What percent of the fence have they painted so far?
6.2 At this rate, how long would it take Amari to paint the entire fence?
7.1 Afia bought shoes that were on sale for 30% off the regular price. Afia saved $\$ 12$.

What was the regular price of the shoes?
7.2 Afia entered this expression into her calculator at the shoe store: $\frac{30}{100} \cdot 56$.

Write a question she could answer about prices at the shoe store using this expression.

Reflection: Select a question to answer.
What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.

Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

1. 35 miles
2. \checkmark The recipe uses $\frac{3}{8}$ teaspoons of oil per tomato.
\checkmark He needs $\frac{3}{4}$ teaspoons of oil for every 2 tomatoes.
$3.1 \quad \$ 24.50$
3.210 pounds
3. 123 pages
4. Small

Explanations vary. There are about $\frac{22}{10}$ pounds per kilogram, so 4 kilograms is approximately $4 \cdot \frac{22}{10}=8.8$ pounds .
6.120%
6.210 hours
$7.1 \quad \$ 40$
7.2 Responses vary.

- How many dollars will you save on a $\$ 56$ item that is 30% off?
- How many dollars will you save on a $\$ 30$ item that is 56% off?
- How much does a $\$ 56$ item cost that is discounted 70% ?
- 100 marbles cost $\$ 56$. How much should I pay for 30 marbles?
－әэиешлодәの ұиәрпłs
 ratios that can be compared，using unit rates and other organizational strategies，such as a table．
－Consider asking students to approach each option one at a time，as a separate problem．Ask students to sort the information as
 Soft Serve determining equivalent ratios of different measurements．This problem corresponds most directly to the work students did in Lesson 5 ： In this problem，students calculate and interpret the two unit rates in the same relationship．Students attend to precision when （Standards：6．RP．A．2，MP6） Problem 2 －Consider asking students to represent the given information visually with a table，double number line，or other strategy． Suggested Next Steps：If students struggle corresponds most directly to the work students did in Lesson 9：Bicycle Goals．

In this problem，students find a percent of a quantity when the percent can be made from benchmark percentages．This problem
（Standard：6．RP．A．3．C）
Problem 1

G	L＇9＇t＇レ	ε	9	乙	sməgodd
	O＊$\varepsilon^{\prime} \forall^{\prime} \mathrm{d}^{\prime} 9$	$g^{\prime} \varepsilon \cdot \forall \cdot d y^{\prime} 9$	$\varepsilon \cdot \forall \cdot d d^{\prime} 9$	でヲ ${ }^{\text {d }}$－ 9	prepuels

Unit 6．3，End Assessment Summary and Rubric：Form A

In this problem, students use ratio reasoning to convert measurement units. They construct a viable argument to justify their response
This problem corresponds most directly to the work students did in Lesson 3: Pen Pals.
(عdW 'a' ε 'V'dy'9 :spıepuełS)
Problem 5

- Consider revisiting Lesson 11, Activity 1, Screen 5.
- Consider asking students to describe how to write a percent as a fraction, and how that might help them solve the problem.
Suggested Next Steps: If students struggle .
students did in Lesson 11: Cost Breakdown.
In this problem, students calculate the percent of a quantity for any percentage. This problem corresponds most directly to the work
(Standard: 6.RP.A.3.C)

п Шวโqoud

- Consider revisiting Lesson 7, Activity 1, Screen 6.
- Consider asking how they can use the information given in the first row of the table to help them solve for the other values.
Suggested Next Steps: If students struggle . .
This problem corresponds most directly to the work students did in Lesson 7: More Soft Serve. to understand that the table represents a proportional relationship, then apply their understanding to complete the table.
In this problem, students solve unit rate problems including those involving unit pricing. Students reason abstractly and quantitatively

Problem 3

¿ Z K

 Lesson 11: Cost Breakdown. represent percent situations. This problem corresponds most directly to the work students did in Lesson 10: What's Missing? and In this problem, students solve problems involving finding the whole given a part and the percent and write expressions to
(Standard: 6.RP.A.3.C) Problem 7

directly to the work students did in Lesson 4: Model Trains and Lesson 12: More Bicycle Goals.
In this problem, students calculate an unknown percentage and use rate reasoning to solve problems. This problem corresponds most
(0'ع'V'dy'9 ' ε '甘'dy'9 :spıepuełs)
Problem 6

7dməュte łou p！0	sәэ！очэ ґәәдоои！әлош до омұ słכәəәs ұиәрпłs 	－әэ！๐чэ ұэәлоэи！ әио рие səэ！очэ әио ડłગəəəs ұuәpnts	－әэ！！чэ ґэәмоэи！ әио рие sәэ！๐чэ słગəəəs łuəpnłS səop pue səэ！！чч słəəəəs łuəpnłS	＇səołemoł Z Кィәлә 10ł ！！ $\frac{t}{\varepsilon} \text { spəәu ән • }$ －아루아 ıəd ！！० fo suoodseәł $\frac{8}{\varepsilon}$ səsn əd！əə» ə૫ノ 		Z
＇7dшәдне łou p！0	 †əәәs очм sұuәpnts ＊OS－0L рәделпэןт әлец Квш sә！！ш 0Z łכəәə очм słuәpnłs • $\frac{.0 \mathrm{~S}}{0 L} \text { рәдеןпјет }$ әлец Кеш sә！！шт ${ }^{\prime}$ I ґәәәऽ очм słuәpnłS			sə｜！w SE •		\downarrow
0	1	Z	ε	t		
	6u！uu！̣əəg	6u！doןəләа		6u！pəәэхヨ／6u！əәәW	paepuers	merqo．d

＇7duәде łou p！0	－6u！pueısıәрй „о әэиәр！лә чеәМ	 әлец кеш \％S8 ${ }^{\circ} Z$ әң！им очм słuәpnłs әлец кеш \％8 ${ }^{\text {п }}$ I әұ！мм очм słuәpnłs ＇sıодәә ұиеэ！！！uи！！ ЧІ！М＇চu！̣puełsぇәрй ठu！̣doןəләр е smous yrom	$\frac{.0 L}{7 I}$ рәғеןnગןеэ әлец кеш \％Z＂0 ә！！！м очм słuәpnłs ＇sıoдə ı0u！ pue 反u！puełsıəpun ןenłdəэиoว SMOUS צ10M	\%0Z • 	Э＇દ＇V＇dy＇9 ＇ε＇\forall＇dप＇9 9	L＇9
7duәде łou P！ 0	$\begin{array}{r} 8 I=ォ-Z Z \\ 109=\searrow-0 I \end{array}$ әsneวəq b！q әү！ очм słuәpnłS spunod $88=z Z \cdot \succsim$ рәдеппэеэ Кәчł әsneวəq Б！q әү！им очм słuәpnis • －uo！̣eue．dxə ŋэәлоэи！ue ue ұnouł！м ләмsие ұәәлоэи	־Zz Кq рәр！！！̣р pue 0I Кq рә！！d！！｜nu әлец Kem surabooly 8 ＇I 아 ॥eus s！u！ydund ə૫ł Łецł әұ！мм очм słuәpnłs －sł̧un би！̣әлиоо до 6u！̣puełsıəрии ן！！̣ее sәдет！иишшоэ ұечұ ио！ұеиеןдхә Чџ！М дәмsuе ұэәдиоэи｜ ＇uo！！eue｜dxә әғәןdmoou！ 	－ио！̣еиеןdxә Ч！！М дәмsue łכәдоэи। －uо！ңеие．dxә u！SMEII doulu 	－spunod $8 \cdot 8=\frac{0 I}{Z Z} \cdot t$ tnoqe s！smexదिo！！y t os $\frac{0 I}{Z Z}$ ұnoqe әке әдцц ןems ๆэәдоэ pue әұәןdmoэ s！ухом	EdW ＇a＇ε＇$\forall d y ' 9$	G
0	1	Z	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	6u！pəəวхヨ／6u！łəәW	prepuets	mepqodd

7dməұte łou p！0		－əつ！̣d ә૫ł „0 \％0L депБәд әцł se ZI\＄ pəsn әлец Квш 0才 $8 \$$ ә！！мм очм słuәpnts • ＇sıодәә ұиеэ！！！uи！ ןentdəouos бu！̣оןәләр е sмоцs удом	＇sбu！̣ィes әчұ рәдецпэеэ ə૫ł se ZI\＄pəsn әлец кеш 09 ＇દ\＄ әұ！им очм słuәpnłs ＇s．oддә pue 6u！puetsıəpun ןепұдәэиоэ smous youm		O＊＊＊＇dy ${ }^{\prime}$	－＇L
＇7dməュе łou p！o	．$\frac{Z}{0 L}$ рәделпјет әлец Кеш s．nou SE әұ！uм очм słuәpnts － Би！̣puełsıəpun ґо әЈиәр！лә чеәМ	әлец Kеш sınoч s әү！мм очм słuәpnis • ＇sıодәә ұиеэ！！！uи！ ןenłdəouos бu！̣оןәләр е sмоцs удом	－sıдлә pue бu！puełsıəpun ןenłdәэиоэ smous yıom			て＇9
0	\downarrow	乙	ε	t		
	6u！uu！ 6 eg	6u！doıəлəன			prepuets	melqodd

7dшәџе łou p！	＇рәңеןәд әде Кәчł моч әq！ऐОsəр łou səop łnq 9S pue 0ε sıəqunu ә૫ъ səрпןэи！ uo！！səno	＇ұхәұиоэ иәл！$б$ әЧł әЈиәдәəд sə૦р ұnq ‘uo！̣səədxә ә૫ł ठu！̣sn pәдәмsue әq łоииет uo！！səno	＇ұхәұиоэ иәл！$б$ әЧł әЈиәдәృəィ ł૦и səop łnq ‘uo！ssəədxə әЧł бu！sn рәəәмsue әq ueว uo！！səno	¿\％0ム pəłunoos！p s！łeपł łsoo шət！9S\＄е səop чэnய моН ¿みо \％9S s！łечł யә！！0દ\＄е uo әлеs ¿みO \％0\＆ s！ұецł шә！！9S\＄е uо әлея ＇uo！ssəдdxә иәл！̣б әЧł Чł！м рәлןоs әq pןno๐ ұецъ uo！！sənb 		でし
0	\downarrow	Z	ε	\dagger		
	6u！uu！ $\mathrm{S}^{\text {eg }}$	6u！doןəләа	6u！${ }^{\text {a }}$（	6u！pəәэхヨ／6u！əәәW	paepuers	

\qquad

1. Nekeisha is planting flowers in her class garden. 18 flowers fill 3 small planters.

How many flowers fill 1 small planter?

What is the value of:
$2.1 \quad 16 \div 2 ?$
$2.27 \div 2 ?$
$2.3 \quad \frac{1}{2} \div 3 ?$
3.1 Select all choices that have the same value as $20 \div 5$.
$\square \frac{20}{5}$
$\square \frac{5}{20}$$\square \frac{1}{4}$
$\square 5 \div 20$
3.2 Select all choices that have the same value as $\frac{10}{4}$.
$\square 10 \frac{1}{4}$
$\square \frac{5}{2}$
$\square 2 \frac{1}{2}$
$\square \frac{20}{8}$
$\square \frac{8}{2}$
4. Which has a greater value: $\frac{3}{10}$ or $\frac{13}{20}$? Explain your reasoning.

What is the value of:
$5.1 \quad 9 \cdot \frac{1}{2} ?$
$5.2 \quad \frac{1}{2} \cdot \frac{3}{4} ?$
6.1 Which of these best describes the volume of a box?
A. The number of faces the box has.
B. The number of cubes that fit in the box.
C. The amount of paint needed to cover the box.
D. The weight of the box.
6.2 What is the volume of this rectangular prism?

UESIIIU

Unit 6.4, Readiness Check

Answer Key

1. 6 flowers

2.18
2.2 3.5 (or equivalent)
$2.3 \quad \frac{1}{6}$ (or equivalent)
$3.1 \frac{20}{5}, 4$
$3.2 \frac{5}{2}, 2 \frac{1}{2}, \frac{20}{8}$
4. $\frac{13}{20}$

Explanations vary.

- $\frac{3}{10}$ is less than one half and $\frac{13}{20}$ is more than one half.
- $\frac{3}{10}$ is equal to $\frac{6}{20}$, which is less than $\frac{13}{20}$.
$5.1 \quad \frac{9}{2}$ (or equivalent)
$5.2 \quad \frac{3}{8}$ (or equivalent)
6.1 The number of cubes that fit in the box.
6.2 30 cubic centimeters

Unit 6.4, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problems 1 and 2 before Lesson 1
- Problems 3 and 4 before Lesson 5
- Problem 5 before Lesson 12
- Problem 6 before Lesson 13

Problem 1

(Standard: 3.OA.A.2)
This question is intended to surface what students already know about division: splitting a number into equal-sized groups. This content first appears in Lesson 1: Cookie Cutter, where students connect division expressions with sharing cookies on plates.

Suggested Next Steps: If students struggle . . .

- Consider moving on, as there will be opportunities to revisit whole number division throughout the unit.

Problem 2

(Standards: 3.OA.B.6, 5.NF.B.7)

This question is intended to surface what students already know about division, including dividing fractions by whole numbers. This content first appears in Lesson 1: Cookie Cutter, where students estimate quotients that involve both whole numbers and fractions.

Suggested Next Steps: If students struggle . . .

- Consider spending extra time on the card sort in Lesson 1. Students will also review dividing fractions by whole numbers in Lesson 8's Warm-Up.

Problem 3

(Standards: 4.NF.A.1, 5.NF.B.3, MP7)
This question is intended to surface what students already know about representing division in different ways, as an improper fraction or a mixed number, using the \div symbol. Students look for and make use of the structure of fractions to represent division. This content first appears in Lesson 5: Garden Bricks, where students draw tape diagrams for improper fractions and mixed numbers.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem before Lesson 5. Invite students to share how they decided if each choice did or did not have the same value as the original.

Unit 6.4, Readiness Check Summary

Problem 4

(Standards: 4.NF.A.2, MP3)

This question is intended to surface different strategies for comparing fractions. Students construct a viable argument to justify their reasoning when determining which fraction has a greater value. This content first appears in Lesson 6: Fill the Gap, where students compare the size of fractions to determine whether a quotient is greater than or less than 1.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem before Lesson 6. Consider sharing the correct answer and inviting students to share reasons why it is correct.

Problem 5

(Standard: 5.NF.B.4)
This question is intended to surface what students already know about multiplying fractions. This content first appears in Lesson 12: Puzzling Areas, where students multiply fractions to calculate areas with fractional side lengths.

Suggested Next Steps: If students struggle . . .

- Consider reviewing these problems before Lesson 12. Consider creating an anchor chart that shows strategies for multiplying fractions for students to refer back to for the rest of the unit.

Problem 6

(Standards: 5.MD.C.3, 5.MD.C.5.B)
This question is intended to surface what students already know about how to determine the volume of a rectangular prism. This content first appears in Lesson 13: Volume Challenges, when students calculate volumes with fractional dimensions.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem before Lesson 13. Consider using models of rectangular prisms, such as tissue boxes or shoe boxes, to demonstrate how to calculate volume.
\qquad

1. Sai is making 6 cups of rice for the next 4 days. If Sai divides the rice equally, how much rice would they have each day?
A. $\frac{2}{3}$ of a cup
B. 1 cup
C. $1 \frac{1}{2}$ cups

D. 2 cups
2. Select all of the expressions whose quotient is greater than 1 .
$\square 2 \div \frac{3}{4}$
$\square \quad \frac{3}{4} \div 2$
$\square \frac{3}{4} \div \frac{1}{2}$
$\square \frac{1}{4} \div \frac{3}{2}$
$\square \frac{3}{2} \div 4$

Determine the value of each expression.
$3.14 \div \frac{2}{5}$
$3.2 \quad 1 \frac{1}{2} \div \frac{3}{8}$
$3.3 \quad \frac{3}{4} \div \frac{1}{3}$
\qquad
4.1 Sai wants to make barbecue chicken. Each serving uses $\frac{2}{3}$ of a pound of chicken.

Sai has $4 \frac{1}{3}$ pounds of chicken. How many servings can Sai make if they use all the chicken?

4.2 Sai wants to make a large pot of soup. $\frac{3}{5}$ of the pot will fill 15 bowls. How many bowls will 1 pot of soup fill?

5.1 Describe a situation that could be represented by the expression $5 \div \frac{3}{4}$.
5.2 Determine the value of $5 \div \frac{3}{4}$ and explain what it means in your situation.

Answer Key

1. C. $1 \frac{1}{2}$ cups
2. $\sqrt{ } \quad 2 \div \frac{3}{4}$
$\checkmark \frac{3}{4} \div \frac{1}{2}$
3.110
3.24
$3.3 \frac{9}{4}$ (or equivalent)
$4.1 \quad 6 \frac{1}{2}$ servings (or equivalent)
$4.2 \quad 25$ bowls
5.1 Responses vary.

- Cameron uses a $\frac{3}{4}$-cup scoop to feed her dog. How many scoops of dog food can they get out of a 5-cup bag?
- I have walked for 5 minutes and I am $\frac{3}{4}$ of the distance to school. How long will my whole walk take?
$5.2 \quad 6 \frac{2}{3}$
Responses vary.
- $6 \frac{2}{3}$ is the number of scoops of dog food in the bag.
- My whole walk to school will take $6 \frac{2}{3}$ minutes.

the Gap.
 In this problem, students estimate the value of quotients of fractions. They look for and make use of the structure of the two numbers being divided to decide if they are greater than 1 . This problem corresponds most directly to the work students did in Lesson 6: Fill
 (LdW 'r•V'SN'9 :spıepuets)
 Problem 2
 - Consider revisiting Lesson 4, Activity 1, Screen 2.
 - Consider prompting students to use drawings, tape diagrams, or multiplication and division expressions to determine how many are in 1 group.

work students did in Lesson 4: Flower Power.
In this problem, students solve a division problem by asking, "How many in 1 group?". This problem corresponds most directly to the
($-\forall \cdot \mathbf{S N} \cdot 9$:prepuets)
โ шәโqo.d

G 't' ' 'z'r	mə90,d
- \forall 'SN 9	prepuets

Unit 6.4, Quiz: Summary and Rubric

- Consider moving on, as students will have more practice with this in upcoming lessons.
Suggested Next Steps: If students struggle
corresponds most directly to the work students did in Lesson 10: Swap Meet. expression to a mathematical situation, and quantitatively to solve and explain the meaning of the value in context. This problem
In this problem, students create contexts that are representative of fraction division problems. They reason abstractly when fitting the
(Standards: 6.NS.A.1, MP2) Problem 5
Consider revisiting Lesson 5, Activity 1 or Lesson 8, Activity 1. denominator.
common denominators to divide numerators, and dividing the dividend by the numerator of the divisor, then multiplying by the
- Consider reminding students of the two main strategies for algebraic fraction division that they worked with so far: creating Suggested Next Steps: If students struggle .
In this problem, students solve word problems involving division of fractions by fractions, including situations that ask "How many
groups?" and "How many in 1 group?". They make sense of the given information and persevere in solving a bigger problem.
This problem corresponds most directly to the work students did in Lesson 5: Garden Bricks and Lesson 8: Potting Soil.
(LdW 'L•V'SN'9 :spıepuets) Problem 4
- Consider prompting students to use common denominators to divide fractions.
Suggested Next Steps: If students struggle
7: Break It Down and Lesson 9: Division Challenges.
In this problem, students calculate quotients of fractions. This problem corresponds most directly to the work students did in Lesson (Standard: 6.NS.A.1)
Problem 3
Unit 6.4, Quiz: Summary and Rubric

łOu P！口	＇suo！toex „о 6u！puełsıәрй рәł！！u！l SMOYS צスOM	－рәр！м！ но реәґsи！рә！！d！！！иш әлец кеш $\frac{\mathrm{S}}{8}$ әтим очм słиәрпня＂ $6 \cdot \exists$ －sлодә ұиет！！！uб！s ЧІ！М Бu！puełsıәрй әұәㅣ쑨！ smous y⿺辶	งлолә әшоs पІ！м＇6u！̣puełsıәрй ןenłdəouoo sMous yıом	$\begin{gathered} 0 L \bullet \\ \text { дәмsue łכәлоэ } \end{gathered}$	L＇＊＇SN＇9	－＇$¢$
－дdшәџе łou p！0	＇sәэ！очэ ұэәлио ఛэәлоэи！әлои лО ОМЦ ＇səэ！！๐чจ ¡эəมıоэи！К｜ио	－әээ๐ч๐ ¡эәлиоэ！әuо pue 	－әэ！ฺ૫э łэәдоэи！әио pue səэ！очэ ұэәдоэ чłоя ‘รəગ！๐чэ ұэәлоэи！ ou pue әэ！очว łәәдоэ әио	$\begin{aligned} & \frac{Z}{I} \div \frac{\hbar}{\varepsilon} \\ & \frac{\hbar}{\varepsilon} \div Z \end{aligned}$ －รəэ！！ч๐ ŋэәมдоэи！ou pue 	$\begin{gathered} \angle d W \\ \cdot L \cdot \forall \cdot S N \cdot 9 \end{gathered}$	乙
łOU P！O	－ 9 кq т рәр！$!р$ әлец кеш dпэ е ло $\frac{\varepsilon}{Z}$ ұวәәә очм słuәрпнS －әэฺ๐чэ ґэәдиоэи			sdno $\frac{Z}{\text { I }}$ I • 	L＇＊＇SN＇9	\downarrow
0	\downarrow	乙	ε	†		
	6u！uu！ $\mathrm{Seg}^{\text {a }}$	6u！doןəләа			рдерuers	melqodd

Ł0u P！	＇suo！ןoext Kq suo！̣эext ı0 ио！！！！̣！p би！！ィןоли！ swəøqoıd рдом 6и！̣ィоs яо Gu！puełsıәрun рәң！ய！！ sMOUS y，	$\frac{\varepsilon}{I} \boxplus \nvdash \frac{\varepsilon}{Z}$ рәделпэет әлеч кеш $\frac{6}{8}$ Z әт！мм очм sұиәрпłs＂ $6 \cdot \exists$ －sıoдә ұиео！！！ū！s Ч！！М Бu！puełsıәрй 		（ұиәјем！пвә ло） sбu！̣ฝəs $\frac{Z}{\mathrm{I}} 9$ 	$\begin{gathered} \text { LdW } \\ \cdot \cdot \forall \cdot S N * 9 \end{gathered}$	ト＇も
łOu p！	＇suo！！oext „0 sұuə！\downarrow onb 6u！puełsıəpun рә！！ш！ 	＇рәр！л！р ғо реәғsи！ pә！！d！！$\ddagger n ш$ әлеч кеш $\frac{\text { п }}{\text { I }}$ әт！мм очм sұиәрпнs＂ $6 \cdot \exists$ －sıодә ұиeэ！！！ub！s Чł！M Бu！puełsıәpun әәәןdmoэu！SMOYs yィоМ	＇SıOגд әسоs पұ！м ‘＇6u！puełsıәри ןenłdeouos smous yı0M	（диәןем！пвә ло） $\frac{\hbar}{6}$ ‘əәмSǔ ұәәдоう	L＇＊＇SN＇9	$\varepsilon^{\prime} \varepsilon$
łOU P！	＇suo！！oext „0 sұuə！\downarrow onb 6и！џফןทэןอ до Gu！puełsıəpun рә！！ш！ sMOUS yגоM	$\cdot \frac{8}{\varepsilon} \div \frac{Z}{I}$ рәдејпэеэ әлеч кеш $\frac{\varepsilon}{\text { I }}$ I әч！мм очм sұиәрпңs＂ $6 \cdot \exists$ －sıодә ұиеэ！̣！ub！s чł！м 6u！puełsıәpun 	＇SıOגə әسоs पұ！м ‘＇6u！puełsıәpun ןenłdəouos smous yı0M		$L^{\prime} \forall^{\prime}$ SN＇9	て＇غ
0	－	乙	ε	†		
	6u！uu！ 6 өg	6u！doןəィәன	6u！uoeosddV	Бu！рәәэхヨ／6u！${ }^{\text {a }}$	pıepuets	سəpodd

o！̣qny pue Kıewuns ：z！̣no

＇7dməй łou p！	＇suo！！oex to uo！s！！！p łuәsәдdәд ґецł sұхәұиоэ әұеәл Оł MOप fО 6u！puezsıәрии рәџ！ய！！ SMOUS Y1OM	$\frac{. t}{\varepsilon} \cdot \mathrm{~s}$ イq рәғиәsәддд әа рıпоэ децұ ио！ұепұ！s ＇sıодә ұиеэ！！！uம！s Ч！！М Бu！puełsıәрй 	әа рıпоэ ұецұ ио！ұепұ！s e sәq！иэsәр ұиәрпіs＂ 6 ・ヨ sıодә әшоs ЧІ！М＇6u！̣риеұsıәрии jenłdәouos smous yдом	¿6eq dno－s е Łо ұпо ұәб КәЧł иеэ роод Кор яо sdoovs Киеш мон＇Бор ц！әч7 рәәд о子 dooos dno－$\frac{\hbar}{\varepsilon}$ e səsn иодәшеј＂ $6 \cdot \exists$ －uo！ssəddxə әЧł Кq pəłиәsəıdәд әq pınoว K｜｜nłssəoэns ұuәpnłS	$\begin{gathered} \text { ZdW } \\ \qquad \cdot \forall \cdot S N \cdot 9 \end{gathered}$	L＇G
＇7dmәие łou p！	＇suo！noext Kq suo！̣フex Ł0 uo！s！n！p би！̣ィןли！ swəøवoлd рдом би！ィןоs $о$ 6u！puełsıәри рәң！！u！ smoys yıом	 әлец кеш s／MOq 6 әтим очм słиәрпнs＂＇6・ヨ ＇sıодә ұиеэ！！！uи！ 		$\begin{gathered} \text { s\|Moq SZ } \\ \text { дәмsue łכәлој } \end{gathered}$	L＇＊＇SN＇9	でも
0	1	Z	ε	†		
	6u！uu！̣бəg	6u！doןəләа	6u！	бu！pəәэхヨ／бu！ŋәәw	prepueds	шə¢q0，

7duәдие łOU P!	'suol!oex to uo!s!!!p ұиәsәлdәл децұ sұхәұиот Би!!əədぇәұи! pue suo!̣oex ło słuə!!onb 6u!puełs.əәpun рә!!ш!! smous yıom	әпјел әцд дечм и!еןдхә ұou op ұnq łuə! \ddagger onb әцъ әұеןпэјэ кןдэәноэ очм słиәрп7s " $6 \cdot \exists$ งлодәә ұиеэ!!!uи!!s Чџ!М бu!̣puełsıәрй 	'sıодәә әшоs IEnłdәouos smoys yıом	әчł и! poof бор ıо sdoovs ьо ләqшпи әчł s! $\frac{\varepsilon}{2} 9$ ' $9 \cdot \exists$ $\frac{\varepsilon}{Z} 9$ -uo!̣еue\|dxə 	$\begin{gathered} \text { ZdW } \\ \cdot \forall \cdot \forall^{\prime} S^{\prime} 9 \end{gathered}$	$Z \cdot G$
0	\downarrow	τ	ε	t		
	6u!	6u!doןəләа	6u!	6u!pəəэxヨ/6u!ŋəәW	prepuets	melqord

1. The value of $8 \div \frac{1}{12}$ is:
A. Less than 1.
B. Greater than 1.
C. Equal to 1.
2. Select all of the expressions whose value is less than 1.
$\square \frac{3}{5} \div \frac{1}{4}$
$\square \frac{4}{3} \div 5$
$\square \frac{4}{3} \div \frac{1}{5}$
$\square \frac{1}{5} \div \frac{3}{4}$
$\square \frac{3}{4} \div \frac{2}{5}$

Calculate:
$3.1 \frac{10}{3} \div \frac{5}{6}$
$3.2 \quad \frac{3}{5} \div \frac{1}{4}$
$3.3 \frac{8}{3} \div \frac{3}{2}$
\qquad
4. Andrea biked $3 \frac{1}{2}$ miles on Monday.

On Tuesday, she biked $5 \frac{1}{4}$ miles. How many times as far did Andrea bike on Tuesday?

5. Neo and Oliver are working together to calculate $5 \div \frac{3}{5}$.

Neo says that it is equal to $8 \frac{1}{3}$. Oliver says that it is equal to $8 \frac{1}{5}$.
Who is correct?
Show or explain your thinking.

