Amplify Desmos Math NEW YORK

Amplify Desmos Math NEW YORK

Grade 7

Assessment Sampler

About Amplify

Amplify is dedicated to collaborating with educators to create learning experiences that are rigorous and riveting for all students. Amplify creates K-12 core and supplemental curriculum, assessment, and intervention programs for today's students. A pioneer in $\mathrm{K}-12$ education since 2000, Amplify is leading the way in next-generation curriculum and assessment. All of our programs provide teachers with powerful tools that help them understand and respond to the needs of every student.

Amplify Desmos Math is based on the Illustrative Mathematics (IM) curriculum. IM 6-8 Math was originally developed by Open Up Resources and authored by Illustrative Mathematics, and is © 2017-2019 Open Up Resources. Additional adaptations and updates to IM 6-8 Math are © 2019 Illustrative Mathematics. IM 9-12 Math is © 2019 Illustrative Mathematics. IM 6-8 Math and IM 9-12 are licensed under the Creative Commons Attribution 4.0 International license (CC BY 4.0). Additional modifications contained in Amplify Desmos Math are © 2020 Amplify Education, Inc. and its licensors. Amplify is not affiliated with the Illustrative Mathematics organization.

Desmos ${ }^{\circledR}$ is a registered trademark of Desmos, Inc.
English Learners Success Forum is a fiscally sponsored project of the New Venture Fund (NVF), a 501(c)(3) public charity.

Universal Design for Learning Guidelines and framework are developed by the Center for Applied Special Technology. © 2018 CAST.

The Effective Mathematics Teaching Practices are developed by NCTM in Principles to Actions: Ensuring mathematical success for all. © 2014 NCTM.

Notice and Wonder and I Notice/I Wonder are trademarks of NCTM and the Math Forum.

No part of this publication may be reproduced or distributed in its original form, or stored in a database or retrieval system, without the prior written consent of Amplify Education, Inc., except for the classroom use of the worksheets included for students in some lessons.

Cover illustration by Caroline Hadilaksono.
Copyright by Amplify Education, Inc. 55 Washington Street, Suite 800, Brooklyn, NY 11201 www.amplify.com

Table of Contents

Assessment Overview

Unit Assessments | Including Pre-Unit Checks, Sub-Unit Quizzes, and End-of-Unit Assessments.
Unit 1 Scale Drawings ... P3

Unit 4 Proportional Relationships and Percentages P87

Unit 6 Expressions, Equations, and Inequalities P P152
Unit 7 Angles, Triangles, and Prisms
Unit 8 Probability and Sampling P204
Exit Tickets | Including Exit Tickets from all lessons in every unit.

Amplify Desmos Math New York program resources

Student bundle includes:

NY Student Edition, multivolume, consumable

NY Digital Experience (English and Spanish), featuring:

- Interactive Student Activity Screens
- Enriched feedback
- Collaboration tools

Teacher bundle includes:

NY Teacher Edition, multivolume, spiral-bound

NY Digital Experience (English and Spanish), featuring:

- Facilitation and progress monitoring tools
- Presentation Screens
- Instructional supports
- Assessment

Extra Practice and Assessment Blackline Masters

Program architecture

Course

Unit

Note: The number of sub-units and lessons vary from unit to unit; this depiction shows the general structure of a unit.

Lesson

Warm-up

Activity 1
(1) 15 min

으ํํำ ํํำ กำำกำ

Activity 2

© 15 min
으ํํํํํำํํํำํํํ

Synthesis
(C) 5 min

Exit Ticket

(1) 5 min
\circ

Practice
(ㄱ) 5 min
ㅇํํํํํํำํํํำกำ
-
Note: The number of activities and timing vary from lesson to lesson; this depiction shows the general structure of a lesson.

Key:	
\bigcirc Independent	ㅇํํ Small Groups
ํํํ Pairs	คํำกำ Whole Class

Our robust assessments drive learning and inform instruction.

A variety of performance data in Amplify Desmos Math New York provides evidence of student learning, while helping students bolster their skills and understanding.

Throughout lessons, units, and the entire program, you'll find summative and formative assessments meant to provide insights into students' conceptual understandings. Student learning is never a surprise at the end of a unit-with Amplify Desmos Math New York, understanding is made continually visible.

Course-level assessments

Our beginning-of-year digital diagnostic tool measures what students know and how they think, providing teachers with targeted, actionable insights and instructional guidance. These assessments identify areas to target for students who need additional support and opportunities to extend for students who would benefit from more challenge.

- mCLASS beginning-of-year diagnostic
screener: This tool measures the critical skills and concepts aligned to standards that are predictive of future math success. Innovative problem types reveal the processes required for math reasoning and the problem-solving strategies that go beyond the conceptual and procedural knowledge of grade-level math. They also help teachers identify students at risk for math difficulty (including difficulties related to dyscalculia) and provide detailed information about what students know and in which areas they need support. This diagnostic is in the process of being fully validated through thirdparty research studies conducted by WestEd.
- Ongoing interim assessments: These pregenerated and assignment-ready practice sets review critical moments in instruction. Teachers can create their own assessments and practice sets through the online item bank.

c.

D.

2. This graph shows the cost in dollars, C, of w pounds of blueberries.

The relationship is proportional.
Select all of the true statements.
$\square 1$ pound of blueberries costs $\$ 2.75$.
$\square 2.75$ pounds of blueberries cost $\$ 1$.
$\square 5$ pounds of blueberries cost $\$ 15.50$.12 pounds of blueberries cost $\$ 33$.
\square The point $(3,9)$ is on the graphed line.

Digital and print assessment examples

Problem 2

(

Unit-level assessments

Our embedded unit assessments offer key insights into students' conceptual understanding of math. These assessments provide regular, actionable information about how students are thinking about and processing math, with both auto-scoring and in-depth rubrics that help teachers anticipate and respond to students' learning needs.

- Pre-unit check: Each unit begins with a check to determine student proficiency with prerequisite skills needed for success in the upcoming unit. This check is agnostic to the standards covered in the following unit and serves not as a deficit-based acknowledgement of what students do not know, but rather as an affirmation of the knowledge and skills with which they come in.
- Sub-unit quizzes: Student understanding never comes as an end-of-unit surprise with regular sub-unit quizzes. In these checks, students are assessed on a subset of conceptual understandings from the unit, with rubrics that help illuminate where students are and insight into what supports they need to get where they need to go.
- End-of-Unit Assessment: Students engage with rigorous grade-level mathematics through a variety of formats and tasks in the End-of-Unit Assessment. A combination of autoscored and rubric-scored items provide deep conceptual insight.

Lesson-level assessments

Amplify Desmos Math New York lessons are centered around sense-making and in-the-moment feedback. Daily moments of assessment provide valuable evidence of learning for both the teacher and student.

- Exit Tickets: Each lesson has an Exit Ticket focused on one of the key concepts in the lesson. Exit Tickets are carefully designed to minimize the time they take to complete while maximizing the insight the teacher receives on a daily basis in order to attend to student needs during the following class.
- Enriched feedback: We harness the power of digital math and graphing tools to show students the meaning of their thinking in context.

Enriched feedback motivates students and engages them in the learning process.
Student Screen Preview

Rather than telling a student if their paint ratio is right or wrong, we mix the colors for them.

Rather than telling a student if their slope is correct, we use it to land a plane.

Reporting tools monitor progress and provide insight into learning.

Amplify Desmos Math New York provides teachers and administrators with unified reporting and insights so that educators have visibility into what students know about grade-level math-and can plan instruction accordingly for the whole class, small groups, and individual students.

Our reports show proficiency and growth by domain, cluster, standard, and priority concept using performance data from unit assessments, then highlight areas of potential student need to allow teachers to modify their instruction and target differentiated support.

The program also includes reports on student usage, performance on benchmark assessments, school and district data, and information for caregivers. Our team will partner with you to meet the specific data and reporting needs of New York City Public Schools.

At-a-glance views of unitlevel assessment results inform instructional planning, and you can also drill down to item-level analysis.

Our standards report allows you to monitor proficiency at the class and individual student levels.

GRADE 7

Amplify Desmos Math NEW YORK

Assessment

Sampler

This section includes all unit-level assessments from Amplify Desmos Math New York for Units 1-8.

- Pre-unit Readiness Checks are designed to help teachers see which concepts and skills from previous units and grades need to be bolstered in order for students to be successful.
- Sub-unit Quizzes are formal measures of what students know and can do for the lessons that immediately precede the quiz.
- End-of-Unit Assessments are formal measures of what students know and can do for all the lessons in the unit, with an emphasis on the critical concepts and skills of the unit.
\qquad

1. On the grid to the right, draw a bigger or smaller version of figure A.

2. A recipe for one loaf of bread uses 2 cups of flour, 12 tablespoons of water, and 1 teaspoon of salt. Complete the table to show the quantities needed to make multiple loaves of bread.

Number of Loaves	Flour (cups)	Water (tbsp.)	Salt (tsp.)
1	2	12	1
2	4		
\ldots	\ldots	\ldots	\ldots
4		48	

3. Farah drank 3 liters of water yesterday. Rebecca drank $\frac{3}{4}$ as much water as Farah. Valeria drank twice as much water as Rebecca.

Order the amount of water drunk by each person from least to greatest. Then explain your thinking.

Order	Name
1 (least)	
2	
3 (greatest)	

Unit 7.1, Readiness Check

Name \qquad
4. Find the area of figure A.

Each small square represents 1 square unit.

Explain or show your thinking.

5. What do you know about different units?

Order these from smallest distance (1) to largest distance (5).
1 kilometer: \qquad
1 centimeter: \qquad
1 inch: \qquad
1 meter: \qquad
1 foot: \qquad
6. Did you know that marine biologists use Wiffle balls in photos to measure corals and other objects?

This measurement is called a Wiffle.
Complete the table of inches and Wiffles.

Distance in Wiffles	Distance in Inches
2	7
	21
3	

1. The position and size may vary, but the shape must match.

2.

Number of Loaves	Flour (cups)	Water (tbsp.)	Salt (tsp.)
1	2	12	1
2	4	24	2
\ldots	\ldots	\ldots	\ldots
4	8	48	4

3.

Order	Name
1 (least)	Rebecca
2	Farah
3 (greatest)	Valeria

Explanations vary. $\frac{3}{4}$ is less than 1 whole, so Rebecca drank less than Farah. $\frac{3}{4} \cdot 2=1.5$, which is more than 1 whole, so Valeria drank more than Farah.
4. 10 square units

Explanations vary. Figure A can be surrounded by a 4 -unit-by- 4 -unit square with two triangles removed. Those triangles have areas of 4 square units and 2 square units. The area of figure A is 10 square units since $16-4-2=10$.
5. 1 kilometer: $\mathbf{5}$

1 centimeter: 1
1 inch: 2
1 meter: 4
1 foot: 3
6.

Distance in Wiffles	Distance in Inches
2	7
6	21
3	10.5

Unit 7.1, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problems 1 and 2 before Lesson 3
- Problem 3 before Lesson 4
- Problem 4 before Lesson 5
- Problem 5 before Lesson 6
- Problem 6 before Lesson 7

Problem 1

(Standards: 7.G.A.1, MP7)
This question is intended to surface what students already know about how distances and angles change when scaling a shape. Students are asked to draw a scaled copy of a figure by making use of the structure of the grid. This content first appears in Lesson 3, where students draw scaled copies of figures.

Suggested Next Steps: If students struggle . . .

- Consider inviting students to share out loud what they know about scaled drawings before Screen 3 of Lesson 3.

Problem 2

(Standard: 6.RP.A.3.A)
This question is intended to surface what students already know about scaling using a table.
This content first appears in Lesson 2, where students analyze proportional relationship tables.
Suggested Next Steps: If students struggle . . .

- Consider paying special attention to students' understanding as they engage in Lesson 2. If students are struggling with proportional relationships at the end of Lesson 2, consider reviewing tables like this one briefly before continuing with Lesson 3.

Problem 3

(Standards: 5.NF.B.5.B, MP3)

This question is intended to surface what students already know from Grade 5 about the impact of multiplying a quantity by a value less than or greater than 1 . Students construct a viable argument as they justify their ranked order choice. This content first appears in Lesson 4, where students consider the impact of scale factors greater than, equal to, or less than 1 on a figure.

Suggested Next Steps: If students struggle . . .

- Pay special attention to the Lesson 4 Warm-Up. Consider connecting language such as "twice as big" and "half the size" to scale factors in Lesson 4.

Unit 7.1, Readiness Check Summary

Problem 4

(Standards: 6.G.A.1, MP3, MP7)

This question is intended to surface different strategies students use to calculate the area of figures on a grid. Students were exposed to this content in Math 6. They use the structure of the grid to calculate the area of the figure, and construct a viable argument to explain their area calculations. This content first appears in Lesson 5, where students explore the impact of scaling figures on their areas.

Suggested Next Steps: If students struggle . . .

- Consider revisiting this Problem as a class before beginning Lesson 5. Use the snapshots tool to highlight students' strategies, such as decomposing and rearranging.

Problem 5

(Standard: 4.MD.A.1)
This question is intended to surface what students already know from Grade 4 about the relationships between different units. This content first appears in Lesson 6, where students first encounter the idea of scale.

Suggested Next Steps: If students struggle . . .

- Plan to create an anchor chart early in the unit and include this problem for students to use as they think about appropriate scales to use throughout this unit.

Problem 6

(Standard: 5.MD.A.1)
This question is intended to surface what students already know from Grade 5 about converting between different units. This content first appears in Lesson 7, where students use a scale to calculate actual and scaled distances.

Suggested Next Steps: If students struggle . . .

- Plan to review this problem before students engage in Activity 1 of Lesson 7.
\qquad

1. Here are pairs of figures, each with an original and a copy. Circle the pair of figures that show a copy that has a scale factor of less than 1.
A.

B.

C.

D.

2. Polygon $W X Y Z$ is a scaled copy of $A B C D$. The scale factor from $A B C D$ to $W X Y Z$ is 3 .

All lengths are measured in grid units.

Select all of the true statements about $W X Y Z$.
\square Segment $Y Z$ is 7 units long.
\square The scale factor from $W X Y Z$ to $A B C D$ is $\frac{1}{3}$.
\square If the area of $A B C D$ is 12 square units, then the area of $W X Y Z$ is 36 square units.
\square The distance between W and Y is three times the distance between A and C.
\square The ratio of $\frac{B C}{B A}$ is equivalent to the ratio of $\frac{X Y}{X W}$.

Figure F is a scaled copy of figure E.
3.1 Label each missing length so the side lengths of figure F are proportional to the side lengths of figure E.
3.2 In order to scale figure E to figure F, what scale factor should you use? \qquad
3.3 In order to scale figure F back to figure E, what scale factor should you use? \qquad Explain how you know.

\qquad
4.1 Are the side lengths in figure 1 proportional to the side lengths in figure 2? \qquad

Explain how you know.

4.2 Draw a scaled copy of figure 1 using a scale factor of $\frac{3}{2}$.

Rectangle S is 3 units by 5 units.
5.1 Draw a scaled copy of rectangle S with an area of 60 square units. Label each side length of the copy.
5.2 What is the scale factor between rectangle S and your copy? \qquad

Explain how you know.

1. B.

2. \checkmark The scale factor from $W X Y Z$ to $A B C D$ is $\frac{1}{3}$.
\checkmark The distance between W and Y is three times the distance between A and C.
\checkmark The ratio of $\frac{B C}{B A}$ is equivalent to the ratio of $\frac{X Y}{X W}$.
3.1

All lengths are measured in grid units.

3.2 Scale factor: 4

3.3 Scale factor: $\frac{1}{4}$. Explanations vary.

- The scale factor is $\frac{1}{4}$ because if you multiply each side of figure F by $\frac{1}{4}$, you get the side lengths of figure E.
- The ratio of any side length in figure E to the same side length in figure F is $\frac{1}{4}$. This is the scale factor you use to scale figure F back to figure E.
4.1 No, Explanations vary.
- Even though the width of Figure 2 is half the width of Figure 1, its height is not half. Therefore, the side lengths of the figures are not proportional.
- The side lengths of the figures are not proportional because they do not have equivalent ratios. For example, the widths form a ratio of $\frac{8}{4}=2$, but the heights form a ratio of $\frac{4}{3}$, which is not equal to 2 .
4.2

5.1

5.2 Scale factor: 2

Explanations vary. All of the lengths of the scaled copy are twice the lengths of the original figure. For example, the height of the original figure is 3 units, while the height of the scaled copy is $3 \cdot 2=6$ units.

- Consider revisiting Practice Day 1: Practice Problems, choosing one or two problems to look at based on assessment results.

to the work students did in Lesson 2: Scaling Robots and Lesson 3: Make It Scale.
In this problem, students compare lengths and areas in an original figure and a scaled copy. This problem corresponds most directly

Problem 2

- Consider revisiting Lesson 4, Activity 1, Screen 4.
 Consider asking students to describe the effect on Suggested Next Steps: If students struggle .

most directly to the work students did in Lesson 4: Scale Factor Challenges. structure of the grid to determine which set of figures are scaled copies with a scale factor less than 1 . This problem corresponds In this problem, students determine how scale factors less than 1 affect distances in scaled copies. Students make use of the (Standards: 7.G.A.1, MP7) โ ШวโqO.d

L'カ‘		L- $¢$	G ' Z	S 't ' C^{\prime} ' '	smelqodd
$\forall^{\prime} \mathrm{V}^{\prime} \forall^{\prime} \mathrm{d}^{\prime}{ }^{\text {d }}$	Z'*'d'd'L	$\forall{ }^{\prime} \mathrm{d}^{\prime}{ }^{\text {c }}$	9* ${ }^{\prime}{ }^{\prime}{ }^{\prime}$	L**V'L	prepueis

o!̣qny pue Kıewuns :z!no ‘r'z t!un

- Consider revisiting Lesson 3, Activity 2, Screen 7.
understand and communicate why Figure 2 is not a scaled copy of Figure 1
- Math Language Development Consider using the mathematical language routine Critique, Correct, Clarify to help students
Suggested Next Steps: If students struggle
corresponds most directly to the work students did in Lesson 1: Scaling Machines and Lesson 3: Make It Scale. precision as they use precise mathematical language to justify why the side lengths in two figures are not proportional. This problem In this problem, students determine if the side lengths in two figures are proportional, and they draw scaled copies. Students attend to

(Standards: 7.G.A.1, 7.RP.A.2.A, MP6)

 - Consider revisiting Lesson 4, Activity 1, Screens 3 and 4.asking them how the scale factor between figure E and figure F relates to the scale factor between figure F and figure E.