Andrea's class is getting a new fish tank.
6.1 The base of the tank is a rectangle that is 4 feet by $1 \frac{2}{3}$ feet. What is the area of the base?

6.2 The new tank is 4 feet by $1 \frac{2}{3}$ feet by $1 \frac{1}{2}$ feet.

How many cubic feet of water can it hold?
\qquad

Amir and his grandma are making roti, an Indian bread. Amir's grandma uses a $\frac{3}{4}$-cup scoop. They need $5 \frac{1}{2}$ cups of flour.
7.1 Draw a diagram or write an expression to represent how many scoops they need.

7.3 Write a new question about Amir's grandma's $\frac{3}{4}$-cup scoop whose answer is 4 scoops.

Reflection: Select a question and answer it below.What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.Describe or show one strategy you found helpful in this unit.
Name any students who helped you with this strategy.What else would you like your teacher to know?

1. B. Greater than 1
2. $\sqrt{ } \frac{4}{3} \div 5$
$\checkmark \frac{1}{5} \div \frac{3}{4}$
3.14
$3.2 \quad \frac{12}{5}$ (or equivalent)
$3.3 \quad \frac{16}{9}$ (or equivalent)
3. $\quad 1 \frac{1}{2}$ times as far (or equivalent)
4. Neo

Explanations vary.

- $\frac{25}{5} \div \frac{3}{5}=\frac{25}{3}=8 \frac{1}{3}$
- $5=\frac{25}{5} .8$ groups of $\frac{3}{5}$ make $\frac{24}{5}$, with $\frac{1}{3}$ of a group left over.
$6.1 \quad 6 \frac{2}{3}$ square feet (or equivalent)
6.210 cubic feet
$7.15 \frac{1}{2} \div \frac{3}{4}$ or

$7.2 \quad 7 \frac{1}{3}$ of Amir's grandma's scoops (or equivalent)
7.3 Responses vary. The recipe also uses 3 cups of water. How many of Amir's grandma's scoops of water do they need?

directly to the work students did in Lesson 6：Fill the Gap．
denominator，and whole expression to determine the relationship between their estimates and 1 ．This problem corresponds most
In this problem，students estimate the value of quotients of fractions．They look for and make use of the structure of the numerator
（LdW＇r＇V＇SN＇9 ：spıepuetS）
Problem 2

values of quotients of fractions
Suggested Next Steps：If stud
most directly to the work students did in Lesson 1：Cookie Cutter．The work in this problem helps students build toward estimating the
In this problem，students demonstrate their understanding of quotients that do not contain whole numbers．This problem corresponds
（l＇V＇SN＇9 ：pxepuełs）
Problem 1

9	9		smejqodd
でV゙け・9	$\forall \bullet \bigcirc \cdot 9$	$1 \cdot \forall \cdot S N \cdot 9$	paepuers

- Consider suggesting they use a tape diagram or common denominators to divide fractions.

thinking algebraically and in writing. This problem corresponds most directly to the work students did in Lesson 5: Garden Bricks.
(عdW 'L•甘'SN'9 :spıepuets)
Problem 5 - Consider revisiting Lesson 11, Activity 1, Screen 4.
the fraction division strategies from this unit to solve and check the reasonableness of their solution with their estimate.

 did in Lesson 11: Classroom Comparisons.
In this problem, students apply division of fractions to compare lengths. This problem corresponds most directly to the work students
(L'V'SN'9 :pıepuełS)
Problem 4 assessment performance.

Consider revisiting Lesson 10, Activity 2. Choose one expression for which to write a new question. them create a new context with fraction division in the third problem.
- Consider having students use their drawing from the first problem and mathematical thinking from the second problem to help

represent division of fractions. They have to reason abstractly and quantitatively to formulate a question with a particular answer when
given information in context. This problem corresponds most directly to the work students did in Lesson 10: Swap Meet.
In this problem, students solve word problems involving division of fractions by fractions and their ability to create contexts that
(ZdW 'r'V'SN'9 :spıepuetS)
Problem 7
- Consider revisiting Lesson 12, Activity 2 or Lesson 13, Activity 2.
consider asking students what the problem is asking for and how
- Consider asking students what it means to find the area in the first problem. If they are struggling with the second problem,
Suggested Next Steps: If students struggle . . .
Lesson 13: Volume Challenges
and multiplying by the height. This problem corresponds most directly to the work students did in Lesson 12: Puzzling Areas and
In this problem, students calculate the volume of a rectangular prism with fractional edge lengths by calculating the area of the base
(Standards: 6.G.A, 6.G.A.2)
9 Шวโq0лд
Unit 6.4, End Assessment Summary and Rubric: Form A

7dməй łou p！0	－ －u！puełsıәрии „о әЈиәр！лә уеәм	$\begin{aligned} & \frac{\varepsilon}{S} \div \frac{\varepsilon}{0 L} \\ & 10 \frac{9}{S} \div \frac{9}{0 I} \end{aligned}$ рәдеןпэןэ әлец кеш Z әџ！мм очм słuәpnłS ＇sıодә ұиеэ！！！uб！s प！！ММ ‘దи！̣puełsıəpun бu！̣doןəләр е sмочs уиом	＇sıддә pue 6u！puełsıəpun ןentdəәuoว sмочs yıом		L＇V＇SN＇9	－＇E
7dшәде łou P！	－sәэ！๐чэ ұәәдоэ џวәиоэи！әлош ло słəəəəs রןuo łuəpnłS	 әио pue səэ！очэ ફәәци๐ 	－әэ！очэ ґэәлоэи！әио Ł0 પł૦q słગəəəs łuәpnłS ＇səэ！！очэ ґәәдиоэ！ Kue łэəəə łou səop 	$\begin{aligned} & \frac{\hbar}{\varepsilon} \div \frac{s}{\tau} \\ & S \div \frac{\varepsilon}{\hbar} \end{aligned}$ ＇səэ！๐чэ џәәนоэи！ Kuе łэəə๐ łou səop Ł0 ॥е słગəəəs ұuәpnłs	$\begin{gathered} \angle d W \\ \cdot \cdot \forall \cdot S N \cdot 9 \end{gathered}$	乙
＇7dшәџе łou p！0	uols！ı！p ә૫ł 10 дәрıо әЧł рәડぇəләд әлец Кеш＂I очм słuәpnłS			I पецł дәґеәл •	L＇＊＇SN＇9	\downarrow
0	\downarrow	Z	ε	t		
	6u！uu！̣əəg	6u！doןəләа	6u！${ }^{\text {a }}$（	бu！pəәэхヨ／6u！ŋəәW	prepuers	melqodd

łOU P！ 0	－6upuełsıәрй †о әәиәр！лә уеәМ	«¿Kepsənı uo әу！q eәдри \forall p！p sə！！u әлош Киеш моН，，рәдәмsuе әлец Кеш －sıодә ұиет！иии！！ 	＇sıодәә дои！̣ш чұ！м＇Кıəұsem pue бu！puełsıәрй ןenłdәэиоว SMOYS y10M	（ұиәјем！̣ивә ло） lef se səm！$\frac{Z}{L}$ L †эәдоэ 	L＇＊＇SN＇9	†
łou P！ 0	－6upuełsıәрun †о әЈиәр！＾ə чеәМ	әлец Кеш т әч！мм очм słuәpnıs －sıодәә ұиеэ！！！uи！ 	чІ！м＇Kıəұsem pue反u！puełsıəpun ןenłdəәиoว sMOUS y10M		L＇＊＇SN＇9	$\varepsilon \varepsilon^{\prime} \varepsilon$
7duәŋие łou P！ 0	－6upuełsıəрии Łо әЈиәр！＾ə уеәм	‘sıołeıəunu әчł рәр！ィ！p әлец кеш $\frac{0 Z}{\varepsilon}$ әчим очм squәpnłs ＇sıодә ұиеэ！！！uи！ 	ЧІІМ＇Кәәsem pue бu！̣puełsıəpun ןenłdəәиoว smous youm		$L^{\prime} \forall^{\prime} \mathrm{SN} \times 9$	て＇દ
0	1	Z	ε	t		
	6u！uu！̣əeg	6u！doןəләа	6uluveordd $\boldsymbol{\square}$	6u！pəəэхヨ／6u！ұәәW	paepuels	merqodd

7dməみе łou p！	－6u！̣puełsıəpun Ł0 әЈиәр！ฺә чеәМ	－रןəделеdəs suo！̣ગæ！pue sıəqunu әочм әЧł рә！ןd！ן！иш әлец кеш $\frac{\varepsilon}{Z}$ Ф әч！мм очм sұuәpnłs ＇sıouə łnq Sulidoןəәр е sмочs улом	－sı0ля ןenıdəouoo sмочs yдом	（子иәјел！пиә ィо） ¡əəц əયenbs $\frac{\varepsilon}{Z} 9$ ＇ґэәлио рие 		L＇9
7dшәџе tou p！O	＇иопңеие．dxә ue ұnout！M do ı0 uо！！eие｜dxә ґэәдоэи！ ЧЏ！М дәмsue ґэәноэи	 ұnq גəл！！ ＇suo！ןoext бu！̣！̣！̣p fo би！̣риеłsıәрй ן！！̣ед sәґеэ！иишшоэ ұечд －иопұеие．dxә 	sем әәәцł ұецł рәэ！ŋои pue $\frac{\mathrm{S}}{\varepsilon}$ fo sdnoג6 8 әреш әлец кеш дәл！৷О әsоочэ очм słuәpnłs әғәןdmoэ pue ןеэ！ดоן ц！！М дәмsuе ұэәдиоэи －uo！peue，dxə u！SME｜f dOu！ 	$\begin{array}{r} \frac{\varepsilon}{\mathrm{L}} 8 \\ \frac{\varepsilon}{\mathrm{SZ}} \\ \frac{\mathrm{~S}}{\varepsilon} \div \frac{\mathrm{S}}{\mathrm{SZ}} \end{array}$ ○əN • ¡วәлио pue 	$\begin{gathered} \varepsilon d W \\ \cdot \vdash \cdot{ }^{\prime} \mathrm{SN} \cdot 9 \end{gathered}$	G
0	\downarrow	乙	ε	t		
	ถu！̣u！̣бəg	6u！doןəләа	6ulupeordd \forall	6u！pəəวхヨ／6u！łəәW	paepuets	melqodd

7dmәұе łou p！a	－uo！̣еuе．dxә ue ұnout！м 10 ґәәлоэи！ Ч！！М дәмsue џәәлоэи｜	－s $\frac{\hbar}{\text { I }}$ ołu！pəp！n！p भ！un цэеә ЧІ！М $\frac{Z}{\text { I }}$ S sMous ＇pəsıəләд səпןел ＇swəqoıd әл｜os of suo！̣эex би！ ठu！̣｜｜dde „о бu！̣puełsıəpun ן！！̣иеd sәəеэ！！unumoэ ұецł 	－uexถe！̣ ədeł u！̣ 10 uo！̣ssəddxə U！SME｜f IOU！W	шелБер әdeł łขәлио ло $\frac{\hbar}{\varepsilon} \div \frac{Z}{I} S \bullet$ －uo！̣ent！s ә૫ł łuәsəлdәл оұ uo！ssəлdxә ue sәң！uм до шелб巨！！ е sмедр Kן	L＇＊＇SN＇9	$1 \cdot 2$
＇7dmeй łOU P！	－6u！̣puełsıəри әәиәр！лә уеәм	－К｜әңеледәs suo！̣эед pue sıәqunu әочм $\frac{\varepsilon}{I} ゅ$ әцим очм sұuәрпıs ＇sıодәә ұиеэ！！！uи！ पІ！M ‘＇иu！puełsıəpun бu！doןəләр е sмочs yом	＇s．oдл pue бu！puełsıəpun ןセnłdəэuos smous yıом	（ұиәјел！！nbə ィо） ґəəょ ગ！qno 0L • 		て＇9
0	\downarrow	乙	ε	\downarrow		
	6u！uu！ 6 eg	6u！doןəләа	6u！	6u！pəəэxヨ／6u！łəәW	prepueıS	melqodd

7duәə ¡0u p！	† \ddagger дәqunu əપł səpn｜ગu uo！！səno	－uoḷent！ иәл！б әчł әәиәәәәц sәор ұnq＇sdooos † \ddagger дәмsue uе әлец łои səop uo！̣sənO	－dooos dno－$\frac{\hbar}{\varepsilon}$ s，ешриелб s،！！шヲ әэиәдәృәд Łou səop łnq ‘sdooos 七 $\ddagger 0$ дəмsue ue sey uo！？seno	¿дәдем ıо sdno ε əגnseәu оł рәрәәu әд sdooos sィешриел s؛！！uも fo Kиеш мон ＇sdooos 	ZdW ＇$\cdot \forall$＇${ }^{\text {SN＇}} 9$	$\varepsilon \cdot L$
ł0u p！		 әчұ рәsıәләд әлец кеш $\frac{Z Z}{\varepsilon}$ әчим очм słuәрпіs • ＇sıоגә ұиеэ！！！uи！！ чł！M ‘＇иupueısıәpun бuido｜əләр е smous yом	－s．0גə pue סu！̣puełsıəpun ןепłdәәuoo SMOUS YоМ	（ұиәјел！̣nbә ィо）sdooэs s，ешриелб s،л！u＊fo $\frac{\varepsilon}{\mathrm{L}} L$ • 	L＇＊＇SN＇9	でし
0	1	乙	ε	t		
	6u！	6u！doןəләа	6u！	6u！pəəวхヨ／6u！̣əəW	prepuets	merqodd

1. Gabriel has 3 quarters, 5 dimes, and 8 pennies. How much money does he have?
A. $\$ 0.16$
B. $\$ 0.88$
C. $\$ 1.23$

D. $\$ 1.33$
2. Select all of the ways to describe 0.25 .
$\square 25$ tenths
$\square 25$ hundredths
$\square 25$ thousandths
$\square 2$ tenths and 5 hundredths
$\square 2$ hundredths and 5 thousandths
3. The number 0.9 is equivalent to $\frac{9}{10}$. Which of the following is equivalent to 4.9 ?
A. $\frac{4.9}{10}$
B. $\frac{4.9}{100}$
C. $\frac{49}{10}$
D. $\frac{49}{100}$
4. Determine the value of each expression.

$$
115+197
$$

\qquad
5. Determine the value of each expression.

6. DeAndre's older sister saved the same amount of money each month for 4 months. If she has saved $\$ 536$ altogether, how much money did she save each month?

Show or explain your thinking.
7.1 Circle all the multiples of 6 in this list.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30

7.2 Circle all the factors of 24 in this list.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30

1. D. $\$ 1.33$
2. $\quad \checkmark 25$ hundredths
$\checkmark 2$ tenths and 5 hundredths
3. C. $\frac{49}{10}$
4. 312,190
5. $8000,882,0.8$
6. $\$ 134$ per month. Explanations vary. You can determine how much money she saved each month by dividing 536 by 4 . She saved $536 \div 4=134$ dollars per month.
$7.16,12,18,24,30$
$7.21,2,3,4,6,8,12,24$

Unit 6.5, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problem 1 before Lesson 1
- Problem 2 before Lesson 2
- Problems 3 and 4 before Lesson 3
- Problem 5 before Lesson 5
- Problem 6 before Lesson 9
- Problem 7 before Lesson 14

Problem 1

(Standard: 5.NBT.B.7)
This question is intended to surface what students already know about using place value to add decimals expressed as money. This content first appears in Lesson 1: Dishing Out Decimals, where students make estimates and rough calculations about the amount it will cost to make various dishes.

Suggested Next Steps: If students struggle . . .

- Consider inviting them to share what they know about each of the coins, particularly about the difference between the value of the penny and the dime. If time allows, invite students to practice problems similar to this one before beginning Lesson 1.

Problem 2

(Standard: 5.NBT.A.3.A)

This question is intended to surface what students already know about representing decimals using tenths and hundredths. This content first appears in Lesson 2: Decimal Diagrams, where students represent decimals using tenths, hundredths, and thousandths.

Suggested Next Steps: If students struggle . . .

- Consider spending extra time during Screen 2 in Activity 1 discussing how tenths, hundredths, and thousandths are similar and different. During the discussion, make connections between tenths, hundredths, and thousandths and their decimal representations.

Unit 6.5, Readiness Check Summary

Problem 3

(Standards: 4.NF.C.6, 5.NBT.A.1, MP7)
This question is intended to surface what students already know about the relationship between decimals, fractions, and place value. Students make use of structure as they convert a decimal to a fraction. This content first appears in Lesson 3: Fruit by the Pound, where students use place value and diagrams to add and subtract decimals.

Suggested Next Steps: If students struggle . . .

- Consider spending extra time during Lesson 3 discussing the relationship between the fractions on Screen 2 and their decimal representations. If time allows, consider writing several different decimals as fractions as a class.

Problem 4

(Standard: 3.NBT.A.2)
This question is intended to surface how fluently students can add and subtract whole numbers, including with borrowing. This content first appears in Lesson 3: Fruit by the Pound, where students use diagrams and vertical calculations to add and subtract decimals.

Suggested Next Steps: If students struggle . . .

- Consider reviewing each problem before Lesson 3. Consider monitoring for students who use different strategies and inviting those students to record their work for the class to refer to throughout the lesson and unit.

Problem 5

(Standards: 5.NBT.B.5, 5.NBT.B.7)
This question is intended to surface what students already know about using place value to multiply, including multiplying by tenths. This content first appears in Lesson 5: Decimal Multiplication, where students use fraction multiplication and place value to multiply decimals.

Suggested Next Steps: If students struggle . . .

- Consider reviewing each problem before Lesson 5. To support students in thinking about place value and structure, consider asking how each problem is similar and different from the others.

Unit 6.5, Readiness Check Summary

Problem 6

(Standards: 4.NBT.B.6, MP3)
This question is intended to surface what students already know about whole number division.
Students construct a viable argument to support their answer. This content first appears in Lesson 9: Long Division Launch, where students use long division or other strategies to calculate quotients with no remainders.

Suggested Next Steps: If students struggle . . .

- Consider spending extra time on the Warm-Up of Lesson 9. Consider monitoring for students who use different strategies and inviting those students to record their work for the class to refer to throughout the lesson and unit.

Problem 7

(Standards: 4.OA.B, 4.OA.B.4, MP7)
This question is intended to surface what students already know about factors and multiples of a number. Students make use of structure to determine factors and multiples. This content first appears in Lesson 14: Common Multiples, where students determine the least common multiple of two numbers.

Suggested Next Steps: If students struggle . . .

- Consider creating an anchor chart about what it means for a number to be a factor or a multiple before students begin Lesson 14. To surface common early student thinking, consider asking: Is a number a multiple of itself? Is a number a factor of itself?

1. Rudra buys a peach that weighs 0.25 pounds and a watermelon that weighs 12.3 pounds.

How much do these fruits weigh in total?
A. 12.28 pounds
B. 12.325 pounds
C. 12.55 pounds
D. 14.8 pounds
2. Determine the value of each expression.
$0.2-0.05$
$1.56+0.083$

Here is the work Yolanda did to calculate $0.75-0.5$.
3.1 What would you say to help Yolanda understand her mistake?
3.2 Calculate the value of $0.75-0.5$.

4. Parv had $\$ 5$ to buy 2 heads of broccoli and 4 lemons. Will Parv have money left over?

Explain your thinking.

5.1 Describe a situation that could be represented by the expression $4-2.27$.
5.2 Determine the value of $4-2.27$.
5.3 Explain what this value means in your situation.

1. $\quad 12.55$ pounds

$2.1 \quad 0.15$
$2.2 \quad 1.643$
$2.3 \quad 8.807$
3.1 Responses vary. I would tell Yolanda that she subtracted 5 hundredths instead of 5 tenths.

$3.2 \quad 0.25$

4. Yes. Explanations vary. I know Parv will have money left over because the broccoli will only cost $\$ 2.30$ and the lemons will cost just over $\$ 2$. The total cost will be well below $\$ 5$.
5.1 Situations vary. Parv had $\$ 4$. He bought a slice of pie for $\$ 2.27$.
$5.2 \quad 1.73$
5.3 Explanations vary. The number 1.73 represents how much change Parv will get when he buys his slice of pie.

- Consider revisiting Lesson 4, Activity 2, Screen 6. Decide what problem(s) to review based on what most students missed.

Suggested Next Steps: If students struggle ...
- Consider asking students what the word "total" is asking them to do.
- Consider revisiting Lesson 3, Activity 1, Screen 4.
Problem 2
(Standard: 6.NS.B.3)
In this problem, students add and subtract decimals. This problem corre
Missing Digits.
by the Pound.
In this problem, students add decimals in context. This problem corresponds most directly to the work students did in Lesson 3: Fruit
(Standard: 6.NS.B.3) โ Шวโqo..d
Content Standards Summary

Standard	
Problem	

Unit 6.5, Quiz 1: Summary and Rubric
in context. expression and talk about the meaning of the solution Consider revisiting Lesson 4, Activity 2, Screen 6 . Use one of the problem matches from this screen to write a situation that fits the
 Suggested Next Steps: If students struggle . directly to the work students did in Lesson 3: Fruit by the Pound.
 In this problem, students create contexts that represent subtraction of decimals. They reason abstractly and quantitatively when they (Standards: 6.NS.B.3, MP2) Problem 5 - Consider moving on if students did not calculate the sum correctly, as they will learn decimal multiplication in Lesson 5 . - Consider suggesting students use a visual to help organize the given information before they begin any calculations. Suggested Next Steps: If students struggle Dishing Out Decimals.

In this problem, students use decimals to make estimates and calculations about money. They construct a viable argument to explain
why they think there will or will not be money left over. This problem corresponds most directly to the work students did in Lesson 1: (Standards: 6.NS.B.3, MP3) Problem 4 - Consider revisiting Lesson 2, Activity 2 to go over using a place value diagram to subtract. - Consider having students draw their own place value diagram to help them see the mistake. Suggested Next Steps: If students struggle
problem corresponds most directly to the work students did in Lesson 2: Decimal Diagrams. In this problem, students subtract decimals and critique the reasoning of another student, helping them understand their mistake. This (Standards: 6.NS.B.3, MP3) Problem 3

Unit 6.5, Quiz 1: Summary and Rubric

＇7dməне ъ0u p！o	‘sןem！эәр Кu！̣эeגұqns „о 6u！puełsıәрй рәң！ய！！SMOYS צגOM	ұпочұ！м sц！Б！р әчұ рәиб！！е 10 L08＊866 ә！！цм очм słuәpnts 	＇sıoддә әшоs पఫ！М Бu！puełsıәpun fentidəouoo sMOYS YIOM	spunod L08 ${ }^{\circ} 8$ • дәммие ұәәлоう	ع＇G＇SN＇9	$\varepsilon ' 乙$
7dшәне ł0u p！	＇sןеш！эәр Би！！ppe „о 6u！pueıs．әрии рәџ！ய！！SMOYS צגOM	－әп！ел әэел әчң Би！иәр！sиоэ ұпоч！！м st！б！р әчł рәиб！！е КІеээ！дәл әлец кеш 6є乙＂0 106ε＇Z әұолм очм słиәрпłs 	＇sıoддә әшоs ЧІ！М 6u！puełsıәрй ןenłdəәиоэ sMOUS y10M	spunod $\varepsilon \succcurlyeq 9 I{ }^{\circ} 0$ • •лмsuе ұәәлоэ	$\varepsilon^{\prime} \mathrm{G}^{\prime} \mathrm{SN}^{\prime} 9$	て＇乙
＇7dmәие ł0u p！ 0	‘sןemīəр Ки！̣эeגұqns เо 6u！puełs．әрии рәł！ய！！！SMOYS צגOM	－әпцел әэедд әчъ би！иәр！sиот ұпочұ！м sч！ढ！р әчъ рәиб！ןе Кוןет！дәл әлец кеш ع ：0－ 10 ع0 00－әдолм очм słuәpnts －sıддә әұәןdmoכu！sMOчs yом	＇sıouə әшоs ЧІ！М 6u！̣риеұsıәрй sMOUS yIOM		ع＇G＇SN＇9	L＇Z
7dшәне ł0u p！	＇әэ！очэ ґจәлоэи			spunod SS＇ZI • －әэ！๐чэ ұәәиоว	$\varepsilon^{\prime} \mathrm{G}^{\prime} \mathrm{SN}^{\prime} 9$	1
0	\downarrow	乙	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	бu！pəәэхヨ／6u！əәәW	paepuets	melqosd

＇7dme»е ł0u p！	„о 6u！pueısıәри 	ұпочұ！м sұ！б！р әчұ рәиб！৷е КІеэ！дәл әлец кеш 0＜ 10 0 L әғолм очм słиәрпts ＇sıодә ұиеэ！！！uб！！ ЧІ！М Бu！puełsıәрй әұәןdmoэu！smous yıоМ	‘s．ouә jentidәouos smoчs yıом	$\begin{array}{cc} \mathrm{SZ} \cdot 0 & \bullet \\ \text { дәмsue ұәәлоэ } \end{array}$	ع＇G＇SN＇9	て＇દ
7duә立е ł0u p！	－әуедs！̣u ц！ə૫ł puełsぇәрun шәપł 6u！dəə૫ pue łuәpnłs дəцłоие ґо бu！̣uoseәд әчł Кu！̣nb！！！！ до 6u！puezsıәрй рәң！ш！！SMOYS צоМ		－шелбе！р әчł „о дец әq pınous s＇0 деч7 suo！пeләdo ұиеләәд ио！ұиәш ұои гәор łои s！sənןел әЧł „О әио моч ұпоqе ио！ұеиеддхә －sıoдə ןenłdәouos sMoчs yооМ	＇sцłuәд S до реәғsи！sчдрәдрипи s pәұоедұqns әуs децъ ериејок ｜Іәт рІпом／＇6’ヨ 	ع＇g＇SN＇9	－＇$¢$
0	1	乙	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	бu！pəәэхヨ／6u！̣əәw	paepuels	யəəq0，

＇7duәдие ł0u p！ 0	＇sןши！эәр fo uo！！oextqns ұиәsәлdәд ұецұ sұхәұиоэ би！！ұәәл „о 6u！puełsıәрй рәң！u！！smoys yגоM	＂$\angle Z$＇Z\＄／euo！！！ppe ие иәл！б sем иәчд ән цэпs ‘иоџұәәdо әчъ ұои sұuәsәдdәд ұиәрпts＂ $6 \cdot \exists$ －sıодә ұиет！！ии！！s Чџ！М Бu！̣ әұәןduoou！sMOपs yдоМ	＂＇s66ə $\angle z$＇z pəsn ән＇sбБә т рец лиед， se чэпs ‘ұхәұиоэ әчъ и！әsиәs цэпш әуеш ұои op səпןел ןеш！כәр ұпq słuәsəдdəı ұиәрпнs＂ $6 \cdot \exists$ ‘s．оддә әшоs ЧІ！М Бu！̣puełsıәpun jenłdәouos smoys yıом	＊ 2 ＇ $2 \$$ ән＇七\＄рец лед＇ 6 • ヨ ＇uo！！d！иэsәр ұәәлоэ	ع＇g＇SN＇9	L＇G
7duәәне ł0u p！ 0	＇uo！̣еиедыхә Łэәдлоэи！до ләмsuе ұэәлоэи	\＆S 0 • t рие SI＇I • Z әғеןпэеэ of łdшәдде ие sәрпрои！ чом s؛диәрпңs＂ 6 ＂\exists ©u！̣puełs．sәpun ןe！̣ıed sмочs ұечұ uo！̣еuеןdхә ЧІ！М ләмsue ¡эәлоэи uo！̣еuерыхә әұәןdmoэu！ पІ！м ләмsuе ұэәлоэ	иопреиедdxә ио！̣еиеןdxә u！SME｜t dOu！w Чฉ！М ләмsue ґәәлоכ	 II！м suowə әцł pue 0ε＇ 7 \＄ әsпеэәq ләло みә イәиош әлец ІІм м лед моиу I＇ 6 ＇ヨ $\operatorname{se\lambda } \cdot$ ио！！ұеиеןdxә ұэәдоэ Чఛ！М ләмsue łэәлиоכ	$\varepsilon \cdot \mathrm{G}$＇SN＇9	†
0	\downarrow	Z	ε	t		
	6u！uu！ 6 ®g	6u！doןəләа	6u！	бu！pəəэxヨ／6u！ŋəәW	paepuels	melqodd

＇7dmәне ъ0u p！o	－uo！̣njos ләуч ґо Би！̣иеәш ә૫ł Бu！u！e｜dxә pue sןеш！эәр би！！əexұqns „о 6u！puełsıәри рәң！u！！sMOYs צגоМ	－әпןе＾ґо uо！̣еиеןdxә ұэәлиоэи！ 	－әпןе＾Łо uо！ұеиеןdxә ұэәдоо ұnq әпןел ұэәдлоэи	иәчм ұәб ॥！！м＾иед әбиецจ чэпш моч sұuәsәлdә」 εL＇I дәquin әиц＇$b \cdot \exists$ $\varepsilon L^{\prime} I$ ＇L＇G moı uo！！d！uosəp uo pəseq uo！̣d！uəsəp pue дәмsue ұәәлоつ	ع＇g＇SN＇9	$\varepsilon \cdot \mathrm{S}-\mathrm{Z}^{\prime} \mathrm{S}$
0	1	Z	ε	t		
	6u！	6u！doןəләа	6u！	бu！pəəэxヨ／6u！łəәW	prepuets	melqord

Unit 6．5，Quiz 1：Summary and Rubric

1. Determine the product of $0.03 \cdot 0.08$.
A. 2.4
B. 0.24
C. 0.024
D. 0.0024
2. Select all of the expressions that are equivalent to $5.2 \div 0.04$.

$$
\begin{aligned}
& \square \frac{52}{10} \div \frac{4}{100} \\
& \square 520 \div 4 \\
& \square \frac{52}{100} \div \frac{4}{100} \\
& \square 52 \div 4 \\
& \square \frac{520}{100} \div \frac{4}{100}
\end{aligned}
$$

3. Determine the value of each expression.
$4.1-1.235$
$127 \div 4$
$15.48 \div 0.2$
\qquad
4. What is the area of this rectangle?