- Consider asking students which side measurements should be used to determine a scale factor for the two figures. Consider

2: Scaling Robots and Lesson 4: Scale Factor Challenges.
defend their calculations for the scale factor of two figures. This problem corresponds most directly to the work students did in Lesson scaled copy. Students are asked to explain their thinking, thus attending to precision as they use precise mathematical language to
In this problem, students calculate missing lengths in a scaled copy and determine the scale factor between an original figure and a
 Problem 3
Unit 7.1, Quiz: Summary and Rubric

рие S ə Suggested Next Steps: If students struggle .
determined. This problem corresponds most directly to the work students did in Lesson 5: Tiles.
In this problem, students connect scaled copies and areas. They construct a viable argument to explain the scale factor they

Problem 5
Unit 7.1, Quiz: Summary and Rubric

7dumə ł0u p！	＇səગ！̣૫ગ џәәдоэ әшоs ц！！м รəэฺ๐чэ ఛэәィоэи！ әлощ ло OM1 －รəэ！๐чว ъэәлоэи！К｜ио	 	әио рие sәэ！очэ †эәдоэ әәцчц ‘รəэ！ฺч๐ ¡эәлиои！ou pue 	$\frac{M X}{X X}$ \cdot • pue \forall иәәмłəq әЈиеъs！̣ M иәәмұәq әоиеъs！p әЧц $\frac{\varepsilon}{\mathrm{L}}$ s！$a \supset G \forall$ or ZXXM 	\forall＇で \forall＇dy＇L 9＇9＇ダL ドジロ＇L	Z
＇7duәңне ł0u p！	„¿I e sey イdoo pəleos ЧЈ！ЧМ॥ ио！！ рәләмsие әлец кеш səュก！！ұиәпィ6ио Омł ЧІ！М әЈІоч० әЧł －әэ！๐чэ ұэәдоэи｜			＇әО！очэ ґәәлиО	$\begin{gathered} \angle d W \\ \left\llcorner\cdot \forall^{\prime} \cdot \angle\right. \end{gathered}$	\downarrow
0	\downarrow	乙	ε	t		
	6u！uu！ 6 өg	6uıdoןəләа	6u！чэeorddv		paepuels	melqord

＇7duәə ł0u p！ 0	 Gu！puełsıәрй рәң！u！！ smous youm	－шәчд би！р！！！p до реәъsи！sцłбиә әр！s би！puodsәноэ әчд рәдэедqпs әлец кеш 9 әц！им очм słиәрпłs＂ $6 \cdot \exists$ ＇sıодә ұиеэ！！！uб！！ पł！̣ Бu！puełsıəpun әұәјdmoou！sMous yı0M	＂¿əsn noर pınoys uI，，ио！ңsәпb әчұ рәәәмsие әлец кеш（диәјел！пьә ло）$\frac{\hbar}{\text { L }}$ әшоs पұ！М ‘‘u！̣puełsıəpun jenłdәouos sMous yом		でキ＇dy＇L L••・ロ‘L	て＇દ
＇7dmente ł0u p！		＇sцұбиә ＇sıодә ұиеэ！！！uம！s पІ！м ‘＇6u！pueıs．ıәри әұәןdmoэu！sMoчs yдоМ	‘sцłбиә ‘sıoдə әшоs чұ！м＇6upueұs．əәpun jenłdәouos sMoчs yоом	¡эәлоэ pue әұәןdmo๐ s！ч1ом	\forall＇dप्d＇L $\vdash^{*} \forall^{*} \underbrace{\circ} L$	L＇E
0	1	Z	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	6u！pəəวхヨ／6u！əəәW	paepuets	шә¢q0．d

ๆдшәәе łou p！	доұоен әјеоs Gu！puezsıәри рәң！ш！！ smous yגоM		noर pinoys rołvef әегs әцұ рәдәмsие әлец кеш т әұ！им очм słиәрпнs＂б・ヨ ＇s．0лә әшоs цұ！м＇6u！pueұs．əәрй ןenłdәouoo sмочs yдом	 әдпம！u！पұбиә әр！s әшеs әр！s イие до о！ұел әчц＇6・ヨ －ио！̣еиеןdxә ұэәиоэ Чџ！М ләмsuе џәәдоว	9dW でギdપ્વ＇L ト・ジツ＇L	$\varepsilon \cdot \varepsilon$
0	\downarrow	τ	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	6u！pəəэxヨ／6u！ŋəәW	prepuets	melqosd

o！̣qny pue Kıewuns ：z！no ‘r＇L t！un

＇7dməュне tou p！o	＇se！doo рәјет Киммедр Ł๐ 6u！puełsıәри рәџ！ш！！ smoys yıom	งлодә ұиeэ！！！uи！ पІ！М Бu！̣puełsıәрй 	－रdos рәəess e до Би！̣иеәш әчł риеъяләрии кеш $\frac{Z}{\varepsilon}$ иецд дәцłо лодоел әјетs е чд！м イdoэ рәјетs е мелр очм słuәpnłs＂ 6 ＇\exists งлодә әшоs ןenłdəәuoэ sMOYs yı0M	－би！̣мир ұэәлоэ	ト＇＊＊＇レ	でも
＇7dшәみе łou P！	－sцıбuә әp！s ןeuo！̣ıodod бu！イ！！！uәp！ 6u！puełsıәрй рәң！ш！！ smous yom	－ədeys әшеs әчł әлец sə！doэ рәјеэs децд әд！ибоэәл кеш ＂әшеs әчł уоо Кәч7 ‘sə人，＂， әұ！им очм słиәрпнs＂6・ヨ －sлодә ұиет！！ииן！s पł！ 	дәцłо чэеә чд！м опен диедsиo е әлец децд sио！sиәш！р әлец sә！dоо рәןеэs ұецд әz！uбоэәд Кеш＂sədeys ұиәәдц！р әле Кәчд ‘оN，， әұ！мм очм sұиәрпłs＂ $6 \cdot \exists$ ＇sıoддә әшоs чұ！м＇6u！̣риеұsıәрии ןenłdәouos sMous yдоM	＇ןeuo！nodod дои әле saınб！！әчł ！о sцłбuә әр！s ә૫7 ‘әдоґәдәц」 нец s！乙 әпnб！\ddagger но чдр！м әчł чБпочъ иәлヨ＂ 6 ・ヨ ON • Чџ！М әэ！очэ ұәәци๐	$\begin{gathered} 9 \mathrm{~d} W \\ \forall^{\prime} Z^{\prime} \forall^{\prime} \cdot Y^{\prime} L \\ 1 \cdot \forall^{\prime} פ^{\prime} L \end{gathered}$	レ＇t
0	\downarrow	乙	ε	t		
	6u！uu！ 6 ¢g	6u！doןəләа	6u！чэeordd \forall	6u！pəəэxヨ／6u！̣əәW	prepuets	məq0ıd

oụqny pue Kıemuns ：zino＇r•2 t！un

＇7dməュte łOU P！	＇se！̣dos рәןеэs би！медр „๐ 6u！̣puełsıәpun рә！！$\quad!$ smous yоом	sıодә ұиеэ！ยииб！s Ч！！М Бu！puełsıәрй әұәןdwoכu！SMOYs צ10М	† Ћq рә！！d！\downarrow пи S әбиецэә до еәле әцд рәэ！ұои әлец кеш st！un 	－stıun $9=乙 \cdot \varepsilon$ s！кооо рәјеэs әл イдоэ рәјеэs әчд ло －ио！̣еиеןdхә ұэәлоэ ЧІІМ дәмsuе џәәиоэ		Z＇G
＇7dməュte łOU P！ 0	－seare pue sə！doo рәןеэs иәәмұәq 6u！puełsıәрй рә！！ш！！ sMOUS yIOM		 S әןиедวәд до еәл әцд рәэ！ŋои әлец кеш sł！й 0Z Kq stıun ZI syłбuә әр！s पұ！м әןКиеұכәд е медр очм słиәрпts＂ $6 \cdot \exists$ งлоддә әшоs पұ！м ‘＇6u！̣риеұsıәрй ןenłdәэuos smous yдом	－биммедр ұәәлоэ	$\begin{aligned} & 9 \cdot G^{\prime} \cdot \angle \\ & V^{\prime} \forall^{\prime} \angle \end{aligned}$	L＇G
0	\downarrow	乙	ε	t		
	6u！uu！ $\mathrm{Seg}^{\text {a }}$	6u！doןəләа	6u！${ }^{\text {ceeadd }} \boldsymbol{\nabla}$	6u！̣әәэхヨ／6u！̣әәw	paepueis	merqord

Unit 7.1, End-Unit Assessment: Form A

1. Circle all the scaled copies of rectangle A.

13.5 m

2. Polygon $E F G H$ is a scaled copy of polygon $A B C D$.

Select all of the true statements.

Segment $E F$ is twice as long as segment $A B$.
Segment $F G$ is twice as long as segment $C D$.The scale factor from $E F G H$ to $A B C D$ is 2 .The length of segment $A D$ is 8 units.The area of $E F G H$ is twice the area of $A B C D$.
3. A scale drawing of a rectangular park is 5 inches wide and 7 inches long.

The actual park is 280 yards long.
What is its area?
A. 35 square yards
B. 200 square yards
C. 1400 square yards
D. 56000 square yards

\qquad
4. Draw a scaled copy of the polygon using a scale factor of $\frac{1}{2}$.

Roberto is drawing a map of his town.
5.1 He wants to include a school and a hospital, which are 10 kilometers apart.

What should the distance between the school and the hospital be on the map?
5.2 On the map, the school and the playground are 12 centimeters apart.

What is the actual distance between the school and the playground?

Unit 7.1, End-Unit Assessment: Form A

Name

A trail runner gets a new map of her favorite mountain.

- Her old map has a scale of 1 cm to 100 m .
- Her new map has a scale of 1 cm to 500 m .
6.1 If the maps represent the same area, are the distances on the new map longer, shorter, or the same size as the old map?
A. Longer
B. Shorter
C. The same size

Explain your thinking.
6.2 She ran a trail that was 40 cm long on her old map.

How long is this trail on her new map?

Explain your thinking.
\qquad

Reflection: Select a question to answer.
\square What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.

Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

Answer Key

1.

2. $\quad \checkmark$ Segment $E F$ is twice as long as segment $A B$.
\checkmark The length of segment $A D$ is 8 units.
3. D. 56000 square yards
4. The position of the scaled copy may vary, but size and shape must match.

5.18 centimeters
$5.2 \quad 15$ kilometers (or equivalent)
6.1 B. Shorter

Explanations vary. If each centimeter on the new map represents five times the distance on the old map, the new map is much smaller. Each distance on the new map would be $\frac{1}{5}$ of the distance on the old map.
6.28 centimeters

Explanations vary. Using the scales of both maps, a trail that is 40 centimeters long on her old map would be equivalent to an actual distance of 4000 meters or 4 kilometers, since $40 \cdot 100=4000$. On her new map, this same distance would be 8 centimeters because $\frac{4000}{500}=8$.
‘G นәәдэs ‘乙 К

affects distances in scaled copies．This problem corresponds most directly to the work students did in Lessons 2－5．
In this problem，students demonstrate an understanding of how scaling impacts the area of a scaled copy and how scale factor
（レ・ジロ＇L ：pıepuets）
Problem 2
 Suggested Next Steps：If students struggle ．．．
helps students build toward developing proportional reasoning in the next unit．
a scaled copy．This problem corresponds most directly to the work students did in Lesson 2：Scaling Robots．The work in this problem
In this problem，students demonstrate an understanding of the relationship between lengths in a figure and corresponding lengths in
（レ＇マ゙૭＇L ：pıepuets）
Problem 1

ε		smejqodd
9＊9＊＇L	ト・ナ゚ツ＇L	paepuets

\forall usos ：o！̣qny pue Kıemuns łuəussess \forall puヨ ‘＇＇L ！！un

． This problem corresponds most directly to the work students did in Lesson 3：Make It Scale．
In this problem，students draw a scaled copy of a figure on a grid，using the structure of the grid to draw an accurate polygon．
（LdW ‘レ＇シ＇⿹＇L ：spıepuets）
п Шวโqoud
－Consider revisiting Lesson 5，Synthesis，Screen 10.
Consider asking them how scaling impacts the area of a scaled copy．
－Consider asking students to determine the scale factor from the actual park to the map and the area of the given map．

work students did in Lesson 5：Tiles．
In this problem，students calculate the area of a scale drawing when given two images．This problem corresponds most directly to the

Problem 3

 －әоиеъธ！̣ рәд！sәр әцł
－Consider asking students how the given scales compare in size．Consider asking them how the scales can be used to determine

corresponds most directly to the work students did in Lesson 8：Scaling States and Lesson 9：Scaling Buildings． In this problem，students calculate distances on a scale drawing when given a drawing with a different scale．Students are asked to
explain their thinking，thus attending to precision as they defend their responses using mathematical precision．This problem

9 Шวโq0．】」

directly to the work students did in Lesson 7：Will It Fit？
scaled drawing of a map of town to determine various distances between locations on the map．This problem corresponds most In this problem，students use scales and scale drawings to calculate actual and scaled distances．Students contextualize by using a
（ZdW＇レ＇\forall＇⿹＇L ：spıepuełS） Problem 5

7dme»е tou p！a	－sәэ！！чч ฉәәиоэ ә૫ł Ч！！м səэ！！чэ ґэәдоэи！әдош 10 ОМұ Słગəəəs łuәpnłS ＇səэ！๐чэ ફәәиоэи！ słəəઇəs К｜uo ұuәpnis	әә！！очэ ұэәлоэи！әио 	－әэ！！очэ ґэәлиои！әио Ł0 પł૦q słગəəəs łuәpnłS Kue łכәəə łou səop 	－sṭun 8 s！$đ \forall$ ұuәшКәs јо чґбиә әцц －$g V$ ұuәшбәs se 反uop se Kue łэəəə łou səop 	ト＇＊゙ツ＇L	Z
7dməине łOU P！	－səэ！！чч џәәлоэ әшоs ч！！м до омł słગəəәs ұиәрпłS 	－әэ！очэ ఛәәиоэи！әио pue səэ！очว ફәәцоว әЧł Ł๐ ॥е słəəəəs ұuәpnłs －әэ！очэ ŋәәдиоэи！ue səpn｜эu！ os｜e łnq səગ！o૫ว ло әио słכəəəs ұиәрnłs	＇səэ！๐ч๐ łou səop pue səэ！๐чэ до әио słэəəəs 孔иәрпłs	Kue łכәəə łou səop 	ト＇＊゙ツ＇L	\downarrow
0	\downarrow	Z	ε	t		
	6u！uu！${ }^{\text {eg }}$	6u！doןəләа	6u！uэeosddv	6u！pəəэxヨ／6u！！əәW	рлериетS	шәq0，d

\forall שxos ：

łou P！	＇suo！suəu！p słכセגłqns ıo sppe łuəpnłS －К 	－uo！̣ənpar es！i pue 0 әz！̣ибоэәィ дои Kеш ұиәрпłS әјеэs дәцłо Кие цұ！м К Коэ рәןeos е sмедр ұuәpnłS ＇әреэs ұиәдәщ！р е чи！м би！медр әןeos e ठu！̣npodaд „о бu！pueısıәpun э！！seq sәłедъииошәр ұиәрпłя	－əq pınous Кәчъ иецъ дәбио t！un I squəmbəs fo lied e se цวns ‘əఎnб！！ә૫ł Ł0 suo！suəu！p u！sıoддә ıоu！u seч łuәpnłs	 K｜｜nłssəoэns łuəphłs	$\begin{gathered} \angle d W \\ 1 \cdot \forall \cdot V^{\circ} L \end{gathered}$	†
＇7dmә»е łou p！	би！̣мер әןеэs әЧł łО еәле әцł рәғеןпэןг әлец Кеш ұиәрпłS spıeर əıenbs SE ә૫ł Кq би！̣медр әЧł ґо еәле әЧł рә！！！！！！｜nш әлец Кеш ұиәрпłS spıeर әдеnbs 007 I ‘еәле ә૫ł Łо реәłకu！ әчł punoł әлец Кеш ұиәрпłऽ spıeर əuenbs 00Z •			spıek əuenbs 000 9S	$\begin{aligned} & 9 \cdot G^{\prime} O^{\circ} \angle \\ & \therefore \cdot V^{\prime} \cdot \angle \end{aligned}$	ε
0	\downarrow	τ	ε	七		
	6u！uu！ 6 өg	6u！doןəләа	6u！	6u！pəəอxヨ／6u！ұәәW	paepuels	melqodd

＇7dшәұе łou P！	－uolıeue．dxә ue łnouł！M 10 uo！̣еиеןdxә ђэәлоэи！Ч！！м әэ！ฺั๐ ұวәдоэи｜	＇səjeos deu әцł иәәмұәq d！̣suo！̣еəәд ұечұ ио！џеиеןdхә ＇uo！̣еиеןdxә әдәןdmoэu！ 	＇sәןеэs dew иәәмұәq d！̣suo！̣еןəд ә૫ł 」о бu！̣puełsıəрй ןenłdəouoง sə⿰еэ！！unumoo ұnq uo！̣sənb әцł poołsぇәрй әлец łои Кеш ұиәрпłя －иопұеиеןdxә ＇uo！̣еue｜dxә u！̣ SME｜f лои！ш ч！！м әэ！очэ ґэәдоэ	＇иоп！еиелdxә әұәןdшoง pue ןеэ！ 6 оן e səpnןou！pue uo！！sənb әцł sıəмsue K｜｜nłssəวэns ұuәpnłs	$\begin{gathered} 9 \mathrm{dW} \\ \qquad \cdot \forall \cdot \vartheta^{\prime} \angle \end{gathered}$	－＇9
＇7dшәұе łou p！o	sбби！медр әןеэs pue səjeos əsn ot юо әэиәр！лә чеәм	－әכuełs！p Кןэәдоэ әлец Кеш ұиәриłS sдәəәшо！！ 8 ＂0 •	 әцł рә！！dde ло рәұәлdıәци！ К｜†әәлиоэи！ұuәpnts sぇəəəшо！！ 9 ＂6	sıəұәшо！！ Y S •	$\begin{gathered} Z d W \\ \vdash \cdot \forall \cdot G \div \angle \end{gathered}$	Z＇G
＇7dməュе tou p！o	sббu！медр әןеэs pue səleos əsn of моч бu！̣puełsıəpun „о әэиәр！лә чеәМ	 К｜ұэәдоо әлец Кеш ұиәрпłS sдəңəس！！uəว SZ＇I • sдəłəய！！	＇யy t of wo s to әןeos e әцł рә！！dde до рәұәлdıә孔и！ sдəłəய！！！uəつ S＇ZI	sıəłəu！！uəつ 8 •	$\begin{aligned} & Z d W \\ & \qquad \cdot \forall \cdot פ ‘ L \end{aligned}$	L－G
0	\downarrow	乙	ε	t		
	6u！̣uu！${ }^{\text {eg }}$	6u！̣оןəләа	6u！	бu！pəәәххヨ／6u！ұәәW	prepueis	шә¢о＾d

\forall שxos ：

łou p！	дәмsǔ ґэәдоэи －6u！yu！̣łן ןeuo！phodod Ło əsn Kue moys łou səop łuəpnłS － 亿u！̣uoseaд ןeuo！ipododd бu！̣puełsıәрй „о әЈиәр！лә уеәм	－s．sołoet әןеэs до ио！ฺяəли！әлןоли！ децд sәуедs！u әןd！ן！nu әреш әлец кеш ұиәрпıS －uoḷְeuejdxə 8 sıәмsue ұuәpnis ＇sıодәә ұиеэ！！！uи！！ łnq бu！ е SMOYS yоом	иәчм рә！！d！！！пш ло） әлец Кеш ұиәрпłS ＇łеЧł גәҰе биодм səo6 ұnq ‘sıəұәш 000 七 $\ddagger 0$ әЈиеłక！ ןепұэе әцł Би！̣ри！！ и！sıодә э！！әшч！！ие әлец Кеш ұиәрпł， •sıддə pue סu！puełsıəpun ןenıdәәuoo smoцs yдом	$\cdot 8=\frac{00 \mathrm{~S}}{000 t}$ әsneэəq sıəłәш！！иขว 8 әq pınom әЈuełs！p әшes s！̣ł ‘dew мәu ләч ио＇sдәұәш 000 t ә૫ł иеәш ріпом dew pıo дəч uo 6иo sıəŋəய！！ ！！eג \forall＇sдәəəய！		て＇9
0	1	Z	ε	t		
	6u！	6u！̣doןəлəの	6u！	6u！pəəวхヨ／6u！łəәW	paepuets	سə¢q0．d

\forall usos ：o！̣qny pue Kıemuns łuəussess \forall puヨ ‘＇＇L ！！un
\qquad

1. An airplane flew across the Pacific Ocean at a constant speed. The table shows the amount of time and the distance traveled.

Complete the table with the missing values.

Time (hours)	Distance Traveled (miles)
2	1650
3	
6	

2. Blueberries cost $\$ 4.00$ per pound.
2.1 How many pounds of blueberries can you buy for $\$ 1.00$?
2.2 How many pounds of blueberries can you buy for $\$ 13.00$?

Explain or show your thinking.
3. Antwon makes hot chocolate by mixing 2 cups of milk with 5 tablespoons of cocoa.
3.1 How many tablespoons of cocoa would that be for 1 cup of milk?
3.2 How many cups of milk would that be for 1 tablespoon of cocoa?
4. A length of 4 yards is equal to 12 feet. 10 yards is equal to how many feet?
5. The ratio of number of hippos to number of crocodiles at a watering hole is $4: 3$. How many crocodiles would there be if there were 24 hippos?

Unit 7.2, Readiness Check

6. The table shows some coordinate pairs.

Plot these points in the coordinate plane.

x	y
4	3
2	6
5	0

Name \qquad
7. If you mix red and white paint in different ratios, you will get different shades of pink paint. If the ratios are equivalent, you will get the same shade of pink.

Sydney and Maria each mix their own batch of pink paint. Are their batches the same shade of pink?

Maria's Mix

Explain your thinking.
1.

Time (hours)	Distance Traveled (miles)
2	1100
3	1650
6	3300

$2.1 \quad 0.25$ pounds (or equivalent)
2.2 3.25 pounds (or equivalent)

Explanations vary. For every \$1, you can buy 0.25 pounds of blueberries. So for $\$ 13$, you can buy 3.25 pounds of blueberries (since $13 \cdot 0.25=3.25$).
3.1 2.5 tablespoons of cocoa (or equivalent)
3.2 0.4 cups of milk (or equivalent)
4. 30 feet
5. 18 crocodiles
6.

7. No.

Explanations vary. They are different shades of pink. Sydney's paint is redder than Maria's paint. A unit rate of red paint per cup of white paint can be found for each.