Show or explain your thinking.

DeShawn keeps track of his exercise using different apps. Below is his exercise for this month.
5.1 How many miles did DeShawn run, swim, and bike in total this month?
5.2 DeShawn ran 17.1 miles in 3 hours.

Activity	Miles	Hours
Running	17.1	3
Swimming	2.53	1.1
Biking	45.175	5

How many miles per hour is that?
5.3 DeShawn claims that he bikes faster than he runs.

Do you agree? Explain how you know.

1. 0.0024
2. $\checkmark \frac{52}{10} \div \frac{4}{100}$
$\checkmark 520 \div 4$
$\checkmark \frac{520}{100} \div \frac{4}{100}$
$3.1 \quad 2.865$
$3.2 \quad 31.75$
$3.3 \quad 77.4$
3. 4.08 square units

Explanations vary. The area is equal to $1.7 \cdot 2.4$, which is like $\frac{17}{10} \cdot \frac{24}{10}$. This equals $\frac{408}{100}$ or 4.08 square units.
$5.1 \quad 64.805$ miles
5.2 5.7 miles per hour
5.3 Yes.

Explanations vary. DeShawn bikes at a rate of $45.175 \div 5=9.035$ miles per hour. This is faster than DeShawn's running speed, which is 5.7 miles per hour.

(LdW 'a'SN'9 :spıepuets)
Problem 2

Suggested Next Steps: If students struggle .
directly to the work students did in Lesson 5: Decimal Multiplication.

(ε^{\prime} g'SN'9 :pıepuets)
Problem 1

†'レ	ε	G ' Z	smelqodd
$\varepsilon \cdot{ }^{\prime} \cdot{ }^{\text {S }}$ '9	て'g'SN'9	G'SN•9	paepuets

Unit 6.5, Quiz 2: Summary and Rubric
Consider moving on, as students will see decimal operations in context later in Math 6 and also in Math 7 and Math 8 .

 In this problem, students use decimal operations to solve problems in context. They analyze the information given to construct an ($\varepsilon d W$ ' a 'SN'9 :spıepuełS) Problem 5 - Consider revisiting Lesson 6, Activity 1, Screen 6, where students multiply using an area model. Areas.

Suggested Next Steps: If students struggle.

- Consider having students use visual repre

Unit 6.5, Quiz 2: Summary and Rubric

7duәәие łOU P！	‘sןеш！эәр би！p！ı！！p Łо 6u！puełsıәри рәң！ய！！SMOYS удоМ	ऽ ${ }^{\circ} \angle I \varepsilon 10 \mathrm{~S} \angle \mathrm{I} \cdot \varepsilon$ se yons ‘əәeןd ұэәноэи！әчł и！ ＇sıouə 	－sıодә әسоs Чł！М 6u！puełsıәрии ןenłdəэuoэ SMOUS YגOM	spunod SL＇IE 	て＇G｀SN＇9	乙＇غ
7duәдие ł0u P！	‘sןш！！эәр 6u！！วeネұqns Łо 6u！puełsıәри рәң！u！sMOYs yגоМ	－әпјел әэел яо ио！ұеләр！sиоэ ұпочұ！м sч！б！р әчł рәиб！৷е К॥еэ！дәл әлеч Кеш S987＊0 10 †6I＇L－әұолм очм słuәpnłs ＇sıoдə 	‘sıодә әшоs Чұ！м 6u！̣puełsıәри ןenłdəouos sMOYS צגOM	spunod 598° Z ‘дәмsue ұәәдоЭ	て＇G｀SN＇9	L＇E
7duәə е łou p！o	＇Səગ！ฺั૭ ¡ગəય૦૭ əس૦s પł！M Səગ！ฺ૫૭ ＇səગ！ฺ૫૭ 	－Səગ！！○૫৩ 	‘əગ！๐૫๐ ¡วәม0эи！әuо pue ＇əэ！๐૫๐ ఛэәлоэи！ ou pue səэ！oчว ұәәдиоэ омұ ло әио	$\begin{aligned} \frac{00 L}{\nabla} & \div \frac{00 L}{0 Z S} \\ \nabla & \div 0 Z S \\ \frac{00 L}{\square} & \div \frac{0 L}{Z S} \end{aligned}$ 	8•SN＇9	乙
łOU P！				spunod $\downarrow Z 00 * 0$ ‘дәмSUе ґэәдоう	$\varepsilon^{\prime} \mathrm{g}^{\prime} \mathrm{SN}{ }^{\prime} 9$	\downarrow
0	\downarrow	乙	ε	t		
	6u！uu！6eg	6u！doןəィəด	6u！uoeordd＊	6u！pəәэхヨ／6u！${ }^{\text {a }}$	pıepueis	mejqodd

7dməュе łou p！0	¡ұхәұиоэ u！swə｜qoud әл｜OS Ot suolperado ןшш！эәр 6u！sn до 6u！puełsıәрй рәң！ய！！smoчs удом	－ооұ ‘sə！！ш әчұ рәрре әлец кеш S08 $\ddagger 9$ әұомм очм sұиәрпłS ＇әпןеィ әэелд би！ләр！suov ұпоч！！м sч！！！！ әчł рәиБ！ןе КІІеэыдәл әлец кеш 66S＇St әұомм очм słuәрпłS ұиеכ！！！uб！s чұ！м бu！puełsıәрй 	＇s．ouə әшоs पџ！м 6u！pueıs．əәри jenłdəouoo sMOUS y10M	sə！！w S08 n9 ләммие ґәәлоэ	8＇SN＇9	L＇S
7dшәџе łou p！0		 －6upuezsıәрй ןе！̣иед sмочs ұечъ ио！ұеиеןdхә ЧІ！М ләмsue ¡эәлиои।	uo！̣eue，dxә әң키씅 pue ןeo！ ЧІІМ ләмsue uo！̣eue，jxә u！SME｜f dOu！w पł！M ләмsue ¡эәлоэ	＇St！un әienbs 80 ＇t $10 \frac{00 \tau}{80 \downarrow}$ s／enbe s！ $4 \perp \cdot \frac{0 I}{\nabla Z} \cdot \frac{0 I}{L I}$ әу！！s！पЈ！чм＇ь＇Z • L＇L stuun әגenbs 80 ＇t ＇ио！̣еиеןdxə ұэәлоэ Чџ！М ләмsue ŋәәлиоэ	ع＇G＇SN＇9	\dagger
7duәәе łou p！0	＇sןшu！эәр 6u！̣！̣！p „о 6u！puełsıәpun pәң！ய！！！smoys yגоM	$\because \angle L 10 ォ L^{\circ} \angle$ sıoдә 	＇sıoдд әшоs प！！м 6u！puełsıәрun ןenłdәouos sMOYS y10M	spunod $\downarrow^{\circ} L L$ дәмsue ұәәлоэ	Z＇G＇SN＇9	$\varepsilon \cdot \varepsilon$
0	\downarrow	Z	ε	t		
	6u！uu！ 6 ®g	6u！dojəләа	6u！чэeosddv	6u！pəəэxヨ／6u！łəәW	paepueis	Melqodd

suqny pue Kıemuns ：Z z！̣ñ

＇7dmente ł0u P！ 0	ио！̣еиеןdxә ఛコәлоэи！ 10 uo！̣fuejdxə ou पұ！М ләмsue łәәлиой		${ }^{\prime} \mathcal{E} \div{ }^{\prime} \angle I$ pue $\mathrm{S} \div \mathrm{SLI} \mathrm{St}$ of ұdшәде ие sәрпןи！ ио！！ңеиеןdxә ЧІІМ ләмsue ұәәлоэи ио！ңеиерыхә u！SME！f dOu！u ЧІ！М ләмsue ұэәлоэ	дnoц ıəd sə！！u L＇S S！чગ！чм＇pəәds бu！uuns s，миечSəด иецł גəłseł S！s！4」 anou ıəd sə！！w SE0＊ $6=$ S \div LI＇St fo әłел e де sәу！q имечsәの＇${ }^{\prime}$ ・ヨ sə入 uо！̣еиеןdxә ұәәдоэ Ч！！М ләмsue ఛэәлио	a＇SN＇9	$\varepsilon \cdot \underline{1}$
7duməие łOU P！	‘яеш！эәр Ки！̣！！！！p рәџ！ய！！SMOYS צגOM	＇LS 10 LS＇0 se yons＇әכeןd дэәдоэи！әчд и！ןеш！эәр ＇sıодә ұиеэıииб！s ЧІ！М దu！puetsıәрй 	‘sıодә әшоs पІІМ Бu！puełsıәрй ןenłdәэиoo smous you	ınoy ıəd sə！！u L＇S дәмsư ұәәио	8＇SN＇9	て＇G
0	\downarrow	Z	ε	\checkmark		
	6u！̣uu！${ }^{\text {a }}$	6u！doןəләа	6u！	6u！pəəэxヨ／6u！ŋəәw	paepuels	шә¢qodd

\qquad
1.1 Select all the numbers that are common multiples of 4 and 6 .2
12
24
40
1.2 What is the least common multiple of 4 and 6 ?
A. 2
B. 10
C. 12
D. 24
2. Which expression has the same value as $8.92 \div 0.8$?
A. $892 \div 80$
B. $892 \div 8$
C. $892 \div 800$
D. $\frac{892}{10} \div \frac{8}{100}$
3. Calculate the value of each expression.

4. The table shows how far Terrance biked this week.

How many miles did he bike in total?

Day	Distance (miles)
Monday	1.3
Thursday	2
Saturday	0.475

5. Circle the expression that has the greater value.
$2 \cdot 0.003$
$0.2 \cdot 0.03$
They have the same value.

Explain your reasoning.

Here is the work Abdullah did to determine the greatest common factor of 4 and 12.
6.1 Explain why he is incorrect.

Abdullah's Work

$$
\begin{aligned}
& \text { Factors of 4: } 1,2 \\
& \text { Factors of } 12: 1,2,3,4,6 \\
& \text { The greatest common factor } \\
& \text { is } 2 \text {. }
\end{aligned}
$$

6.2 Determine the greatest common factor of 4 and 12 .
7.1 A shop charges $\$ 1.95$ for a small 3-ounce soft serve.

What is the cost per ounce of soft serve?

3 Ounces
7.2 A medium soft serve costs $\$ 0.64$ per ounce.

If a medium is 5 . 5 ounces, how much does it cost?

5.5 Ounces
7.3 The shop charges $\$ 6.85$ for a large 10 -ounce soft serve.

Which size gets you the most soft serve per dollar?
Explain your thinking.

10 Ounces

Reflection: Select a question and answer it below.What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.Describe or show one strategy you found helpful in this unit.
Name any students who helped you with this strategy.What else would you like your teacher to know?
$1.1 \checkmark 12$
$\checkmark 24$
$1.2 \quad 12$
2. $892 \div 80$
$3.1 \quad 7.07$
$3.2 \quad 2.623$
$3.3 \quad 321$
4. 3.775 miles
5. They have the same value.

Explanations vary. $2 \cdot 0.003$ is like $2 \cdot \frac{3}{1000}$ or 6 thousandths. $0.2 \cdot 0.03$ is like $\frac{2}{10} \cdot \frac{3}{100}$, which is also 6 thousandths, so they have the same value.
6.1 Responses vary. Abdullah is incorrect because he didn't list all of the factors of each number. Each number is a factor of itself. If Abdullah listed all of the factors, he would see that the greatest common factor is actually 4 .
6.24
$7.1 \quad \$ 0.65$
$7.2 \quad \$ 3.52$
7.3 Medium.

Explanations vary. A small soft serve is $\$ 0.65$ per ounce. A medium soft serve is $\$ 0.64$ per ounce. A large soft serve is $\$ 0.685$ per ounce. Since the medium soft serve is the cheapest per ounce, it will get you the most soft serve per dollar.
they are struggling with answer choice D . they are struggling with answar choice D.

 toward fluently dividing decimals.
In this problem, students demonstrate their understanding of using place value to write equivalent division expressions. This problem
corresponds most directly to the work students did in Lesson 8: Division Diagrams. The work in this problem helps students build
(Standard: 6.NS.B.2)
Problem 2

directly to the work students did in Lesson 14: Common Multiples. numbers. They look for and make use of structure when using patterns to find common multiples. This problem corresponds most In this problem, students demonstrate their understanding of how to determine common multiples and a least common multiple of two
(LdW 't'g'SN'9 :spıepuets)
โ Шวโqoud

9 '	G ' \dagger ' ε	乙	L	swelqosd
$\nabla^{\prime} \mathrm{G}^{\prime} \mathrm{SN} \cdot 9$	ع. ${ }^{\text {a }}$ SN 9	て'9•SN 9	g ${ }^{\text {SN }}$ '9	prepuers

(EdW ' ε ' ${ }^{\prime}$ 'SN'9 :spıepuełS)
 Problem 5

 by the Pound.In this problem, students add multi-digit decimals. This problem corresponds most directly to the work students did in Lesson 3: Fruit

(ع'g'SN'9 :pגepuets)

Problem 4

In this problem, students subtract, multiply, and divide multi-digit decimals. This problem corresponds most directly to the work
students did in Lesson 4: Missing Digits, Lesson 7: Multiplication Methods, and Lesson 9: Long Division Launch.
In this problem, students subtract, multiply, and divide multi-digit decimals. This problem corresponds most directly to the work
students did in Lesson 4: Missing Digits, Lesson 7: Multiplication Methods, and Lesson 9: Long Division Launch.
(ε 'g'SN'9 :psepuets)
Unit 6.5, End Assessment Summary and Rubric: Form A

Problem 3 3

Consider suggesting they use visual strategies that help with place value. Suggested Next Steps: If students struggle . .
ore -

$$
\begin{aligned}
& \text { - Consider having them use vertical addition, being sure to pay attention to place value. } \\
& \text { - Consider revisiting Lesson } 3 \text {, Activity } 2 \text {, Screen } 9 \text {. }
\end{aligned}
$$

Suggested Next Steps. If students struggle . . .为

- Consider having a brief class discussion about unit rates and how what they learned in Unit 3 is applied with decimals here.
Lesson 11: Movie Time.

In this problem, students multiply and divide decimals in context. They attend to precision when calculating unit price, total price, and
(9dW 'g'SN'9 :spıepuełS)
Problem 7
Suggested Next Steps: If students struggle ...
- Consider asking students how they know when they have written out all of the factors of a number.
- Consider revisiting Lesson 15, Activity 1, Screen 6 to discuss strategies that can be used.
corresponds most directly to the work students did in Lesson 15: Common Factors. factor of two numbers. They critique the work of another student, explaining where
In this problem, students use the definition of greatest common factor to analyze student work and determine the greatest common
(Standards: 6.NS.B.4, MP3)
Problem 6
\forall שxos :

tou p！0	＇чэ！чм әans łou sem $\ddagger n q$ Sцłuәł u！SEM дəqunu әио имоиу әлец Kem $\frac{00 \mathrm{~L}}{8} \div \frac{0 \mathrm{~L}}{\text { Z68 }}$ әsоoчэ очм słuәpnłS －syıpəдpuny se sıəqunu әлец Кеш $8 \div 768$ әsоочэ очм słuәpnts			$08 \div$ Z68	でG＊SN＇9	乙
＇7duәュе łou p！o	－sıəqunu әцł рәрре әлец кеш 0I －s．jołorf иowmos ұnoqe ґЧб̆очł әлец Кеш Z ґәәәょ очм słuәpnłS •			ZI •	t＇G＇SN＇9	て＇レ
＇7duәュе łou p！0	 џәәиоכ әшоs ч！！м sәગ！очэ ఛэәдоэи！әдош 10 Омұ Słગəəəs ұuәpnłS রןuo słəәəəs ұиәрпłs	－әээ๐ч osfe łnq səo！ouo ıо әио słэəəәs łuәрпłS	 Kue łəәəə łou səop 	\square ¡əəə๐ łou səop pue цłoq słวəəəs łuәpnłS	$\begin{gathered} \text { LdW } \\ ‘ \cdot \cdot \cdot{ }^{\prime} \cdot \mathrm{SN}^{\prime} 9 \end{gathered}$	－
0	\downarrow	τ	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	6u！pəəวхヨ／6u！łəәW	prepuets	melqodd

＇7dшәџе łou p！0	－ －u！̣puełsıəpun Łо әЈиәр！лә чеәМ	әцł иәдицммәл әлец Кеш I＇＇Z әәцим очм słuәрпңs －sıддә ןentdәэиоэ әұәןdшoэи！ łnq бuiloןəләр е sмочs ухом	＇s．oдлә pue бu！puełsıəpun 		$\varepsilon^{\prime} \mathrm{G}^{\prime} \mathrm{SN}^{\prime} 9$	$\varepsilon \cdot \varepsilon$
＇qdmәие łOU P！	－6ulpuełsıəpun Łо әЈиәр！лә чеәМ	－səэeןd ןеш！эәр омұ seч $190^{\circ} 0$ әכи！ səэғן ן ןеш！эәр омұ әлец pinous дәмsue әчł уи！！џ кеш －sıодә ұиеэ！！！ии！！s бu！̣doןəләр е sмочs улом	＇s．oдлә pue бu！puełsıəpun ןenłdəouos sMous yı0M		$\varepsilon^{\prime} \mathrm{G}^{\prime} \mathrm{SN}^{\prime} 9$	て＇દ
łou p！0	Łо әЈиәр！лә чеәМ	－әпјел ұnочџ！м sч！ம！ 10 ZЕ 0 әұ！им очм słuәpnłs łnq＇6u！̣puełsıəpun ןenłdəәuoэ бu！̣dоןләр е sмочs чиом	＇s．длдә pue 6u！̣puełsıəpun ןenłdәэuos smous yıоM		$\varepsilon^{\prime} \mathrm{G}^{\prime} \mathrm{SN}^{\prime} 9$	－＇$¢$
0	1	乙	ε	t		
	6u！	6u！̣doןəләа	6u！	Кu！pəəэxヨ／бu！ұəəW	prepuets	шә¢q0．d

\forall שxos ：

＇7dməュte łou p！0	－uo！̣еиедdxә ue ұnout！M 10 uо！！！eиеןdxә дәмsuе ұәәдоэи	－моия Кәцł моч до s！ op łnq әпןел әшes әЧł әлец Кәцł Кеs очм słuәpnłS ＊uo！̣еכ！！｜！！！ןnu ןшш！эәр яо би！̣риеısıәрии ן！！ued səғеэ！！unwmos ұечł ио！џеиеןdхә Чџ！М дәмsuе ұэәлоэи ＇uo！̣еиеןdxә әұәןdmoэu！ ЧІ！М дәм	$900 \text { " }$ oł łuәןеハ！nbə s！шәчł ґо әио ұецł рәґеןпэәэ Кןэәдоэ әлец кеш uо！ssəлdxә дәцұ！ə әsоочэ очм sұuәpnłs －иоп̣еue，dxә －uoḷeue．dxә U！SME｜t dOu！ Ч！！М גәмsue ұәәлоう	＇900 0 oł łuәןем！̣nbə әде suo！ssəдdxә ЧłОЯ －ənןeл әшes әЧł әлец Кәцц †эәлио pue әұәןdmoう s！ฯィоМ	$\begin{gathered} \varepsilon d W \\ ‘ \varepsilon \cdot{ }^{\prime} \cdot S N \cdot 9 \end{gathered}$	G
＇7dшәџе łOu P！0	－ Бu！̣puełsıәри Łо әэиәр！лә чеәМ	－әпןел ұпоч！！м sıəquinu әчұ рәрре әлец кеш 6† до $6 \downarrow^{\prime} 0$ ә！！мм очм słuәpnłS ‘sıодә ןепıдәэиоэ әұәјdшоэи！ 	＇s．ouл pue 6u！puełsıәрun ןenłdәэuos smous y10M	sə！！u SLL \mathcal{E} • ＇ұэәлио рие 	$\varepsilon^{\prime} \mathrm{g}^{\prime} \mathrm{SN}^{\prime} 9$	†
0	1	Z	ε	\checkmark		
	6u！̣uu！${ }^{\text {eg }}$	6u！doןəләа		бu！pəəэхヨ／бu！ұəәW	paepueis	шә¢о入d

łOu P！	－6u！̣puełsıəpun „о әЈиәр！лә чеәМ	әлец кеш 8ヵ әұ！̣м очм słuәpnłS －sıодә ұиет！！！uб！！ łnq రu！̣doןəләр e SMOYS yıOM			เ•日＇SN＇9	て＇9
＇qdmә»е łOU P！		－К ！！כәds łou op ұnq ‘sıоңэef ә૫ł fo әшоs Łобıоґ че॥ әұеңs очм słuәpnłs －s．ałoet иошшоэ ґяәдеәл Ło 6и！̣puełsıəpun ұечұ ио！џеиеןdхヨ	＇улом s،че！｜npq丈 дәр！suoכ łоu иошшоэ ұsәəеәдб 	 S！доұэец иошшоэ łธәдеәдб әчł ұецұ әЧł ！0 ॥е рәъऽ！！ पе｜｜npq＊HI＇HəSt！ ૫ヤ૨ヨ ’əqunи чэセә łs！！I，up！p әч əsneoəq łəәлоэи！s！Че｜｜npqヲ ＇ఛәәиоэи！ s！че॥npq \forall Кчм su！e｜dxә Kınłssəoวns ұuәpnłs		L＇9
0	\downarrow	Z	ε	t		
	6u！̣u！̣бeg	6u！doןəләа	6u！uэeordd \downarrow	бu！pəәэхヨ／6u！ŋəәW	prepuers	mejqodd

＇łduәұе łou p！ 0	－6u！̣uełsıəpun $\downarrow 0$ әәиәр！лә чеәМ	－6u！̣puełsıəpun ן！！иед sәғеэ！иишшоэ децł ио！̣еиеןdхә પł！M əZ！！łכәдхоכu｜ 	－uo！ңeue，dxә әғәןdmos pue ןеэ！ －uo！̣eue｜dxə u！̣ SME｜f 	＇əouno ıəd $\ddagger 99^{\circ} 0 \$ \mathrm{~s}$ ！ əлəəs Hos un！pəu \forall əəouno ıəd S9 ${ }^{\circ} 0 \$ \mathrm{~s}$ ！$\partial \wedge ə$ s Hos ॥ems \forall un！pəW	$\begin{gathered} 9 \mathrm{dW} \\ { }^{\mathrm{a} \cdot \mathrm{SN}^{\prime}} 9 \end{gathered}$	$\varepsilon \cdot L$
＇7dmeŋte łOu p！	－6u！̣uełsıəрй $\ddagger 0$ әЈиәр！лә ҰеәМ	＇səэe｜d ןшய！эəр омұ Sеч 七9＂0 sец дәмsue әцł \downarrow Øпочł pue SS pue ъ9 pə！！d！̣！nu әџ！им очм słuәpnłs бu！̣doןəләр е sмочs уом	＇s．ouл ıои！ pue 6u！puełs．əәpun ןепłdәэиоэ smous yıom		8＇SN＇9	て＇し
łOu p！	－6u！̣puełsıəpun $\downarrow 0$ әЈиәр！лә чеәМ	＇ε pue S6 ${ }^{\circ}$ I\＄ рә！！d！\dagger Пи әлец Кеш S8＇S\＄әң！мм очм słuәpnłS бuidoןəләр е sмочs yиом	－sıoдə ןепłдәэиоэ smous yגоM		8＊SN＇9	F＇L
0	1	Z	ε	t		
	6u！uu！ 6 ®g	6u！doəəләа	6u！	6u！pəəэxヨ／6u！łəәW	paepuels	məqodd

\qquad

1. Which equation represents this tape diagram?
A. $4+3=$?
B. $?=4 \cdot 3$
C. $?=3 \cdot 3 \cdot 3 \cdot 3$

D. $4 \div 3=$?

Determine the unknown value in each equation.
$2.1 ?+15=35$
$2.24 \cdot ?=28$

Determine the value of each expression.
$3.1 \quad 21.8+9.8$
$3.2 \quad 10-7.05$
$3.3 \quad 4.3 \cdot 0.2$
$3.4 \quad 5.25 \div 0.25$
4. What is the missing length of the rectangle?

4 cm
$? 10 \mathrm{sq.cm}$
5. Duri says the value of 10^{3} is 30 and Nasir says the value of 10^{3} is 1000 .

Who is correct?
Explain your thinking.

Duri's Work
$10^{3}=30$
:---:
$10^{3}=1000$

\qquad
6.1 What is the value of $4+3 \cdot 5$?
6.2 Circle the expression that has the same value as $4+3 \cdot 5$?
$(4+3) \cdot 5$
$4+(3 \cdot 5)$
$4 \cdot 3+5$

Explain your thinking.
7. Adriana and Fatima created patterns based on rules.

Adriana's pattern: $0,2,4,6,8,10,12, \ldots$
Fatima's pattern: $3,6,12,24,48,96, \ldots$

Adriana's rule is to start with 0 and keep adding 2 . What is Fatima's rule?

Here is a graph showing how many pencils and erasers a group of friends each have.
8.1 Who has the most pencils?
8.2 The point $(5,7)$ represents the number of pencils and erasers Omari has.

Add Omari's point to the graph.
8.3 How many erasers does Omari have?

1. B. $?=4 \cdot 3$
$2.1 \quad 20$
$2.2 \quad 7$
$3.1 \quad 31.6$
$3.2 \quad 2.95$
$3.3 \quad 0.86$
$3.4 \quad 21$
2. 2.5 cm
3. Explanations vary. Nasir is correct because 10^{3} means $10 \cdot 10 \cdot 10$, which is equal to 1000 .

$6.1 \quad 19$

$6.2 \vee 4+(3 \cdot 5)$
Explanations vary. This expression has the same value as $4+3 \cdot 5$ because both expressions multiply 3 and 5 , then add 4 . Both equal 19 .
7. Responses vary. Fatima's rule is to start at 3 and multiply by 2 each time.
8.1 Troy
8.2

8.37 erasers

Unit 6.6, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problems 1 and 2 before Lesson 1
- Problems 3 and 4 before Lesson 4
- Problems 5 and 6 before Lesson 10
- Problem 7 before Lesson 13
- Problem 8 before Lesson 14

Problem 1

(Standard: 3.OA.A)
This question is intended to surface what students already know about using tape diagrams to represent relationships between whole numbers. This content first appears in Lesson 1: Weight for It, where students connect tape diagrams and equations.

Suggested Next Steps: If students struggle . . .

- Consider revisiting this question before beginning Lesson 1 and drawing a tape diagram to represent each choice. Consider leaving the tape diagrams and equations up for students to reference as they work through Lesson 1.