For Maria's mixture, there are 5 cups of red paint for every 3 cups of white paint, which means that there are $\frac{5}{3}$ cups of red paint for every cup of white paint.

For Sydney's mixture, there are 7 cups of red paint for every 4 cups of white paint, or $\frac{7}{4}$ cups of red paint for every cup of white paint. Since the two unit rates are different, the two shades of pink are different.

Unit 7.2, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problems 5 and 7 before Lesson 1
- Problems 1 and 2 before Lesson 2
- Problem 4 before Lesson 3
- Problem 3 before Lesson 6
- Problem 6 before Lesson 8

Problem 1

(Standards: 6.RP.A.1, 6.RP.A.3.A)
This question is intended to surface what students already know from Math 6 about using tables to solve problems involving scaling or calculating a unit rate. This content first appears in Lesson 2:
Balloon Float.
Suggested Next Steps: If students struggle . . .

- Consider pausing for a longer discussion of the Warm-Up in Lesson 2. As time allows, invite students to use the sketch tool to add a pair of values to the table. During Lessons 1 and 2, monitor for students who need more practice writing equivalent ratios and discuss scaling proportional relationships in the example on Screen 4 of Lesson 2, if needed.

Problem 2

(Standards: 6.RP.A.2, 6.RP.A.3.B, MP6)
This question is intended to surface what students already know from Math 6 about calculating and using unit rates. Students are asked to explain their thinking, thus attending to precision as they use precise mathematical language to defend their calculations. For both questions, students may use a double number line diagram or a table to help them with their thinking. This foundational knowledge may support students in the unit. This content first appears in Lesson 2: Balloon Float.

Suggested Next Steps: If students struggle . . .

- Consider revisiting techniques for finding both unit rates in the proportional relationship at the beginning of Lesson 6: Two and Two.
- Consider using representations like double number lines or tables of equivalent ratios to visualize these strategies.

Unit 7.2, Readiness Check Summary

Problem 3

(Standards: 6.RP.A.2, 6.RP.A.3.B)
This question is intended to surface what students already know from Math 6 about unit rates, particularly calculating two different unit rates for one relationship. Students might use discrete diagrams, double number line diagrams, or tables to help them with their thinking. This content first appears in Lesson 1: Paint.

Suggested Next Steps: If students struggle . . .

- Plan to ask students about the meaning of both unit rates in a proportional relationship during the lesson synthesis in Lesson 6: Two and Two.
- Consider using representations like double number lines or tables of equivalent ratios to visualize these strategies.

Problem 4

(Standards: 6.RP.A.1, 6.RP.A.3)
This question is intended to surface what students already know about determining equivalent ratios. Because the context is familiar, students may already know that there are 3 feet in a yard and multiply 10 by the unit rate 3 to find out how many feet there are in 10 yards. This content first appears in Lesson 1: Paint.

Suggested Next Steps: If students struggle . . .

- Plan to spend time reviewing how to use representations such as double number lines and tables of equivalent ratios when opportunities arise throughout the unit. The discussion on Screen 3 of Lesson 1 is the first opportunity to highlight students' strategies for finding equivalent ratios.

Problem 5

(Standards: 6.RP.A.1, 6.RP.A.3)
This question is intended to surface what students already know about equivalent ratios and ratio notation (e.g., " $a: b$ "). This content first appears in Lesson 1: Paint.

Suggested Next Steps:

- If most students do well with this item, it may be possible to abbreviate the discussion on Screen 3 of Lesson 1 since students already have an understanding of equivalent ratios.
- If most students struggle with this item, consider revisiting this question after Lesson 2. Working with these proportional relationships should support students in applying equivalent ratios to this context.

Unit 7.2, Readiness Check Summary

Problem 6

(Standard: 6.RP.A.3.A)
This question is intended to surface what students already know about graphing points in the coordinate plane. This content first appears in Lesson 8: DinoPops.

Suggested Next Steps: If students struggle . . .

- Consider taking extra time during Screens 3 and 4 of Lesson 8 to discuss the meaning of the movable point's coordinates in the coordinate plane. Another opportunity to connect points in a coordinate plane with their coordinates appears in Lesson 9. Monitor student work on Screen 3 for students who need more practice working with graphing coordinates.

Problem 7

(Standards: 6.RP.A.2, 6.RP.A.3, MP3)
This question is intended to surface student strategies for explaining whether or not two ratios are equivalent. Students are asked to communicate their reasoning concerning why or why not the shades of paint are the same. This content first appears in Lesson 1: Paint.

Suggested Next Steps:

- Success with this type of problem may be a good indication that students are ready for the Math 7 material on ratios and proportional relationships.
- If most students struggle with this item, plan to spend time reviewing representations of sets of equivalent ratios as opportunities arise, particularly in Lesson 1.
\qquad

1. Which table represents a proportional relationship?
A.

x	y
2	3
4	5
10	11

B.

x	y
2	4
4	5
10	6

C.

x	y
2	4
4	16
10	100

D.

x	y
2	3
4	6
10	15

2. Select all of the proportional relationships.
$y=2.5 x$A turtle walks for 5 minutes, then stops for a minute.
A turtle starts at the starting line $y=\frac{2.5}{x}$$y=\frac{5}{2} x$ and walks at a constant rate.
3. Jordan is mixing water and flour to make tortillas. The number of cups of water, w, that are needed for f cups of flour is described by the equation $w=0.75 f$.

| 3.1 | What does 0.75 tell
 us in this situation? | 3.2 | How many cups of
 water are needed to
 mix with 4 cups of
 flour? | 3.3How many cups of
 flour are needed to
 mix with 1 cup of
 water? |
| :--- | :--- | :--- | :--- | :--- | :--- |

\qquad
4. When you mix two colors of paint in equivalent ratios, the result is always the same color.

	Complete the table so that there is a proportional relationship between cups of blue paint and cups of red paint.			What is the constant of proportionality? What does it represent in	4.3	Write an equation for the relationship between the number of cups of blue paint, b, and
	Blue Paint (cups)	Red Paint (cups)				of red paint, r.
	1					
	2	3				
		7				
	10					

5. Titus took 30 minutes to walk 2 miles at a constant rate. Let d represent the distance Titus walks in miles after t minutes.

6. D

x	y
2	3
4	6
10	15

2. $\checkmark y=2.5 x$
\checkmark A turtle starts at the starting line and walks at a constant rate.
$\checkmark y=\frac{5}{2} x$
3.1 In this situation, 0.75 means that 0.75 cups of water must be mixed with each cup of flour.
3.23 cups of water (or equivalent)
$3.3 \quad \frac{4}{3}$ cups of flour (or equivalent)
4.1

Blue Paint (cups)	Red Paint (cups)
1	$\frac{3}{2}$
2	3
$\frac{14}{3}$	7
10	15

4.2 Constant of proportionality: $\frac{3}{2}$ or $\frac{2}{3}$

Explanations vary.
The constant of proportionality represents the number of cups of red paint needed for each cup of blue paint.
or
The constant of proportionality represents the number of cups of blue paint needed for each cup of red paint.
$4.3 \quad r=\frac{3}{2} b$ or $b=\frac{2}{3} r$
5.1

1.	15
2.	$\frac{1}{15}$

5.2 Responses vary. The constants of proportionality are reciprocals.
5.3

1.	$t=15 d$
2.	$d=\frac{1}{15} t$

$5.4 \quad 112.5$ minutes

Explanations vary. I multiplied 7.5 miles by the constant of proportionality, 15 , to get $7.5 \times 15=112.5$ minutes.
 understand and communicate why the second choice does not represent a proportional relationship．
－Math Language Development Consider using the mathematical language routine Critique．Correct Clarify to help student Suggested Next Steps：If students struggle
This problem assesses students＇ability to determine whether two quantities are in a proportional relationship from an equation or
situation．This problem corresponds most directly to the work students did in Lesson 7：All Kinds of Equations．
（ジZ＇甘＇dપ્વ＇L ：psepuets）
Problem 2

did in Lesson 2：Balloon Float． make use of the structure of tables to identify proportional relationships．This problem corresponds most directly to the work students This problem assesses students＇ability to determine whether two quantities are in a proportional relationship from a table．Students
（LdW＇\forall＇Z＇V＇dप＇Z＇L ：spıepuełS）
โ Шวโqoud

乙＇เ	swejqodd
	papueis

Unit 7．2，Quiz：Summary and Rubric

Problem 5

Suggested Next Steps: If students struggle ...

Problem 4
This problem assesses students' ability to represent and solve problems using equations of proportional relationships. As students
explain the meaning of the constant of proportionality within context, they reason abstractly and quantitatively. This problem
corresponds most directly to the work students did in Lesson 5 : Snapshots.
Suggested Next Steps: If students struggle . . .

- Consider asking students how they could use the equation to determine the cups of water needed to mix with 4 cups of flour.
- Consider revisiting Lesson 5 , Activity 2 , Screen 5 .
(ZdW 'O'Z'V'dप'L'L :spıepuełs) Problem 3
Unit 7.2, Quiz: Summary and Rubric

＇7duәə łou p！0	sd！̣чsuo！̣е｜әи ןuo！paodod до 6u！puezsıәрй рәң！u！！smoчs צגом	әәґем до sdno pue ınolf fo sdno чдоя әэиәддәд дои sәор ұиәрпнS＂ $6 \cdot \exists$ sıoдд ＇6u！puezs．әрии әұәןdmoэu！ smous yıom	¡ұәәиол u！səяqеиел әцł рәsıəләд әлец Кеш＂،әұем ıо dnо цэеә чұ！м рәх！ш әq 子snu גno৷ fo sdno SL 0 децł sueәш S $\angle{ }^{\circ} 0$ ，әт！им очм sұиәрпłs＇6・ヨ ＇sıoдə әшоs чұ！м＇6u！̣риеұsләрй ןenłdəouos sMOपs y10M	дnolf fo dno чэеә 4！！м рәх！ш әq 子snu дәғем до sdno SL 0 ұецł sueәш SL＇0 ＇ио！ұепұ！s s！чł и৷＇${ }^{\prime}$＇ヨ －иоппеиеןdхә ұәәдоэ	ZdW ＇O＇で \forall＇dy＇L	L＇E
łou p！0	＇sәэ！очэ ұэәлоэ әшоs әлош ло OM1 ‘ऽəગ！๐ч๐ ъэәлиоэи！К｜ио	－әэฺ๐чэ ¡эәมиоэu！әuо pue OMł 10 әио	suo！penı！s pue sd！！чsuo！ңeןəג ןeиo！̣ıodoıd иәәмұәq ио！џวәииоэ әцъ риеъsıәрип дои кеш ＂әғед ұиедsиоо е ұе sуाем рие $\forall „$, łכəəəs łоu ор очм słuәphłs әuо pue səગ！очэ łәәлоэ IIV ＇səગ！очэ łэәлиоэи！ou pue 	$x_{\frac{\mathrm{Z}}{\mathrm{~S}}}=\kappa \bullet$ －әłед ұuełsuoo еұе sуাем рие \nvdash suełs əlunt $\forall \bullet$ $x \mathrm{~S} \cdot Z=K$ ＇səગ！○ч๐ ఛวәมоэи！ou pue 	＊＇で＊＇dy＇	乙
＇7dme»！e ł0u p！ 0	мод чэеә лоィ К ұәб оұ ұецґ рәэ！пои әлец кеш －әэ！๐чэ ґэәлоэи｜			－әэ！๐чэ ґэәноэ	＊＇で甘＇dy＇	\downarrow
0	\downarrow	Z	ε	t		
	6u！uu！̣бəg	6u！doןəләа	6u！${ }^{\text {a }}$（	бu！pəәэхヨ／бu！ŋәәw	prepuers	

＇7dməュе łou p！	＇sıәмsue ұэәлоэи！К｜ио	＇sıəмsue ұэәдлоэи！омұ pue дәмsue łәәлоэ әио	ләммие ұэәдоэи！әио pue sıəmsue łכəдı0 OMI	（ұиәјел！̣nbə ィо）SI • （ұиәןел！̣nbə ло）$\frac{\varepsilon}{\square ป}$ （ұиәןєм！̣ивә ло）$\frac{Z}{\varepsilon}$ ‘sдәмsue łэәлоэ II甘	タ＇Z゙甘＇dप゙	L＇t
־qdmәџе łou p！	－sd！̣usuo！̣民｜әג ןeuo！ би！̣ィ৷os ı0 6u！puełsıәри рәң！ш！ smous yıom	งлодәә ұиеэ！！！uи！！ पІ！M 6u！̣puełsıәpun 	גnolf to sdno fo peәısu！ ләдем ло sdno доィ рәл／оs әлец Кеш sdno SL＇0 －sıouә әшоs чІ！м＇6u！̣puełsıәрй ןenłdəouos sMOपs yооM	（ұиәјем！̣nbə 10）यnoly fo sdno $\frac{\varepsilon}{\hbar}$ ‘əәмsư ұэәдоう		$\varepsilon^{\prime \prime} \varepsilon$
－qdшәџе ¡OU p！	－sd！̣usuo！̣e｜әג ןeuo！urodod бu！̣ィ๐os $\ddagger 0$ 6u！puełsıәри рәң！ш！！ sMOYS yגOM	งлодәә ұиет！！！uб！s पІ！М бu！pueısıәpun әұәןduoou！sMoчs yגоМ	дәұем ло sdnэ до реәдзи！ ınol to sdno ıод рәлоs әлец кеш sdno ع＇ऽ әт！им очм słиәрпня＂ 6 ＇ヨ －sıoдә ןenłdәouos smous yооM	（ұиәјел！̣nbə ィо）дәұем ґо sdnっ є ‘әмsuе ғәәдоэ	O＇で＊＇dy	て＇દ
0	1	Z	ε	t		
	6u！̣u！ 6 өg	6u！doןəләа	6u！upeorddv	бu！pəəэxヨ／бu！łəәW	prepuets	шəqodd

o！̣qny pue Kıemuns ：z！no＇Z＇L t！un

＇qduәュе łou p！	＇sd！̣usuo！̣e｜əג ןuo！̣ıodod 6u！puełsıәрии рәң！ய！！ sMous yom	－әпи ио！ұепbə s！чł sәyeu zu！ed paд „o sdno ع pue ұu！ed əп।q Łо sdno 乙 ұецъ рәэ！ои әлец кеш I $+q=\ell$ әтим очм słиәрпнs＂＂ $6 \cdot \exists$ ＇sıодә ұиеэ！！！uம！ पұ！М Бu！puełsıәpun 	әчұ рәsıәләд әлец кеш $\mu \frac{\mathrm{Z}}{\mathrm{E}}=q 10 \cdot q \frac{\varepsilon}{\mathrm{Z}}=\imath$ әт！им очм słиәрпнs＂＂ 6 －s．дддә әшоs पұ！м＇6u！̣puełs．əәрй jenłdәouos sMoчs yıом	（ұиәјел！̣nbə ィо） $\begin{aligned} l \frac{\varepsilon}{Z} & =q \\ 10 \cdot q \frac{Z}{\varepsilon} & =1 \end{aligned}$ дәMSU® ұЈәлоう	tdW ＇○＇Z＇ジdy＇L	$\varepsilon ゙ \downarrow$
－qduәュе ¡ou p！0	＇sd！̣usuo！̣e｜əג ןeuolphodod 6u！puełsıәрии рәң！u！！ smoys yиом	ъu！ed paл pue zu！ed әпıq ıо sdno иәәмґәq d！чsио！ұерә ұиедsиоэ е әэиәдәдд ınq suo！ңeue，dxә pue sluełsuos әґедпоэеи！чłоя әлец очм słиәрпts＂ $6 \cdot \exists$ ＇sıодә ұиеэ！！！uи！ प！！М Бu！puełsıәpun 	－ио！џеиеддхә әұел ие әлец ¥nq Кұ！！еио！додолд ғо ұиеґsиоэ әцł әшеи кוдכәноэ очм słиәрпts＂6＂ヨ ＇иопиеиелдхә әұелпээе ие әлец łпq әчъ әшеи Кирәноои！ очм słиәрпіs＂ $6 \cdot \exists$ ＇s．ouә әшоs чł！м ‘＇6upuełs．əәpun ןenłdәэuos smoys yıом	‘үи！ед рәл ло dnэ чэеә ıон рәрәәи ұи！ed әпıа Ł0 sdno ィо ıəqunu әЧł （диәјел！̣прә ло）$\frac{\varepsilon}{Z}$ łu！ed әпıя „о dno чэеә ィоґ рәрәәи ұu！ed рад ло sdnэ ィо ıәqunи әцъ fо диедsиол әчд＂6＂ヨ （ұиәреп！пbə ィо）$\frac{Z}{\varepsilon}$ －ио！̣еиеןdxә ұәәлоэ 	$\mathrm{a}^{\prime} \mathrm{Z}^{\prime} \forall^{\prime} \mathrm{d}^{\prime}{ }^{\prime} L$	でも
0	\downarrow	乙	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	6u！pəəวхヨ／6u！łəəW	prepuets	шәqо入d

‘quшәне łOU P！	‘sd！̣suo！̣e｜əд ןeuoulpodod доł suo！̣enbe би！！！uм „о бu！puełsıәрй рәң！u！！sMoपs צגоM	＇sıодә ұиет！！ии！！s पł！м 6u！̣puełsıәpun sMOYS צ，	‘ұхәғиоэ әцł и！sәяє！иел әчұ рәsıәләд әлец кеш $p \frac{\mathrm{SI}}{\mathrm{I}}=7 \text { pue } 7 \mathrm{SI}=p$ әұ！им очм słuәрпнs＂ $6 \cdot \exists$ ＇sıoдə fentideouos sMOYS y10M	（łиәјем！пивә ィо） $\frac{\mathrm{SI}}{\mathrm{I}}=p$ $p \mathrm{SI}=7 \bullet$ －ио！̣еиедdxә ұәәдоэ 	tdW ＇○＇て＇V＇dy＇L	$\varepsilon^{\prime} \mathrm{G}$
＇7dшәне łou p！	•eиo！додол әле sə！！ш pue səұпи！u кеs очм sұиәрпts＂ $6 \cdot \exists$ －sd！̣иsuo！̀ерәд ןuo！phodod бu！̣uәsəədәд „о 6u！puełsıәрии рәң！ш！！SMOYS צ10M	＇sıодә ұиеэ！！！uи！s әұ키쑤oวu！ SMOYS YスOM	＇suo！ұеиедdxә дэәноэи！ләчдо әрпјои！pие＇еио！ноdoдd әле sә！！ய ләd әұпu！̣ рие әұпи！ш ıәd sə！！ш ұецъ кез очм sұиәрпіs＂ 6 ・ヨ ＇sıодә ןenłdəouoo sMOYS yдоM	＇s／eooud！эәд әле Кұ！！euo！podoıd ıо słиедsuo әчц＂6’ヨ －ио！ңеиеןdхә ұәәиоэ	Q＇でV＇dપ゙＇L	Z＇G
＇7dшәџе łou p！	－ио！дd！иээәр әчъ шод sәпјел әцł pәsn әлец кеш 乙 рие 0є әұим очм stuәрпнs＂ 6 ・ヨ ＇sd！̣usuo！̣е｜әд ןeuolunodod „о 6u！pueısıәри рәң！u！！smoчs צдом	＇sıодә ұиеэ！！！uи！ प！！М Бu！puełsıәpun әұㅋㅣㄸoㅇ！ sMOYS צ10M	дәцдо цэеә ло sјеэолd！гәд әле sıәмsи甘＂ 6 ・ヨ ＇sıoдә әшоs чł！м＇Кu！puełs．əәpun jenłdәouos sMOYs y10M	（ұひәןел！̣nbə 10）$\frac{S I}{I}$ （ұиәјел！̣nbə ィо）SI • ＇sıәмsuе ұәәиоう	Q＇で甘＇dy＇L	L－G
0	1	乙	ε	t		
	6u！uu！ 6 eg	6u！doןəләа	6u！чэeosddv	6u！pəəэxヨ／6u！̣әәW	рлериетS	melqodd

＇7duәине ł0u p！	－sd！̣usuo！̣е｜әд ןeuolphodod „о 6u！puezsıәрии рәң！\quad ！！smous y⿺辶	＇sıодә ұиеэ！！！ubis पІ！М Бu！puełsıәpun әұәןdسoэи！ sMOUS YスOM	－uo！zent！s s！ч7 и！иוןכәдоо ио！ұепbә ұәәноэи！sпо！ィәл п！әчъ pәsn очм słuәpnts＂ $6 \cdot \exists$ －иопеиелдхә әұелпээе ие әлец ұпq（лонә ıодеןпэeo of әпр）səənu！u әцұ әдептэет К｜дэәиоэи！ очм sұuәрnts＂ $6 \cdot \exists$ ＇sıouə әшоs чұו̣＇6u！puełs．əәpun ןenłdәouos sMoчs yооМ	－səұnu！u $S^{\prime} Z I I=S I \times S^{\circ} L$ ฉəБ Of＇SI＇K！！！euo！̣uodod fo łuełsuos ә૫ł Кq sə！！ S ＂\llcorner səұnu！u s＇ZLI －ио！̣еиеןdxә ұэәлоэ ЧІ！М ләмsue џәәлоЭ	O＇で＊＇dy＇L	$\boldsymbol{t}^{\text {® }}$
0	\downarrow	τ	ε	t		
	6u！uu！ 6 eg	6u！doıəләа	6u！чэeosdd \downarrow	6u！pəəэxヨ／6u！ұəәW	prepueıS	məqoud

o！ıqny pue Kıewuns ：z！̣กO＇$て$＇L t！un
\qquad

1. Which graph represents a proportional relationship?

2. This graph shows the cost in dollars, C, of w pounds of blueberries.

The relationship is proportional.
Select all of the true statements.1 pound of blueberries costs $\$ 2.75$.2. 75 pounds of blueberries cost $\$ 1$.5 pounds of blueberries cost $\$ 15.50$.12 pounds of blueberries cost $\$ 33$.The point $(3,9)$ is on the graphed line.