Problem 2

(Standards: 2.OA.A.1, 3.OA.A.4)
This question is intended to surface what students already know about determining unknown numbers in addition and multiplication equations. This content first appears in Lesson 1: Weight for It, where students use reasoning to determine unknown weights on a see-saw.

Suggested Next Steps: If students struggle . . .

- Consider revisiting these questions as a class after Lesson 1 and asking: What would this look like if it were represented with a see-saw? What about a tape diagram?

Problem 3

(Standard: 6.NS.B.3)

This question is intended to surface what students already know about decimal operations. This content first appears in Lesson 4: Hanging It Up, where students solve equations that include whole numbers, decimals, and fractions.

Suggested Next Steps: If students struggle . . .

- Consider using the snapshot tool to select students' thinking on the sketch tool and discuss strategies for each problem as a class before Lesson 4. Consider creating or referencing an anchor chart from Unit 5 with common strategies for adding, subtracting, multiplying, and dividing decimals.

Unit 6.6, Readiness Check Summary

Problem 4

(Standards: 3.OA.B.6, 3.MD.C.7)
This question is intended to surface what students already know about undoing operations to determine unknown values. This content first appears in Lesson 4: Hanging It Up, where students may use division to think about solutions to equations that involve multiplication.

Suggested Next Steps: If students struggle . . .

- Consider spending extra time during Lesson 4, Activity 1, Screen 2, surfacing strategies for determining the solution to the equation $4 x=7$.

Problem 5

(Standards: 5.NBT.A.2, MP3)
This question is intended to surface what students already know about powers of 10 . Students critique student work and justify their responses. This content first appears in Lesson 10: Powers, where students explain the meaning of expressions with exponents that are not powers of 10.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem before students begin Lesson 10. Encourage students to think of why someone might have selected Duri or Nasir and to make arguments as a class. Consider creating an anchor chart or leaving Nasir's work visible ($10^{3}=10 \cdot 10 \cdot 10=1000$) for students to reference throughout Lesson 10.

Problem 6

(Standards: 5.OA.A.1, MP3)
This question is intended to surface what students already know about evaluating expressions with multiple operations, including expressions that contain parentheses. Students construct viable arguments when justifying their responses. This content first appears in Lesson 11: Exponent Expressions, where students evaluate expressions that include an exponent and one other operation.

Suggested Next Steps: If students struggle . . .

- Consider reviewing the order of operations and the purpose of parentheses before Lesson 11. Invite students to share what they remember about order of operations and create a class resource to refer to throughout the rest of the unit, adding to the resource after students have finished Lesson 11.

Unit 6.6, Readiness Check Summary

Problem 7

(Standards: 5.OA.B.3, MP7)
This question is intended to surface how students identify relationships and describe patterns. Students look for and make use of structure when understanding the rules the students wrote. This content first appears in Lesson 13: Turtles All the Way, where students describe relationships between two variables shown in a table or diagram.

Suggested Next Steps: If students struggle . . .

- Consider spending extra time during Lessons 13 and 14 focusing on describing relationships, particularly focusing on how that description shows up in a table and in an equation.

Problem 8

(Standard: 5.G.A.2)
This question is intended to surface what students already know about plotting and interpreting coordinates in the first quadrant of the coordinate plane. This content first appears in Lesson 14: Representing Relationships, where students connect graphs and tables that represent the same relationship.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem before Lesson 14. If it does not come up naturally, consider asking students how to write each students' point on the graph as a coordinate pair and what that means about the number of pencils and erasers they each have.

1. Select all the equations where $x=6$ is a solution.$4=2+x$$x-11=5$$12=2 x$
$2=3 x$
$\square \frac{1}{2} x=3$
2. Which expression represents the area of this rectangle?
A. $4(2 x+12)$
B. $2(4 x+3)$
C. $8 x+12$
D. $8 x+3$

Determine the solution to each equation.
$3.13+x=10$
$3.2 \quad 1.8=2 x$
$3.3 \quad \frac{1}{3} x=9$

Here is an expression: $3(2 a+6)$.
4.1 What is the value of this expression when $a=4$?
4.2 Write an equivalent expression. Draw a rectangle if it helps you with your thinking.
4.3 What is the value of your expression when $a=4$?
5.1 Cho has $\$ 10$ to buy tacos that cost $\$ 2.50$ each. Cho can buy x tacos in total. Which equation represents this situation?
A. $10 x=2.50$
B. $2.50 x=10$
C. $x+2.50=10$
D. $x+10=2.50$
5.2 Here is a new equation: $12+y=20$. Describe a situation that could represent this equation.
5.3 Determine the value of y. Explain what it means in your situation.

Answer Key

1. $\quad \checkmark 12=2 x$
$\checkmark \frac{1}{2} x=3$
2. C. $8 x+12$
$3.1 \quad x=7$
$3.2 x=0.9$
$3.3 x=27$
4.142
4.2 Responses vary.
$6 a+18$
$6(a+3)$
$3(6+2 a)$
4.342
$5.12 .50 x=10$
5.2 Situations vary. Prisha already has 12 eggs. She needs 20 eggs to make an egg dish for a party. How many eggs does she need?
$5.3 y=8$
Explanations vary. The number 8 represents how many more eggs Prisha needs to have a total of 20 eggs.

Suggested Next Steps：If students struggle ．．．
make sense of the distributive property．
This problem corresponds most directly to the work students did in Lesson 8：Products and Sums，where they used area models to expression representing the area of a given figure．
In this problem，students identify when two expressions are equivalent．Students make use of structure as they choose an appropriate
（Standards：6．EE．A．4，MP7）
Problem 2
－Consider revisiting Lesson 3，Activity 1，Screen 6.
－Consider suggesting they use a visual representation like a hanger or tape diagram． Suggested Next Steps：If students struggle ．
students did in Lesson 3：Hanging Around，where they determined if weights would balance hangers and make equations true． In this problem，students determine whether a number makes an equation true．This problem corresponds most directly to the work
（c＇g＇ヨヨ＇9 ：pגepuełs）
Problem 1

	$1 \cdot 9$	でG＇1	乙	で†	ع＇†＇レ＇†	smə¢q0，d
L’タ・ヨコ’9	$9^{*} 9^{*} \exists \exists \cdot 9$	¢＊9＊ヨヨ＊9	$\nabla^{*} \forall^{\prime} \exists \exists \exists \cdot 9$	ع＊＊＊ヨヨ 9	O「でザヨヨ゙9	prepueis

Unit 6．6，Quiz：Summary and Rubric

- Consider revisiting the Lesson 5 Cool-Down. Suggested Next Steps: If students struggle . . . wrote equations to represent situations, and wrote situations to represent equations. what the solution means. This problem corresponds most directly to the work students did in Lesson 5: Swap and Solve, where they abstractly and quantitatively in the second and third problems through writing a situation that fits the context, solving it, and explaining

 Problem 5
- Consider revisiting Lesson 9: Notes, Problem 1. second part of the problem.
- Consider asking students how they can simplify the expression to no longer have parentheses if they are struggling with the Suggested Next Steps: If students struggle
Products, Sums, and Differences, where they used the distributive property to write equivalent algebraic expressions. structure as they create equivalent expressions. This problem corresponds most directly to the work students did in Lesson 9 In this problem, students generate equivalent expressions, particularly by applying the distributive property. Students make use of
(Standards: 6.EE.A.2.C, 6.EE.A.3, MP7)
Problem 4
- Consider moving on, as students will continue to increase their fluency with solving equations in this unit and all future courses Suggested Next Steps: If students struggle students did in Lesson 4: Hanging It Up, where they solved equations that included whole numbers, decimals, and fractions. In this problem, students solve equations of the form $x+p=q$ and $p x=q$. This problem corresponds most directly to the work (Standard: 6.EE.B.7) Problem 3 Unit 6.6, Quiz: Summary and Rubric

＇7duәңце ł0u P！	$\cdot b=d+x$ யиоł ә૫ł ґо suo！̣ənbə рәң！ш！SMOчs צиом	$\cdot x=\varepsilon+0 \tau$ рәлоs әлец кеш єI әдомм очм słиәрпłS งsoддә ұиеэ！！！ub！s Ч！！M Бu！puełsıəpun әңәㅣㅣoㅇu！ sMOYS y10M	＇sıoגəә әшos ЧІ！M 6u！̣иеұs．əәpun sMOYS Y10M	$L=x$ ‘әмsuе ұәәлоэ	L＇日＇ヨヨ＇9	L＇E
7duәə е ł0u p！ 0				$Z I+x_{8}$ ＇әО！Очэ ұәәлиО	$\nabla^{*} \forall^{\prime} \exists \exists \cdot 9$	Z
7duәŋңe ł0u p！	－รәэ！！чบ џәәиоэ әшоs ч！！М －รәэฺ๐чэ ұэәдоэ๐！К｜ио	‘səә！๐чэ ұэәдоэи！ OMұ səpnןગu！Osןе łnq 	－әэฺочจ †эәมоэи！әио pue －əગ！૦чจ ఛэәлоэи！әио प！！М 	$\begin{gathered} \varepsilon=x \frac{Z}{\mathrm{~L}} \\ x Z=Z \mathrm{I} \end{gathered}$ 	$\mathrm{S}^{\prime} \mathrm{G}^{\prime} \exists \exists^{\prime} 9$	\downarrow
0	1	Z	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	6u！pəəэxヨ／6u！łəәW	paepueis	melqord

qduәде łou p！0	$\cdot b=x d$ шлод әЧł ґо suo！̣enbə 6u！̣｜оs to 6u！pueqsıәрй рәң！！u！	$x=\frac{\varepsilon}{I}-6 \text { рәл/оs әлец }$ кеш $\frac{\varepsilon}{Z} 8$ әдолм очм sұиәрпня • $x=6 \cdot \frac{\varepsilon}{I} \text { рәлоs әлец }$ кеш є әғолм очм sұиәрпня ＇s．0лә 	＇sıодәә әшos पұ！м 6u！puełsıәрй sMous youm	$\angle Z=x \bullet$ ‘әммие ұәәлоэ	L＇9’ヨヨ＇9	$\varepsilon \cdot \varepsilon$
Iduә立e łou P！ 0	$\cdot b=x d$ шлодәц ๖0 suo！̣enbə би！！ィоs Łо 6u！puełs．əәри рәұ！u！II SMOYS צגOM	$x+z=8 \cdot 亡$ рәлоя әлец кеш Z＂0－әдолм очм sұиәрпня $\cdot x=Z \cdot 8$＇亡 рәлоs әлец кеш 9 ＇ε әұолм очм sұиәрпня ‘s．ouә әұәןdmoэu！sMoчs y10M	－sıодә әшos पұ！̣ 6u！puełsıәрй ןentidəouos sMous yגOM	$\begin{gathered} 6^{\circ} 0=x \text { • } \\ \text { дәмsue ұэәлоっ } \end{gathered}$	L＇9’ヨヨ＇9	て＇ع
0	1	Z	ε	t		
	6u！	6u！doןəләа	6u！	бu！pəәэхヨ／6u！ŋәәW	prepuets	шәqолd

o！̣qny pue Kıemuns ：z！no ‘＇9’9 9

ұdшәңе tou P！	＇suoissəдdxə ұиәןем！̣nbә әғеәл Łо әsn бu！чеш до 6u！puełsıәрй рәң！ш！！smoчs צиом	$\begin{aligned} (6+p) z & \bullet \\ 8 \mathrm{I}+\mathrm{p}^{2} & \bullet \\ (\mathrm{I}+p) 9 & \bullet \\ 9+p 9 & \bullet \end{aligned}$ ие sәрпри！диәрпнs＂ $6 \cdot \exists$ ＇s．одәә ұиеэ！！！иб！！ 	＇sıодәә әшоs Чџ！М 6u！puełsıәpun ןEnłdəouoo sMous yom	$\begin{array}{rcc} (p Z+9) \varepsilon & \bullet \\ (\varepsilon+p) 9 & \bullet \\ 8 \mathcal{I}+p 9 & \bullet \\ & \bullet \delta \cdot \exists \end{array}$ ләмsuе ұәәлоう	$\mathcal{E}^{*} \forall^{\prime} \exists \exists \cdot 9$	でも
7dшәџе łOU P！		$\cdot 8 I+p Z \nsucceq ə \text { б }$ оł ε әчł рәұпq！ия！ Кроәноэи！әлец кеш ЂZ ә！！мм очм słиәрпłS $9+p 9 \not \approx ə \text { б }$ оł ε әчł рәұпq！ия！p Кןдәноэи！әлец кеш 0ع ә！！мм очм słиәрпłS ＇sıодә ұиет！！ииб！s ЧІ！М бu！puełsıәрй 	донә ио！џептэет е sәуеш ұпа suшәґ чдоq оł ε әцł әłпq！и！！p оұ дdшәде леәт e sәрпјои！ұиәрпıS＂6・ヨ ＇sıодә әшоs Чџ！М 6u！̣puełsıəpun smous y⿺辶M	$\begin{gathered} \text { そヵ • } \\ \text { дәмsue ұכәль○ } \end{gathered}$	つ＇で甘゙ヨヨ＊9	L＇t
0	\downarrow	乙	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！upeorddv	ถu！pəəวxヨ／6u！łəәW	prepuets	melqord

э！ıqny pue Kıewuns ：z！no＇9＇9 9 ！！un

	‘st！un би！чэұеш әлец ұои ор 0Z рие uо！̣ent！s e би！！！uм „о 6u！puełsıәрй рәң！ш！sMOчs צдоМ	‘s66ə ZI 10 sdnoд6 sәуеш рие s6Бә 0Z seц eys！ld＇ 6 ・ヨ ＇uo！！！ppe 10 ио！！כeגұqns sәр！sәq ио！ұеләдо ґәЧłоие sәsn дечł ұхәґиол e səp！＾oıd uo！\downarrow d！иэsəด ＇sıoддә ұиеэ！！！ub！s Ч！！м Бu！puełsıәрй 	－Kued е ıо पड！ sббә ZI Кеме sәуеł рие səsn ұечұ ұхәұиот e səp！ィодd uo！ıd！ıэsəด ＇sıодә әшоs Ч！！М 6u！puełs．əәрй 	¿рәәи әus səop sб6ə Kиеш мон Киед е 101 чs！p Б6ә ие әуеш о子 s6Бә 0Z spәәu ә૫s ‘s6бә ZI seч креәде ечs！ıd＇ $6 \cdot \exists$ －uo！！d！uәsәр џәәлоう	S＇9＇ヨヨ＇9	Z＇G
7duәәие ł0u p！				$0 I=x_{0 S}{ }^{\circ} Z$ ‘əммsue łәәлоう	$\begin{aligned} & \text { L'g‘ヨヨ・9 } \\ & 9 \cdot g \cdot \exists \exists \cdot 9 \end{aligned}$	L＇G
7duәәие ł0u p！	 ‘suo！ssəıdxə孔иәןем！̣nbә би！！едәиәб Łо 6u！pueısıəpun 	$8 Z=8 I+(\succsim)+9$ se чопs ‘suo！̣eıədo ұวәนоэи！səsn ұnq ォ әұn！！！ e səpпןои！ұиәрпłs＂ $6 \cdot \exists$ ＇sıодә ұueэ！ч！ub！s Чџ！М Бu！puełs．ıәриn 	$\cdot 0 \succsim=8 I+(\succsim) 9$ e sәуеш ұпq suo！ ұЈәноЈ әЧҰ Ч！！М т әұn！！！ e sәрпןои！ұиәрпłs＂ $6 \cdot \exists$ ‘sıодә әшоs Чł！М 6u！puełsıəpun ןenłdəouos smoys yıоМ	Zも ＂でゅ யод uo！̣enbə uo pəseq 	O｀で＊｀ヨヨ＊9	
0	L	乙	ε	†		
	6u！uu！̣əəg	6u！doןəィəன	6u！uoeorddV	бu！pəəэхヨ／6u！${ }^{\text {a }}$	prepuets	mejqodd

o！̣qny pue Kıemuns ：z！no ‘＇9’9 9

${ }^{7}$ duшәие łou P！O	sueәm uo！̣njos әчł łецм Би！u！̣ејdxә ‘łхәұиоэ әЧł s ио！̣епи！е е би！ „о 6u！puełsıәрии рәң！ш！！SMOYS צגOM	－әпןe＾ ృо ио！ңеиеןdxә ұәәдоэи！ ұnq әпןел ұэәлиоэ	－әпјел 		L＇9｀ヨヨ＊9	$\varepsilon \cdot \underline{ }$
0	1	乙	ε	七		
		6u！̣оןəләа		бu！pəәэхヨ／6u！łəәw	paepuers	шәןq0．d

o！uqny pue Kıewuns ：z！̣o＇9’9 ！！un
\qquad

1. Select all the equations where $x=3$ is a solution.
$\square x-3=0$$1+x=2$$33=3 x$
$12=4 x$
$\square \frac{1}{2} x=6$
2. Which expression is equivalent to $20-8 d$?
A. $2(4 d-10)$
B. $4(5-8 d)$
C. $4(5-2 d)$
D. $(20-8) d$

Determine the solution to each equation.

$\left.3.1$| | $3.2 \quad 24=2 x$ | | |
| :--- | :--- | :--- | :--- | \right\rvert\, $\begin{array}{ll}3.3 & x+8=12.4\end{array}$

Here are four expressions.
4^{3}
3^{4}
$4 \cdot 4 \cdot 4$
$3 \cdot 4$
4.1 Circle two expressions that have the same value. Show or explain your thinking.
4.2 Here is a new expression: 5^{4}. Write an expression that has the same value.
\qquad
Tyani is selling pizza to raise money for a field trip. She sells slices of pizza for $\$ 1.25$ each.
5.1 Complete the table on the right.
5.2 Write an expression that represents the amount of money they will earn if they sell s slices of pizza.
5.3 How many slices of pizza does Tyani need to sell to earn $\$ 100$?

Explain your reasoning.

Number of Pizza Slices Sold	Amount of Money Earned (\$)
1	1.25
2	
20	
50	

Kai started tracking the number of kilometers, k, they had biked after d days.
6.1 Kai made a graph. What does the point $(3,12)$ say about Kai's situation?
6.2 Kai also wrote the equation $k=4 d$.

Use the equation to add three more points to Kai's graph.

Make a table if it helps you with your thinking.

\qquad
Here are three different diagrams.

7.1 Match each diagram with an expression that describes its area.

$$
4+s^{2} \quad 4 s^{2}
$$

Diagram \qquad
Diagram \qquad

Diagram \qquad
7.2 Calculate the area of each diagram if $s=3$.

7.3 Habib drew a new diagram that has an area of $6+4 s^{2}$.

What is the area of Habib's diagram when $s=\frac{1}{2}$?
\qquad

Reflection: Select a question and answer it below.
\square What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.

Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

Answer Key

$1.1 \checkmark x-3=0$
$\checkmark 12=4 x$
2. $4(5-2 d)$
$3.1 \quad x=5 \frac{1}{4}$ (or equivalent)
$3.2 x=12$
$3.3 x=4.4$
4.14^{3} and $4 \cdot 4 \cdot 4$
Explanations vary. These have the same value because 4 means $4 \cdot 4 \cdot 4$, and they are both equal to 64 .
4.2 Responses vary. 5 • 5 • 5 5
5.1

Number of Pizza Slices Sold	Amount of Money Earned (\$)
1	1.25
2	2.50
20	25
50	62.50

$5.21 .25 s$
5.3 80 slices of pizza

Explanations vary. Write the equation $100=1.25 s$ and solve it or keep counting groups of 20 slices (each group earns $\$ 25$) until you get to $\$ 100$.
6.1 Responses vary. It means that after 3 days, Kai had biked 12 kilometers.
6.2 Points vary.

$7.14+s^{2}$
Diagram C
$4 s^{2}$
$4 s$
Diagram B
$7.24+(3)^{2}=13$ sq. units
$4(3)^{2}=36$ sq. units
$4(3)=12$ sq. units
7.3 7 square units (or equivalent)

In this problem，students identify whether two expressions are equivalent．This problem corresponds most directly to the work
students did in Lesson 9：Products，Sums，and Differences，where they used the distributive property to write equivalent algebraic
expressions，including expressions involving subtraction．
（＊＊＊｀ヨヨ・9：pıepuets）
Problem 2
－Consider revisiting Lesson 3：Practice Problems，Problems 2 and 3．Choose one hanger to discuss and solve as a class．
－Consider suggesting they use a hanger or tape diagram to visualize the equations． Suggested Next Steps：If students struggle
students did in Lesson 3：Hanging Around，where they determined if weights will balance hangers and make equations true．
In this problem，students determine whether a number makes an equation true．This problem corresponds most directly to the work
（9＇9｀ヨヨ’9 ：pıepueis）
Problem 1

9	ε	$\varepsilon \cdot{ }^{\prime} \stackrel{\square}{ }$＇G	1	ドカ‘て	どL＇で	ドL＇でG	V	swəq90．d
6＊О＊ヨヨ＊9	L＇9＊ヨヨ＊9	$9{ }^{\prime} 9^{\prime} \exists \exists \exists^{\prime} 9$	$S^{\prime} \underbrace{\prime} \exists \exists \exists^{\prime} 9$	$\nabla^{*} \forall^{\prime} \exists \exists \exists \cdot 9$	O＇で甘゙ヨヨ＇9	\forall^{\prime} Z＇V＇ヨヨ＇9	$L^{\prime} \forall^{\prime} \exists \exists \exists^{\prime} 9$	prepuets

\forall سл⿵」 ：

determined if two expressions containing exponents were equivalent. responses to the first problem. This problem corresponds most directly to the work students did in Lesson 10: Powers, where they
In this problem, students demonstrate their understanding of exponent notation. They construct viable arguments to justify their
(Standards: 6.EE.A.1, 6.EE.A.4, MP3)
Problem 4 assessment results.

- Consider revisiting Lesson 4: Practice Problems, Problem 2. Choose one of the six problems to look at as a class, based on the
Suggested Next Steps: If students struggle . .
students did in Lesson 4: Hanging It Up, where they solved equations that included whole numbers, decimals, and fractions.
In this problem, students solve equations of the form $x+p=q$ and $p x=q$. This problem corresponds most directly to the work
(L'g'ヨヨ'9 :pıepuełs)
Problem 3
\forall שiog :
- Consider suggesting that they use the figures as area models to help with the first and second problems.

In this problem, students evaluate numerical expressions that have an exponent and one other operation. They look for and make use
of the structures of the figures to determine the area expressions. This problem corresponds most directly to the work students did in
Lesson 12: Squares and Cubes, where they calculated areas and volumes of geometric patterns.
 \angle Шวโqoud
 Consider asking students to describe what the labels on the graph represent if they are struggling on the first problem.

equations that represented the same relationship. most directly to the work students did in Lesson 15: Connecting Representations, where they connected graphs, tables, and In this problem, students make sense of the relationship between two variables in an equation and a graph. This problem corresponds

9 шәโолд
- Consider having students approach the problem one part at a time. Highlight that the given variable, s, represents slices of pizza. Suggested Next Steps: If students struggle . with variables to represent real world situations. problem. This problem corresponds most directly the table and expression to solve a problem. They
In this problem, students complete a table, model with mathematics to write an expression to represent a relationship, and then use
 Problem 5

＇7dmeңte łou p！ 0	－uo！̣eдәdo әчł Би！̣әр！suoכ ұnoчł！м әлец Кеш（0I＋$p_{\text {も }}$ ）乙 Łəәəә очм słuәpnłs әлец кеш $p(8-0 Z)$ $10(p 8-\mathrm{s}) \downarrow$ ґəəઇə очм słuәpnłs			$(p Z-\mathrm{S}) \downarrow \bullet$	$\nabla^{*} \forall^{\prime} \exists \exists \exists^{\prime} 9$	Z
＇fdme»！ łOu p！	‘sәэ！！чэ ұәәдоэ әдош ло омł Słəəəəs łuәphłS ＇səэ！ฺчэ ұәәноэи！ słəəəәs রןио ұиәрпіs	‘әэ！！ччэ łэәлиои！әио pue səગ！૦૫ว ұәәдоэ ә૫ł 	әио рие sәэ！๐чэ цłOq słગəəəs łuәpnłS Kие ұәәәәs ұои səop pue səэ！очэ әио słכəəəs ұuәpnłs	$\begin{gathered} x_{\mathrm{I}}=Z I \\ 0=\varepsilon-x \end{gathered}$ ＇səગ！ฺั๐ ฉэәиоэи！Kие ґэәәょ łou səop pue 	$\mathrm{c}^{\prime} \mathrm{G}^{\prime} \exists \exists \exists^{\prime} 9$	\downarrow
0	1	Z	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！чэeosdd ∇	6u！pəəэxヨ／6u！ұәәW	prepueis	melqodd

7dшәџе łou P！	－6uipuełsıəpun ！ 0 әЈиәр！лә чеәМ	$\cdot x=8+$ t＇ZI рәлоs łnq Suidoןəләр е smoчs yıом	 pue 6u！puełsıəpun ןenłdәouos smous yıom	（ұиәјем！！nbə ィо） $\square^{\prime} \dagger=x$ †эәлио pue 	L＇タ’ヨヨ＇9	$\varepsilon^{\prime} \varepsilon$
7dшәне łou P！	－6upuełsıәрun $\downarrow 0$ әЈиәр！лә чеәМ	$\cdot x+z=\downarrow 乙 \text { рәлоя }$ әлец кеш $Z 乙$ әч！мм очм sұиәрпłs $\cdot x=乙 \cdot \succsim 乙 \text { рәлןоs }$ łnq రu！ldoəəләр е sмочs улом	＇ио！̣еן pue 反u！puełsıәрun ןenłdәouos smous you	（ұиәјел！！пиə ィо） $Z \mathrm{I}=x \bullet$ ＇ఛวәлоэ pue 	L＇日＇ヨヨ＇9	て＇દ
7duәәце łou p！0	－6upuełsıәрии ৷0 әЈиәр！лә чеәМ	$\cdot x=9+\frac{t}{\varepsilon} \text { рәл৷оs }$ әлец кеш $\frac{t}{\varepsilon} 9$ әтим очм słuәpnłs $9=x \frac{\hbar}{\varepsilon} \text { рәл।оs }$ әлец Кеш 8 әџ！им очм słuәpnłs łnq రu！ldoןəләр е sмочs улом	＇ио！̣ॄן pue 6u！puełsıəpun ןenłdəәuoo smous you	$\frac{t}{\mathrm{I}} \mathrm{~S}=x$ ＇๒әәиоэ pue 	L＇9＇ヨヨ＇9	－＇E
0	1	Z	ε	t		
	6u！uu！ $\mathrm{Seg}^{\text {a }}$	6u！doןəләа		бu！pəәэхヨ／6u！əәәw	prepuels	məq¢0，d

7duәュе tou P！O	＊uо！！！ppe גоł uо！џе！！uәиodxә иәуеұs！ш әлец Кеш 6 әримм очм słuәpnłS －6u！̣иеłısıəpun ю๐ әэиәр！лә уеәМ	${ }_{\mathrm{s}}{ }^{\square}$ 아 UO！sserdxə ұиәјем！！ ие иәдицмм әлец Кеш $\sqcup \cdot \sqcup \cdot \sqcup \cdot \square \cdot \square$ әџ！им очм słuәpnłS ＊uo！̣eכ！！d！！！ןnu әл｜оли！słиәиodxә łечł риеұsぇәрии әт！мм очм słuәpnłs －sıолә ұиет！！！uб！！ ןenłdәэиоэ әұәןdmoou！ łnq రu！̣doןəләр e SMOUS yооM	＇uo！！̣｜nગןeo и！додә ие әуеш of łduәəңе очм słuәpnts ןenłdәouoo smoys yдом		L＇V＇ヨヨ＊9	でも
	－uoḷeue，dxə ue łnouł！M 10 uo！̣еие．ןdxə ґэәлоэи！ч！！м дәмsuе ұэәдоэи	＇uo！̣епи！ ә૫ъ „о бии̣риеұsıәрии г！！иед sәғет！иишшоо ұечъ ио！！еие｜дхә प！！М дәмsuе ұәәиоэи｜ ＇uo！̣eue｜dxə әәәㅣ뚜이 чІ！М дәмsue дэәиоว	－uo！̣еие｜dxә әңәןdmoэ pue ＇uo！̣fuédxə u！̣ SME｜f 	‘79 оұ ןеnbə цłoq әле ォ・ォ・ォ pue $\varepsilon_{\varepsilon}$ pue uo！̣sənb әчł sдәмsue K｜｜nłssəoэns łuәpnłs	$\begin{gathered} \varepsilon d W \\ \prime t \forall{ }^{\prime} \exists \exists \cdot 9 \\ ‘ \cdot \forall \cdot \exists \exists \cdot 9 \end{gathered}$	L＇t
0	1	乙	ε	t		
		6u！doןəләа	6u！	бu！pəəวхヨ／6u！¢əәW	prepuers	шә¢о＾d