\qquad
3. Kadeem rode his bike at a constant speed. He rode 1 mile in 5 minutes.

Which equation represents the amount of time in minutes, t, that it took for him to ride a distance of d miles?
A. $\quad t=5 d$
B. $t=\frac{1}{5} d$
C. $t=d+4$
D. $t=d-4$
4. The two lines represent the amount of water filling over time in two tanks of the same size.

Which tank is filling more quickly?
A. Tank A
B. Tank B

Explain or show your thinking.
\qquad
5. The table shows the weight of 100 raspberries at a market.

Complete the table so that there is a proportional relationship between the number of raspberries and their weight.

Number of Raspberries	Weight (kg)
40	
100	0.40
300	

6. The equation $F=\frac{9}{5} C+32$ relates temperature in degrees Celsius, C, to degrees Fahrenheit, F.

Is there a proportional relationship between C and F ?

Explain or show your thinking.
\qquad
A recipe for chocolate chip cookies uses 3 tablespoons of cookie batter for every 2 tablespoons of chocolate chips.

The line represents the relationship between the amount of cookie batter and the amount of chocolate chips needed to make a batch of cookies according to the recipe. The point $(1,1.5)$ is on the line.
7.1 Label the axes appropriately.

7.2 Write an equation that represents the graphed line.

Use b for the number of tablespoons of cookie batter and c for the number of tablespoons of chocolate chips.
7.3 Explain what the point $(1,1.5)$ means in terms of this situation.

Reflection: Select a question and answer it below.
What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

Answer Key

1. C.

2. $\quad \checkmark 1$ pound of blueberries costs $\$ 2.75$. $\checkmark 12$ pounds of blueberries cost $\$ 33$.
3. A. $t=5 d$
4. A. Tank A

Explanations vary. The tank that is filling more quickly is represented by the steeper graph (i.e., Tank A is filling more quickly than Tank B). Alternatively, choose a time and see how much water is in the two tanks at that time.
5.

Number of Raspberries	Weight (kg)
40	0.16
100	0.40
300	1.2

6. No, the relationship is not proportional.

Explanations vary. At $C=0, F=32$. For a relationship to be proportional, when one variable is 0 , the other also needs to be 0 .
7.1

$7.2 b=1.5 c$ (or equivalent)
7.3 Explanations vary. The point $(1,1.5)$ indicates that the recipe works with 1 tablespoon of chocolate chips for every 1.5 tablespoons of cookie batter. This point gives a unit rate.
－Consider revisiting Lesson 9，Activity 2.

abstractly and quantitatively．This problem corresponds most directly to the work students did in Lesson 9：Gallon Challenge． rate to answer other questions about a situation．As students explain the meaning of the given point within context，they reason This problem assesses students＇understanding of how to determine a constant of proportionality from a graph and how to use that （ZdW＇a＇Z＇V＇dप＇L ：：spıepuełs） Problem 2 －Consider revisiting Lesson 8，Activity 2. understand and communicate which graphs are not proportional and why． －Math Language Development Consider using the mathematical language routine Critique，Correct，Clarify to help students Suggested Next Steps：If students struggle ．．．

This problem corresponds most directly to the work students did in Lesson 8：DinoPops．
This problem assesses students＇understanding of what a proportional relationship looks like when represented in a graph

Problem 1

ع＇L＇r＇L＇乙	でし＇$¢$	G＇\quad	9 ＇	smejqodd
$a^{\prime} \chi^{\prime} \forall^{\prime} \mathrm{d}^{\prime}{ }^{\prime}$	O＇で甘＇dy		$\forall{ }^{\prime} \chi^{\prime} \forall^{\prime} \mathrm{d}^{\prime}{ }^{\prime} L$	paepuets

Consider asking students to determine the constant of proportionality in the proportional relationship.

This problem assesses students' ability to work with a proportional relationship defined by a table. The problem corresponds most
directly to the work students did in Lesson 3: Sugary Drinks.
(a'z'V'dy'L :prepuets)

Problem 5

students did in Lesson 10: Three Turtles. construct a viable argument using the graph to support their answer choice. This problem corresponds most directly to the work This problem assesses students' ability to interpret the graph of a proportional relationship without numerical values. Students
(EdW 'a'z'V'dप'L :spıepuełS)
Problem 4 - Consider revisiting Lesson 10, Activity 2.
information to help determine which equation describes this proportional relationship.

- Consider asking students how many minutes would it take Kadeem to ride 2 miles. Consider asking them how they can use this Suggested Next Steps: If students struggle .
situation. This problem corresponds most directly to the work students did in Lesson 10: Three Turtles,
This problem assesses students' ability to model with mathematics, creating an equation for a proportional relationship from a
(Standards: 7.RP.A.2.C, MP4) Problem 3

- Consider revisiting Lesson 10, Activity 2, Screen 8. Choose one of the relationships to discuss as a class.
Consider asking students to explain how they know whether or not the relationship described is a proportional relationship

most directly to the work students did in Lesson 10: Three Turtles. the amount of one quantity given one unit of the other quantity, rather than the values stated in the prompt. This problem corresponds and quantitatively. This item is more challenging than the other items. The axes are not labeled, and the coordinates of the point tell

The problem assesses students' understanding of the relationship between the constant of proportionality and the graph of the
(ZdW ‘O'Z'甘'dy'L 'a'Z'V'dy'L :spxepuełS)
Problem 7
 Equations. to precision as they use clear mathematical language to communicate their reasoning concerning why or why not the given equation
represents a proportional relationship. This problem most directly corresponds to the work students did in Lesson 7: All Kinds of
This problem assesses students' ability to identify whether or not an equation represents a proportional relationship. Students attend
(9dW ' \forall 'Z'V'dप्d'L :spıepuełS)
Problem 6

7duәəұе łou p！0	＇sәэ！๐чэ ұэәлоэ әлош ло Омұ Słગəəəs ұนәрnłS －รәэ！̣чч 	－әэ！๐чэ ґэәлоэи！ әио рие səэ！очว ఛコәлоО әЧł ！о әио słวəəəs ұuәpn＋S	－әэ！๐чэ ґэәлоэи！ әио pue ‘＇รәэ！ฺч๐ ŁコәиоО әЧł ！о પłoq słગəઇəs łuəpnłS səop pue səэ！очจ әuo słગəəəs łuәpnłs	＇$\varepsilon \varepsilon \$ ~ 子$ soo sə！uәәqənןq Ło spunod ZL• ＇SL＇Z\＄ słsoo sə！uəqənıq fo punod I ＇səэ！！очэ ŋәәдиоэи！ Kue łəəəə 孔ou səop †0 ॥е słગəəəs łuәpnłS	ZdW ＇a＇z＇ジdy＇L	乙
＇7dməュte Ł0u p！	деәи！！әq 7 nu ұnq＇（0 ‘0）suluequoo чdeגб әцł моия Кеш әэ！очэ деәи！！uои әЧł łગəəə очм słuәpnłs －（0 ‘ 0 ）и！едиоо Kew łnq ‘גеәи！！s！d！̣suo！̣е｜әд ןeuo！̣＿odod e fo पde»б ә૫ł моиу Кеш sәэ！очэ леәи！！ 				Ө＇でӨ＇dપ゙	\downarrow
0	\downarrow	Z	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！uэeodddv	бu！pəəэxヨ／6u！ŋəәW	prepuets	mə¢q0ıd

7dmette Ł0u p！	＇uo！̣еueןdxә ue ұnoчұ！м 10 uo！̣еueןdxә 	－ydeı6 е чІ！м рәłuәsəдdəд sd！̣usuo！̣еןəય ןuo！puodoxd ィо 6u！puełsıәpun ןе！дед би！мочs ио！̣еuе．dхә чł！м дәмsuе ұәәдоэи －uo！̣eue，dxə әәәјdmoэи！чұ！м дәмsuе ұәәлоэ	－səłeג әЧł łO əsn әs！כəıdu！ 10 ఛэәлоэи｜ －uol！eue．dxә әұәрdயоっ ләмsue ұәәдоэи｜ －uol！eue｜dxə u！SME｜t doulu ЧІ！м дәмsǔ ұэәлоう	 әцł Кq рәґиәsәддәд s！К｜уэ！！nb әдош \forall yue」 ＇uo！̣еие．dxә әғәןdmoэ pue ןеэ！ е səpnןou！pue uо！！sәnb әцł sıәмsue K｜｜nıssəәวขns ұuәpn＋S	a＇z＇V＇dy＇L	t
7düдие łOU P！ 0	＇sбu！̣ueәu ،sәןqе！！eл долә әцł әреш әлец Кеш ұиәрпłS $\square-p=7$ ＇uo！̣enbə ұэәиоэ К॥едәиәб е 孔ou s！f！fnq ‘ənגł uo！̣enbə s！чł sәуеш səұnu！u s u！əן！u $t+p=7$ ＇sұхәұиоо ұецł уи！чł Кеш ло ‘әұnи！̣ш I u！sә！！ш s se uo！！d！uәsəр әчł peәлs！̣ әлец $p \frac{\mathrm{~S}}{\mathrm{I}}=7$			$p \mathrm{~S}=7 \bullet$	7 dW 	ε
0	\downarrow	Z	ε	†		
	6u！uu！ $\mathrm{C}^{\text {a }}$	6u！doןəләа	6u！	ถu！pəəวxヨ／6u！̣əəw	prepuets	məqodd

Ł0u p！o	до uо！̣еие｜dxә ұәәдоэи！ ц！！м дәмsuе ұэәдоэи		 ұецұ рәшиsse pue әןqе！иел е рәэ！нои ло＇ $2 \varepsilon \cdot 3 \frac{S}{6}=\Delta$ se uo！̣еnbə әцł реәл әлец Kew ןeuo！uodoad s！uo！̣enbə әЧł Кеs очм słuәpnłS＊ Ч！！М дәмsue łэәдоэи ＇uo！̣еuеןdxə u！SME｜f лои！	әq oł spәәu osן民 дәцłо иәчм ‘ןeuo！podod әq $\because \varepsilon \varepsilon=y^{\prime} 0=3 \nexists \forall$ ¡euo！ －uo！̣eue，dxe ןеэ！！oן e sәpn｜ou！pue uо！！ K｜｜nıssəoว	9dW ＇\forall＇Z＇シ＇dप्d＇L	9
7düдte łou p！0	－uo！ uo！！！ppe pəsn әлец кеш suexбоן！ 0 0才 $^{\prime} Z$ ұецł әұ！！м очм słuәpnłS＊ ןeuolphodod „о бu！̣puełsıәрun чеәм sмочs łuәpnts		－холә ио！џе！пэןэ ‘yłoq łou łnq sə！uəәqdseג 00ε ノO 0才 ฝəપ！！ Кџәәноэ ұиәриіS	（ұиәјел！！пbə ィо） ：so！μ дqdseג 00ε • （łиәןем！пивә ィо） sueגбоן！！9I＇0 ：sə！μ дqdse» 0才 †эәлоэ pue әұəઇdmoっ s！ฯィоМ	a＇でV＇dy＇L	S
0	\downarrow	τ	ε	t		
	6u！	6u！doןəләа	6u！		paepuets	melqodd

＇7duәəte ł0u p！	＇sбu！̣ueəu ،səવฉ！ue» ә૫ł би！зләләд чұ！м биоןе ‘әлоqе додә әцł әреш әлец Кеш ұиәрпіS $\mathrm{S} \cdot 0-\rho=q$ ＇uo！̣еnbə ұәәиоэ К｜｜едәиә6 е ұои s！＋！ ұnq ‘ənıł uo！̣enbə s！̣ł sәyеu ләңеq ә！үооэ pue sd！̣ү әґеןоэочэ јо uoodsəן耳еł І ұецł рәэ！！๐и әлец Кеш ұиәрпія $S^{\prime} I+\jmath=q$		‘ұхәұиоэ әцъ и！ səןqе！uел әцұ рәsıəләд әлец Кеш ұиәрпłя	（диәјел！！п $q \frac{\varepsilon}{z}=0 \bullet$ （ұиәјел！！пbə до） $\mathrm{sG}^{\prime} \mathrm{I}=q$ 。	O＇でV＇dy	でし
7dmerte łOU P！	－uo！̣еnұ！s әцł u！әдәм səןqеuฺィ әЧł łецм poolsıəpuns！ш әлеч кеш „əәџеq ә！эооэ pue „sd！̣० әұеןоэочэ ！o suoodsə｜qeł． иецł дәцłО sə！！！！uenb se səxe әЧł əәqе очм słuәpnłS	－4deı6 әцұ иo（S＇I＇L）łu！̣od Łəәuиoว of моч әдns Ł0и әдәм 10 ио！！！ent！s әчұ ґо Би！̣иәәш ә૫ł рәəәлdıәұu！s！̣ш дə૫ł！ә әлец Kеш s！̣е ןełuoz！̣оч ә૫ł ио „дәұеq ə！ч000 ıo suoodsə｜qeł．＂ ןəqе очм słuәpnłs		«（•dsqł）sd！uつ әұㅣоכ૦૫૭，，рәəәqе｜ әq pınous s！̣x ןełuoz！ıou ә૫ł рие ،‘（＇dsqł）дәұед pinous s！xe ןеэ！\downarrow ə＾əપц ＇səxе әцұ uo st！un 	a＇で甘＇dप्d＇L	－＇2
0	\downarrow	τ	ε	\dagger		
	6u！uu！ 6 өg	6uıdoןəләа	6u！	6u！pəəวxヨ／6u！ŋəəW	paepuets	melqodd

\forall mios ：

7dmełte łou p！	чде入б ә૫ł иo łu！̣od ә૫ł моч ठu！puełsıəpun „о әЈиәр！лә чеәМ	‘деәગ łои pue дәұед ә！чооэ of uo！̣民｜əл u！fu！od ә૫ł suo！！uәu əsuodsəy ＇sıодә ұиеэ！！！uи！ цł！M ‘бu！̣puełsıəpun ұnq రu！̣doןəләр e smoys uo！	－uo！̣еиеןdxә әцł u！ sł！un se цэns s！！ęəp łu！̣od әцł Łо би！̣иеәш ә૫ł səq！uэəəр К｜əృедnээァ ұиәрnłs ＇s．oдə әшоs पІ！М＇Кдәдsem pue бu！puełsıəpun ןеnłdəэиоэ ןедәиәб smoys uolteuejdxヨ	－әұед भ！un e səл！ ұ ұu！od S！५। גәџеq ә！чооо ！o suoodsə｜qеł S＇I Кдлл fo uoodsə｜qеł ［ səsn əd！̣ə」 әЧł łеЧł sәłеэ！pu！ （ G ＇I＇L）łu！od ə૫上 ＇łәәлоэ pue әłəઇduoo s！uo！łeue｜dxヨ		$\varepsilon \cdot L$
0	\downarrow	Z	ε	t		
	6u！uu！ $\mathrm{Seg}^{\text {g }}$	6u！doןəләа	6u！чэeosddv	6u！pəəэxヨ／6u！！əәW	paepuers	melqodd

\qquad
A ticket at a movie theater costs $\$ 9.25$.
1.1 What is the total cost for 20 tickets?
1.2 Write an equation to represent the relationship between the number of tickets purchased, n, and the total cost of the tickets, c.
1.3 How many tickets were purchased if the total cost of tickets was $\$ 240.50$? Explain your thinking.

Here are three squares.
2.1 Complete the table with information about each square.

Square	Side Length (in.)	Perimeter (in.)	Area (sq. in.)
D	3	12	9
E		20	
F	8		

2.2 Write an equation for the relationship between the perimeter of the square, P, and its side length, s.

2.3 Write an equation for the relationship between the area of the square, A, and its side length, s.
\qquad
3. Use any strategy to determine the area of this figure. Draw on the figure if it helps you with your thinking.

Explain your thinking.

4. One formula for the area of a triangle is $A=\frac{1}{2} \cdot b \cdot h$.

The variable b represents the base of the triangle and h represents its height. What is the area of a triangle with a base of 3 units and a height of 4 units?

5. The area of this shape is $A=4 \cdot 3^{2}$ square units.

What is another way to write the shape's area?
$\square 36$ square units
$\square 144$ square unitsNeither
Explain your thinking.
6. Estimate the area of this circle. Draw on the circle if it helps you with your thinking.

$1.1 \quad \$ 185$

$1.2 c=9.25 n$ (or equivalent)
1.3 26 tickets. Explanations vary.

- I wrote the equation $240.5=9.25 n$ because the total cost was $\$ 240.50$. Then, I solved to figure out the value of n.
- Because we multiplied the number of tickets by 9.25 to figure out the total cost, I divided 240.5 by 9.25 to go backwards and figure out how many tickets were bought.
2.1

Square	Side Length (in.)	Perimeter (in.)	Area (sq. in.)
D	3	12	9
E	5	20	25
F	8	32	64

2.2 $\quad P=4 s$ (or equivalent)
2.3 $A=s \cdot s$ (or equivalent)
3. 9 square centimeters. Explanations vary.

- I counted each of the whole number tiles and combined each of the half tiles to form wholes.
- I found the area of the large 3-by-4 rectangle and then subtracted the parts that weren't shaded in.

4. 6 square units
5. 36 square units. Explanations vary. This is another way of saying 4 copies of a 3 -by- 3 square. The area of each square is 9 square units, so the total area is $4 \cdot 9=36$ square units.
6. Responses and explanations vary.

- The area is less than 4 square units because the circle does not take up the entire 2 -by2 square.
- The area is more than 2 square units because each quarter of the circle takes up more than half of the unit square.

Unit 7.3, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problems 1 and 2 before Lesson 3
- Problem 3 before Lesson 5
- Problems 5 and 6 before Lesson 6
- Problem 4 before Lesson 7

Problem 1

(Standards: 6.EE.A.2.C, 7.RP.A.2.C, MP4)
These questions are intended to surface what students already know about writing and using equations of proportional relationships. Students model with mathematics when writing an equation to represent a situation. This content first appears in Lesson 3, where students generate and use the formula for the circumference of a circle.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this question before Lesson 3 and highlighting several different strategies for Problem 1.3, including one in which a student describes using the equation to find the number of tickets. If no student used that strategy, consider asking: How could you use the equation to help determine the number of tickets?

Problem 2

(Standards: 3.MD.C.5, 3.MD.D.8, 6.EE.C.9, MP4)
These questions are intended to surface what students already know about the concepts of area and perimeter. Students model with mathematics as they represent the relationships between the side length of a square and its perimeter and area using equations. The concept of perimeter first appears in Lesson 1. Area first appears in Lesson 5, where students estimate the areas of polygons.

Suggested Next Steps: If students struggle . . .

- Consider revisiting Problems 2.1 and 2.2 at the beginning of Lesson 3, and Problem 2.3 at the beginning of Lesson 5. Ask students to interpret each number and variable in the correct equations and justify their reasoning.

Unit 7.3, Readiness Check Summary

Problem 3

(Standards: 6.G.A.1, MP6)
This question is intended to surface what students already know about strategies for calculating the area of complex polygons. Students should be able to determine the area by counting whole and half tiles, decomposing and finding the area of each piece, or by surrounding the polygon with a larger rectangle and removing the area that is not shaded. Students attend to precision by being careful about specifying appropriate units of measure when explaining their thinking. This concept first appears in Lesson 5, where students estimate the areas of polygons.

Suggested Next Steps: If students struggle . . .

- Consider revisiting this problem at the beginning of Lesson 5 and highlighting several different successful strategies for determining the area.

Problem 4

(Standard: 6.EE.A.2.C)
This question is intended to surface what students already know about evaluating expressions with letters that stand for numbers and about calculating the area of a triangle. This concept first appears in Lesson 3, where students use the formula for the circumference of a circle and again in Lesson 7, where students use the formula for the area of a triangle to approximate the area of a circle.

Suggested Next Steps: If students struggle . . .

- Consider revisiting this problem at the beginning of Lesson 7 by presenting incorrect solutions and asking students what the person might have been thinking and to justify why their solution was incorrect.

Problem 5

(Standard: 6.EE.A.2.C)

This question is intended to surface what students already know about evaluating equations and order of operations, particularly with exponents. This concept first appears in Lesson 6, where students use the formula for the area of a circle.

Suggested Next Steps: If students struggle . . .

- Consider revisiting this problem at the beginning of Lesson 6, presenting incorrect solutions and asking students what the person might have been thinking and to justify why their solution was incorrect.

Unit 7.3, Readiness Check Summary

Problem 6

(Standard: 3.MD.C.6)
This question is intended to surface what students already know about estimating areas. This concept first appears in Lesson 5, where students estimate the area of shapes with curved edges. This concept will be explored in detail in Lesson 6.

Suggested Next Steps: If students struggle . . .

- Consider revisiting this problem at the beginning of Lesson 6 and highlighting several different successful strategies for estimating area of a circle.
\qquad

1. Order these expressions from least to greatest value.

- 4π
- 12.5
- 6
- $4+2 \pi$

Least

\qquad
\qquad
\qquad
\qquad Greatest
2. This circle has a circumference of 40 centimeters. Which of these is its diameter?
A. 40π centimeters
B. $\frac{20}{\pi}$ centimeters
C. $\frac{40}{\pi}$ centimeters
D. 20 centimeters
3. Here is a graph of the radius and circumference of several circles.

What is a constant of proportionality in this relationship?

4. What is the total perimeter of this figure?

Show or explain your thinking.

	$\mathbf{4} \mathbf{c m}$					

\qquad
5.1 A wheel has a radius of 35 centimeters.

Determine its circumference.

5.2 Complete the table showing how far this wheel travels for each number of rotations.

Number of Rotations	Distance (cm)
1	
5	
30	

5.3 What is a constant of proportionality for this relationship?
5.4 About how many rotations does the wheel make when it travels 100000 cm ?

Note: On this quiz, calculations made using approximations for π between 3.14 and $\frac{22}{7}$ should be marked correct.

1. Least to greatest value:

- 6
- $4+2 \pi$
- 12.5
- 4π

2. $\frac{40}{\pi}$ centimeters
3. 2π (or equivalent)
4. $16+8 \pi$ centimeters (or equivalent)

Explanations vary. The total perimeter is the same as the circumference of 1 circle plus the perimeter of 1 square. The perimeter of the square is 16 centimeters. The circumference of the circle is 8π centimeters, so the total perimeter is $16+8 \pi$ centimeters.
5.1

- 220 centimeters
- 70π centimeters (or equivalent)
5.2

Number of Rotations	Distance (cm)
1	220 (or equivalent)
5	1100 (or equivalent)
30	6600 (or equivalent)

5.3

- 220
- 70π (or equivalent)
5.4 Responses vary. Responses between 454 and 455 rotations should be marked correct.

 measurements．This problem corresponds most directly to the work students did in Lesson 3：Measuring Around． This problem assesses students＇ability to calculate the radius，diameter，or circumference of a circle given one of those

Problem 2 － with ordering the values from least to greatest．
－Consider asking to students to compare 4π with 12.5 and $4+2 \pi$ with 6 ．Consider asking them how these comparisons can help Suggested Next Steps：If students struggle
directly to the work students did in Lesson 3：Measuring Around．
This problem assesses students＇ability to reason about the value of an expression containing π ．This problem corresponds most
（Standard：7．G．B．4）
Problem 1

ガG‘でG	\downarrow ¢	$\varepsilon \cdot G^{\prime} \varepsilon$	でG	smejqodd
カ＊G・ワ・L	$\varepsilon \forall{ }^{\prime} \mathrm{d}^{\circ} \mathrm{L}$		で甘 ${ }^{\text {dy }}$	paepuets

Ћıowums spıopupłs łuəłuoŋ
Unit 7．3，Quiz：Summary and Rubric

- Consider revisiting the last question in Practice Day 1.

Consider asking students to describe the relationship between the
to the work students did in Lesson 3: Measuring Around. This problem assesses students' ability to solve problems using the circumference of a circle. This problem corresponds most directly
(Standards: 7.G.B.4, 7.RP.A.2, 7.RP.A.2.B, 7.RP.A.3) Problem 5 - Consider revisiting Lesson 4, Activity 1, Screen 5. Consider asking students how many semicircles and how many sides of a square make up the figure.
 Perimeter Challenges. Students make use of the structure of the grid and attend to precision as they defend their calculations for the perimeter of the given
figure and specify appropriate units of measure. This problem corresponds most directly to the work students did in Lesson 4: (Standards: 7.G.B.4, MP6, MP7) Problem 4 - Consider revisiting Lesson 3, Activity 2, Screen 4. - Consider asking students to describe how to calculate a constant of proportionality for a given proportional relationship. Suggested Next Steps: If students struggle .
This problem corresponds most directly to the work students did in Lesson 3: Measuring Around
This problem assesses students' ability to make connections between proportional relationships and measurements around a circle.
 Problem 3
o!̣qny pue Kıewuns :z!no ' ε ' 2 t!un

＇qdmәще łou p！ 0	е ıод sп！̣е» әчł рәдеןпэюэ әлец кеш шо 0Z дэәәs очм słиәрпнs sп！̣рд әчд рәдеппэеэ әлец кеш әчұ рәұеןпэеэ әлеч кеш －әээ๐чэ ұэәцоэи｜			－ә๐！๐чэ ґәәноэ	ガG＊ソ＊	Z
＇7dmeдие ł0u p！	Gu！pueqsıәрй рәң！ш！！SMOYS צ10M	дәмsuе әґеגnวэe łsou К｜ұәәцоэ słuәpnłs ＇sıодәә ұиеэ！！！ub！s पұ！м ‘＇6u！puęsıәрй smoys youm	＇suo！！эәц！ ә૫ł pəsnjuoo әлец Кеш słuәpпłS шоџ рәдәро әх suo！ssəıdxə｜｜甘 ＇sıодә әшos ЧІІМ ‘＇6u！̣puełsıәрй SMOYS YスOM		ガロ＊ソ＇L	\downarrow
0	\downarrow	乙	ε	†		
	6u！uu！ $\mathrm{S}^{\text {eg }}$	6u！̣doןəләа	6u！	6u！pəәэхヨ／6u！̣əәW	paepuers	шə¢q0，

7duәй łou p！o	－6u！puełsıәрй рәң！ய！！ sMOUS yגOM	＇யО SE fo sn！pe» e ч！！м рәдепојеэ әлец кеш 0L әұ！им очм sұиәрпł＇＂ 6 ・ヨ ＊sıодә ұиeэ！！！ub！s ЧІ！м＇6u！puełsıәрй 	＇سכ SE рәғецпэеэ әлец кеш 山ऽє әұ！им очм słиәрпłS＂6・ヨ ‘sıодә әшоs पІ！M＇6u！puełsıəpun 	 	$\nabla^{*} 9^{\prime} \bigcirc^{\prime}$ L	L＇G
łOU P！	－6upuełsıəpun рәџ！ய！！ sMOYS yגоM	'7•8 рәұецпэеэ рие sәлепbs t！un 8 sәрпノоu！әınб！t рәэ！ŋои әлеч кеш ш৩ Zع әч！им очм sұиәрпłs＂ $6 \cdot \exists$ $8+9 I$ рәрре әлеч кеш шо т乙 әұ！им очм sұиәрпұS＂ $6 \cdot \exists$ ＇sıодә ұиеэ！！！u6！s Чł！м 6u！puełsıəpun әұәןduoэu！sMous y10M	－səıenbs „o səp！s ןeuo！！！！ppe рәрре әлец кеш $\Perp 8+\downarrow 乙 10 \Perp_{8}+0 乙$ ә！！мм очм słиәрпłs ＇ио！ңеиелдхә әұәлышоэи！ ue 4！！М ш๐ $\psi_{8}+9$ I әұ！им очм sұиәрпłs＇${ }^{6}$＇ヨ ＇sıодәә әшоs Чł！M＇6u！puełs．əәpun ןento	 әப।＇wo 9I s！əıenbs әцł 10 дәдәш！ әЦł se әسеs әцł －uo！̣eueןdxə 		t
łou p！d	－6u！puełsıәрии рәџ！ய！！ smous yגом	＊sıолә ұиеэ！！！ub！s 	‘sı0גə Әய0S Чł！M＇దu！puełsıəpun ןenłdeэuos smous yı0M	（ұиәןел！̣nbә ло）ュZ ‘дәмsuе ұэәлоэ		ε
0	\downarrow	Z	ε	t		
	6u！uu！beg	6u！doןəィəロ		6u！pəəэхヨ／6u！łəәW	pıepuets	щə¢q01d

7dumə ł0u p！ 0	－6u！̣риеұsıәрии рәң！ய！！ smous yıо	әлец Кеш sио！ұедоя LS8 Z әұ！им очм słиәрпts＂6・ヨ ＇sıодә ұиеэ！！！uб！！ әұәןdmoэu！sMous yомМ	әлец кеш sио！ұедол 6てт I әч！мм очм sұиәрпнs＂ $6 \cdot \exists$ ＇sıoдə әшоs цұ！м ‘＇Ku！puezsıәрй jenłdәouos smous yом	－эәиоэ рәудеш әq pinoчs suo！fełor sct pue tst иәәмұәq səsuodsәу дәмsuе џәшио	ع＇$\forall^{\prime} \mathrm{d}^{\prime} / L$ ガロ＇ダL	\downarrow－ 9
7düәие ł0u p！ 0	－6u！puełsıәрй рәџ！ய！！ smous yıо	－யว SE ґo sn！peı әчł рәдеןпэеэ әлец кеш 0L әұ！им очм sұиәрпıs＂6・ヨ ＇s．одә ұиеэ！！！ub！s ЧІ！М＇6u！̣puełsıәрй 	 рәғепојеэ әлец кеш шऽє әұ！им очм słиәрпнs＂ $6 \cdot \exists$ ＇sıддә ןenłdəouoo sMous yı0M	（ұиәјеィ！nbə ィо） $\Perp_{0<} \text { 10 0ZZ }$ ләмsǔ ұэәдоう	$\mathrm{a}^{\prime} \mathrm{C}^{\prime} \forall^{\prime} \mathrm{d}^{\prime}{ }^{\prime}$	$\varepsilon \cdot \underline{\square}$
7dmeңை łou p！ 0	－6u！puełsıәрй рәџ！ய！！ sMOYS y，	ๆәәноэ sıәмsue әәдчł до дпо әио＂6・ヨ งлодә ұиеэ！！！uம！！ पІ！м ‘＇6u！pueıs．ıәрй әұәןdmoэu！SMOYs צдоМ	＇ұэәдоо sıәмsие әәццд „о ұпо омд＂6・ヨ ＇sıддә jenłdәouoo smous yıом		Z＇ギdપ્વ＇L ナーロ゙ロ゙L	て＇G
0	1	Z	ε	t		
	6u！uu！̣əəg	6u！doıəләа	6u！	бu！pəəวxヨ／6u！łəәW	prepuets	məqodd

Unit 7.3, End-Unit Assessment: Form A

Name \qquad

1. A circle has a radius of 50 centimeters. Which of these is closest to its area?
A. 157 square centimeters
B. 314 square centimeters
C. 7854 square centimeters
D. 15708 square centimeters

2. This circle has a radius of 5 units. Three students tried to calculate the circumference.

Order their answers from least to most accurate.

- 31.4 units
- 31.4π units
- 10π units

Least accurate \qquad
\qquad
\qquad Most accurate

3. Diego measured the distance that a wheel traveled in different numbers of rotations.

Select all of the true statements.The relationship in the graph appears to be proportional.The radius of the wheel is about 1 inch.The diameter of the wheel is about 1 inch.The diameter of the wheel is about 3.1 inches.The circumference of the wheel is about 3.1 inches.

Decide whether each quantity describes a circle's circumference or area.
4.1 The amount of paint needed to cover a circular canvas. Circumference Area
4.2 How long it takes to run around a circular track. Circumference Area
4.3 The amount of ribbon needed to wrap around a circular present. Circumference Area
4.4 The amount of grass inside of a circular track. Circumference Area
5. Which measurement is always proportional to the radius of a circle?
A. Circumference
B. Area
C. Both
D. Neither

Explain your thinking.
6. This figure is made of part of a circle and part of a square.

What is the perimeter of the figure?

What is the area of the figure?

All measurements are in units.

Unit 7.3, End-Unit Assessment: Form A

Name \qquad

DeShawn needs grass seed to cover Field A. One bag of grass seed covers 5000 square feet.
7.1 Field A is a circular field with a 100 -foot radius.

What is the fewest number of bags DeShawn must buy to cover Field A?

7.2 Field B is a circular field with a 50 -foot radius.

DeShawn says he will need half the amount of grass seed to cover Field B. Is this correct?
A. Yes
B. No
C. Not enough information

Explain your thinking.

Reflection: Select a question to answer.What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.Describe or show one strategy you found helpful in this unit.
Name any students who helped you with this strategy.What else would you like your teacher to know?

Note: On this assessment, calculations made using approximations for π between 3.14 and $\frac{22}{7}$ should be marked correct.

1. C. 7854 square centimeters
2. Least accurate to most accurate:

- 31.4π units
- 31.4 units
- 10π units

3. $\quad \checkmark$ The relationship in the graph appears to be proportional.
\checkmark The diameter of the wheel is about 1 inch.
\checkmark The circumference of the wheel is about 3.1 inches.
4.1 Area
4.2 Circumference
4.3 Circumference
4.4 Area
4. Circumference

Explanations vary.

- The equation for the circumference of a circle is $C=2 \pi r$, which is in a proportional relationship with 2π as the constant of proportionality.
- The equation for the area of a circle is $A=\pi r^{2}$, which is not proportional.

6. Perimeter: $2.5 \pi+30$ units (or equivalent)

Area: $6.25 \pi+75$ square units (or equivalent)
7.17 bags

Explanations vary. The area of Field A is $\pi \cdot 100^{2} \approx 31415.93$ square feet. Dividing by the area covered by each bag, $\frac{31415.93}{5000} \approx 6.28$ bags. Since you can only buy whole bags, DeShawn must buy 7 bags.
7.2 No.

Explanations vary.

- The area is not proportional to the radius; it is proportional to the square of the radius. A circle with half of the radius will have an area that is $\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$ of the area of Field A.
- The area of Field A is $\pi \cdot 100^{2} \approx 31415.93$ square feet. The area of Field B is $\pi \cdot 50^{2} \approx 7853.98$ square feet, which is not half of the area of Field A.
－Consider revisiting Lesson 3：Practice Problems，Problem 1.

 －punoגヲ סu！unseəw which answers are least and most accurate．This problem corresponds most directly to the work students did in Lesson 3： This problem assesses students＇ability to make sense of values written in terms of π ．Students attend to precision when determining
（9dW＇t＇g’అ’L ：spıepuełS） Problem 2

did in Lesson 6：Radius Squares．
This problem assesses students＇ability to calculate the area of a circle．This problem corresponds most directly to the work students
（†＇g•כ•L ：pıepuełs）
Problem 1

L	ε	G	L＇t		swəjqoid
$\varepsilon \forall^{\prime} \mathrm{d}^{\prime}{ }^{\prime}$	$\forall^{\prime} Z^{\prime} \forall^{\prime} \mathrm{d}^{\prime}{ }^{\prime}$	て＇V＇dप्d＇L	$9 \cdot 9 \cdot 0 \cdot L$	ガG＊V＇L	prepuets

- Consider asking students how they can identify proportional relationships from an equation. Invite students to revisit Screen 4 of
Unit 2, Lesson 7 to discuss examples and non-examples of proportional relationships.
- Consider revisiting Lesson 3, Activity 1, Screen 3 and Lesson 6, Activity 3 .

This problem assesses students' ability to recognize proportional relationships and the formulas for area and circumference of a circle.
This problem corresponds most directly to the work students did in Lesson 3: Measuring Around and Lesson 6: Radius Squares.

Problem 5
- Consider revisiting Practice Day 2, Problem 1. corresponds most directly to the work students did in Practice Day 2.
Suggested Next Steps: If students struggle . . .
- Math Language Development Consider using the mathematical
understand and communicate why Problem 4.1 does not describe
This problem assesses students' ability to distinguish area from circumference in various real-world contexts. This problem
(Standard: 7.G.B.6)
Problem 4
- Consider revisiting Lesson 3, Activity 2, Screen 4. describe the relationship between a circle's circumference and diameter. work students did in Lesson 3: Measuring Around.
Suggested Next Steps: If students struggle ...
- Consider asking students which circle measure work students did in Lesson 3: Measuring Around. understanding of the relationship between the diameter and circumference of a circle. This problem corresponds most directly to the This problem assesses students' ability to connect the distance a wheel travels with the circumference of a circle. It also checks their (Standards: 7.G.B.4, 7.RP.A.2.A) Problem 3
Unit 7.3, End Assessment Summary and Rubric: Form A
Consider revisiting Lesson 9, Activity 2. describe the relationship between the radius and the area of a circle.
- Consider asking students which measurement affects the number of bags of grass seed needed. Consider asking students to

radius. This problem corresponds most directly to the work students did in Lesson 9: Circle vs. Square. the situation and persevere in answering multi-step questions as they determine whether half the area is a result of halving of the
This problem assesses students' ability to apply proportional relationships in the context of area. Students are asked to make sense of
(Standards: 7.G.B.4, 7.G.B.6, 7.RP.A.3, MP1)
\angle Шวโqoud
- Consider revisiting Lesson 4, Activity 1 or Lesson 8, Activity 1.
they can use the structure to help them determine the total perimeter and area of the shape.
- Consider asking students to describe the structure of the shape (e.g., 1 quarter circle and 4 squares). Consider asking them how Suggested Next Steps: If students struggle . . . to the work students did in Lesson 4: Perimeter Challenges and Lesson 8: Area Challenges. Students make use of structure as they determine the perimeter and area of the given figure.
This problem assesses students' ability to calculate the perimeter and area of a complex shape that is made up of fractions of circles.
(Standards: 7.G.B.4, MP7)
Problem 6

7duәュи Ł0u p！	әұел 			stuun $\mu_{0} I$ sṭun ャ＇LE • st！un $\boldsymbol{\Perp}_{\boldsymbol{\prime}}$＇L ε •		乙
－duәұе łou p！	 әлец Кеш sдәəәш！ұиәэ әцпnbs 80L SI łכəઇəs очм SłuəpnłS ＇еәде st！fо peәұsu！ әગગ！！ әцеnbs †IE Łəәəəs очм słuәpnłS „о peәəsu！\Perp Кq sn！pe» әчł рә！｜！！！！ әјеnbs LSI łəәәょ очм słuәpnłS			sฉəəəш！！uәว əયenbs tS8 L	ナ＊ロ＊ソ＇L	\downarrow
0	\downarrow	乙	ε	†		
	6u！uu！ 6 өg	6u！doןəләа	6u！upeorddv	ธu！pəəэxヨ／бu！łəәW	prepuets	merqord