\forall שiog ：

7dшәџе łou P！	－ио！̣еиејdxә ue łnoч！！м 10 uo！！eиеןdxә дәмsuе ұэәдоэи	－uo！̣entis ұечұ ио！ңеиеןdхә Чд！М дәмsue ґэәдоэи｜ －ио！̣еие．dxә ә્əןdmoэu！ 	${ }^{\circ} \mathrm{SZ}$＇I $\div 00$ I ıоu！ш e sәyеш słuәpnłs －uo！ְ̣еиеןdxə pue uo！̣n！os łכәлио ұnq ‘uo！̣еnbə ફәәлиои ＇uo！̣еиеןdxә әұәјdmoo pue －uo！̣feue｜dxə u！̣ SME｜f 	＇s ${ }^{\text {ch }}$ suxeə dnoג6 чэеә pue ‘sәэ！！！ ezz！̣d fo səכ！！！ 08 • pue ןeo！bol e səpnןગu！ pue uo！！sənb әчł sıәмsue K｜｜nłssəวэns łuəpnłS	$\begin{gathered} \varepsilon d W \\ { }^{\prime} \cdot \mathrm{g}^{\prime} \exists \exists \cdot 9 \end{gathered}$	$\varepsilon \cdot \underline{\square}$
7dшәџе łou P！	－6u！̣puełsıəpun „о әэиәр！лә уеәМ	＇sлодә ұиеэ！！！ub！s ןепłdәэиоэ әұәןdmoэи！ ұnq 反u！̣doןəләр e SMOYS yIOM	ןenłdәәuoo smous yиом		$\begin{gathered} \qquad \mathrm{d} W \\ ‘ \forall ` \forall^{\prime} \exists \exists \cdot 9 \end{gathered}$	Z＇G
7dme»te łou p！0	－6u！puełsıəpun Łо әЈиәр！лә чеәМ	＇səsuodsə» ఛəәนоэи！ОМұ pue әsuodsəд ұәәло๐ әио sә！！！м ұиәpnłS ＇sıодә ұиеэ！！！uи！s Чұ！м＇万u！̣puełsıəpun ןепłdәэиоэ әұәןdmoэи！ ұnq రu！̣doןəләр e SMOUS y10M	－əsuodsəл ఛәәиоэи！əио pue səsuodsəд ＇久ıəsem pue Ки！̣иедsıәрй ןenłdәouoo smous yдом	 ๆวәдоэ 	$9^{\prime} 9^{\prime} \exists \exists \cdot 9$	L＇G
0	\downarrow	Z	ε	t		
	6u！	6u！doןəләа	6u！	6u！pəəวхヨ／6u！łəәW	prepuets	melqodd
7dmәң！ łOU P！	－6u！puełsıəpun」O əЈиәр！лә чеәМ	łulod чэеә лоґ sənןел－К pue－x әЧł səsıəләд ұиәрnłS ＇słu！uod әәдцł ＇s．0лд ןепłдәэиоэ әұәддмоэи！ 	＇słuịod әәдцł әцł fo омt słold K｜łәәдиоэ łuәpnłS －sıдиə pue бu！puełsıəpun ןепłдәэuoう sмочs yıом	¡эәлио 	6＊О｀ヨヨ＇9	て＇9
:---:	:---:	:---:	:---:	:---:	:---:	:---:
ł0u p！	－əsuodsəл ఛэәцоэи｜	＇sәдеи！̣рооо әЧł łО дәрı әЧł рәsぇəләд әлец кеш шу ε рәу！q ！еу sКер ZI ＇ұхәұиоэ u！sәןqе！иел омұ иәәмұәq d！̣suo！̣е｜әג әцł „о 6u！̣puełsıəpun ןe！pued «słuәpnłs sәңеэ！unumoっ ұецł әsuodsəy ＇əsuodsəı әғəןdmoכu｜	＇SMEII ıoulu чІІМ әsuodsəィ 	－шу ZI рәу！q łセЧł sueәu ł －əsuodsə» е sət！мм ұuәpnłs	6＊О｀ヨヨ＇9	L＇9
0	\downarrow	Z	ε	t		
	6u！uu！ $\mathrm{S}^{\text {eg }}$	6u！doןəләа	6u！чэeosddv	6u！pəəэxヨ／6u！ұәәW	paepueis	melqodd
sowsəp						
	－6upuełsıәpun әәиәр！лә чеәМ	＇dəts ұS！！」 eset＋ 9 рәрре әлец Кеш（ұиәјел！̣июә ло） $\frac{\pi}{0 I}$ әч！м очм sұuәрпłs • $s_{t}+9$ uo！ssəдdxә ә૫ł pəsn әлец кеш 8 әұ！им очм słиәрпłя ＇sıодә ұиео！！！uб！s 	$z \cdot s_{\eta}+9$ uo！ssəədxә әЧł pəsn әлец Кеш 0I әب！！м очм słuәpnłS pue бu！puełsıəрй jenłdəәuos smous yом	（ұиәјел！̣ивә ло） sł！un əıenbs ๆวәдоэ 	つ＇でジヨヨ｀9	$\varepsilon \cdot L$
:---:	:---:	:---:	:---:	:---:	:---:	:---:
Ł0u p！o	－6u！̣uełsıəpun 10 әәиәр！лә чеәМ	－uo！ssəдdxə әио ґо әпןел ә૫ł ＇sıодә ұиеэ！！！uб！ ұnq бuildoןəəәр е sмочs yиом	＇suo！̣səədxə －sıодә дои！ш чи！ pue бu！puełsıəpun ןenłdəouoo smous yı0M	$\begin{array}{r} z I=(\varepsilon) \downarrow \bullet \\ 9 \varepsilon={ }_{z}(\varepsilon) \downarrow \bullet \\ \varepsilon I={ }_{z}(\varepsilon)^{2}+\downarrow \bullet \end{array}$ †эәлоэ 	つ＇で甘゙ヨヨ゙9	でし
	－6u！̣puełsıəpun \nvdash әэиәр！лә чеәМ	－uo！ssəдdxə əuо ＇sıодә ұиеэ！！！uம！s ЧІ！М＇万u！̣puełsıəpun ןenłdəэиоэ әғәןdmoэu！ınq бu！̣оןәләр е smous yrom	＇suoissəıdxə омt sәчэңеш К｜ұәәдиоэ ұиәрпłS pue бu！puełsıәpun ןenłdәכuoう smous yиом			1－2
0	\downarrow	τ	ε	七		
	6u！uu！̣бəg	6u！doןəләа		бu！pəәэххヨ／6u！ұәәW	prepuers	шә¢о，${ }_{\text {d }}$
\qquad
1. Adnan and Liam leave the post office at the same time. Adnan walks 50 feet in one direction and Liam walks 30 feet in the opposite direction. If they turn to wave at each other, how far apart are they? Explain or show your reasoning.

2. Select all the numbers that could represent point J on the number line.

$\square \frac{2}{3}$
$\square 2.3$
$\square \frac{7}{3}$2.25
$\square \frac{3}{2}$
3. Write each point on the number line as a fraction and as a decimal.
Point	On the Number Line	As a Fraction	As a Decimal
P			
Q			
\qquad
Complete each number sentence with the symbol $<,>$, or $=$.
4.1

4.2
1.5 \qquad $\frac{3}{2}$
4.3
$\frac{4}{5}$ \qquad $\frac{4}{7}$ $4.4 \quad 1.41$ \qquad 1.5
5. Write the coordinates of each point.
Point	Coordinates					
A	$(0,0)$					
B						
C						
D						
:---	:---	:---	:---	:---	:---	:---
5				D		
4						

Sneha tracked the height of their plant as it grew from week to week.
6.1 After one week, the plant was 4 inches tall. Plot this point and label it F.
6.2 After two weeks, the plant was 5 inches tall. Plot this point and label it G.
6.3 What does point E mean about the plant?

1. 80 feet

Explanations vary. Adnan is 30 feet away from the post office and Liam is 50 feet away, so in total, they are 80 feet away from each other.
2. $\quad \checkmark \quad 2.3$
$\checkmark \frac{7}{3}$
$\checkmark 2.25$
3.

Point	As a Fraction	As a Decimal
P	$\frac{5}{4}$ (or equivalent)	1.25
Q	$\frac{28}{10}$ (or equivalent)	2.8

$4.1 \quad \frac{4}{3}>\frac{3}{4}$
$4.2 \quad 1.5=\frac{3}{2}$
$4.3 \quad \frac{4}{5}>\frac{4}{7}$
$4.4 \quad 1.41<1.5$
5.

Point	Coordinates
A	$(0,0)$
B	$(0,1.5)$
C	$(4,1)$
D	$(3,5)$

6.3 Responses vary. The plant was 2 inches ta when Sneha started recording its height.

Unit 6.7, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problem 1 before Lesson 1
- Problems 2 and 3 before Lesson 2
- Problem 4 before Lesson 3
- Problem 5 before Lesson 9
- Problem 6 before Lesson 10

Problem 1

(Standards: 4.MD.A.2, MP3)
This question is intended to surface what students already know about measuring distances in opposite directions. They construct a viable argument to explain their reasoning. This content first appears in Lesson 1: Can You Dig It?, where students determine the locations of sand dollars to the right and left of 0 .

Suggested Next Steps: If students struggle . . .

- Consider revisiting this question as a class before beginning Lesson 1, inviting two students to act as Adnan and Liam, and discussing their distance apart as a class. It may be helpful to plot Adnan's and Liam's locations on a number line.

Problem 2

(Standards: 3.NF.A.2.B, 4.NF.C.6)
This question is intended to surface what students already know about estimating the locations of fractions and decimals on a number line. This content first appears in Lesson 2: Digging Deeper, where students plot and identify the locations of positive and negative rational numbers on the number line.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem as a class before beginning Lesson 2. Invite students to work with a partner to place each of the five choices on the number line. Then facilitate a brief whole-class discussion to surface the strategies students used.

Unit 6.7, Readiness Check Summary

Problem 3

(Standards: 3.NF.A.2.B, 4.NF.C.6, MP7)
This question is intended to surface what students already know about representing fractions and decimals on the number line. Students use the structure of a number line to write the value of the point as both a fraction and a decimal. This content first appears in Lesson 2: Digging Deeper, where students plot and identify the locations of positive and negative rational numbers on the number line.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem as a class before beginning Lesson 2. Invite students to share what they notice and wonder about points P and Q before discussing strategies for writing their locations as fractions and decimals. For example, a student might surface that they know there are 3 tick marks between 2 and 3 on one number line and 9 tick marks between 2 and 3 on the other number line.

Problem 4

(Standards: 4.NF.A.2, 5.NBT.A.3.B)
This question is intended to surface what students already know about comparing numbers written as decimals and fractions. This content first appears in Lesson 3: Order in the Class, where students practice comparing positive and negative numbers.

Suggested Next Steps: If students struggle . . .

- Consider sharing examples of incorrect responses and using a routine such as Clarify, Critique, Correct to analyze the errors after Lesson 3's Warm-Up.

Problem 5

(Standard: 5.G.A.1)
This question is intended to surface what students already know about plotting points from Grade 5. This content first appears in Lesson 9: Sand Dollar Search, where students develop an understanding of negative numbers in the coordinate plane.

Suggested Next Steps: If students struggle . . .

- Consider spending extra time discussing incorrect thinking during Lesson 9's Warm-Up.

If time allows, invite students to revisit this problem as a class and give them time to revise their responses.

Unit 6.7, Readiness Check Summary

Problem 6

(Standards: 5.G.A.2, MP2)
This question is intended to surface what students already know about plotting points in a coordinate plane to represent a real-world situation. It also addresses axes that are scaled by a value other than 1 . As students explain the meaning of point E in context, they reason abstractly and quantitatively.This content first appears in Lesson 12: Graph Telephone, where students identify and interpret points on a graph to answer questions about situations in context, including the meaning of values that are negative.

Suggested Next Steps: If students struggle . . .

- On Problem 6.1, consider revisiting this question as a class before beginning Lesson 12.
- On Problem 6.2, consider highlighting the error of plotting $(2,10)$ instead of $(2,5)$. Ask students what advice they would give to someone who made this error.
\qquad

1. If these numbers were plotted on a number line, which would be farthest to the left?
A. -2

B. $-1 \frac{3}{4}$
C. $\frac{11}{4}$
D. $-\frac{11}{4}$
2. Here are two numbers.

$$
\begin{array}{ll}
-4 & \frac{8}{3}
\end{array}
$$

On the number line, plot and label:

- Each number.
- The opposite of each number.

Complete each number sentence with the symbol $<$, $>$, or $=$. Use the number line if it helps you with your thinking.
$\left.3.1|2| _-2\left|\begin{array}{ll}3.2 & |-3| _-2.5\end{array}\right| 3.3-\frac{2}{3} _-\frac{3}{2} \right\rvert\, 3.4 \quad-\frac{5}{2} _-\frac{2}{5}$

\qquad
Here is a snapshot of some creatures on the coast. The surface of the water has an elevation of 0 inches.
4.1 The octopus is under the water above the jellyfish. What could be the elevation of the octopus?

4.2 Which creature's elevation has the greatest absolute value?

Explain how you know.
4.3 Here are elevations of three other creatures. Order their elevations from lowest to highest.

- Andean condor: 800 feet
- Anglerfish: -2000 feet
- Giant squid: -1600 feet

Lowest Elevation \qquad
\qquad Highest Elevation

Decide if each statement is always, sometimes, or never true and explain your reasoning.
5.1 The absolute value of a number is negative.
(Circle one): Always Sometimes Never

Explain your reasoning.
5.2 A number and its opposite have the same absolute value.
(Circle one): Always Sometimes Never

Explain your reasoning.

1. D. $-\frac{11}{4}$
2.

$3.1|2|>-2$
$3.2|-3|>-2.5$
$3.3-\frac{2}{3}<\frac{3}{2}$
$3.4-\frac{5}{2}<-\frac{2}{5}$
4.1 Responses vary. Any elevation less than 0 inches and greater than -10 inches.
4.2 Jellyfish. Explanations vary. The absolute value is a number's distance from 0 . In this situation, 0 inches represents the surface of the water and the jellyfish is the farthest away from the surface of the water.
4.3 Students may write either the creatures or the elevations.

Lowest Elevation -2000 feet -1600 feet 800 feet Highest Elevation Lowest Elevation Anglerfish Giant squid Andean condor Highest Elevation
5.1 Never. Explanations vary. The absolute value is a number's distance from 0 . Distances aren't negative, so absolute value can't be negative.
5.2 Always. Explanations vary. The absolute value is a number's distance from 0 . Opposites are always the same distance away from 0 , so their absolute values are the same.
－Consider revisiting Lesson 2，Activity 1，Screen 7 to discuss what opposite means．

－Consider having students label the number line first．If they are having trouble plotting fractions，have them rewrite as improper
 In this problem，students identify and plot positive and negative numbers on the number line．

Problem 2

－Consider moving on，as students will continue to use number lines when learning about inequalities．
－Consider suggesting that students rewrite each number as a fraction with a denominator of 4 ．
Suggested Next Steps：If students struggle ．
This problem corresponds most directly to the work students did in Lesson 3：Order in the Class． In this problem，students use a number line to compare and order positive and negative numbers．
（Standard：6．NS．C．6）

Problem 1

て＇G＇E＇ワ＇乙＇ワ	L＇G	ε	L＇乙	乙＇乙	\downarrow	L＇ワ	suฑןq0．d
$\mathrm{Q}^{\prime} L^{\prime} \mathrm{O}^{\prime} \mathrm{SN}{ }^{\prime} 9$	$\mathrm{g}^{\prime} L^{\prime} \mathrm{O}^{\prime} \mathrm{SN}{ }^{\prime} 9$	$\forall^{\prime} L^{\prime} \mathrm{O}^{\prime} \mathrm{SN}{ }^{\prime} 9$	$0^{\prime} 9^{\prime} 0^{\prime} \mathrm{SN} \cdot 9$	$\forall^{\prime} 9^{\prime} 0^{\prime} \mathrm{SN} \cdot 9$	$9^{\prime} 0^{\prime} \mathrm{SN}^{\prime} 9$	$G^{\prime}{ }^{\prime}{ }^{\prime} \mathrm{SN}^{\prime} 9$	pıepuets

Unit 6．7，Quiz：Summary and Rubric

- Consider revisiting Practice Day 1, Problem 3.
Suggested Next Steps: If students struggle . . .
In this problem, students order positive and negative numbers. Students construct viable arguments to explain why statements are
always, sometimes, or never true. This problem corresponds most directly to the work students did in Lesson 3: Order in the Class.
(EdW 'a'L'O'SN'9 'G'L'O'SN'9 :sprepuetS)

Problem 5

Consider moving on, as students will continue to compare values when they learn about inequalities in the lessons after the quiz. problem to generalize the relationship between the values.

- Consider having students use a vertical number line to help with the first two problems. Suggest they use a number line in the third Suggested Next Steps: If students struggle . .
response. This problem corresponds most directly to the work students did in Lesson 4: Sub-Zero.
In this problem, students compare positive and negative numbers in context. They have to construct a viable argument to justify their
(Standards: 6.NS.C.5, 6.NS.C.7.D, MP3) Problem 4 - Consider asking students what the absolute value symbol means. Suggest they use the number line to help them compare values. Suggested Next Steps: If students struggle . .
This problem corresponds most directly to the work students did in Lesson 5: Distance on the Number Line. comparing rational numbers and absolute value expressions. In this problem, students use inequality symbols to compare numbers and their absolute values. They attend to precision when
(Standards: 6.NS.C.7.A, MP6)
:spıepuets)
ε шәгqолd
Unit 6.7, Quiz: Summary and Rubric In this problem, students use in

7duәәне łOU P！	＇әગ！очэ łэәлиоэ әио －รәэ！！чэ ұәәлиоэu！Кןиo		－รәэ！очว †эәлоэ әәдч1	$\begin{aligned} & \frac{S}{Z}->\frac{Z}{S}-\bullet \\ & \frac{z}{\varepsilon}>\frac{\varepsilon}{Z}-\bullet \\ & S^{\prime} z^{-}<\|\varepsilon-\| \bullet \\ & z^{-}<\|z\| \bullet \end{aligned}$ －รәэ！๐чэ ¡эәдоэи！ou pue səэ！๐чэ ఛәллоэ II甘	$\forall{ }^{\prime}$ L＇O＇SN＇9	ε
${ }^{7}$ dшәәие ъOU p！	－әu！！ əəqunu əપł uo sıəqunu әл！̣ебәи pue әл！！！！sod Łо 6u！pueısıәрии рәң！ш！！smoцs צдом		＇səə！soddo ц！әчł to әио рие $\frac{\varepsilon}{8}$ pue t－sıəquinu әцł sydeı6 ＇sıодә әшоs ЧІІМ 6u！puełsıәpun ןEnłdəouoo smous yגоM		$\begin{aligned} & \text { O•9:O-SN'9 } \\ & \forall \cdot 9 \cdot 0 \cdot S N \cdot 9 \end{aligned}$	Z
${ }^{7}$ dшәәие ł0u p！				$\frac{\pi}{I I}$ 	9＊O｀SN＇9	\downarrow
0	\downarrow	乙	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	бu！pəəэхヨ／6u！ŋəәW	prepuels	məq0ıd

o！ıqny pue Kıewuns ：z！no＇L＇9 t！un

＇7duәə е ł0u p！	＇0 ol 7 səsolo s！ ఛ！әsneכәq әпјел әұпןоsqе ұsәдеәи әчұ sey sndołоо uo！̣eue， $\mathbf{d x}$ ou чł！м ләмsue łәәдлоэи	－6u！puełsıәрии ןe！ped smous ләмsuе ұэәлоэи！ uo！̣euejdxә әұәןdسoэu！ ЧдММ ләмsue ґэәлоэ	дəqunи ə＾！！！！sod e s！！！əsneכəq s！l！łeцł suie，dxə pue әпノел әұп＿osqe әчł sイes ұuәpnłs＂6・ヨ uoḷeuédxә uo！feue，dxә u！SME｜f IOU！ m Ч！！М ләмsue łәәлоつ	дәғем әцъ „о әэедй әчł шоц Кеме әЧł рие ләдем әЧł 」о әэeцй әцł słuәsəдdә sәyэu！ 0 ‘ио！ұеп！！！s s！पł ul＇0 moı әכиets！p s，ıəqunи e s！əпןе＾ әұп／osqe әчц＂ 6 ・ヨ －uo！̣еue｜dxә pue әэ！！чэ ґэәлоう		でも
－7duәџе ł0u p！	‘0 әлоqе s！łецд әпјел е зәл！д диәрпұ＂＂ $6 \cdot \exists$ －sıəqunu孔иәлән！ әұnjosqe әцł దu！ueduoo „о 6u！puełsıәрй рә！！ш！sMOчs yом	＂0 до әпјел е sәл！б ұиәрпіs＂ 6 ・ヨ ＇sıодә ұиеэ！！！ub！s ЧІІМ бu！̣puełsıәpun әұәןdسoэи！ sMous yom	әчъ әл！Б рІпочs Кәчъ ұчбпоцł әлец кеш 0І－ әұолм очм słиәрпłs ＇sıодә әшоs प！！М 6u！puełsıәpun jentidəэuos sMoys you	＇səцэи 0I－иецд дәғеәб pue səчои！ 0 иецł ssə ио！ұеләә Киヲ＂б＇ヨ ＇дәмsuе ұәәлоう	－L＇O＇SN＇9 G＇O•SN＇9	L＇t
0	1	乙	ε	t		
	6u！uu！ 6 ¢g	6uıdoןəләа	6u！̣эeosdd	6u！pəəэххヨ／6u！${ }^{\text {l }}$	prepuers	məq0］d

＇7dmente ł0u p！		－әл！ұебәи sкемле s！әпןел әұп।оsqе әsпеכәq sイем／甘 －әппебәи s！sıeq әпıел әұпıosqе әцł әр！sи！әп！ел әцł әsneวəq sәш！ңәшоs＂ 6 ・ヨ ЧІ！М ләмsue łэәлоэи uo！̣eue，dxә ou чІІМ ләмsue ұәәлоэ		－әл！ұебәи әq ұ，иет әпјел әғпノosqe os ‘əп！ұебәи д، иәле sәэиедs！a＂0 mои әэиеıs！ s sıдqunи e s！ әпјел әұпјоsqе әчц＂ 6 ・ヨ ฝə＾əN －uo！̣eue，dxә pue әЈ！очว ґәәлоう	$\begin{aligned} & a \cdot \because \cdot S N \cdot 9 \\ & a \cdot \angle \cdot O \cdot S N \cdot 9 \end{aligned}$	L－G
ł0u p！	＇sıəqunu әл！̣ебәи рие әк！！！sod 6uйedmoว до 6u！puezsıәрй рәџ！ய！！！SMOYS yৰOM	¡əə」 009I－：p！nbs ұue！ ґәəょ 008 ：дориоэ иеәриヲ －0002－pue 009I－„о 			－L＇O•SN•9 S＇O＇SN＇9	$\varepsilon ゙ \downarrow$
0	1	乙	ε	t		
		6u！doןəләа	6u！чэeordd \forall	бu！pəəэхヨ／6u！ŋəәW	paepuers	mə¢q0．d

＇7dшәџе Ł0u p！		－әィ！ұебәи рие әл！！！！sod чдоq әq ueo sıeq әпןe＾әұnıosqe әЦł әр！su！әп！ел әЦł əsneวəq səய！！əшоS＂ 6 ・ヨ uо！ңеиеןdxә әұәןdmos uo！̣ruédxә ou чł！м ләмsuе ұәәлоэ		әәшеs әцł әле sənje＾әұп৷оsqe ハ！əцł оs ‘0 шо» Кеме әЈиеұ！！ әшеs әчъ sイемле әде sә！！soddo＂0 mox әпјел әұп৷оsqе әцд＇6’ヨ sאемыд －uoḷeue．dxә pue әэ！очэ ұәәдоう	$\begin{aligned} & a \cdot \angle \cdot S N \cdot 9 \\ & A^{\prime} \cdot O \cdot S N \cdot 9 \end{aligned}$	Z＇G
0	\downarrow	乙	ε	t		
	6u！uu！̣əəg	6u！doןəләа	6u！	бu！pəәэxヨ／6u！łəәW	prepuets	məqodd

o！ıqny pue Kıewuns ：z！no＇L’9 t！un
\qquad

1. Which are the coordinates of point W ?
A. $(-3,4)$
B. $(4,-3)$
C. $(-4,3)$
D. $(3,-4)$

2. Select all of the values of x that are solutions to the inequality $x>-1.5$. Use the number line if it helps you with your thinking.-5-2-1
2
3. Plot and label each number in its approximate location on the number line.

$$
-\frac{4}{3} \quad 3 \quad-2 \quad-\frac{4}{5} \quad \frac{4}{3}
$$

\qquad
4. Complete each number sentence with the symbol $<,>$, or $=$.

Use the number line if it helps you with your thinking.

People use salt to melt snow and ice. Salt only melts ice when the temperature is warmer than $-10^{\circ} \mathrm{C}$.
5.1 Which temperature is warmer? Circle one.

$$
-5^{\circ} \mathrm{C} \quad-10^{\circ} \mathrm{C}
$$

Explain how you know.

5.2 Graph all the temperatures at which salt melts ice.

5.3 Write an inequality to describe all the temperatures, t, at which salt melts ice.
\qquad
6.1 Plot and label each of these points.

- $A(2,4)$
- $B(2,-3)$
- $C(-3,0)$
- $D(-3,2)$
6.2 Connect the points in order to create a polygon.
6.3 What is the length of the segment between A and B ?

				Y_{5}						
-5				0					5	
					-5					

On Saturday, Aba went for a walk and made a graph of the temperature outside at different times. She started her walk at time 0.
7.1 What was the temperature outside when Aba started her walk?
7.2 The point $(-5,-4)$ is on Aba's graph.

What does this point tell us?
7.3 Aba walked for 4 hours. When Aba ended her walk, it was $-2^{\circ} \mathrm{C}$ outside.

Add this point to her graph.

7.4 Write coordinates for a new point that would not make sense in this situation.

Explain how you know it doesn't make sense.

Unit 6.7, End-Unit Assessment: Form A
Name \qquad
Reflection: Select a question to answer.
What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

1. B. $(4,-3)$
2. $\checkmark-1$
$\checkmark 0$
$\checkmark 2$
3.

4. $\frac{3}{2}>-\frac{3}{2}$

$$
|-5|>|-4.5|
$$

$$
-\frac{5}{3}<-\frac{3}{5}
$$

$$
|-5|=5
$$

$5.1-5^{\circ} \mathrm{C}$. Explanations vary. $-5^{\circ} \mathrm{C}$ is higher than $-10^{\circ} \mathrm{C}$ on a vertical number line, so it's warmer.
5.2

$5.3 t>-10$ (or equivalent)
6.1 See graph below.

6.2 See graph above.
6.37 units
$7.1 \quad 1^{\circ} \mathrm{C}$
7.2 Responses vary. 5 hours before Aba's walk began, it was $-4^{\circ} \mathrm{C}$ outside.
7.3

7.4 Responses vary.

- $(2,1)$ because it cannot be two different temperatures at the same time.
- $(1,100)$ because $100^{\circ} \mathrm{C}$ doesn't make sense on a winter day.
 Consider asking students to graph and shade the given inequality on the number line before comparing the choices． uggested Next Steps：If students struggle ． students did in Lesson 8：Shira＇s Solutions．
In this problem，students determine whether a value is a solution to an inequality．This problem corresponds most directly to the work
（Standard：6．EE．B．5）
Problem 2
－Consider revisiting Lesson 9，Activity 1，Screen 8. －Consider asking students to describe in what order of the x－and y－coordinates are written．

directly to the work students did in Lesson 9：Sand Dollar Search．
In this problem，students plot points with positive and negative coordinates in the coordinate plane．This problem corresponds most
（Standard：6．NS．C．6．C） โ Шวโqo．d

ع＇9＇て＇9	$1 \cdot 9$	†	L＇L＇9＇${ }^{\text {＇}}$＇	L	と＇9＇ح＇9	て＇G	$\varepsilon \cdot G$	乙	smelqodd
8＇О＇SN＇9	8＇L＇O＇SN 9	L＇O．SN＇9	O＇9•O•SN＇9	$\mathrm{S}^{\prime}{ }^{-} \mathrm{SN} \times 9$	$\varepsilon * * \checkmark \checkmark 9$	$88^{\prime} \cdot \exists \exists \cdot 9$	$9^{\prime} 9^{\prime} \exists \exists \exists^{\prime} 9$	$9^{\prime} \square^{\prime} \exists \exists \exists \cdot 9$	prepueis

Lesson 5: Distance on a Number Line.
In this problem, students compare positive and negative rational numbers. They attend to precision when comparing rational numbers
and absolute value expressions. This problem corresponds most directly to the work students did in Lesson 3: Order in the Class and
(Standards: 6.NS.C.7, MP6)
Problem 4 - Consider revisiting the Lesson 2 Cool-Down.
 students did in Lesson 2: Digging Deeper.
In this problem, students plot positive and negative numbers on a number line. This problem corresponds most directly to the work
(0'9•Ј'SN'9 :pגepuets) Problem 3
Unit 6.7, End Assessment Summary and Rubric: Form A

Consider revisiting Lesson 11: Practice Problems, Problem 1, skipping points D and E.

the work students did in Lesson 11: Polygon Maker. distances between points with the same first coordinate or the same second coordinate. This problem corresponds most directly to In this problem, students make use of structure when they draw a polygon in the coordinate plane and determine lengths and
(Standards: 6.NS.C.6.C, 6.G.A.3, 6.NS.C.8, MP7)
Problem 6

- Consider revisiting Lesson 6, Activity 1, Screen 7. the inequality in the third problem

Consider having students use a number line to help them compare values. Suggest they use their second response to help write Suggested Next Steps: If students struggle . Lesson 4: Sub-Zero and Lesson 6: Tunnel Travels. support their understanding of comparing negative values. This problem corresponds most directly to the work students did in

In this problem, students write and interpret inequalities to represent negative numbers in context. They construct viable arguments to
 interpret the points on the graph.

- Consider asking students what is represented by the x - and y-coordinates, and how they can use this information to help them

In this problem, students identify and interpret points on a graph to answer questions about situations in context, including the
meaning of values that are negative. Students construct a viable argument when writing and explaining coordinates that would not fit
the context of the problem. This problem corresponds most directly to the work students did in Lesson 12: Graph Telephone.

Problem 7
Unit 6.7, End Assessment Summary and Rubric: Form A

7dmełte łou p！0	 	－әэ！๐ч๐ Łэәдоэи！ие səpn｜ગu！Osןe łnq səo！oчo ґəәメоэ ә૫ł до омł 10 әио słəəઇ૦ 孔uәpnłs	－әэ！๐чэ ґэәлоэи！ әио рие sәэ！очว Kue łəәəəs łou səop pue səગ！！ ӘЦł 〕О ОМҰ 10 әио słəəઇəs łuəpnłS	 səop pue səэ！！ч๐ 	$\mathrm{S}^{\prime} \mathrm{G}^{\prime} \exists \exists{ }^{\prime} 9$	乙
łou p！0	әк！！！！sod pue әл！̣ебәи әұеэо pue x ұиәsәлdәл sәґеи！！рлоо чэ！чм pəddems \ddagger nq＇ε－pue п әл！ рәұиәsəдdəл s！М ұечł puełsıәрии 			（ ε^{-}＇t）•	－＊9｀О｀SN＇9	\downarrow
0	1	乙	ε	†		
	6u！uu！${ }^{\text {a }}$	6uı̣орəләа	6u！¢эeosdd \boldsymbol{V}	6u ！рәәэхヨ／бu！ŋəәW	pappuels	mejqodd

¡dшәџе łOU P！	＇səэ๐əəuəs ィəqunu AnO әцł łо әио sәłəןduoo －6u！puełsıәрй юо әэиәр！лә уеәм	＇səэuәциәs ィəqunu dnO К｜†әәдоэ ұиәрпłS ＇sıодә ұиеэ！！！uம！s प！！М ‘＇ßu！puełsıəpun łnq 6u！̣doןəләр e smous yiom	‘səэนәұиәs ィəqunu גnoł ə૫ł ＇sıoдд ıои！ pue бu！puełsıəpun ןепłdәэuоо sмочs yиом	$\begin{aligned} S & =\|S-\| \bullet \\ \frac{S}{\varepsilon}-> & \frac{\varepsilon}{S}-\bullet \\ \|S \cdot \square-\| & <\|S-\| \bullet \\ \frac{Z}{\varepsilon} & -<\frac{Z}{\varepsilon} \bullet \end{aligned}$ 	$\begin{gathered} 9 \mathrm{dW} \\ \text { ‘OSN9 } 9 \end{gathered}$	t
－qdme»е ł0u p！	－әu！！дəqunu ә૫ł К｜ңכәлио ұuәpnts － Би！̣puełsıəpun юо әэиәр！лә чеәм	‘əu！！дəqunu әчł ＇sıоגә ұиет！！！uద！！ łnq 6u！̣doןəләр е SMOUS y10M	－əu！｜əəquinu ə૫ł uo sənןセ＾ə＾！！ ＇s．ouə pue 反u！puetsıəpun ןепłdәouoo smoys yиом	ґэәдоэ 	О＇9＊О＇SN＇9	ε
0	\downarrow	τ	ε	t		
	6u！uu！ 6 ®g	6u！doıəләа	6u！uァeordd \downarrow	6u！pəəэxヨ／6u！̣әəW	prepuets	melqodd

7duәәце łOU P！	－6u！puełsıəри „๐ әәиәр！лә уеәМ	－oquKs Kı！！enbəu！ ә૫ъ ґо దи！̣иеәш әчł әџ！мм очм słuәpnis ＇sıoдə łnq Suidoןəләр е sмочs yıом	＇s．ouл 	（ұиәןел！̣nbə 10） 0 I－<7 †эәдоь pue әұәјdшоэ s！чиом	9＊${ }^{\prime}$＇ヨヨ＇9	$\varepsilon \cdot \underline{S}$
$\left\|\begin{array}{r} 7 \mathrm{dm} \text { әине } \\ \text { tou pıत } \end{array}\right\|$	－6upueısıәри †о әәиәр！＾ə уеәМ	－suo！̣nןos ә૫ł „о әпןел әъпןosqe әчł рәəәр！suoว әлец Кеш ұłә әЧł оұ чdелб әЧł әрецs очм słuәpnłS －sıддә ןепłdәэиоэ әұәןdmoэи！ 	－uБ！！әм！！ебәи әцł рәә！̣ои әлец дои Кеш ұчб！！әцұ оұ әрецs pue чdе»б очм słuәpnts pue бu！puełs．apun ןenłdәәuоэ smoys yиом	papeys pue 0I－ łе әрગ！！uәdo †эәдоэ 	8＇9＇ヨヨ＇9	て＇G
7duәəие łou P！	＇иопңеие．dxә ue ұпоч！！м до uo！̣еuе．｜dxə ఛэәдоэи！ цІІМ дәмsue џэәцоэи｜	＇Ооऽ иечł дәшлем S！ О。0І łецł łЧБпочł әлец Кеш О๐0I－łəəəəડ очм słuәpnłS －uo！！entis sәғеэ！ипшшоэ ұецұ ио！！еиеןdхә Чџ！М дәмsue ұכәдиоэи －uo！̣еие．dxә 	－uo！̣еиејdxә Ч！！М дәМsue łэәдоэи｜ －ио！̣еие．dxә u！SME｜f doulum Ч！！М дәмsue џəәлоว	дәшлем s،！！os ‘əu！！dəqunu ןоэрдәл е ио О．0L－иецł дәчถ！！ S！O．S－＇Oっऽ－ －uo！̣еие．dxә әұәןdmos pue ןеэ！ธo｜e səpnןou！pue uo！！sənb әцł sıəмsue K｜｜nıssəoว	$\begin{gathered} \varepsilon d W \\ \prime a \cdot L^{\circ} \cdot S N 9 \end{gathered}$	L＇G
0	1	乙	ε	t		
	6u！̣u！̣əəg	6u！doןəләа	6u！		prepuets	melqodd

\forall שxos ：

7duшәне łou p！a	－6u！̣puełsıəpun „О әЈиәр！лә уеәМ	sıouә ұиеэ！！！ub！s ЧІ！М＇万u！̣puełsıəpun бu！̣doןəләр е sмочs улом	＇słu！̣odpuə әчł рәрnןэu！pue słu！̣od 8 әџ！м очм słuәpnts ＇g pue V иәәмұәq u！ słu！̣od әכ！！ıeן ıо »əqunu әчұ рәұипоэ әлец кеш 9 әџ！мм очм słuәрпй ＇ε－ pue ஏ рәрре әлец кеш I әџ！мм очм słuәpnłs ＇Kıәұsew pue 6upuełsıәрй ןenłdәәuoo smous yиом	sṭun L • pue \forall słuịod uәәмұәq pue uoб人ןod е sмедр K｜｜nıssəoэns ұuәpnłS		$\begin{aligned} & \varepsilon^{\prime} 9 \\ & \text { pue } \\ & \text { 乙'9 } \end{aligned}$
7duәəte łOU P！	stuiod inot әपł $\downarrow 0$ әио słold K｜loəコиоว łuәpnłs － －u！̣puełsıəpun †о әэиәр！ィә уеәМ	‘łu！̣od чэеә ィоґ sənןел－К pue－x әчł səsıəләд ұиәрпłS ＇słuḷod גnof əપł $\ddagger 0$ OMł słold K｜łכәдиоכ ұuәpnis ＇sıодәә ұиеэ！！！uи！！s प！！М ‘＇Бu！̣puełsıəpun бu！̣doןəләр е smous угом	‘słuḷod ınoł ә૫ł „о әәдцъ słold К｜łәәдоо ұиәрпłS ＇sıодә дои！̣ш цџ̣м 	¡эәиоэ 	$\begin{gathered} \text { LdW } \\ \prime O \cdot 0 \cdot S N \cdot 9 \end{gathered}$	L＇9
0	\downarrow	Z	ε	t		
		6u！̣оןəләа	6u！	бu！pəәэхヨ／6u！əәәW	prepuers	melqodd

־ıdwəŋte	－6u！̣puełsıәрии ๖о әэиәр！ィә уеәМ	＇sı！̣еd рәләрıо би！！әлdıәұи！ łе łu！̣od әцł łold очм słuәpnłS ＇Sı0גдə ınq 6u！̣doןəләр е sмочs улом	＇s．ouə pue 6u！puełsıəpun ןenłdəэиoっ smous you	－（乙－‘t）ұе рәщој К｜ŋכәдоэ s！ұu！̣od ‘ґวәлоэ pue əłəןduo๐ s！צ九оМ	O＇9•О•SN•9 ＇ $\mathrm{G}^{\prime} \mathrm{O}^{\prime} \mathrm{SN}$＇9	$\varepsilon \cdot L$
7duәıи ıou p！Q	－uo！̣eueןdxә ue ұnout！м 10 uo！̣euejdxә ¡əəఎ૦כи！ पІ！М גəмsue ฉวәдоэи｜	‘ұхәұиоэ и！әпןел әл！̣ебәи әцł s،eq甘 әıоłəq sınou S se S－ －uo！̣eueןdxә 	－uо！̣еие．dxә u！SME｜t dOU！ U 	－əp！słno Оっゅ－ sem ！！‘ueбәə צ｜ем s،eq甘 əıоృəq sınou S －uo！̣еuеןdxә әұәןdmoכ pue ןeo！ uo！！sənb әцł sıәмsue K｜｜nıssəoэns ұuәpnłS	O＇9•О•SN•9 ＇ $\mathrm{G}^{\prime} \mathrm{O}^{\prime} \mathrm{SN}$＇9	て＇L
	－ －u！̣puełsıәрun ృ0 әวนәр！ィə уеәм	ә૫ł pəsn ұnq 0 s！әұеu！̣рооэ әио ґецұ рәZ！ибоэәл әлец Кеш －sıoдә ұueכ！！！uи！ ןепıдәэиоэ әұәןdmoэи！ ұnq 6uidoןəләр е sмочs yıом	－sıддд лои！̣ш पұ！м ‘Кдәұsew pue 6u！puełsıəpun sMOUS yıOM		O＇9＇О•SN＇9 ＇ $\mathrm{G}^{\prime}{ }^{\prime}$＇SN＇9	L＇L
0	\downarrow	乙	ε	†		
	6u！uu！6eg	6u！doןəィəன	6u！uoeosddV	бu！рəəэхヨ／6u！əəәw	paepueis	سə¢о．d

\forall שxos ：

7dшәде łOu P！	＇uoḷeueןdxә ue łnout！M 10 uo！̣eue｜dxə ңэәдоэи！ Чџ！М дәмsue ңэәмоэи｜	－uopentis Ч！！М дәмsư łכәдоэи｜ －ио！！еиелdxә әұәןdmoэu！ч！！м дәмsuе ұәәлоэ	－ио！ңеиелdxә U！SME｜t dOU！W 	－кер дәұи！̣ е иo әsuәs әуеш ұ，usəop О。00 โ əsneวəq（00I ‘ェ） ＇әш！！әurs ә૫ł łе səınłеләduәə ұиәдә！！ omł әq łоииет †！əsneวəq（ I ＇ Z ） －uо！̣еиеןdxә әұәןdшоэ pue ןеэ！ uo！！sənb әцł sıəмsue K｜｜nłssəoэns łuәpnłs	$\begin{gathered} \varepsilon \mathrm{d} W \\ \text { 'O•O'SN'9 } \\ \text { '9'O'SN'9 } \end{gathered}$	ナ゙L
0	\downarrow	Z	ε	t		
	6u！uu！ $\mathrm{Seg}^{\text {g }}$	6u！doןəләа	6u！${ }^{\text {a }}$（	6u！pəәэхヨ／6u！${ }^{\text {a }}$	prepuels	məlqodd

\qquad

This dot plot represents the shoe sizes of players on a soccer team.
1.1 List two things you know about the shoe sizes by looking at the dot plot.

1.2 How many players have a shoe size of 6?
2. This dot plot shows the number of hours 20 sixth graders slept on a Saturday night.

Decide whether each statement is true or false.

The most sleep a sixth grader got was 9 hours.	\square True	\square False
Some students got 6 hours of sleep.	\square True	\square False
Exactly half of the students slept 7 hours or less.	\square True	\square False

3. Plot and label these numbers on the number line. The first number has been plotted for you.

$$
6 \quad 3 \frac{1}{2} \quad \frac{1}{4} \quad 8.25
$$

Unit 6.8, Readiness Check

Name \qquad

Determine the value of each expression.
$4.1 \frac{5+11+9+15}{4}$
$4.2(4+2+9) \div 3$
5. Use the number line to determine the distance between each pair of points.

Points	Distance Between Points (units)
A and B	
A and C	
A and D	

6.1 What is 25% of 60 ? Use the tape diagram if it helps you with your thinking.

Calculate each percentage.
6.275% of 40
6.325% of 30
1.1 Responses vary.

- The most common shoe size is size 6 .
- The largest shoe size is size 10.
1.24 players

2.

- False
- True
- False

3.

$4.1 \quad 10$
4.25
5.

Points	Distance Between Points (units)
A and B	2
A and C	0.5
A and D	2.5

$6.1 \quad 15$
6.230
$6.3 \quad 7.5$

Unit 6.8, Readiness Check Summary

For teachers who choose to spread out the problems, consider assigning the following:

- Problems 1 and 2 before Lesson 2
- Problem 3 before Lesson 3
- Problem 4 before Lesson 7
- Problem 5 before Lesson 8
- Problem 6 before Lesson 13

Problems 1 and 2

(Standards: 5.MD.B.2, MP7)
These problems are intended to surface students' ability to make sense of information presented in a dot plot (called a line plot in Grades 4-5). They look for and make use of the structure seen in a dot plot to answer questions about what is represented. This content first appears in Lesson 2, where students are introduced to dot plots.

Suggested Next Steps: If students struggle . .

- On Problem 1, consider spending extra time during Lesson 2 asking students what they know about each dot plot they see. It may be helpful to invite students to revisit their responses to this question after Lessons $2-4$, which focus on dot plots.
- On Problem 2, consider revisiting this problem after Lesson 2, giving students time to revisit their responses.

Problem 3

(Standards: 3.NF.A.2, 4.MD.B.4)
This problem is intended to surface what students already know about positioning fractions and decimals on a number line. This content first appears in Lesson 3, where students create their own dot plots, including non-whole number values.

Suggested Next Steps: If students struggle . . .

- Consider revisiting this problem before Lesson 3 and inviting students to place each value in the appropriate place on the number line and justifying their placement.

Unit 6.8, Readiness Check Summary

Problem 4

(Standard: 5.OA.A.1)
This problem is intended to surface what students already know about evaluating expressions with different operations, including ones with parentheses or other grouping symbols. This content first appears in Lesson 7, where students first calculate the mean of a data set.

Suggested Next Steps: If students struggle . . .

- Consider sharing some incorrect work for each problem and inviting students in pairs or groups to explain what this student did well and what error they made.

Problem 5

(Standards: 4.MD.A.2, MP6)

This problem is intended to surface what students already know about calculating distances on a number line. They attend to precision when determining accurate distances. This content first appears in Lesson 8, where students calculate distances of each data point from the mean. This skill also supports students with calculating the mean average deviation (MAD) in Lesson 9.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem as a class before Lesson 8. Invite students to explain their reasoning for each distance. It may be helpful to discuss that distance is positive whether or not the second point is to the left or right on the number line.

Problem 6

(Standard: 6.RP.A.3.C)
This problem is intended to surface the strategies students use to calculate percentages that are multiples of 25%. This content first appears in Lesson 13, where students determine the first and third quartiles for a set of data.

Suggested Next Steps: If students struggle . . .

- Review this problem after Lesson 13 to make connections between quartiles and percentages. Select and sequence students who use different strategies, including making drawings and converting to fractions. Invite students to share and compare their strategies.
\qquad

5 friends played a game at an arcade.
Here is how many tickets they won.

0	6	2	3	9

1. What is the mean number of tickets they won?
A. 3 tickets
B. 4 tickets
C. 5 tickets
D. 6 tickets

2. This histogram shows some temperatures in May in Dallas, Texas.

Which of these statements is definitely true?
A. This shows the temperatures for 5 days.
B. There were 3 days when it was $70^{\circ} \mathrm{F}$.
C. It was $80^{\circ} \mathrm{F}$ or more on 10 different days.
D. There were 5 days when it was $77^{\circ} \mathrm{F}$.

3. A survey asked 10 people how many hours they spent watching T.V. last night.

0	4.5	2	3	2	2.5	3	0	2	4

Create a dot plot of their responses.

\qquad

These dot plots show the number of minutes it took Arnav and Kanna to walk to school last week.
4.1 Whose data has a mean of 15 minutes? (circle one)

Arnav Kanna Both Neither

Show or explain your thinking.

4.2 What is the mean absolute deviation (MAD) of Kanna's times?
5. Create two dot plots so that:

- They have at least 5 points each.
- Their centers are around 7.
- Dot Plot A has a larger spread than Dot Plot B.

Dot Plot A

Dot Plot B

1. B. 4 tickets
2. C. It was $80^{\circ} \mathrm{F}$ or more on 10 different days.

4.1 Kanna. Explanations vary.

- The distances to the left of 15 and the distances to the right of 15 on Arnav's dot plot are not equal, so his mean can't be 15 .
- The total time it took Kanna to walk to school was $12+13+14+18+18=75$ minutes and $75 \div 5=15$ minutes.
$4.2 \quad 2.4$ minutes

5. Dot plots vary.

－Consider revisiting Lesson 5，Activity 2，Screen 9. understand and communicate why statements for answer choices A, B ，and D are false．
－Math Language Development Consider using the mathematical language routine Critique，Correct，Clarify to help students
 students did in Lesson 5：The Plot Thickens．
In this problem，students interpret a histogram that represents a data set．This problem corresponds most directly to the work

Problem 2
－Consider revisiting Lesson 7，Activity 2，Screen 6.
－Consider asking students to describe what the math term mean represents mathematically． Suggested Next Steps：If students struggle ．
7：Snack Time．
In this problem，students determine the mean of 5 values．This problem corresponds most directly to the work students did in Lesson
（Standards：6．SP．A．3，6．SP．B．5．C）
Problem 1

でも＇レ	乙	g＇$¢$＇${ }^{\text {c }}$	L＇t＇r	G	smelqodd
O＊9．ads 9	$\forall^{\prime} c^{\prime} \cdot{ }^{\prime} \cdot{ }^{\text {d }} 9$	$t \cdot 9 \cdot d s \cdot 9$	$\varepsilon \cdot \forall d S \cdot 9$	でV ${ }^{\text {dS }} 9$	prepuers

Unit 6．8，Quiz：Summary and Rubric

- Consider revisiting Lesson 4, Activity 1, Screen 5.

most directly to the work students did in Lesson 4: Lots More Dots.
In this problem, students attend to precision as they apply the concepts of center and spread to data sets. This problem corresponds (Standards: 6.SP.A.2, 6.SP.B.4, MP6) Problem 5 - Consider revisiting Lesson 7, Activity 2, Screen 6 and Lesson 9, Activity 1, Screen 7. absolute deviation means mathematically.
 lxen perse66ns
•sdooh : 6 uossə7 Suggested Next Steps: If students struggle ...
- Consider suggesting that students list the data from least to greatest and cross off values as they are plotted.
- Consider revisiting Lesson 3, Activity 1, Problem 2.
Problem 4
(Standards: 6.SP.A.3, 6.SP.B.5.C, MP3)
In this problem, students reason about the mean of a data set and calculate the MAD of a data set from a dot plo
viable arguments to justify their thinking. This problem corresponds most directly to the work students did in Less
abstractly and quantitatively. This problem corresponds most directly to the work students did in Lesson 4: Lots More Dots. In this problem, students create a dot plot to visualize a data set. They translate data from a set to a dot plot they create, reasoning
(Standards: 6.SP.B.4, MP2) Problem 3
Unit 6.8, Quiz: Summary and Rubric

＇7dшәңе ł0u p！	еұер е әz！！ens！＾of ło｜d łop e рәң！ш！！sMOчs чиом	＇рәұиәsәлдд sənjeィ fo ıəquinu Кィәлә дод дор әио sydeגб диәрпts＂6’ヨ ＇sıодәә ұиеэ！！！uб！ पІ！M 6u！pueisıәpun әұәㅣㅣoㅇu！ smous y⿺辶M	 sydeı6 ұuәpnłs＂ $6 \cdot \exists$ －sıддә әшоs पІ！М 6u！puełsıəpun ןепłdəoうuos SMOUS Y YOM	＇7old $\ddagger 0 p$ ұэәлиО	$t^{\prime} \mathrm{G}^{\prime} \mathrm{dS}^{\prime} 9$	ε
7dməュе ъ0u p！o						Z
－дdшәде ł0u p！	－0 әрприи！дои p！p ұпq иеәш әцł рәұеןпэеэ әлец кеш s рәұәәәәs очм słиәрпıs －иеәш әчъ „о реәґяи！ие！рәш әчъ рәұеןпојэ әлец кеш є рәұәәәэ очм słиәрпнs －әэ！๐чэ ґэәцоэи｜					\downarrow
0	\downarrow	Z	ε	七		
	6u！uu！ $\mathbf{c o g}^{\text {a }}$	6u！̣doןəләа	6u！чэeodddv	6u！pəәэхヨ／6u！${ }^{\text {a }}$	prepuers	melqodd

ग！uqny pue Kıewuns ：z！̣o＇8‘9 9

＇7dmente ł0u p！	－əదиел әчд рәғеппэет әлец Кеш 9 әдолм очм sұиәрпіS łold \ddagger рр е шодұ ұәs еұер е до рәң！ш！！sMOYS чом	＇sıодә ұиеэ！！！uи！ Чџ！М Бu！̣puełsıәрй әұәןdmoэu！SMOчs y10M	 әлец Кеш ZI＇I әұолм очм słuәpnłs ＇8I әио Кוии 4！！М व甘W әчł рәғеןпэןе әлец Кеш S $\angle 8$＇I әұомм очм sұиәрпłs ＇sıoдə әшоs पఫ！М Бu！puełsıәpun ןenłdәכuoэ sMOYs yגоM	 ‘дәмsuе ґэәли○	つ○＇gdS＂9 $\varepsilon \forall \forall^{\prime} d S$	でも
－dme»！ ł0u p！	ио！̣еиеןdxә ఛэәлоэи！ ло uo！ұеиеןdxә ou पł！！M ләмsue ¡әәлоэи।	－иеәш әчд „о реәґsи！ие！рәш ＂ 470 ，，sıamsue pue SI әq оł lәs ełep s،＾euル К1дכәдоои！ұиәрпнS＂6・ヨ Чџ！М ләмsue ¡эәдоэи uo！̣eue，dxә ou पІ！М ләмsue ¡әәлоכ	uo！̣eue，dxә әృㅣㅣㄸoㅇu पІ！М ләмsue łәәлоつ	＇SI әq 7، иeว иеәш s！！ os ‘jenbə ұои әде дold top s،＾еии иo SI łо әчł pue SI fo 孔ə ә૫7 ot səวuets！p әчц＂6・ヨ euuey －uo！̣еueןdxə pue әЈ！очэ ұәәлоう	O－s＇ads 9 $\varepsilon{ }^{\prime} \forall^{\prime} d S^{\prime} 9$	L＇t
0	1	乙	ε	t		
	6u！	6u！doןəләа	6u！${ }^{\text {ceeadd }}$ V	Кu！pəәэхヨ／6u！əəәW	paepuets	məqodd

－дdшәде łou p！	－sұиәшә！！пьәィ иәл！ 6 әчł to Kue Kıs！！es дои op ұецł stold ұор омд sәғеәј ұиәрпня＂6’ヨ ＇łәs еұер е оł peadds pue дәłиә๐ „о słdәэиоэ әчъ Би！$К \mid$｜dde Ł0 6u！puełsıәpun рәң！ш！ sMO צ צом	stulod ә＾！t lfeə fe səsn pue \angle риполе sıәұиәо sәғеәл ұиәрпłя＂ $6 \cdot \exists$ әәцц әЧд 10 омд słәәш łold дор әио כטוְְן әәцч әчъ 10 әио Łәәш słold łор पłоя －sяодә ұиет！！ииб！s ЧІ！М Бu！̣puełsıәрй әұәㅣㅣoํu！ sMOYS yIOM	stuulod әл！t рие ц риполе sдәұиәэ децд Łold łор е sәғеәл диәрпғs －\forall told toa to peads „о peәлds әчд ұпq＇L punоле s！дәұиәэ әцд рие чэеә sұu！̣о әл！！łSeә łе әлец łечł słold ұор омұ sәдеәл ұиәрпнs＂＂\quad ・ヨ ‘е！әә！！Ј әәццł әцł fo OMł дәәш stold łop पłо马 －sıoдә ןenłdəouoo sMous yı0M	＇ұәәио๐ әде słold łор чıоя	$\begin{aligned} & t^{\prime} G \cdot d S \cdot 9 \\ & \text { Z'V'dS'9 } \end{aligned}$	G
0	\downarrow	Z	ε	t		
	6u！	6u！doןəләа		6u！pəəวхヨ／6u！ұəәW	prepuers	məqosd

\qquad

1. What is the median of this data set?

A. 7
B. $\quad 7.5$
C. 8
D. 9

A teacher is wondering if he assigns too much homework.
He asked his students how many hours they spent doing homework last week.

Circle whether each statement below is true or false, or if there is not enough information.

| 2.1 | The teacher asked a total of 4 students. | True | FalseNot enough
 information |
| :--- | :--- | :--- | :--- | :--- |
| 2.2 | One student said they spent exactly 15 hours. | True | FalseNot enough
 information |
| 2.3 | No student said they spent more than 20 hours. | True | FalseNot enough
 information |
| 2.4 | More than half of his students said they spent less than 5 hours. | True | FalseNot enough
 information |

3. Dalia wrote down the number of miles she ran each day. Calculate the mean distance Dalia ran.

Day	Distance (miles)
Monday	2.5
Tuesday	3.5
Wednesday	5
Thursday	2
Friday	7

\qquad
Manuel has data from basketball practice about the number of free throws each teammate made.