‘quәдне łou p！	－uo！̣euejdxə ue ұnouł！м до ио！！еиеןdхә ұәәдоэи！ 	－6u！̣uęsıəpun ן！！̣ед sәғеэ！иишшоэ ұецұ ио！̣еиеןдхә ＇uо！̣еиеןdxә әғəןdmoכu！ ЧІ！М дәмsǔ ұכәли○	－uo！̣еие．dxә －uol！ңeue．dxә u！SME｜f dOu！̣u 	ұuełsuos ә૫ł Se 山Z Чł！м d！̣suo！̣е｜әд ןeuo！̣nododd e u！s！पગ！чм ‘ $\lrcorner \downarrow Z=$ S s！ uo！łeue｜dxə łәәцио 		G
＇7dшәие łou p！0	＇słuәயəłеłs ınoł əપł ło әuo Кq цэ！чм sә！！！！uәр！ К｜ұәәдоэ ұиәрпłS	＇słuəسəłеłs anof әЧł f0 Oмł Кq рәq！ıЈэəp s！Кıобәґеэ цग！чм sə！！！！uәр！ 	＇s孔uәшəłełs ınoł ә૫ł ！o әәдчł кq цэ！чм sә！！！！иәр！ 	цэеә Кq pəq！uэəəp s！ кобәәег чэ！чм sә！！！！иәр！ Кџэәдоэ ұиәрпłS	$9^{\prime} \square^{\prime} \bigcirc^{\circ} \mathrm{L}$	\dagger
＇qduәュе tou p！	＇sәэ！๐чэ ฉәәдоэ әшоs ч！！м səગ！๐чэ ґэәдоэи！әлош Kןuo słəəןəs ұиәрпіs	－әэ！๐чэ џәәиоэи！әио －әэ！๐ч๐ Łәәдиоэи！ue səpnjou！ osje łnq səગ！oчว до әио słэəəəs 孔иәрпłs	＇sәэ！！чэ ¡әәиоэи！Kие ұәәәs łou səop pue səэ！๐ч๐ ıо әио słэəəəs ұиәрпłя	‘səчэи！I＇ε łnoqe s！ןəəцм әчł ＇you！I lnoqe s！ןəәчм ＇ןuo！！ 10 odod әq оł sıeədde чdeגб әчł u！d！чsuo！̣еןə әЧц Кue łəəəə łou səop 		ε
0	\downarrow	乙	ε	t		
	6u！uu！ 6 өg	6u！doıəләа	6u！¢	6u！pəəэxヨ／6u！ŋəәW	prepuels	melqodd

＇7dmәџе łOU P！	＇uo！̣еuе．dxә ue łnout！M 10 uо！！еие｜dxә дәмsuе ұәәлоэи		－uo！̣eue，dxə pue ןeo！bol प！！M дәмsue ұэәдоэи｜ －uo！̣еuе．dxә u！SME｜f dOU！W Ll！M дәMSUе łכәлоつ	＊sб̂eq \angle Knq \ddagger snm uмечSəロ ‘sб⿸eq әјочм Knq Кןио ueכ noर әכu！！ $\cdot \operatorname{sbeq~} 8 z^{\prime 9} \approx \frac{000 \mathrm{~S}}{\varepsilon 6^{\prime} \mathrm{SI} I \mathrm{~L}} \cdot \mathrm{beq}$ 子әəн әunbs $\varepsilon 6^{\circ}$ SIt $I \varepsilon \approx_{2} 00 I \cdot \downarrow$ sbeq \angle －uo！̣еиеןdxә әұәןdmos pue ןeo！boo e səpnןou！pue uo！̣sənb ә૫ł sıəмsue K｜｜nłssəวэns ұuәpn＋S	LdW ＇ε＇\forall＇dy＇${ }^{\prime}$ ‘9｀の＇ロ＂L ‘カ・日＇Э＇L	L＇L
ๆdшәџе łOU P！	suo！̣эеця Łо dn әреш sədeys xәןdmoว до гәл рие дәұәш！！әд до Би！̣иеъsıәрй рәұ！ш！！ smous ұuәpnis		－（додә ио！̣е｜пэןо чłоq łou łnq еәле әЧł səu！шиәұәр 			9
0	1	乙	ε	七		
	ถu！̣u！̣生	6u！̣оןəләа	6u！upeorddv	6u！pəəэxヨ／6u！łəәW	paepueis	melqodd

\qquad

1. Last year, Thiago hosted a spaghetti dinner for his soccer team. He made 6 boxes of spaghetti to feed 20 people. This year, 50 people are coming!

How many boxes of spaghetti should Thiago make to feed all of his guests?
2. Annika finished $\frac{1}{4}$ of her run in $\frac{1}{2}$ of an hour. How long will her whole run take?
\square Less than 1 hour
More than 1 hour
Exactly 1 hour
Explain your thinking.

Match each fraction expression to an equivalent percent expression.
$3.1 \quad \frac{3}{4}$ of x
A. 25% of x
$3.2 \quad \frac{1}{4}$ of x
B. 40% of x
$3.3 \quad \frac{2}{5}$ of $x \quad$
C. 4% of x
$3.4 \quad \frac{1}{25}$ of $x \quad$
D. 75% of x
4. Select all of the expressions that are equivalent to 5% of 60 .
$\square \frac{1}{20}(60)$
\square
$\square \frac{1}{5} \cdot 60$
$\square 0.05 \cdot 60$
$\square 0.5$ (60)
$\square \frac{5}{100} \cdot 60$
\qquad
5. What is 13% of 200 ? Explain your thinking.
6. A new soft drink has 20% less sugar than before. The drink had 50 grams of sugar originally. How much less sugar does it have now?
7. Select all of the expressions that are equivalent to $0.4 x$.

$$
\begin{aligned}
& \square(1-0.6) x \\
& \square 1-0.6 x \\
& \square x-0.6 \\
& \square x-0.6 x \\
& \square \frac{40}{100} x
\end{aligned}
$$

8. Gabriel created a double number line. Fill in the value at each unlabeled tick mark.

9. 15 boxes
10. More than 1 hour. Explanations vary. If Annika finished $\frac{1}{4}$ of her run in $\frac{1}{2}$ of an hour, then she needs 4 times as long to finish her whole run. $4 \cdot \frac{1}{2}=2$ hours.
3.1 D
3.2 A
3.3 B
3.4 C
11. $\sqrt{ } \frac{1}{20}(60)$
$\checkmark 0.05 \cdot 60$
$\checkmark \frac{5}{100} \cdot 60$
12. 26. Explanations vary. 13% of 100 is 13 , so 13% of 200 should be double that, and $2 \cdot 13=26$.
1. 10 grams
2. $\checkmark(1-0.6) x$

$$
\begin{aligned}
& \checkmark x-0.6 x \\
& \checkmark \frac{40}{100} x
\end{aligned}
$$

8.

Unit 7.4, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problems 3 and 4 before Lesson 1
- Problems 1 and 2 before Lesson 2
- Problems 5 and 6 before Lesson 4
- Problem 7 before Lesson 5
- Problem 8 before Lesson 6

Problem 1

(Standards: 6.RP.A.2, 6.RP.A.3, MP1)
This question is intended to surface what students already know about using unit rates. Students must analyze the information given and plan a solution strategy. This content first appears in Lesson 2: Peach Cobbler.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this question as a class before Lesson 2 and highlighting several different strategies students used to determine the number of boxes, including strategies that involve calculating a unit rate.

Problem 2

(Standards: 6.RP.A.2, 6.RP.A.3, MP3)
This question is intended to surface what students already know about rates and ratios that involve fractions. Students are asked to explain their thinking, thus constructing a viable argument as they defend their answer selection. This content first appears in Lesson 2: Peach Cobbler.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this question as a class before Lesson 2 and highlighting several different strategies students used to determine how long Annika's whole run is, including strategies that involve calculating a unit rate.
- Consider creating a display of student strategies for Problems 1 and 2 for students to refer back to as they engage in this unit.

Unit 7.4, Readiness Check Summary

Problem 3

(Standard: 6.RP.A.3.C)
This question is intended to surface what students already know about the relationship between fractions and percentages. This content first appears in Lesson 1: Mosaics.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this question as a class before Lesson 1 and creating an anchor chart of common benchmark percents (e.g., 5\%, 10\%, 20\%, 25\%) and their equivalent fractions.

Problem 4

(Standards: 6.RP.A.3.C, MP7)
This question is intended to surface what students already know about the relationship between decimals and percentages. Students make sure of structure as they determine correspondences between multiple equations by selecting equations with similar solutions. This content first appears in Lesson 1: Mosaics.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this question as a class before Lesson 1 and creating an anchor chart of percents and equivalent decimals (e.g., $5 \%=0.05,50 \%=0.5$).

Problem 5

(Standards: 6.RP.A.3.C, MP3)
This question is intended to surface what students already know about calculating the percentage of a number. Students attend to precision by efficiently and accurately calculating 13\% of 200. Students are asked to explain their thinking, thus also constructing a viable argument as they discuss their rationale. This content first appears in Lesson 4: More and Less.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this question as a class before Lesson 4 and asking a question like: How would you calculate 14% of 200 ? What about 13% of 80 ?

Unit 7.4, Readiness Check Summary

Problem 6

(Standard: 6.RP.A.3.C)
This question is intended to surface what students already know about reasoning about the percent increase or decrease of an original amount. This content first appears in Lesson 4: More and Less.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this question as a class before Lesson 4 and asking a question like: How much total sugar does it have now?

Problem 7

(Standard: 6.EE.A.3)
This question is intended to surface what students already know about equivalent expressions.
This content first appears in Lesson 5: All the Equations.
Suggested Next Steps: If students struggle . .

- Consider reviewing this question as a class before Lesson 5 and creating an anchor chart of this question as an example of which expressions are and are not equivalent.

Problem 8

(Standard: 6.RP.A.3)
This question is intended to surface what students already know about double number lines.
This content first appears in Lesson 6: 100\%.
Suggested Next Steps: If students struggle . .

- Consider reviewing this question as a class before Lesson 6 and creating an anchor chart that includes an example of a double number line.
\qquad

1. The value of a car decreases over time. This year, Faaria's car is worth $\$ 22000$. If the value of Faaria's car decreases by 8%, what will her car be worth next year?
A. $\$ 1760$
B. $\$ 4400$
C. $\$ 17600$
D. $\$ 20240$
E. $\$ 23760$
2. Mayra bought x grams of rice.

Anika bought $\frac{1}{3}$ more than Mayra bought.
Select all of the equations that represent the relationship between the amount of rice that Mayra bought, x, and the amount of rice that Anika bought, y.

$$
\begin{aligned}
& y=\frac{2}{3} x \\
& y=\frac{1}{3} x \\
& y=x+\frac{1}{3} x \\
& y=x-\frac{1}{3} x \\
& y=\frac{4}{3} x
\end{aligned}
$$

3. To make a certain color of paint, Anya mixed $\frac{2}{3}$ cups of white paint with $2 \frac{2}{3}$ cups of blue paint. How many cups of blue paint should she mix with $\frac{3}{4}$ cups of white paint to make the same shade?

Explain or show your thinking.
4. Describe a situation that could be represented by the equation $y=x-0.3 x$. Be sure to explain what x and y mean in your situation.

A storekeeper increased the price of hats by 5%.
5.1 A hat was originally priced at $\$ 15.00$. What is the new cost of the hat?
5.2 Write an equation to calculate the new total cost, c, when the original price of a hat is p dollars.
5.3 If the price of a hat (after the increase) is $\$ 33.60$, what is the original price?

Explain or show your thinking.

1. D. $\$ 20240$
2. $\sqrt{ } y=x+\frac{1}{3} x$
$\checkmark y=\frac{4}{3} x$
3. 3 cups of blue paint.

Explanations vary. There are 4 groups of $\frac{2}{3}$ in $2 \frac{2}{3}$, so the constant of proportionality is 4 .
To figure out the amount of blue paint she needs, you can multiply $\frac{3}{4} \cdot 4=3$ cups.
4. Responses vary.

A bear's body weight can decrease by 30% during hibernation.
In this situation, y is the bear's weight after hibernation and x is the bear's weight before hibernation.
$5.1 \quad \$ 15.75$
$5.2 c=1.05 p$
$5.3 \quad \$ 32.00$
Explanations vary. I used the equation $c=1.05 p$ and substituted $\$ 33.60$ in place of c. Then, I divided both sides by 1.05 to get p, the original price of the hat.
 how using this information can help to determine which equation represents this relationship．

corresponds most directly to the work students did in Lesson 5：All the Equations． value．Students model with mathematics as they determine which equations represent the given relationship．This problem
This problem assesses students＇ability to use equations to represent a situation involving adding or subtracting a fraction of the initial
（tdW＇て＇甘‘ヨヨ’L ：spıepuets）
Problem 2 Suggested Next Steps：If students struggle ．．．
－Consider asking students to explain how to determine 8\％of Faaria＇s car value this year．
－Consider revisiting Lesson 4，Activity 1，Screen 4 ．
directly to the work students did in Lesson 4：More and Less and Lesson 6：100\％．
This problem assesses students＇ability to solve problems involving percent increases and decreases．This problem corresponds most
（ $\varepsilon^{\prime} \forall{ }^{\prime} \mathbf{d y}^{\prime} L$ ： $\mathrm{pxepuets)}$
［ Шวโqoxd

と＇G‘でG＇t＇乙	L＇G＇	ε	swojqodd
て＇＊ヨヨコ	$\varepsilon \cdot \forall \cdot d y^{\prime} L$	L＇V＇dy ${ }^{\text {c }}$	prepuets

Unit 7．4，Quiz：Summary and Rubric
－Consider revisiting Lesson 5，Activity 2，Screen 7. used to solve a percent increase or a percent decrease problem．
－Consider asking students to describe how they could use the structure of the equation to determine whether the question could be Suggested Next Steps：If students struggle ．
directly to the work students did in Lesson 5：All the Equations． situation that could be represented by the given equation，they reason abstractly and quantitatively．This problem corresponds most This problem assesses students＇ability to make sense of an equation that represents a percent decrease．As students describe a
（ZdW＇Z＇ジヨヨ＇L ：spıepuełS） Problem 4
Suggested Next Steps：If students struggle．．．
needed．This problem corresponds most directly to the work students did in Lesson 3：Sticker Sizes．
This problem assesses students＇ability to use a constant of proportionality to solve problems involving fractional quantities．Students
are asked to explain their thinking，thus attending to precision as they defend their calculations for the number of cups of blue paint
This problem assesses students＇ability to use a constant of proportionality to solve problems involving fractional quantities．Students
are asked to explain their thinking，thus attending to precision as they defend their calculations for the number of cups of blue paint
（9dW＇r＇\forall＇dy＇L ：sprepuets） Problem 3
Unit 7．4，Quiz：Summary and Rubric －Consider revisiting Lesson 3，Activity 2.
Consider asking students how to determine the constant of proportionality in this relationship．

'səu!̣эew
This problem assesses students' ability to write equations to represent situations involving a percent increase and use them to solve
problems. This problem corresponds most directly to the work students did in Lesson 5: All the Equations and Lesson 7: Percent

Problem 5
Unit 7.4, Quiz: Summary and Rubric

－дdшәџе łOU P！O	 	－әэ！๐чэ әэ！๐чэ ұэәдоэ әио	әио рие sәэ！๐чэ ఛวขлоэ Чłоя ऽऽəગ！○ч๐ ఛวәมоэи！ ou pue әэ！๐чว ఛәлиоэ әио	$\begin{aligned} x \frac{\varepsilon}{\hbar} & =\kappa \bullet \\ x \frac{\varepsilon}{\mathrm{~L}}+x & =\kappa \bullet \end{aligned}$ －รәэ！очว ఛコอมภоэu！ou pue 		Z
－ 7 duәәие ł0u p！	＇000 ZZ\＄」о \％08 рәдеןпэеэ әлеч Кеш 009 LI\＄子כәәs очм słиәрпłS －әпјел ןе！！！u！әчł оұ \％8 рәрре әлец ＇әsеәләр \％08 ие дәұе әпјел әчұ рәдеппэеэ кидәәиоэ әлец ‘000 ZZ ґо \％8 рәдеןпэןе әлец кеш 09L І\＄ғЈәәәs очм słиәрпłя ＇6u！puezs．əәpun рәң！u！！sMOYs צגOM			0もZ 0Z\＄• 	$\varepsilon^{\prime} \forall^{\prime} d^{\prime} y^{\prime} L$	\downarrow
0	1	乙	ε	t		
	6u！uu！${ }^{\text {a }}$	6u！doןəләа	6u！	6u！pəәэхヨ／6u！əəәW	prepueis	məq¢0．d

7duәәц tou pIO	－6u！puełsıәрй рәң！ш！！smoчs צдом	＇ E ＇ 0 10 ع „о әлеәләр е ио！ұиәш очм słиәрпіs＂ $6 \cdot \exists$ －sıодә ұиет！чии！！ ЧІ！М Ku！̣pueqsıәрun әృәㅣㅣoou！ smous yiom	$\frac{\varepsilon}{\mathrm{I}}$ „о әsеәләәр е ssnos！p очм słuәрпнs＂6・ヨ －К рие x до Би！иеәш әцд u！eıdxə łou op łnq ‘\％0غ fo әseәлつәр е ssnos！p очм słuәpnts＂ 6 • \exists ＇sıодә әшоs पІ！М ‘＇6u！puełs．əәpun ןenłdәэuoэ smoys yıом	－ио！ңеидә！！ әцодә૧ ұЧம！əм sィノəəq ə૫ł s！x pue ио！ұеидәт！ч дәұе дцб！әм s،ıеәq әчд s！К ‘ио！ұеп！！s s！чł ul＇ио！деидәq！ч бu！unp \％0ع イq әsеәләәр иеэ ұчб！әм イpoq s،ıeəq \forall＂ 6 • \exists 		t
łOU P！	－әппх！ш ןеи！ம！ио әчъ и！ әұ！чм иецł łu！ed әп।я ヶо sdno әош 乙 рәрре еКи甘 ұечъ рәэ！ŋои әлец Кеш sdno $\frac{\hbar}{\varepsilon} Z$ ә！！цм очм słuәpnłS ＇6u！puezsıәрии рәұ！ш！！sMOYs צоМ	＇sıодәә ұиет！！！uб！s ЧІ！м＇6u！̣риедsıәрй әұәјdmoэu！ sMOYS y，	－иопеиелдхә әұәдмшоэи！4！！M sdno ع sәұ！им ұиәрпня＂6・ヨ งıoдə әшоs पІ！М＇6u！̣риеұs．әрии ןenłdəәuoo smoys yıом	－sdno $\varepsilon=\nabla \cdot \frac{\hbar}{\varepsilon} \text { रl/d! } \ddagger \eta n$ ‘spәәи әчs łu！ed әпıq ィо ұипоше әчł ұпо әип！！ „о ұиедsиот әцд os $\frac{\varepsilon}{Z} Z u!\frac{\varepsilon}{Z}$ нo sdno＾ 6 －uo！̣еиеןdxә рие дәмsие ұәәлоう	9dW ＇$\cdot \forall \cdot{ }^{\prime} \mathrm{d}^{\prime} / 2$	ε
0	\downarrow	Z	ε	t		
	6u！uu！ 6 ®g	6u！doןəләа	反u！	бu！pəəэxヨ／6u！łəәW	prepuets	merqodd

	－6u！puezsıәри рә！！ய！！ sMOUS yоо	－əqе！иеィ ұэәноэи！ әчұ рәұпұ！$s q n s$ әлеч очм słиәрпłS＂ $6 \cdot \exists$ －sıoıд ұueכ！！！ub！s Чł！м 6u！puełsıәрии sMOUS YıOM	－uo！ıent！s s！чł дод кןұәәноэ ио！ұепbә ұэәдоэи！ sпо！ләдd ג！əч7 pәsп очм słиәрпłS 09 ＇ε ع әsеәдәәр \％S е рәдејпэеэ әлец кеш Z6＇I ＇ио！ңеиелдхә әғәдышоэи！ Чł！М ZЕ\＄әұ！ıм очм słиәрпłS ‘sıолә әшоs पұ！̣ ‘＇6u！̣puełsıәpun ןenłdəouos sMoपs yдоM	әчł＇d łəб о子 S0＇I Kq səp！s чłоq pәp！ィ！p pue $d \mathrm{~S} 0^{\circ} \mathrm{I}=ว$ pəsn $\left.\right\|^{\prime} 00^{\prime} Z \varepsilon \$^{\prime}{ }^{\prime} 6 \cdot \exists$ －ио！ңеиеןdxә ґәәдоэ 	$\varepsilon^{*} \forall^{\prime} \mathrm{d}^{\circ} L$ ＇でマ＇ヨヨ＇し	\mathcal{E}＇G
	$\begin{array}{r} d \mathrm{~s}=0 \cdot 6 \cdot \exists \\ \mathrm{~s} 0 \cdot 0+d=0 \\ ‘ \cdot 6 \cdot \exists \end{array}$ －6u！puèsıәрй рә！！ய！！ sMOYS yגOM	S S 0 se \％S Uәұ！！um әлец кеш $d \mathrm{~S} \cdot \mathrm{I}=0$ әұ！ıм очм słuәрпłs ＇sıодә ұueכ！！！ub！s ЧІ！м 6u！puełsıәрй sMOYS yגOM	эұәәиоэ әчұ u！sәqе！иел әчł рәsıәләл әлеч кеш －sıоגəә әسоs पұ！м ‘＇6u！puełsıәpun ןenłdeэuos smous yı0M	$d \mathrm{~S} 0^{\circ} \mathrm{I}=0$ ‘uo！̣enbə ґәәлоう	$\varepsilon^{*} \forall{ }^{\prime} \mathrm{d}^{\circ} L$ ＇でマ＇ヨヨ＇	Z＇G
7duәй łOU P！	－6u！puèsıəpun рәң！ய！！ sMous yגоM	‘SI\＄to \％s рәғерпэет әлеч кеш SL 0\＄ әұ！ıм очм słиәрпłs －sıодә ұиет！！！！и！！s әұәןdmoэu！ sMOUS yом	‘әऽеәләр \％ऽ е рәғеןпэеэ әлец кеш sZ＇tI\＄ә！！мм очм słиәрпня －әлеәои！\％0S кеш 0S＇ZZ\＄әұ！мм очм słиәрпнs ןEnłdəouoo sMous yı0M	SL＇SI\＄ 	$\varepsilon^{\prime} \forall^{\prime} \mathrm{d}^{\prime}{ }^{\prime} L$	L＇G
0	－	Z	ε	†		
	6u！uu！6eg	6u！doןəィəロ	6u！บэeoıdd＊	6u！pəəつхヨ／6u！ұəәW	prepue7s	uəpodd

Unit 7.4, End-Unit Assessment: Form A

Name \qquad

1. A car is 160 inches long.

A truck is 7% longer than the car.
How long is the truck?
A. 272 inches
B. 171.2 inches
C. 11.2 inches
D. 167 inches
2. Dalia is painting her room. After painting $\frac{1}{10}$ of her room, Dalia has used $\frac{1}{2}$ of a can of paint. Select all of the true statements.
\square Each can of paint will cover $\frac{1}{20}$ of Dalia's room.3 cans of paint will cover 60% of Dalia's room.Dalia's entire room requires 5 cans of paint.Dalia's entire room requires 20 cans of paint.Painting $\frac{1}{2}$ of Dalia's room requires 10 cans of paint.
3. Oliver tries to cut a piece of metal 30 centimeters long. The piece of metal ends up being 29.4 centimeters long.