8	5	6	5	9	10	2	5	8	10

4.1 Create a dot plot for Manuel's team.
4.2 Determine each statistic for his team.

Quartile 1: \qquad

Median: \qquad

Quartile 3: \qquad

IQR: \qquad

Here are some temperatures for one week in January.

Minneapolis					Ottawa				
Temperatures (${ }^{\circ} \mathrm{F}$)					Temperatures (${ }^{\circ} \mathrm{F}$)				
32	25	35	38	20	31	29	27	31	32
Mean $=30^{\circ} \mathrm{F}, \mathrm{MAD}=6{ }^{\circ} \mathrm{F}$					Mean $=30{ }^{\circ} \mathrm{F}, \mathrm{MAD}=?^{\circ} \mathrm{F}$				

5.1 Calculate the mean absolute deviation (MAD) of the temperatures in Ottawa.
5.2 Which city has a wider spread of temperatures?
\qquad

Two companies analyzed the hourly wages for their employees.

6.1 What is the median hourly wage for DesMobile? \qquad
6.2 Which company has higher wages?

Explain how you know.
6.3 Which company's wages are more spread out?

Explain how you know.
7. Create a dot plot with:

- At least five points.
- A median of 6 .
- A mean that is less than the median.

Reflection: Select a question and answer it below.
What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

1. C. 8
2.1 False
2.2 Not enough information
2.3 True
2.4 True
2. 4 miles
4.1

$5.1 \quad 1.6^{\circ} \mathrm{F}$
5.2 Minneapolis
6.120 dollars
6.2 DesWorks. Explanations vary.

- The median wage for DesWorks is $\$ 10$ an hour more than the median wage for DesMobile employees.
- The median hourly wage for DesWorks employees is the same as Quartile 3 for DesMobile, which means that half of DesWorks employees make more than 75% of DesMobile employees.
6.3 DesMobile. Explanations vary.
- The range for DesMobile employees is $\$ 30$ an hour and the range for DesWorks employees is $\$ 20$ an hour. This means that the wages are more spread out.
- The IQR for DesMobile employees is larger than the IQR for DesWorks employees. This means that the middle half of wages are more spread out.

7. Dot plots vary.

- Consider revisiting Lesson 13, Activity 2, Screen 8 describe what each term means mathematically.

 Minimum Wage and Lesson 13: Pumpkin Patch. plot, thus reasoning abstractly and quantitatively. This problem corresponds most directly to the work students did in Lesson 3: In this problem, students visualize data in a dot plot and to give quantitative measures of variability. They represent data using a dot
(ZdW 'O'G’g'dS'9 't'g'dS'9 'Z'V'dS'9 :spıepuets)
Problem 4

Snack Time and Lesson 8: Pop It!

> r. _ _
In this problem, students calculate the mean of a data set. This problem corresponds most directly to the work students did in Lesson
(0's'g'dS'9 :prepuets) Problem 3
Unit 6.8, End Assessment Summary and Rubric: Form A

- Consider revisiting Lesson 12, Activity 2, Screen 9. Consider asking students to determine what calculations would be helpful on this problem. corresponds most directly to the work students did in Lesson 12: In the News.
Suggested Next Steps: If students struggle . . .
In this problem, students attend to precision as they create dot plots that meet criteria about measures of center. This problem
(9dW '0's'g'dS'9't'g'dS'9 :spıepuets)
Problem 7 - Consider revisiting Lesson 15, Activity 1, Screen 4.
Consider asking students to label the location of the quartile 1, median, and quartile 2 values of the box plots to help sort the data. Suggested Next Steps: If students struggle .
thinking. This problem corresponds most directly to the work students did in Lesson 15: Hollywood Part 2.
In this problem, students interpret and use box plots to compare and contrast data sets, constructing viable arguments to explain their
(Standards: 6.SP.A.3, 6.SP.B.5, 6.SP.B.5.C, MP3)
Problem 6
- Consider revisiting Lesson 9, Activity 1, Screen 8.
- Consider asking students what mean absolute deviation means mathematically, and how that can help them calculate the value. Suggested Next Steps: If students struggle .
corresponds most directly to the work students did in Lesson 9: Hoops.
In this problem, students calculate the mean absolute deviation and use it to compare the spread of data sets. This problem
(Standards: 6.SP.A.3, 6.SP.B.5.C)
Problem 5
Unit 6.8, End Assessment Summary and Rubric: Form A

‘．7dшәде tou p！o	＇sə｜бuełəәд „○ iכəəコ очм stuәpnts			әп1 •	ャ＇GdS＇9	†＇て
7duәи！ łou P！	ұuәds ұuәpnłs Kue д！моия łои ор әм ұечł puełsıəpun Кеш＂əə｜e」， Łэәәр очм słuәpnłs •			əทュ •	†＇GdS＇9	ع＇乙
7duәие tou P！C	＇s．nou 0Z pue SI иәәмұәq ұuәds очм ұuәpmis әлец Кеш＂əпц，＂ ¥әәәs очм słuәphts			иоп！ешияи！ чถnoua łon •	ャ＇GdS＇9	でて
＇7duәне łou P！ 0	＇sə｜6иеłวәд әчł рәұunoっ әлец Кеш＂әлュ， 			əs｜e」－	\forall^{\prime} S＇g $^{\prime} \mathrm{dS}^{\prime} 9$	－＇z
7duәие łou p！	әчъ иәsочэ әлец кеш 6 łフә｜әs очм słuәpnłs • ииеәш әчъ рәи！шшәәәр әлец Кеш ¢ \angle ¥əәәs очм sұuәpnłs •			8 •		1
0	1	乙	ε	†		
	6u！̣u！！${ }^{\text {a }}$ ¢	Бu！̣dopəəə	6u！¢oeorddy		prepuets	megord

子duшәие ł0u P！			¡эәиоэ әхе sכ！！s！ұеłs ınof д0 łno әәцч」	ォ： $\mathrm{yOl} \bullet$ 6 ：ε ә！！นепо L ：U世！pə S：L ə！！นeno әメе so！！s！̣ełs IIV		て＇も
7duәәие łou p！	－保puezsıәрии Łо әЈиәр！лә чеәМ	＇słu！̣od ełep fo бu！̣eds ло ұиәшәэe｜d u！ ןセれłdәэиоэ бu！̣doןəләр е smous yодм	－6uipeds әце！̣doddde әлец słu！̣od ełep łsow －uolpeool ఛวәлОО әЧł и！әле słulod ełep łsow		$\begin{gathered} \text { ZdW } \\ \qquad \cdot \mathrm{g}^{\prime} \mathrm{dS} \cdot 9 \end{gathered}$	レ＇も
7duәə е łOu p！	－ue！pәш әлец кеш sәן！ш ऽ＇દ әт！мм очм słuәpnłS －6u！̣puełsıәрии „о әЈиәр！лә чеәм	＇sıодә ұиeэ！！！ub！s ןセnłdәэиоэ రu！̣doןəләр е SMOLS yом	－uo！̣еןnoןo цд！м＇Kıəұsem pue бu！puełsıәрun ןenłdəouos SMOUS YォOM	sə！！w ォ ¡эәлоэ pue әұәןdmos s！чィом	$\mathrm{O}^{*} \mathrm{~S}^{\prime} \mathrm{l}^{\prime} \mathrm{dS}{ }^{\prime} 9$	ε
0	\downarrow	Z	ε	t		
	6u！uu！̣əg	6u！doןəィəன	6u！पэeoıdd＊	6u！pəəэхヨ／6u！fəәw	prepuets	سə¢\％0．d

7dшәне łou p！o	－unumxem әчł рәи！шшәəәр әлец Кеш 0t\＄ әب！мм очм sұuәрпłs －6u！puełsıəpun „о әэиәр！＾ә чеәм	‘प्વOI әЧł рәи！̣шәәәр әлец Кеш SI\＄ әү！мм очм słuәpnłs －sıouә ұиео！！！ub！s e smous yıом			O＇G＊＇dS＇9	L＇9
ł0u p！	peəłsu！sueəu ә૫ł Oł әлец Кеш＂реәлds әшes әЧł әлец Кәцц，， ๒əəə๐ очм słuәpn＋S			S！｜odeəuu！${ }^{\text {• }}$	$\varepsilon^{\prime} \forall^{\prime} \mathrm{dS}^{\prime} 9$	て＇G
＇7dшәџе łou p！	－6u！̣puełsıəpun „о әЈиәр！лә уеәМ	－ие！̣әш әчł рәңеן әлец Кеш 〕。Iદ әџ！ıм очм słuәpnis ןеnłdәэиоэ ถu！̣dоəәләр e SMOUS yIOM	 pue 6u！puełsıəpun ןепłдәәиоэ smous yıом		O＇s＇g＇dS＇9	L＇G
0	1	Z	ε	t		
	6u！uu！ 6 ®g	6u！doəəләа	6u！upeorddv	6u！pəəэxヨ／6u！ұәәW	paepuels	merqord

7dmәде łOU P！	stuluod 	ие！рәш әцł иецł SSə S！łеપł ueəu e גO 9 ł0 ue！paw e sey łold łoด	＇飞！әә！ Омł słəәш łold ł00	－иәә！ 		L
7dməңе ı0u P！		－uoipentıs ןe！ped smoys ұецъ дәмsuе ұэәдоэи słoןd xoq ґпочұ！м дәмsие ұэәлоэ	－иоппеие．dxә pəseq－əәиәр！лə дәмsư ґэәдоэи －uo！̣еue．dxe U！SME｜t doulu Чџ！м дәмsue џәәлоว	＇łno peads әдош әде sәбெем әЧł łецł sueəu s！पд גnoy ue 0Z\＄ ıоł əбue» ә૫ł pue ınou ue 0\＆\＄s！səəКo｜duə ə！！qOWsəด	$\begin{gathered} \varepsilon d W \\ c \cdot q \cdot d S \cdot 9 \\ c^{\prime} \forall d S^{\prime} 9 \end{gathered}$	$\varepsilon \cdot 9$
＇qdшәџе łOU P！		－uoipentıs ןe！ped smoys ұецұ дәмsuе ұэәдоэи słoןd xoq ұпочұ！м дәмsuе ұәәдоう	－uo！̣еuе．dxә pəseq－əәиәр！лə дәмsuе ұэәдоэи －uo！̣eue，dxə U！SME｜t doulu Чџ！м дәм	ие！рәш әцұ иецұ әлош ınoy ue 0L\＄s！syıMsə 10！әбвм ие！рәш әЧц syıмMsə口 －słold xоq әцł سоц әЈиәр！ィə 6u！̣s uo！̣еue｜dxә е чц！м дәмsuе ґәәлоう	$\begin{gathered} \varepsilon d W \\ c^{\prime} g^{\prime} d S \cdot 9 \\ { }^{\varepsilon} \forall^{\prime} \cdot d S \cdot 9 \end{gathered}$	て＇9
0	1	乙	ε	t		
	6u！uu！̣əəg	6u！doןəләа	6u！५эeordd \forall	бu！pəəวхヨ／6u！ŋəәW	paepuers	məq0．d

GRADE 6

Exit Tickets

Exit Tickets provide an opportunity for students to show what they individually understood about the main idea of the lesson.

This section includes all Exit Tickets and Teacher Moves for Units 1-8, as well as printable PDFs for sample lessons. Please note that Exit Tickets are referenced as Cool Downs in this review.

Exit Tickets are available as PDFs for download from the teacher experience in the platform, as well as digitally in the student experience. Amplify Desmos Math does not include them in the core student print materials to ensure students do not have access prior to the end of the lesson. (Teachers can control access to the Exit Ticket in the digital experience, too.)

Which train is faster? Show your thinking.
Train A:
300 centimeters in 20 seconds

Train B:

How well did you understand the math in this lesson?

How did you feel about this lesson?

Reflect on the math from this lesson

- I can calculate the speed of an object.
- I can compare rates that are written in different units
- I can determine which of two traveling objects is faster and explain my thinking

> Exit Ticket PDFs are available for all lessons. Here are samples from Amplify Desmos Math New York, fully designed.

Exit Ticket

A train is traveling from one station to another at a constant speed of $\mathbf{5 0}$ miles per hour.

1. Complete the table to show the amounts of time it takes the train to travel certain distances.

Time (hours)	Distance (miles)
2	
7	150
	200

2. Create a graph that represents this relationship.

How well did you understand the math in this lesson?

How did you feel about this lesson?

Reflect on the math from this lesson.

- I can create graphs, tables, and equations to represent situations.
- I can use tables, graphs, and equations to analyze an issue in society

The following pages in this section include digital versions of all Exit Tickets and their Teacher Moves for Units 1-8.

Please note that Exit Tickets are referenced as Cool Downs in the partially designed samples that follow.

6.1 Cool-Downs

Lesson Checklist

\square Complete the lesson using the student preview.
\square Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.
\square Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.
\square Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.
\square Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.

Determine the area of this shape.
Use the sketch tool to show your thinking.

P] Teacher Moves

Support for Future Learning

Students will have more chances to develop their understanding of calculating area in Lesson 2.

畈 Sample Responses

16 square units

2 Lesson 2: Area Strategies
What is the area of this shape?
$f(x)$

What is the area of this shape?

T] Teacher Moves

Support for Future Learning If students struggle, consider checking in with individual students or review the cool-down as a class before Activity 1 in Lesson 3.

泪 Sample Responses

16 square units

3 Lesson 3: Parallelograms on a ..

Enter the base, height, and area of \#

Enter the base, height, and area of each parallelogram in the table.

P] Teacher Moves

Support for Future Learning

Students will have more chances to determine bases, heights, and areas of parallelograms in Lesson 4.

把 Sample Responses

$S: 3$ units, 4 units, 12 square units
T : 2 units, 3 units, 6 square units

4 Lesson 4: Calculating Areas of...

What is the area of this parallelogram
$f(x)$

What is the area of this parallelogram?

P] Teacher Moves

Support for Future Learning

If students struggle with this cool-down, consider reviewing this screen as a class before Lesson 6, or offering individual support where needed during Activity 1 of Lesson 6.

把 Sample Responses

54 square centimeters

5 Lesson 5: Triangles on a Grid

Determine the area of this triangle.

P] Teacher Moves

Support for Future Learning
Students will have more chances to determine the area of triangles in Lesson 6. Check in with students individually as they calculate areas during Activity 1 of Lesson 6.

把 Sample Responses

6 square units

What is the area of this triangle?

Teacher Moves

Support for Future Learning
If students struggle to calculate the area of the triangle on a grid, consider spending extra time at the beginning of Lesson 7, Activity 1 checking in with students individually.

四 Sample Responses

10 square centimeters

7 Lesson 7：Applying the Formul．．．
Calculate the area of this triangle． $f(x)$

Calculate the area of this triangle．

R Teacher Moves

Support for Future Learning

If students struggle，consider reviewing this screen before Practice Day 1 ，or offering individual support where needed．Students will need a solid understanding of how to calculate the area of a triangle for the quiz．

畈 Sample Responses

9 square centimeters

What is the area of this polygon？
Use the sketch tool if it helps you show your thinking．
R］Teacher Moves
Support for Future Learning
Consider checking in with individuals who struggled with this cool－ down during Practice Day 1，or making time to explicitly review calculating the area of polygons before the quiz．

把 Sample Responses

26 square inches

9 Lesson 9：Introduction to Surf．．．

What is the surface area of this rectangular prism？

P］Teacher Moves

Support for Future Learning
Students will have more chances to develop their understanding of calculating surface area in Lesson 11.

㨡 Sample Responses

62 square units
10 Lesson 10：Polyhedra and Th．．．

Teacher Moves

Support for Future Learning

If students struggle，consider spending extra time during Activity 1 of Lesson 11 where students name several different solids．Consider revisiting this cool－down as a class either before or after that activity，and inviting students to share which solid is neither a prism or a pyramid，and why．

把 Sample Responses

```
Image solution
```

11 Lesson 11：Nets and Surface A．．．

1．What is the surface area of this solid？

Use the sketch tool if it helps you show your thinking．

Teacher Moves

Support for Future Learning

If students struggle to complete this cool－down，consider reviewing it as a class before Lesson 12，or offering individual support where needed during Lesson 12 ．Students need a solid understanding of how to calculate surface area before beginning Lesson 12.

四 Sample Responses

1． 72 square units
2．Triangular prism

12 Lesson 12：Surface Area Off o．．．
Here is the net for a
no triangular
：三

Here is the net for a triangular prism．
1．If this net were folded，which polyhedron would it make？

P］Teacher Moves

Support for Future Learning

If students struggle with this cool－down，consider making time before the end assessment to explicitly review calculating surface
area.

比 Sample Responses

1. Image solution
2. 168 square units

Here are two patterns of take-out containers.
Which one uses more material?

R Teacher Moves

Support for Future Learning

During Practice Day 2, check in with students who struggle on this cool-down. Reasoning about surface area with non-rectangular and triangular shapes are not included in any assessment.

泪 Sample Responses

Pattern \#1

Responses vary.

- Pattern \#1 uses more material. Pattern \#1 uses about 154 square inches of material, while pattern \#2 uses about 85 square inches of material.
- The bases in pattern \#2 are less than half of the area of the bases in pattern \#1. Pattern \#2 also only has 3 rectangles, while pattern \#1 has 4 rectangles.

Lesson Checklist

Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.1 Lesson 1: Exploring ...
 Jada used 60 pepper clinacto $f(x)$

Jada used 60 pepper slices to make 3 pizzas.

How many does it take to make 6 of Jada's pizzas?

Teacher Moves

Support for Future Learning

Students will have more chances to develop their understanding of ratios throughout Unit 2.

Sample Responses

120 pepper slices

Select all of the true statements.

Teacher Moves

Support for Future Learning

Students will have more chances to describe ratios and think about equivalent ratios in Lesson 3.

Sample Responses

- The ratio of clouds to hearts is 6 to 4 .
- For every 3 clouds, there are 2 hearts.

3 Lesson 3: Introductio...
A recipe for pizza dough
:二

A recipe for pizza dough begins with these instructions.
Select all the ratios that are equivalent to the original recipe.

Teacher Moves

Support for Future Learning

Students will have more chances to explore equivalent ratios in Lesson 4.

Sample Responses

- 3 teaspoons of yeast to 2 cups of flour
- 18 teaspoons of yeast to 12 cups of flour

4 Lesson 4: Creating E... This balanced scale has 6 : 三

This balanced scale has 6 mangos and 2 pineapples.
Select all of the combinations that will balance the scale.

Teacher Moves

Support for Future Learning

If students struggle, consider reviewing this screen as a class before Lesson 5. Understanding how to create equivalent ratios will help students as they begin determining missing quantities in Lessons 5 and 6.

Sample Responses

- 3 mangos and 1 pineapple
- 24 mangos and 8 pineapples
- 60 mangos and 20 pineapples

5 Lesson 5: Introductio... The scale balances with a ratio $f(x)$

The scale balances with a ratio of 5 lychees to 2 limes.
How many lychees will balance with 10 limes?

Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize this when opportunities arise in Lesson 6 and beyond. It may be helpful to review this screen as a class before Lesson 6.

Sample Responses

25 lychees

6 Lesson 6: Unit Prices...
Answer the question on the card.
$f(x)$

Answer the question on the card.

Teacher Moves

Support for Future Learning

Students will have more chances to think about unit rates in Lessons 7 and 8. Plan to emphasize strategies that involve calculating a unit rate during Activity 1 of Lesson 7.

Sample Responses

$\$ 0.75$

Explanations vary. $3 \div 4=0.75$

7 Lesson 6: Unit Prices...
Answer the question on the card. $f(x)$

Answer the question on the card.

Teacher Moves

Support for Future Learning

Students will have more chances to think about unit rates in Lessons 7 and 8. Plan to emphasize strategies that involve calculating a unit rate during Activity 1 of Lesson 7.

Sample Responses

$\$ 5.00$
Explanations vary. $7.5 \div 6=1.25$ each, so 4 would be $1.25 \cdot 4=5$.

8 Lesson 7: Comparing... Here are two new ratios:
: 三

Here are two new ratios:

Ratio A

4 ounces red: 3 gallons white

Ratio B

6 ounces red: 4 gallons white
Which will make a darker red?
Teacher Moves

Support for Future Learning

Students will have more chances to develop their understanding of comparing ratios in Lesson 8.

Sample Responses

Ratio B

Explanations vary.

- Ratio B has 1.5 ounces of red per gallon of white and Ratio A has about 1.33 ounces of red per gallon of white. More red tint means a darker red.
- If you make both ratios use 12 ounces of red, Ratio A uses
$3 \cdot 3=9$ gallons of white paint, but Ratio B only uses $4 \cdot 2=8$ gallons of white. Less white paint means a darker red.

9 Lesson 8: Comparing... Two cyclists are traveling at constant
:二

Two cyclists are traveling at constant speeds on different tracks.
Some of the times and distances for each cyclist are recorded on these double number lines.

Which cyclist is traveling faster?

Teacher Moves

Support for Future Learning

Students will continue to use double number lines and other strategies to solve problems with ratios. If students struggle to compare ratios, consider reviewing this question before Practice Day 2 or offering individual support where needed during the practice day.

Sample Responses

Cyclist B
Explanations vary. Cyclist B travels 20 meters per second, whereas
Cyclist A travels 15 meters per second.

10 Lesson 9: Using Rat... FEMA recommends 20 rolls of duct tape and 4

```
目
```

\qquad

FEMA recommends 20 rolls of duct tape and 4 pairs of scissors for every 100 people.

Complete the table according to FEMA's recommendations.
Teacher Moves

Support for Future Learning

If students struggle, consider reviewing this screen as a class before Lesson 10.

Sample Responses

Population 300 : 60 rolls of duct tape and 12 scissors
Population 4000 : 800 rolls of duct tape and 160 scissors

11 Lesson 10: Solving ...

Red balloons float orange marbles at a ratio of $12: 8$.

How many red balloons will float 10 orange marbles?
Use paper if it helps you with your thinking.

Teacher Moves

Support for Future Learning

Students will have more chances to solve multistep ratio problems in Lesson 11. If many students struggle, consider reviewing this screen as a class before beginning Lesson 11 .

Sample Responses

15 red balloons

Consider these two problems.
Which problem could you use equivalent ratios to answer?
Teacher Moves

Support for Future Learning

Consider reviewing this screen as a class before Practice Day 2 or offering individual support where needed during the practice day.

Sample Responses

- Problem A
- \$600

13 Lesson 12: Part-Par...
Anand makes fruit punch

Anand makes fruit punch by mixing 4 liters of cranberry juice and 3 liters of ginger ale.

How much of each ingredient would Anand need to make 35 liters of fruit punch for a party?

Teacher Moves

Support for Future Learning

Students will have more chances to develop their understanding of part-part-whole relationships in Lesson 13. Consider reviewing this screen as a class before Lesson 13 or offering individual support where needed.

Sample Responses

20 liters of cranberry juice and 15 liters ginger ale

14 Lesson 13: Applying...

Here are 18 units of land.

Design a neighborhood that has a $5: 4$ ratio of building space to green space.

Teacher Moves

Support for Future Learning

Consider reviewing this screen as a class before Practice Day 2 or offering individual support where needed during the practice day. A strong understanding of how to determine the parts given the whole will support students in the End-Unit Assessment.

Sample Responses

10 building units and 8 green spaces

15 Lesson 14: Applying... 6th and 7th grade students at : $=$

6th and 7th grade students at a school are trying to reduce their amount of trash.

Which grade do you think was more successful at reducing trash?
Teacher Moves

Support for Future Learning

Consider reviewing this question as a class before Practice Day 2 or offering individual support where needed during the practice day.
Several questions on the practice day invite students to compare ratios.

Sample Responses

Responses vary.

- I think the 6th grade was more successful because they reduced the most amount of trash overall.
- I think the 7th grade was more successful because they reduced a greater amount of trash per person.

6.3 Cool-Downs

Lesson Checklist

Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.1 Lesson 1: Everyday ... Malik and Lukas each have a fish
霫

Malik and Lukas each have a fish tank. Malik's tank holds 20 gallons. Lukas's tank holds 20 cups.

1. Label each fish tank with the name of the person it belongs to.
2. Angel's fish tank holds 20 liters of water. How does it compare to Malik's and Lukas's tanks?

Teacher Moves

Support for Future Learning

If some students struggle, consider reviewing this question as a class at the beginning of Lesson 2 . Students will need to understand which units represent larger and smaller quantities in Lessons 2-4.

Sample Responses

1. The larger fish tank is Malik's (20 gallons). The smaller fish tank is Lukas's (20 cups).
2. Responses vary. 1 liter is larger than 1 cup and smaller than 1 gallon. This means Angel's fish tank is larger than Lukas's fish tank and smaller than Malik's.

2 Lesson 2: Measuring ...

Lmeser	A bookshelf is 6 feet wide.
\%	
	$f(x)$

A bookshelf is 6 feet wide.

How many yards is that?

Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize this when opportunities arise in Lesson 3. It may be helpful to review this screen as a class before Lesson 3 and invite students to share whether the number of yards should be larger or smaller than the number of feet.

Sample Responses

2 yards

3 Lesson 3: Converting...
4 gallons ≈ 15 liters
A
restaurant needs 5

A restaurant needs 5 gallons of ice cream for dessert one night.

About how many liters is this?

Teacher Moves

Support for Future Learning

If students struggle, consider making time to explicitly revisit these ideas. A strong understanding of the strategies that can be used to convert between units in different systems of measurement will support students as they learn about unit rates in Section 2.

Sample Responses

18.75 liters

4 Lesson 4: Comparing...
 is faster?
:

Which train is faster?

Teacher Moves

Support for Future Learning

Students will have more opportunities to understand unit rates. There is no need to slow down or add additional work to the next lessons.

Sample Responses

Train A
Explanations vary.

- Train A travels $\frac{300}{20}=15$ centimeters per second, while Train B only travels $\frac{200}{15}=13 \frac{1}{3}$ centimeters per second.
- Train A travels $300 \cdot 3=900$ in one minute, and Train B travels $200 \cdot 4=800$ centimeters in one minute. Since Train A travels farther in one minute, it is faster.

5 Lesson 5: Two Unit R..
Two pounds of grapes cost : 三

Two pounds of grapes cost \$5.

Jordan says that's 2.5 pounds per dollar.
Emika says it's 0.4 pounds per dollar.
Which rate is correct?

Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize this when opportunities arise in the following lesson.

Sample Responses

0.4 pounds per dollar

Explanations vary. Pounds per dollar means how many pounds for 1 dollar. Since $\$ 5$ gets 2 pounds, dividing both numbers by 5 will get the pounds for 1 dollar: $\frac{2}{5}=0.4$.

6 Lesson 6: Using Unit ...

- A factory can make 4 robots in 120 seconds.

A factory can make 4 robots in 120 seconds.
Complete the table.

Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize this when opportunities arise in Lesson 7, particularly on Screens 6-8.

Sample Responses

- 750 seconds
- 9 robots
- 30 seconds

7 Lesson 7: Solving Rat...

Here are some new orders for Shop A.
Enter the missing values.

Teacher Moves

Support for Future Learning

If students struggle, consider reviewing this screen as a class before Practice Day 1 or offering individual support where needed during the Practice Day. Students will need a strong understanding of how to use unit rates to determine unknown values.

Sample Responses

- \$1.80
- 7.2 ounces

8 Lesson 8: Benchmar...
 Which game has more

Which game has more duckies with stars?

Teacher Moves

Support for Future Learning

Students will have more chances to develop their understanding of reasoning about and calculating percentages in Lessons 9 and 10.

Sample Responses

They have the same number of duckies with stars.
Explanations vary. 10% of 50 is 5 , and 50% of 10 is also 5 .

9 Lesson 9: Friendly Pe...

Callen bought new sneakers for $\$ 60$.

Miko bought sneakers that cost 80% of that price.

How much did Miko pay for his sneakers?
Teacher Moves

Support for Future Learning

Students will continue to develop their understanding of calculating unknowns involving percentages in Lessons 10 and 11.

Sample Responses

\$48

10 Lesson 10: Solving .. It takes Emiliano 20 minutoc tn $f(x)$

It takes Emiliano 20 minutes to walk 80% of the way to school.

How long does it take in total for Emiliano to walk to school?

Teacher Moves

Support for Future Learning

If students struggle, consider reviewing the cool-down as a class before Practice Day 2 or offering individual support where needed during the practice day. This is the last lesson that focuses on calculating a whole given a part and a percentage.

Sample Responses

25 minutes

Select all of the expressions that can be used to calculate 43% of $\$ 26$.

Teacher Moves

Support for Future Learning

If students struggle, consider reviewing this screen as a class before Lesson 13 or offering individual support where needed during Lesson 13 and Practice Day 2.

Sample Responses

- $\frac{26}{100} \cdot 43$
- $\frac{43}{100} \cdot 26$

12 Lesson 12: Unknow...

Darryl rode 15 km out of his 12 km goal.

What percent of his goal did he ride?

Teacher Moves

Support for Future Learning

If students struggle, consider reviewing this screen as a class before Lesson 13 or offering individual support where needed as students are making their posters. This is the last lesson that focuses explicitly on calculating any unknown percent.

Sample Responses
125%

13 Lesson 13: Applying...
What percent of people in
$f(x)$

What percent of people in the world do not have electricity?

Teacher Moves

Support for Future Learning

If some students struggle, consider offering individual support where needed during Practice Day 2. Students will not be directly assessed on situations involving a village of 100 people but should know how to calculate an unknown percent.

Sample Responses

- About 12.7\%
- 12 or 13 people

6.4 Cool-Downs

Lesson Checklist

Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.\square Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.
\square Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.
1 Lesson 1: Estimating Quotients

P] Teacher Moves

Support for Future Learning

Students will have more chances to develop their ability to estimate quotients throughout the unit, particularly in Lesson 6.

护 Sample Responses

Image solution

2 Lesson 2: Representing Divisio...

Write three equations that this diagram could represent.

Reacher Moves

Support for Future Learning

Students will have more opportunities to make connections between tape diagrams and division expressions throughout the unit.

[四 Sample Responses

Responses vary.

- $8 \cdot 3=24$
- $3 \cdot 8=24$
- $24 \div 3=8$

Emmanuel needs 2 tablespoons of sugar to make lemonade.
His measuring scoop is $\frac{1}{4}$ of a tablespoon.

How many scoops will he need?

Teacher Moves

Support for Future Learning

Students will have more chances in Lessons 5 and 6 to develop their understanding of calculating an unknown number of groups.

4 Lesson 4：How Many in Each G．．．

W） | 2 cups of |
| :---: |
| flour make $\frac{1}{3}$ |
| $\boldsymbol{f}(\boldsymbol{x})$ |

2 cups of flour make $\frac{1}{3}$ of a loaf of bread．

How much flour is needed for 1 whole loaf？

P］Teacher Moves

Support for Future Learning

Students will have many more chances to develop their understanding of dividing by a unit fraction throughout the unit， particularly in Lesson 8.

㨡 Sample Responses

6 cups

Use a tape diagram to determine the value of $3 \div \frac{4}{5}$ ．

Teacher Moves

Support for Future Learning

Students will have more chances to calculate unknown numbers of groups in Lessons 6，7，and 9.

酔 Sample Responses
$3 \frac{3}{4}$（or equivalent）

What is the value of $1 \frac{3}{8} \div \frac{1}{2}$?

Teacher Moves

Support for Future Learning
Students will have more chances to develop their understanding of fraction division in later lessons, particularly in Lessons 7 and 9.

四 Sample Responses

$$
\frac{11}{4} \text { (or equivalent) }
$$

Calculate $\frac{2}{3} \div \frac{5}{4}$.

Use the sketch tool if it helps you with your thinking.

Teacher Moves

Support for Future Learning
Students will have more chances to develop their fluency with fraction division in later lessons, particularly Lessons 9 and 10.

㽗 Sample Responses

$\frac{8}{15}$ (or equivalent)

Note: Student answers between 0.53 and 0.54 are marked correct.

Calculate $\frac{12}{5} \div \frac{1}{4}$.

Teacher Moves
Support for Future Learning
If students struggle, plan to further develop these strategies when opportunities arise in Lesson 9. Consider spending extra time during the discussion on Screen 5 to surface strategies for dividing by a unit fraction.

㨡 Sample Responses

$$
\frac{48}{5}
$$

Calculate $\frac{7}{2} \div \frac{3}{8}$.

Teacher Moves

Support for Future Learning

If students struggle, consider reviewing this screen as a class before Lesson 10 or offering individual support where needed during that lesson. If students are struggling to divide fractions after Lesson 10, consider pausing and spending more time on each of the strategies from this lesson.

㨡 Sample Responses

$\frac{28}{3}$ (or equivalent)

Note: Student answers between 9.33 and 9.34 are marked correct.

Calculate the value of each expression.

1. $6 \div \frac{2}{3}$

Teacher Moves
Support for Future Learning
If students struggle, consider reviewing these questions as a class before the quiz or checking in with students individually during the Practice Day.

㨡 Sample Responses

1. 9
2. $\frac{3}{10}$ (or equivalent)

The pair of scissors is how many times as long as the highlighter?

Theacher Moves

Support for Future Learning

If students struggle, consider pausing and reviewing this screen as a class before the End Assessment. This is the last time students explicitly practice fraction division before the End Assessment.

把 Sample Responses

$$
\frac{25}{15} \text { (or equivalent) }
$$

Note: Student answers between 1.66 and 1.67 are marked correct.
12 Lesson 12：Areas With Fractio．．．

Use any strategy to determine the value of the＂？＂．

Teacher Moves

Support for Future Learning

If students struggle，consider pausing and reviewing this screen as a class before Lesson 13 or offering individual support where needed during Lesson 13，Activity 1.

四 Sample Responses

4

13 Lesson 13：Volumes With Frac．．．

Calculate the volume of this prism．
$f(x)$

Calculate the volume of this prism．

P］Teacher Moves

Support for Future Learning

If students struggle，consider pausing and reviewing this screen as a class before Lesson 14 or offering individual support where needed in Lesson 14＇s warm－up and Activity 1.

凅 Sample Responses

$\frac{45}{4}$ cubic units

14 Lesson 14：Applying Fraction ．．．

no	What is the volume of soil needed to fill$f(x)$

What is the volume of soil needed to fill this planter？
Teacher Moves
Support for Future Learning
If students struggle，consider reviewing this question as a class before the End Assessment．This is the final opportunity for students to practice calculating volume with fractional dimensions in this unit．

㥜 Sample Responses

6.5 Cool-Downs

Lesson Checklist

\square Complete the lesson using the student preview.
\square Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.
\square Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.
\square Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.
\square Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.

1 Lesson 1：Reasoning With Deci．．．

Cameron＇s mom forgot to buy some ingredients for dinner．
She gave Cameron $\$ 5$ and asked him to to buy 1 head of broccoli and 2 lemons．

Will Cameron have money left over？

TH Teacher Moves

Support for Future Learning

If students struggle to decide if there will be money left over， consider checking in individually during Lesson 2 to better understand how students were estimating．

Students will have more chances in Lessons 2－4 with questions that ask for precision like＂How much money will be left over？＂

畈 Sample Responses

Yes．About \＄2．85．

Calculate the value of $0.3-0.02$ ．
Use the sketch tool if it helps you show your thinking．

Teacher Moves

Support for Future Learning

Students will have more chances to develop their understanding of adding and subtracting decimals in Lessons 3 and 4.

四 Sample Responses

0.28

3 Lesson 3: Adding and Subtrac...
Calculate the value of
2.4-1.19.
$f(x)$

Calculate the value of $2.4-1.19$.

Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize how to use vertical calculations to add and subtract decimals when opportunities arise in Lesson 4. Spend extra time during the discussion on Screen 3 ensuring that students understand how to set up vertical calculations when adding and subtracting decimals.

四 Sample Responses

1.21

Calculate the value of $11.004-5.96$.

Teacher Moves
Support for Future Learning
If students struggle, consider reviewing this screen as a class before the quiz.

非 Sample Responses

Multiply $0.3 \cdot 0.9$.

R] Teacher Moves

Support for Future Learning

If students struggle, consider reviewing this screen as a class before Lesson 6 or offering individual support where needed during Lesson 6. It will be very helpful for students to understand how to multiply decimals with only one non-zero digit before they extend their thinking to more complex decimal multiplication problems.

Materials（optional）：Invite students to use the Hundredths Charts Supplement as they find helpful on this screen．

四 Sample Responses

$$
0.27
$$

6 Lesson 6：Using Area Models t．．．

Calculate $4.2 \cdot 2.6$ ．

Teacher Moves

Support for Future Learning

Students will have more chances to develop their understanding of multiplying decimals in Lesson 7.

㨡 Sample Responses

$$
10.92
$$

Calculate $1.6 \cdot 0.21$ ．

Teacher Moves

Support for Future Learning
Consider reviewing this problem as a class before Practice Day 1 or offering individual support where needed during the practice day． Students will need to be able to multiply decimals on the Quiz and End Assessment．

四 Sample Responses

0.336

Calculate the value of $1.5 \div 0.05$ ．

Teacher Moves
Support for Future Learning Students will have more chances to develop their understanding of dividing decimals in Lessons 9 and 10.

㨡 Sample Responses

30

9 Lesson 9：Long Division and D．．．
Calculate each value．
$1875 \div 15$

R Teacher Moves

Support for Future Learning
 Students will have more chances to divide decimals in Lessons 10 and 11 ．

㽗 Sample Responses

－ 125
－ 43

10 Lesson 10：Long Division Wit．．．

Calculate the	
value of	
$7.1 \div 0.2$.	
$\boldsymbol{f (x)}$	

Calculate the value of $7.1 \div 0.2$ ．

Teacher Moves

Support for Future Learning

If students struggle，consider reviewing this problem as a class before Lesson 11 or offering individual support where needed during Lesson 11 or Practice Day 1.

㨡 Sample Responses

35.5

11 Lesson 11: Dividing Decimals i...
A movie is 9.75 seconds long.
Describe a situation related to
0
A movie is 9.75 seconds long.

Describe a situation related to this movie that could be represented by the expression $9.75 \div 2.5$.

P] Teacher Moves

Support for Future Learning

If students struggle, consider reviewing this screen as a class before Lesson 12 or offering individual support where needed during Practice Day 2.

讯 Sample Responses

3.9

12 Lesson 12: Operations With D... The DesWagon Classic can hold 12.4 gallons of gas.

How much more would it cost to fill up a tank of gas in Hawaii than in Mississippi?

Teacher Moves

Support for Future Learning

Students will have more chances to practice using decimal operations in Practice Day 2.

把 Sample Responses

\$16.12

13 Lesson 13: Percentages as De...
On average, families that make about $\$ 15000$ per year spend 36% of their income on
:

On average, families that make about $\$ 15000$ per year spend 36% of their income on food.

On average, families that make about $\$ 175000$ per year spend 8% of their income on food.

1. Which group spends more money on food?

T- Teacher Moves

Support for Future Learning

Calculating percentages of numbers will not be assessed on the End Assessment.

泪 Sample Responses

1. The families that make $\$ 175000$ per year spend more on food.
2. $\$ 8600$

What is the least common multiple of 10 and $6 ?$

R Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize this when opportunities arise in Lesson 15, particularly in Activity 2.

㨡 Sample Responses

30

What is the greatest common factor of 24 and 40 ?
Use the sketch tool if it helps you with your thinking.

Teacher Moves

Support for Future Learning

If students struggle, consider reviewing this screen as a class before Practice Day 2. Students will need to know how to determine the greatest common factor of two numbers on the End Assessment.

㨡 Sample Responses

8

6.6 Cool-Downs

Lesson Checklist

Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.1 Lesson 1: Reasoning ...

Teacher Moves

Support for Future Learning

Students will have more chances to develop their understanding of representing equations with tape diagrams in Lesson 2.

Sample Responses

Image solution

2 Lesson 2: Tape Diagr... Yasmine is biking 5 miles to her friend's house.
nfanrahahilend n milan

Teacher Moves

Support for Future Learning

Students will have more chances to connect situations and equations in Lesson 5.

Sample Responses

1. $2+x=5$
2. Responses vary. The solution to this equation is the number of miles Yasmine still has before she gets to her friend's house.

3 Lesson 3: Introductio...
 Here is a balanced hanger.

ㅇ

Here is a balanced hanger.

1. Which equation does this hanger represent?

Teacher Moves

Support for Future Learning

If students struggle to connect equations and hangers, consider reviewing this screen before beginning Lesson 4. Students will have more chances to develop their understanding of solving equations in Lesson 4.

Sample Responses

1. $4 x=24$
2. $x=6$

4 Lesson 4: Solving Eq... What is the value of x that makoc $f(x)$

What is the value of x that makes this equation true?
$2.18+x=6$

Teacher Moves

Support for Future Learning

If students struggle, consider reviewing this screen as a class before Lesson 5 or offering individual support where needed during Lesson 5 or Practice Day 1.

Sample Responses

3.82

Here is an equation: $x+2.5=10$.

1. Write a situation to match this equation.

Explain what x represents in your situation.

Teacher Moves

Support for Future Learning

Consider reviewing this prompt as a class before Practice Day 1 or offering individual support where needed during the practice day. Students will have opportunities to write expressions from situations in Part 2 of this unit, but this is the last lesson explicitly focused on solving equations.

Sample Responses

1. Responses vary. I brought 2.5 pounds of blueberries to a party.

There were 10 pounds of blueberries at the party in total. There were x pounds of blueberries at the party before I arrived.
2. $x=7.5$
3. There were 7.5 pounds of blueberries at the party before I arrived.

6 Lesson 6: Introductio...
Oranges cost \$2 nor nnimer :

Oranges cost $\$ 2$ per pound.
What is the cost of x pounds of oranges?

Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize this when opportunities arise in Lesson 13, particularly on screens where students select an equation to represent a relationship.

Sample Responses

$$
2 x
$$

12

7 Lesson 7: Equivalent... Select two expressions that are
:三

Select two expressions that are equivalent to $2 n+4$.
Use the sketch tool if it helps you with your thinking.

Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize this when opportunities arise in Lesson 8, particularly in Activity 1 where students select which rectangles are equivalent.

Sample Responses

- $n+n+1+1+1+1$
- $(n+2)+(n+2)$

8 Lesson 8: Distributive... Select all
 the expressions :

Select all the expressions that represent the area of the rectangle.

Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize this when opportunities arise in Lesson 9, particularly during the warm-up and Activity 1.

Sample Responses

- $5(x+3)$
- $5 x+15$

Write an expression that is equivalent to $4(x-3 y)$.

Teacher Moves

Support for Future Learning

Consider reviewing this question as a class before Practice Day 1 or offering individual support where needed during the practice day.
Students will need to know how to write equivalent expressions on the End Assessment.

Sample Responses

$$
4 x-12 y \text { (or equivalent) }
$$

10 Lesson 10: What Ar...

Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize this when opportunities arise in Lessons 11 or 12, with a focus on connecting exponents to area and volume.

Sample Responses

11 Lesson 11: Expone... Determine the value of these
$f^{\prime}(x)$

Determine the value of these expressions.
$2 \cdot 4^{2}$

Teacher Moves

Support for Future Learning

If students struggle, consider spending extra time during Lesson 12
discussing order of operations when students are evaluating expressions with exponents and variables.

Sample Responses

- 32
- 36

12 Lesson 12: Expone... What is the value of $4 x^{2}$ $f(x)$

What is the value of $4 x^{2}$ when $x=3$?

Draw a diagram if it helps you with your thinking.

Teacher Moves

Support for Future Learning

If students struggle, consider reviewing this screen as a class before Practice Day 2 or offering individual support where needed during the practice day. Students will need to be able to evaluate expressions at specific values of their variables on the End Assessment.

Sample Responses

36

13 Lesson 13: Stories ... | \# | $\begin{array}{l}\text { equation } \\ \text { describes }\end{array}$ |
| :--- | :--- |

$:$

Which equation describes the same relationship as this table?

Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize this when opportunities arise in Lesson 15. Consider spending extra time on the card sort making
connections between tables, equations, and graphs of the same relationship.

Sample Responses

$c=2.5 h$
Explanations vary. I plugged in the row $h=1$ and $c=2.5$ into every equation. $2.5=2.5(1)$, but 2.5 does not equal $5(1)$ or $(1)+5$, and 1 does not equal $2.5 \cdot(2.5)$

14 Lesson 14: Interpreti...
The graph represents the : $=$

The graph represents the relationship between time, t, and number of mosquitoes, m.

Select the table that represents the same relationship as the graph.

Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize this when opportunities arise in Lesson 15, particularly in Activity 1 when students are making connections between tables and graphs.

Sample Responses

$$
\begin{aligned}
& t=0,1,2,3 \\
& m=2,3,5,9
\end{aligned}
$$

15 Lesson 15: Tables, ... It takes $\frac{1}{2}$ of a cup of slinar tn make earh

: 三

It takes $\frac{1}{2}$ of a cup of sugar to make each batch of brownies.

Which graph represents the relationship between batches of brownies and cups of sugar?

Teacher Moves

Support for Future Learning

Students will have more chances to make sense of representations for relationships in Lesson 16.

Sample Responses

Image solution

Explanations vary. In this graph, batches of brownies is on the x-axis and cups of sugar is on the y-axis. So the point $\left(1, \frac{1}{2}\right)$ in this graph means that one batch of brownies will take $\frac{1}{2}$ of a cup of sugar.

16 Lesson 16: Applying...

10 A train is traveling from one

A train is traveling from one station to another at a constant speed of 50 miles per hour.

1. Complete the table with the amounts of time it takes the train to travel certain distances.
2. Create a graph that represents this relationship.

Teacher Moves

Support for Future Learning

Consider reviewing this question as a class before Practice Day 2 or offering individual support where needed during the practice day. Students will need to know how to make sense of representations for relationships on the End Assessment.

Sample Responses

1. $(2,100),(7,350),(3,150),(4,200)$
2. Image solution

6.7 Cool-Downs

Lesson Checklist

Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.

Here is a number line with three points: A, B, and C.
Enter the location of each point.

Teacher Moves

Support for Future Learning

Students will have more chances to develop their understanding of positive and negative locations on the number line in the upcoming lessons, particularly in Lessons 2 and 3.

把 Sample Responses

$$
\begin{aligned}
& A=-4 \\
& B=-1 \\
& C=3
\end{aligned}
$$

Drag point A to -4 .
Drag point B to $-\frac{5}{2}$.

Drag point C to the opposite of B.

Teacher Moves

Support for Future Learning

If students struggle with plotting negative numbers and opposites on the number line, plan to emphasize this when opportunities arise in Lesson 3, particularly when students create number lines with the numbers in Activity 2.

Sample Responses

3 Lesson 3：Comparing Numbers	
1．Write a	2．Order these
sentence	
comparing	numbers from greatest to
	亿三

1．Write a sentence comparing the two numbers shown on the number line．

Teacher Moves

Support for Future Learning

If students struggle to order the numbers from greatest to least，plan to emphasize this when opportunities arise in Lesson 4．For example，spend extra time during the warm－up discussing writing the numbers from greatest to least．

門 Sample Responses

1．Responses vary． 4.5 is greater than -2.7 because it is farther to the right on the number line．

2．From greatest to least： $3.1,2.5, \frac{1}{4},-2.5,-3$

Order these elevations from highest to lowest．

Teacher Moves

Support for Future Learning

If students struggle to order the elevations，consider reviewing this screen as a class before Practice Day 1 or offering individual support where needed during the practice day．Pay particular attention to Problems 11 and 12，which involve ordering elevations and temperatures．

Sample Responses

From highest elevation to lowest elevation：
－ 8 meters
－ 0 meters
－-5 meters
－-12 meters

Select all the true statements.
Use the sketch tool if it helps you with your thinking.

Teacher Moves

Support for Future Learning

If students struggle to select the true statements, consider reviewing this screen as a class before Practice Day 1 or offering individual support where needed during the practice day. Problems 2, 5, and 10 involve absolute value.

Sample Responses

$$
\begin{aligned}
& -4<-3 \\
& -4<|-3|
\end{aligned}
$$

6 Lesson 6: Graphing Inequalities
Here is a graph of the heights to

: 二

Here is a graph of the heights to ride a roller coaster.

1. Select the sign that matches this graph.

Teacher Moves

Support for Future Learning

Students will have more chances to develop their understanding of inequalities in the upcoming lessons, particularly Lessons 7 and 8.

Sample Responses

- You must be more than 48 inches to ride.
- $h>48$

Use the headline to write an inequality describing Jasmine's height, j, and Terrance's height,
t.

T] Teacher Moves

Support for Future Learning

Students will have more chances to develop their understanding of writing inequalities in the next lesson.

Sample Responses

$$
j>t
$$

Responses vary. 61 inches

Here is an inequality and its graph．
Select all of the numbers that are solutions．

Teacher Moves

Support for Future Learning

If students struggle to determine solutions to the inequality，consider reviewing this screen as a class before Practice Day 2 or offering individual support where needed during the practice day．

㨡 Sample Responses

－ 0
－ 5
－ 20

Drag the sand dollars to these locations：
$(-3,4)$
$(1,-2)$
$(-5,0)$

RT］Teacher Moves

Support for Future Learning

Students will have more chances in the upcoming lessons to develop their understanding of plotting points in the coordinate plane，particularly in Lessons 10 and 11.

䀒 Sample Responses

Image solution

Drag the points to these locations:
$(-10,4)$
$(-10,-4)$
($2,-6$)

Teacher Moves

Support for Future Learning

If students struggle with plotting points, plan to emphasize this when opportunities arise in Lesson 11. Consider spending extra time during the warm-up inviting students to choose a random point, then entering the coordinates of that point in the table to practice the connection between coordinates and points on the graph.

㨡 Sample Responses

Image solution

11 Lesson 11: Polygons in the Pla...

Enter coordinates for point D to complete the rectangle.

Teacher Moves

Support for Future Learning
If students struggle to determine the missing coordinate pair or the length, consider reviewing this screen as a class before Practice Day 2 or offering individual support where needed during the practice day.

門 Sample Responses

Coordinates: $(-2,5)$
Length: 8 units

12 Lesson 12: The Coordinate PI...

The table below shows some times困

The table below shows some times and temperatures for one day in Decatur, Illinois.

1. Plot the first four points.
2. Enter a temperature in the table for 4:00 a.m. and plot a point to represent it.

Teacher Moves

Support for Future Learning If students struggle with interpreting points in context, consider making time to explicitly revisit these ideas. Some opportunities include spending extra time on the "Interpret It" task of Practice Day 2.

艮 Sample Responses

1. Image solution
2. Points vary. (The x-coordinate must be 4.)

6.8 Cool-Downs

Lesson Checklist

\square Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.
\square Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.

眲 Sample Responses

Image solution

2 Lesson 2: Visualizing Data Wit...
This dot plot shows the ages of
:

This dot plot shows the ages of students in a dance class.
Based on the dot plot, do you agree with each of the following statements?

1. There are 7 students in the class.

Teacher Moves

Support for Future Learning

Students will have more chances to develop their understanding of interpreting dot plots in Lessons 3 and 4.

把 Sample Responses

1. Disagree
2. Agree

3 Lesson 3: Creating Dot Plots

Teacher Moves

Support for Future Learning

Consider reviewing this cool-down as a class before Practice Day 1 or offering individual support where needed during the practice day.

Students will have many more opportunities to analyze dot plots, but this is the last time students will be formally asked to create a dot plot by hand in this section of lessons.

雨 Sample Responses

Image solution

4 Lesson 4：Comparing Dot Plots Which dot plot has a center at 3 and the smallest spread？

Which dot plot has a center at 3 and the smallest spread？

Teacher Moves

Support for Future Learning
Students will have more chances to develop their understanding of center and spread throughout the unit．

团 Sample Responses
Image solution

This histogram shows the minimum wages of all 50 states in 2020.

How many states have a minimum hourly wage of at least $\$ 12$ ？

Teacher Moves

Support for Future Learning

If students struggle，plan to emphasize this when opportunities arise in Lesson 6，particularly as students are making sense of the two histograms in Activity 1.

畈 Sample Responses

7 states

6 Lesson 6：Creating Histograms

Teacher Moves

Support for Future Learning

If students struggle，consider reviewing this cool－down as a class before Practice Day 1 or offering individual support where needed during the practice day．This is the last lesson that focuses explicitly on either interpreting or creating histograms．

眜 Sample Responses

Image solution

Here is how many cookies Aditi ate for snack one week.

Re] Teacher Moves

Support for Future Learning

Students will have more chances to develop their understanding of the mean in Lesson 8.

T Sample Responses

4 cookies

8 Lesson 8: Sum of the Deviations
These dot plots show the number of :二

These dot plots show the number of text messages sent by different students over 6 days.

Whose data set has a mean of 6 ?

P] Teacher Moves

Support for Future Learning

If students struggle, consider reviewing this screen as a class before the quiz or offering individual support where needed during Practice Day 1.

讯 Sample Responses

Polina

Explanations vary.

- The sum of the absolute deviations on the left of 6 is 4 for Polina's data. The sum of the absolute deviations on the right of 6 is also 4 for Polina's data, so the mean of her data is 6 .
- If I find the sums of the distances from 6 for Rishi's data, I get 14 for the left sum and 6 for the right sum. Since these aren't equal, the mean of Rishi's data isn't 6 .

9 Lesson 9: Mean Absolute Devi...

The dot plot shows the number of text messages Deven sent every day for 5 days.

Calculate the MAD of this data.

Reacher Moves

Support for Future Learning

If students struggle, consider spending extra time during Activity 1 in Lesson 10, where students calculate the MAD of a data set.
Students will need to understand how to calculate mean average deviation on the End Assessment.

Sample Responses

1.6 text messages

Here is data for the top 10 salaries for actresses and actors in 2020.

1. What does the mean of the first data set tell you about the actresses?

Teacher Moves

Support for Future Learning

If students struggle, consider reviewing this cool-down as a class before Practice Day 2 and offering individual support where needed during the practice day.

四 Sample Responses

1. Responses vary. The mean tells us that the average salary of the top-earning actresses in Hollywood in 2020 was $\$ 25.4$ million.
2. The MAD for the actors is larger. The MAD tells us that the salaries for those actors are more spread out.

10 students shared the age of their family's pet.
What is the median age of these students' pets?
Make a dot plot if it helps you with your thinking.

P] Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize this when opportunities arise in Lessons 13 and 14.

畈 Sample Responses

6 years

12 Lesson 12: Comparing Measu...

Ricardo got the following scores on his five class assignments:
87, 90, 0, 95, 100.

1. Which statement is true about this data set?

Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize this when opportunities arise in Lesson 16, where students consider which measure of center to use to compare two data sets.

四 Sample Responses

1. The median is greater than the mean.
2. Responses and explanations vary.

- Median because Ricardo did really well on 4 of his 5 assignments, so reporting the median makes more sense.
- Mean because otherwise the assignment that Ricardo did badly on won't really be included.

Here is a data set with 7 points.

Determine the values of Q1 and Q3.
Use the sketch tool if it helps with your thinking.

Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize this when opportunities arise in Lesson 14, particularly in Activity 2 where students create a box plot from data.

䀦 Sample Responses

Q1: 20
Q3: 27

14 Lesson 14: Box Plots, IQR, an...

Inola took the bus to school most days in January.
She wrote down how many minutes it took to get to school each day and made a box plot.

For this data, what is the:

P] Teacher Moves

Support for Future Learning

If students struggle, plan to emphasize how to determine the median, IQR, and range from a box plot when opportunities arise in Lesson 15. Consider spending extra time during the warm-up reviewing how to determine each of these statistics.

眲 Sample Responses

Median: 30 minutes
IQR: 15 minutes
Range: 25 minutes

15 Lesson 15: Comparing Box PI...

These box plots represent scores for Dreamworks movies and Pixar movies.

Select all the true statements.

Teacher Moves

Support for Future Learning

If students struggle, consider reviewing this screen as a class before Practice Day 2 or offering individual support where needed during the practice day. Students will need to be able to compare two data sets shown as box plots on the End Assessment.

㨡 Sample Responses

- The median Dreamworks movie has a score of 73 .
- About half of Pixar movies have a score of 95 or higher.

Select one question below and record your response.

Teacher Moves

Support for Future Learning
If students struggle, consider reviewing this cool-down as a class before Practice Day 2 and offering individual support where needed during the practice day.

㨡 Sample Responses

Responses vary.

Amplify. For more information visit amplify.com