What is the percent error in this situation?
A. 1.02%
B. 0.6%
C. 2%
D. 20%
4. A lamp originally costs $\$ 30$. Krishna has a 5% off coupon for the lamp. After the coupon, a 5% sales tax is applied. He will pay:
A. More than $\$ 30$.
B. Less than $\$ 30$.
C. Exactly \$30.

Explain your thinking.
5. The population of Renton, WA, is about 101920 people. 10 years ago, the population was about 91000 people.

By what percent did the population increase between 10 years ago and now?
\qquad

A store is offering a 20% discount on all items.
6.1 Is there a proportional relationship between the original price of an item and its price after the discount?

Explain your thinking.
6.2 Write an equation for the relationship between the discount price of an item, d, and its original price, p.

6.3 The price of a hat after the discount is $\$ 18$. What was the original price?

The cost of every college is expected to increase 3.5% next year.
7.1 The cost to attend Westish College is currently \$18 000.

What is the expected cost to attend Westish College next year?
7.2 Write an equation that will help calculate the cost of other colleges next year.

Use t to represent this year's cost and n to represent next year's cost.
7.3 The cost to attend Faber College is currently $\$ 24000$.

If the percent increase stays constant, what will the cost be in two years?
Explain your thinking.

Reflection: Select a question to answer.
What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.

Describe or show one strategy you found helpful in this unit.
Name any students who helped you with this strategy.

What else would you like your teacher to know?

1. B
2. $\quad \checkmark 3$ cans of paint will cover 60% of Dalia's room.
\checkmark Dalia's entire room requires 5 cans of paint.
3. C
4. B

Explanations vary. After a 5\% discount, the lamp costs $\$ 28.50$. After a 5% tax, the lamp costs \$29. 93.
5. 12%
6.1 Yes. Explanations vary. Every item's price after the discount is 0.8 times its original price.
6.2 Responses vary.

- $d=0.8 p$
- $d=p-0.2 p$
- $d=(1-0.2) p$
- $d=\frac{4}{5} p$
$6.3 \$ 22.50$
$7.1 \quad \$ 18630$
7.2 Responses vary.
- $n=1.035 t$
- $n=t+0.035 t$
- $n=(1+0.035) t$
$7.3 \quad \$ 25709.40$
Explanations vary. After a 3.5\% increase, the cost is $\$ 24840$. After another 3.5\% increase, the cost is $\$ 25709.40$.
－Consider revisiting Lesson 3，Activity 2.
understand and communicate which statements are false and why．
directly to the work students did in Lesson 2：Peach Cobbler and Lesson 3：Sticker Sizes．
Suggested Next Steps：If students struggle ．．．
This problem assesses students＇ability to compute unit rates associated with ratios of fractions．This problem corresponds most
（Standard：7．RP．A．1）
Problem 2
－Consider revisiting Lesson 4，Activity 1，Screen 3. length of the truck
－Consider asking students to explain how to determine 7\％of a car＇s length and how this value will help them to determine the

work students did in Lesson 4：More and Less．
This problem assesses students＇ability to calculate the result of a percent increase．This problem corresponds most directly to the
（ع＇V＇dy＇L ：prepuets） โ Шวโqoud

	でし ‘で9	$1 \cdot 9$	乙	smejqodd
$\varepsilon^{\prime} \forall^{\prime} \mathrm{d}^{\prime} / 2$	O＇で甘＇dy ${ }^{\text {d }}$		$L^{*} \forall^{*} \mathrm{~d}^{\prime} \mathrm{L}$	paepueis

- Consider revisiting Lesson 6, Activity 1, Problem 4.

 \angle :prepuets)
s wajqoxd - Consider revisiting Lesson 7, Activity 1. understand and communicate why Krishna would not pay more than $\$ 30$.
- Consider revisiting Lesson 7, Activity 1 .
 work students did in Lesson 7: Percent Machines. This problem assesses students' ability to reason about a multistep percent problem. This problem corresponds most directly to the
($\varepsilon^{\prime} \forall{ }^{\prime} \mathbf{d y}^{\prime} L$: p рериełs) Problem 4 Consider revisiting Lesson 11, Activity 1. asking them how the length error relates to the percent error. - Consider asking students to describe the length error in centimeters made by Oliver when cutting the piece of metal. Consider
 This problem corresponds most directly to the work students did in Lesson 11: Bookcase Builder. This problem assesses students' ability to determine the percent error given a desired measurement and an actual measurement. (ع'V'dy'L :psepuets) Problem 3

－Consider revisiting Lesson 10，Activity 2.
Consider asking students how the equation written in Problem 7.2 can be used to answer Problem 7．3．

work students did in Lesson 10：Cost of College． The problem assesses students＇ability to solve multistep percent problems that involve a fractional percentage．Students model with
mathematics as they represent the relationships between the current year＇s tuition cost and the next year＇s tuition cost using an
equation and attend to precision when determining and explaining future tuition costs．This problem corresponds most directly to the The problem assesses students＇ability to solve multistep percent problems that involve a fractional percentage．Students model with
mathematics as they represent the relationships between the current year＇s tuition cost and the next year＇s tuition cost using an
equation and attend to precision when determining and explaining future tuition costs．This problem corresponds most directly to the The problem assesses students＇ability to solve multistep percent problems that involve a fractional percentage．Students model with
（9dW＇tdW ‘O＇z＇甘＇dy＇L＇ع＇g＇ヨヨ＇L＇ع＇\forall＇dy＇L ：spıepuełS）

Problem 7

 vaNovale to the work students did in Lesson 5：All the Equations and Lesson 6：100\％．
Suggested Next Steps：If students struggle ．．． conclusion concerning whether or not a situation represents a proportional relationship．This problem most directly corresponds mathematics when writing an equation．They attend to precision when using precise mathematical language to defend their equation for that situation，and to calculate the original value given a new value and a percent change．Students model with This problem assesses students＇ability to identify whether or not a situation represents a proportional relationship，to write an
 Problem 6

'7dmәне łou p!0	'səә!!чэ әлош ло ОМł Słગəןəs ұиəpnłS -ऽəગ!!̣ч ґәәдоэи! słэәəәs К\|иио ұиәрпłS	-әо!очэ ŋәәиоэи! әио pue səગ!૦ч๐ ђәәлоэ ә૫ł łuәpnłs	-әэ!๐чэ ұэәлоэи! әио pue ‘səэ!ฺчч ఛフәиоО әЧҰ !О цłOq słכəəəs łuәpnłs 'səગ!๐чэ ફәәцоэи! Kue ұәәәө ұои səop pue sәэ!очэ әио ડłכəəəડ ұиәрnłS	łu!̣ed Ł0 sueo ¢ səı!̣nbaィ ш00ג әı! 'moor s,e!!eg †о \%09 дəлоэ II! м łu!̣ed fo suev ε • 'sәэ!๐чэ ұэәлоэи! Kue ґวəəə łou səop pue Ł0 ॥е słכə\|əs łuәpnłs	L'*'dy'L	Z
7dшәне łou p!0	' $L+09$ р рәрре әлец кеш sə૫ગu! L9L łכəəəs очм słuәpnłS sə૫ગu! Z 'LI Łכәəəs очм słuәpnłS $\% 0 \angle$ е ұпо рәлп!! әлеч кеш səцэu! ZLZ łэәәә очм słuәpnłS			səyวu! Z 'ILI	$\varepsilon \underbrace{\prime} \mathrm{d}^{\prime} \mathrm{Cl}^{\prime} L$	\downarrow
0	1	Z	ε	t		
	6u!	6u!doıəләа	6u!		prepuels	meıqodd

7dшәџе łou p！0	－uo！̣euejdxә ue ұnouł！м до uо！̣еиеןdxә ұәәдоэи！ Ч！！М дәмsue ұэәдоэи｜	＇swə｜qoud бu！̣очs uo！̣eue｜dxa Ч！̣м дәмsuе ұәәиоэи｜ ЧІ！М дәмsǔ џәәдоО	－uo！̣еue｜dxə Ч！！М дәMsuॄ ұэәдоэи｜ －uo！̣eue，dxə u！SME｜｜dou！u 	＇ 86 ＇6Z\＄stsoo dure｜ ә૫ł ‘xeł \％S e גə⿰丬士 ＇0S＇8Z\＄Stsoo dure əul ＇子unoos！p \％S e дәみ甘 $0 \varepsilon \$$ иецł Ssəך әұәןdmos pue uo！！sənb әЧł səəмsue K｜｜nłssəכэns łuəpnłs	$\varepsilon{ }^{\prime} \forall^{\prime} \mathrm{d}^{\prime} L$	†
7dme»！ łou P！	＇t 62 ๒əəə๐ очм sұuәpnis －әбெеұиәэぇәd e КПәәдиоэ әлец Кеш \％0Z łəәəәs очм słuәpnłs －додә ұиәэләд әцł łои pue ә૫ł Би！！ұן \％9＂0 łכәəәs очм słuәpnłS			$\begin{gathered} \% \text { \% } \\ \text { ○ } \end{gathered}$	$\varepsilon \cdot \forall \cdot d y^{\prime} L$	ε
0	1	乙	ε	\dagger		
	6u！uu！ 6 өg	6u！doןəләа	6u！	6u！pəəэxヨ／6u！̣əəW	paepuels	məq0，

7dшәџе łou p！0		＇sıодәә ұиеэ！！！uи！ రu！doןəләр е sмоцs ухом	‘səןqе！̣ел әчł dn pәx！u әлец Кеш р $_{8}{ }^{\circ}=d$ әұ！мм очм słuәpnis －әsеәдәәр \％0Z е иецł дәцłед бu！̣u！！әде $d Z{ }^{\circ} 0=p$ әұ！им очм słuәpnłS pue 6u！puełsıəpun ןenłdәәuоэ smoys yиом	$\begin{aligned} d \frac{\mathrm{~S}}{\mathrm{~J}} & =p \\ d(z \cdot 0-\mathrm{L}) & =p \\ d z \cdot 0-d & =p \\ d_{8} \cdot 0 & =p \end{aligned}$ －d！̣suo！̣łeןə ә૫ł доł uo！̣enbə 	tdW ＇○＇で $\forall d y ' L$	て＇9
7dшәџе łou P！O	－uoḷеие．dxә ue ұnoчt！M 10 uо！！еиеןdxә үэәдоэи！ ЧІ！М дәмsue ఛวәдоэи｜	＇sd！̣ysuo！̣еןәд ןeuo！̣odoıd Łо бu！̣puełsıәри децł ио！ңеиејдхә цџ！м әэ！очэ ұэәдиоэи｜ ＇uo！̣eue，dxə әғәןdmoэu！ 	－uo！̣еue｜dxə әғәןdmoэ pue ןеэ！ ＇uo！̣eue｜dxə u！̣ SMR｜f 	8 ＇0 s！łunoos！̣ әЧł дәłfe －uo！̣еиеןdxə әұәјdmoo pue ןeэ！ pue uo！！sənb әчł sıəмsue 	9dW ＇\forall＇Z＇\forall＇dy＇L	L＇9
7duәәц łOU P！O	－әбиецэ孔иәЈләd әұеןпэృэ Ot MOY 6u！̣puełsıəpun ๖о әәиәр！ィә чеәМ	 s！ 000 L6 әБеұиәэəәd ұечм రu！̣æן 10 ‘\％ZI＇I ‘\％＇ 68 ‘\％68 әң！мм очм słuәрпłs ＇sıодәә ұиеэ！！！uи！ पұ！М ‘欠u！̣puełsıəpun бu！do｜әләр е smous улом	uoụe｜ndod ןеи！̣！！о әчł Łо реәғsu！ uo！̣е！ndod u！әбиецว әчъ рәр！м！р әлец кеш \％L 0I әџ！мм очм słuәpnłS pue бu！̣иеłsıəри ןentdəouoo smoys yдом	\％ZL •	ع＇Ө＇dप्d＇L	G
0	\downarrow	τ	ε	t		
	6u！	6u！̣оןəләа	6u！	бu！pəəэхヨ／6u！łəәW	prepuets	melqodd

ł0u P！	－əsеәдכәр ұиәэләd е иәл！ 6 әכ！̣d ןеи！̣！̣о әчъ 6u！puełsıəpun fo әэиәр！лә уеәМ	＇000 8L\＄ әлец Кеш 00ع 9\＄पł！М puodsəд очм słuәphłs ＇sıouә ұueכ！！！ub！s ц！！̣ ‘＇6u！̣puełsıəpun ұnq চu！̣doןəләр е smous yоом	‘лә人 ұхәи ұsoっ Ł0u p！p łnq ‘əכ！̣d u！əseəли！ әцł рәұеןทэןэ әлеч кеш 0ع9\＄ цұ！м puodsə» очм sұuәpnłS рәґеןпэןэ әлеч Кеш 00ع †Z\＄ цł！M puodsəィ очм słuәpnłS －SıOגə әسOS पұ！м ‘Kıəısem pue бu！puełsıəpun ןenłdəouoo smous yı0M		$\varepsilon^{\prime} \forall^{\prime} \mathrm{d}^{\prime}{ }^{\prime} L$	1＇L
7dme»te ł0u P！	－әsеәдэәр ұиәэләd е иәл！$б$ әэ！̣d ןеи！̣！ио әчъ әұе｜nכןอכ Ot MOप бu！puełsıəpun fo әэиәр！лә уеәМ	＇8I\＄」0 \％0Z рәңеןnэןе puodsәд очм słuәpnis ＇sıодә ұиеэ！！！ū！s ц！！м ‘＇Su！̣puełsıәрun ұnq চu！̣doəəлә e sMous yı0M	＂¿8L\＄uo łunoos！p \％0Z e גə әכ！̣d ә૫ł S！ఛечМ„，шәןqоıd әчł рәлјоs әлец Кеш 0才 \ddagger I\＄ цџ！м puodsəд очм słuәpnłs －sıoдәә әسos प！！м ＇Kıəұsem pue бu！puełsıәрип ןenłdәэuoo smous yдом		$\varepsilon^{\prime} \forall^{\prime} \mathrm{d}^{\prime}{ }^{\prime} L$	ع＇9
0	\downarrow	乙	ε	t		
	6u！uu！beg	6u！doןəィəன	6u！Yoeordd ${ }^{\text {d }}$	6u！pəə๐хヨ／6u！ұәəw	paepuets	سə¢q0．d

7duәəце łou p！0	－uo！̣eue，dxə ue ұnouł！м 10 uo！！feue｜dxə ఛэәдоэи！Ч！！М дәмsuе ұәәлоэи৷	＇səseəдวu！ Łо 6u！puełsıəpun ן！̣иеd sәғео！unumos ұецұ ио！̣еиеןдхә Чң！М ләмsuе ұэәлоэи｜ uo！̣еие｜dxə әғә｜dmoכи！ 	－uo！̣eue｜dxə әұәןdmoo pue －uo！̣fuédxə u！̣ SME｜f 	－0才•60 L s \％S＇ε дәцłоие дәџヲ ＇0も8 七て\＄s！łsoつ ә૫ł ‘əsеәлои！\％S＇ε е ләみ甘 0ヵ＇60L SZ\＄ －ио！̣еие．dxә әғәןdшoง pue uо！！！enb әцł səəмsue 	9dW ＇$\varepsilon \forall d{ }^{\prime} \mathrm{C}^{\prime} \angle$	$\varepsilon \cdot L$
7duәәце łOи P！	әsеәләәр ұиәэләд би！！лоли！ suo！̣enbə әәиәр！＾ә чеәМ	＇sıодә ұиет！！！uб！s łnq бu！̣doןəләр е SMOYS y10M	‘səøq！ue＾әчł dn pәx！ш әлец Кеш йе0 ${ }^{\circ}$ I $=7$ әџ！мм очм słuәpnłs ＇әsеəдวu！ ғо \％＇ε spu！！ұецł ио！ұеnbə uе әұомм 7SE0 0 $0=u$ әџ！мм очм słuәpnłs ＇sıoдә әшos पІ！м jenłdəouoo smoys yıOM	$\begin{array}{r} \text { 7(SEO O }+\mathrm{I})=u \bullet \\ \text { 7SE0 } 0+7=u \bullet \\ \text { 7SEO } \mathrm{I}=u \bullet \end{array}$ －d！ysuo！̣е｜әд ә૫ł доł uo！̣enbə ұәәдоэ е sәұ！им ұиәрпłя	tdW ＇○＇でキ＇dy＇L	でし
0	\downarrow	τ	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	6u！pəəэхヨ／6u！ŋəәw	prepuets	melqodd

On Monday in Minneapolis, Minnesota, it was $0^{\circ} \mathrm{F}$ outside.
1.1 On Tuesday, it was 15 degrees colder. What was the temperature on Tuesday?
1.2 Wednesday was 5 degrees warmer than Tuesday. What was the temperature on Wednesday?

2. Select all of the true statements.$-2<-5$-5 is less than -2 .-2 is closer to 0 than 5 is.$-5>-2$$2<5$
3. Order the numbers by value from least to greatest.
$\frac{5}{2}$
$-\frac{2}{5}$
-2
5.2
-5

Least \qquad
\qquad
\qquad
\qquad Greatest
\qquad
4. Determine the value of each expression.

Expression	Value
$\frac{11}{4}+\frac{9}{4}$	
$3.2-2.6$	
$\frac{5}{8}+\frac{3}{2}$	
$12-3.6$	

5.1 Select all of the equations where a has the same value as $2+a=5$.$5-a=2$$2-a=5$ \square $5-2=a$$a+2=5$ \square $2-5=a$
5.2 Select all of the equations where b has the same value as $\frac{8}{2}=b$.
$2 \cdot b=8$
$\square \quad \frac{8}{b}=2$$2 \cdot 8=b$$\frac{1}{2} \cdot b=8$
$\square \quad 8 \cdot \frac{1}{2}=b$

Determine the value of the variable that makes each equation true.
$6.1 x-2.6=5$
$6.2 \quad 2.6 \cdot 5=y$
$6.3 \quad \frac{1}{4} \quad z=8$
$1.1-15^{\circ} \mathrm{F}$
$1.2-10^{\circ} \mathrm{F}$
2. $\checkmark-5$ is less than -2 .
$\checkmark-2$ is closer to 0 than 5 is.
$\checkmark 2<5$
3. Least $-5,-2,-\frac{2}{5}, \frac{5}{2}, 5.2$ Greatest
4.

Expression	Value
$\frac{11}{4}+\frac{9}{4}$	5 (or equivalent)
$3.2-2.6$	0.6 (or equivalent)
$\frac{5}{8}+\frac{3}{2}$	$\frac{17}{8}$ (or equivalent)
$12-3.6$	8.4 (or equivalent)

$5.1 \quad \checkmark \quad 5-a=2$
$\checkmark 5-2=a$
$\checkmark a+2=5$

$$
\begin{array}{lll}
5.2 & \checkmark & 2 \cdot b=8 \\
& \checkmark & \frac{8}{b}=2 \\
& \checkmark & 8 \cdot \frac{1}{2}=b
\end{array}
$$

$6.1 \quad 7.6$
$6.2 \quad 13$
$6.3 \quad 32$

Unit 7.5, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problems 1 and 2 before Lesson 1
- Problems 3, 4, 5, and 6 before Lesson 3

Problem 1

(Standards: 6.NS.C.5, MP2)
These questions are intended to surface what students already know about reasoning with negative numbers. Students reason abstractly and quantitatively by connecting increase and decrease in temperature to numerical values. This content first appears in Lesson 1: Floats and Anchors, where students reason about the position of a submarine as anchors and floats are added.

Suggested Next Steps: If students struggle . . .

- Consider paying special attention to how students reason about negative numbers during Lesson 1, or revisit this question as a class before beginning Lesson 2.

Problem 2

(Standards: 6.NS.C.7.A, 6.NS.C.7.D)
This question is intended to surface what students already know about comparing signed numbers. This content first appears in Lesson 1: Floats and Anchors.

Suggested Next Steps: If students struggle . . .

- Consider spending extra time comparing values of negative numbers during Lesson 1, particularly on Screen 5, using the vertical number line to aid in the discussion.

Problem 3

(Standard: 6.NS.C.7)
This question is intended to surface what students already know about ordering and comparing signed numbers, including fractions and decimals. This content first appears in Lesson 3: Bumpers.

Suggested Next Steps: If students struggle . .

- Plan to revisit this problem before Lesson 3, or use this item as the Warm-Up. Ask students to consider where each value would be located on a vertical or horizontal number line to help them order the numbers by value.

Unit 7.5, Readiness Check Summary

Problem 4

(Standard: 5.NF.A.1)
This question is intended to surface what students already know about adding and subtracting fractions and decimals. This content first appears in Lesson 3: Bumpers.

Suggested Next Steps: If students struggle . . .

- Consider including review of operations with fractions and decimals throughout the beginning of the unit leading up to Lesson 3.
- Consider spending extra time discussing students' strategies for the questions in Lesson 3 that involve fractions.

Problem 5

(Standards: 6.EE.A.4, MP7)
These questions are intended to surface what students already know about equivalent relationships, particularly rewriting subtraction as addition and division as multiplication. Students make use of structure to determine correspondences between various representations by selecting equivalent expressions. This content first appears in Lesson 3: Bumpers and Lesson 8: Speeding Turtles.

Suggested Next Steps: If students struggle

- Consider reviewing Problem 5.1 before beginning Lesson 3 and Problem 5.2 before beginning Lesson 8.

Problem 6

(Standard: 6.EE.B.7)
This question is intended to surface what students already know about solving one-step equations. This content first appears in Lesson 3: Bumpers and Lesson 8: Speeding Turtles.

Suggested Next Steps: If students struggle . . .

- Consider reviewing Problem 6.1 after students have surfaced strategies for using number lines to solve addition and subtraction problems in Lesson 3.
- Consider spending extra time on Activity 2 of Lesson 3 surfacing different strategies students use to solve equations, then revisiting those strategies before beginning Lesson 8.

1. Which expression has the least value?
A. $-9-(-9)$
B. $-2-(6)$
C. $15+(-7)$
D. $-15+(-3)$
2. Select all of the expressions that are equivalent to $3.5-(4.7)$.$4.7-(3.5)$$-4.7+3.5$
$3.5+4.7$
$3.5-(-4.7)$
$3.5+(-4.7)$

Determine the value of the variable that makes each equation true.
$3.1 \quad 15-a=17$
$3.2 b+(-8.3)=0$
$3.3 \frac{13}{4}+c=-\frac{3}{4}$
\qquad

This table shows temperatures in an Arctic city during one winter week.
4.1 Complete the table.

Day	Temperature at Midnight (${ }^{\circ}$ F)	Temperature Change From Midnight to Noon (${ }^{\circ} \mathrm{F}$)	Temperature at Noon (${ }^{\circ} \mathrm{F}$)
Monday	-32	20	-12
Tuesday	-17.5	-11	
Wednesday		15.5	10.5
Thursday	-12.2	17.3	-24
Friday	-21.8		

4.2 On Saturday, the temperature at midnight was $-17^{\circ} \mathrm{F}$. At noon, the temperature was $10^{\circ} \mathrm{F}$. How many degrees did the temperature change from midnight to noon? Explain your reasoning.

Use the positions of a and b on the number line to answer the question below.

5. Is $a+b$ positive, negative, or zero? Explain how you know.

Answer Key

1. D. $-15+(-3)$
2. $\sqrt{ }-4.7+3.5$
$\checkmark 3.5+(-4.7)$
$3.1-2$
$3.2 \quad 8.3$
$3.3-\frac{16}{4}$ (or equivalent)
4.1

Day	Temperature at Midnight (${ }^{\circ} \mathrm{F}$)	Temperature Change From Midnight to Noon (${ }^{\circ} \mathrm{F}$)	Temperature at Noon (${ }^{\circ}$ F)
Monday	-32	20	-12
Tuesday	-17.5	-11	-28.5
Wednesday	-5	15.5	10.5
Thursday	-12.2	-11.8	-24
Friday	-21.8	17.3	-4.5

4.2 Responses vary. The change in temperature from midnight to noon was 27 degrees since $-17+27=10$.
5. Negative

Explanations vary. To find $a+b$ on the number line, I start at a and then travel b units to the left (since b is negative). Since b is further from 0 than $a, a+b$ is negative.

$$
\text { - Consider revisiting Lesson 4, Activity } 1 .
$$

orders. This problem corresponds most directly to the work students did in Lesson 4: Draw Your Own.
This problem assesses students' ability to compare and contrast expressions that include the same signed numbers in different
(O'L'甘'SN'L 'L'甘'SN'L :spıepuets)
Problem 2

- Consider asking students to describe the meaning of each problem in terms of adding or removing anchors.
Suggested Next Steps: If students struggle . . .
This problem corresponds most directly to the work students did in Lesson 2: More Floats and Anchors. This problem assesses students' ability to add and subtract positive and negative integers.
(Standards: 7.NS.A.1, 7.NS.A.1.B) Problem 1

†	ε ' ${ }^{\text {c }}$	G ' ${ }^{\prime}$ '	ε	G 'ع 'ح'	smelqodd
$\varepsilon \cdot \forall \cdot \mathrm{SN}^{\prime} \angle$	$\bigcirc \cdot 1 \cdot \forall \cdot \mathrm{SN}^{\prime} \angle$	$\mathrm{a}^{\circ} \cdot \cdot \forall \cdot \mathrm{SN}^{\prime} \angle$		$L^{*} \forall{ }^{\text {S }}$ SN ${ }^{\prime}$	paepuels

Unit 7.5, Quiz 1: Summary and Rubric

- Consider revisiting Lesson 4, Activity 1.

 the structure of the number line to approximate the values of a, b, and $a+b$. This problem corresponds most directly to the work This problem assesses students' ability to reason about variable expressions involving addition and subtraction. Students make use of (LdW 'g'L• \forall 'SN'L 'r' \forall 'SN'L :sprepuets)
 - Consider asking students to use Monday's temperature information to describe a relationship between the temperature at
midnight, temperature change from noon to midnight, and the temperature at noon using an equation.
- Consider revisiting Lesson 3, Activity 1 . Suggested Next Steps: If students struggle . . .
 signed numbers true. This problem corresponds most directly to the work students did in Lesson 3: Bumpers.

 Problem 3

7duәәне łou p！o	＇sәэ！！чэ ＊səэ！！очэ ұәәлиоэu！Кןио	รәэ！๐чэ ұэәдоэи！ omł səpnןวu！osןe łnq әэ！очэ џәдлоэ әио	－әэ๐๐чэ әио ч！！м әэ！̣чэ ఛэәдоэ әио ィо 	$\begin{gathered} \left(L^{\prime} t^{-}\right)+S^{\circ} \varepsilon \\ S^{\circ} \varepsilon+L^{\prime} t^{-} \end{gathered}$ 		Z
ł0u p！ 0	－uо！ssəлdxә әч7 реч ұечд ио！эsәлдхә әseıцd әчұ pәsnıиоэ әлец кеш（9）－乙－ рәұәәәә очм słиәрпłs －әэ！очэ ґэәдоэи｜			$\left(\varepsilon^{-}\right)+\mathrm{SI}-$ －әэ！！очэ ґэәдоэ	$\begin{gathered} \mathrm{G} \cdot \mathrm{~L} \cdot \mathrm{~B}^{-S N} \angle \mathrm{~L} \\ \cdot \cdot \forall \cdot \mathrm{SN}^{\circ} \angle \end{gathered}$	\downarrow
0	1	Z	ε	t		
	6u！uu！ $\mathbf{c o g}^{\text {a }}$	6u！doןəләа		бu！pəəэхヨ／6u！łəәW	prepuers	шə¢qodd

7dшәџе Ł0u P！	－әпц sıәqunu pəuб！！fo uo！̣эexłqns ıо uо！！！！ppe би！л৷оли！ uо！̣enbə ue sәyеш әпןел әчъ Би！и！uшләəәр เо 6u！puezsıәрй рәң！u！！smous you	＇uо！ұепрә әчұ әэиејед of səp！s yłoq mot ε ‘ 8 рәұэедұяп К｜дэәноэи！ әлец кеш ع＂8－ әұомм очм sұиәрпłs ＇sıодә ұиеэ！！！ubis Ч！！М бu！puełsıәpun 	ऽs．oлә әшоs чџ̣м 6u！puełsıәрип 		＇ $\mathrm{A} \cdot \cdot \forall$＇SN＇$\angle$ ＇\forall＇${ }^{\prime} \forall$＇\forall SN＇\angle $' เ \cdot \forall$ SN＇\angle	て＇દ
7dmәみе ¡0u p！	－әпィ sıәqunu pəuб！！fo uo！̣эexłqns ло ио！！！！ppe би！ฺィоли！ uо！ұenbə ue sәуеш әпןел әцъ би！̣ишшәәәр เо 6u！puezsıәрй рәұ！u！	－uопғепbə әЧł әЈиeıeq оł səp！s чłоq Oł SI рәрре Кןэәноэи！ әлец кеш $Z \varepsilon$－ло Zє әұомм очм sұиәрпłя ＇sıoдә ұueכ！！！ub！s Ч！！М бu！puełsıәpun 	＇ 7 zn ！ 10 д әК／оs Łои p！p łnq＇$Z=p$－ұечł рәи！шәәәр әлец кеш Z әдомм очм słиәрпіs ＇sıодә әшоs ЧІ！М 6u！̣puełsıәрй 	$\begin{gathered} z^{-} \bullet \\ \text { ләмsue ұәәлођ } \end{gathered}$	＇ $\mathrm{A} \cdot \cdot \forall$＇ $\mathrm{SN}^{\prime} \angle$ ＇\forall＇L＇\forall＇SN＇\angle ＇L＇V＇SN＇L	－＇E
0	\downarrow	Z	ε	t		
		6u！doןəләа	6u！	6u！pəəวх¢ヨ／6u！ұəәW	prepuels	melqodd

7duәə łou P！	＇uo！peueןdxә ¡эәл๐Ои！ло uо！џеиеןdxә ou чұ！м ләмsuе łэәлиоэи	－ 6u！puełsıәpun ןe！pued smous łечł uo！łeueןdxә Ч！！М ләмsue łэәллоэи｜ uo！peuejdxə Чџ！М ләмsue ұэәл兀О	$\angle I-=\angle Z-0 I$ әэu！s sәəฝәр LZ－イq әбиецว \ddagger snu әлиеләдшәґ әчъ ‘sәәдбәр uo！̣euejdxә uo！peuejdxə U！SME！t dOu！w ЧІ！М ләмsue łכәллО		$\varepsilon^{\prime} \forall^{\prime} \mathrm{SN}^{\prime} L$	て＇も
7dməŋе łOU P！	＇ఛコәגоכ әде sәдпедәduәґ əЦł Ł0 əu૦u 」0 əu૦			```〕. S `ठ-:Кер!л\ „.8'IL-:Keps.nप\perp 〕. S- :КepsәuрәМ 〕. S '8Z-:Kepsən\perp 'sıәMSUе łכәд^О```	$\varepsilon{ }^{\prime} \forall^{\prime} \mathrm{SN}^{\prime} L$	レ＇も
7dməŋе łOU P！	－ənג sıəqunu pəu6！！fo uo！̣эe»łqns 10 uo！！！ppe 6u！̣ィоли！uo！̣enbə ue sәуеш ұецд әવе！̣ел е ло әпןел әцł Би！и！uшәəәр „о 6u！puełsıәри рәң！u！！smoys yom	＇uо！ұепbә әч7 әЈиејеq оъ səp！s yłoq of $\frac{t}{\varepsilon I}$ pəppe $\frac{\square}{0 I}$ КІэәдноэи！әлеч кеш әдомм очм sұиәрпнs ＇sıодә ұиет！！！uб！s Ч！！М Бu！puełsıәри әృәృdmoэu！sMoys yдоМ	－sı0גə әшоs Чұ！м 6u！puełsıәрй ןenłdeэuos smous yı0M	（ұиәјел！̣июә ло） $\frac{t}{9 I}-\bullet$ ‘дәмsue łәәлоэ	$\mathrm{O}^{\circ} \cdot \mathrm{H}^{\prime} \mathrm{SN}^{\prime} \angle$ ＇ A ＇${ }^{\prime} \forall$＇ SN^{\prime}＇ ＇\forall＇$\cdot \forall$＇${ }^{\prime}$ SN＇\angle $' \vdash \forall S^{\prime} N^{\prime} L$	$\varepsilon \cdot \varepsilon$
0	\downarrow	乙	ε	t		
	6u！̣u！⿺夂⺀大	6u！doןəィəன	6u！บэeoıdd＊	6u！pəəэхヨ／6u！${ }^{\text {a }}$	рлериеłS	wejqodd

7duәュне ¥0u p！	uo！̣eueןdxә л0 ио！ңеиеןdxә ou पł！M ләMsue ¡эәдоэи	－6u！puełsıәрй ןe！pued sмочs łечł uo！̣еuеןdxә पЏ！М ләMsue ¡כәлоэи। uo！̣fuédxə әұəઇdயuoכu！ ЧІ！М ләмsuе ұэәлоэ	＇S＇Z ә＾！！！sod ұnoqe s！$q+p$ әоиедs！p ןедод әэиełs！！әчł pue＇z дnoqe s！ 0 of q woı әכuełs！p әЧł әsпеכәq әм！！！SOd＇6＇ヨ uo！̣еиерыхә Ч！！М ләмsue ¡әәлоэи －q иецł дәбљеן s！ \quad әsпегәq әм！ұебәл＂ 6 • \exists uo！̣еueןdxә u！SME｜t dou！u पџ！м ләмsuе ұэәлоО	－әл！\downarrow ебәи $s!q+p$ ＇ b иецł 0 шоя ләцдед s！ q әэи！ड（әл！ұебәи s！q әои！s） әчł ио $q+$ р ри！$\circ \perp$＇ $6 \cdot \exists$ әл！ұセбәә ＇ио！̣еиеןdxә ұэәлоэ Чџ！М ләмsue џәәлоэ	$\begin{aligned} & \mathrm{G} \cdot \forall \cdot \mathrm{SN}^{\prime} \angle \\ & \cdot \mathrm{L} \cdot \mathrm{SN}^{\prime} \angle \mathrm{L} \end{aligned}$	G
0	\downarrow	Z	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！чэeordd \forall	бu！pəәэхヨ／6u！əəәW	prepuets	melqodd

Name \qquad

1. Select all of the equations that are equivalent to $\frac{27}{-3}=k$.
$\square \frac{-27}{3}=k$$-3 k=-27$$-3 \cdot(27)=k$
$\square \frac{1}{3} k=-27$
$\square \frac{-27}{k}=3$
2. Which expression has a negative value?

Use the positions of x and y on the number line to answer the question.
A. $x y$
B. $-\frac{x}{y}$

C. $y-x$
D. $2 y$

When Dylan checks their school lunch account, the balance is $\$ 56$. After buying 8 lunches, the balance is $\$ 40$.
3.1 How much does the balance change with each lunch bought? Show whether the change is positive or negative.
3.2 How many more lunches can Dylan buy before they run out of money?
3.3 At Dylan's school, every student starts with a balance of $\$ 80$ for school lunches. How many lunches had Dylan bought when they first checked their balance?
\qquad
Determine the value of the variable that makes each equation true.
4.1 $5 a=-1$
$4.2 \frac{b}{-3}=-15$
$4.3-14+c=-12.5$

Here are the times and positions of cars passing a camera on a highway. Cars east of the camera have positive positions and cars west of the camera have negative positions.
5.1 Complete the table for one car traveling at a constant speed.

What does the number you wrote tell you about the car?

Time (sec.)	Position (ft.)
-3	
-2	120
-1	60
0	0
1	-60
2	-120

5.2 Which question would $a=(-5)(-60)$ help to answer?
A. The car was traveling at a rate of -60 feet per second. What was the position of the car 5 seconds after it passed the camera?
B. The car was at -60 feet one second after it passed the camera. When was the car 5 feet to the west of the camera?
C. The car was traveling at a rate of -60 feet per second. What was the position of the car 5 seconds before it passed the camera?
5.3 Answer the question you selected in 5.2.

1. $\checkmark \frac{-27}{3}=k$

$$
\checkmark \frac{-27}{k}=3
$$

2. A. $x y$
$3.1-2$ dollars
3.220 lunches
3.312 lunches
$4.1-\frac{1}{5}$
4.245

$4.3 \quad 1.5$

5.1

Time (sec.)	-3	-2	-1	0	1	2
Position (ft.)	180	120	60	0	-60	-120

Responses vary. The car was 180 feet east of the camera 3 seconds before it passed the camera.
5.2 C
5.3 Responses vary. 5 seconds before the car passed the camera, its position was $(-5)(-60)=300$ feet.

understand and communicate which expressions do not have a negative value and why．
Math Language Development Consider using the mathematical language routine Critique Correct Clarify to help students
line to support their thinking．This problem corresponds most directly to the work students did in Lesson 9：Expressions． signed numbers．Students use the structure of the number
This problem assesses students＇ability to reason about variable expressions involving adding，subtracting，multiplying，and dividing
（Standards：7．NS．A．3，MP7）
Problem 2

students did in Lesson 8：Speeding Turtles． make use of the structure of each expression to identify equivalent expressions．This problem corresponds most directly to the work This problem assesses students＇ability to identify different multiplication and division expressions that have the same value．Students
（Standards：7．NS．A．2，7．NS．A．2．B，MP7）
โ Шวโqoud

ε	$G^{\prime} \varepsilon^{\prime}$＇	∇	\downarrow	∇	\downarrow	∇	suəpqodd
ع＇日＇ヨヨ＇L	$\varepsilon^{\prime} \forall^{\prime} \mathrm{SN} \cdot L$	$O^{\prime} \mathrm{Z}^{\prime} \forall^{\prime} \mathrm{SN}{ }^{\prime} L$	$日^{\prime} Z^{\prime} \forall^{\prime} \mathrm{SN}{ }^{\prime} L$	$\forall^{\prime} \mathrm{C}^{\prime} \forall^{\prime} \mathrm{SN}{ }^{\prime} L$	$Z^{\prime} \forall^{\prime} \mathrm{SN}{ }^{\prime}$＇	$L^{*} \forall^{\prime} \mathrm{SN}{ }^{\prime}$	paepuets

Unit 7．5，Quiz 2：Summary and Rubric

әш! \perp u! уэея : L
 abstractly and quantitatively when they describe the meaning for the value computed in question 5.1 and determine which problem
This problem assesses students' ability to interpret the meaning of multiplication of signed numbers in context. Students reason
(ZdW ' ε ' \forall 'SN'L :sprepuetS) Problem 5

- Consider revisiting Lesson 10, Activity 1.
Consider asking students to determine whether the value of the variable in each equation would be positive or negative. Suggested Next Steps: If students struggle

(Standards: 7.NS.A.1, 7.NS.A.2.A, 7.NS.A.2.C)
Problem 4
much of the $\$ 80$ initial balance Dylan had already spent when he first checked his balance.
- Consider revisiting Lesson 8 , Activity 1 . much of the $\$ 80$ initial balance Dylan had already spent when he first checked his balance.
 Suggested Next Steps: If students struggle
directly to the work students did in Lesson 8: Speeding Turtles.
and quantitatively when they extrapolate from given information to answer questions in context. This problem corresponds most This problem assesses students' ability to multiply and divide positive and negative numbers in context. Students reason abstractly (ZdW ' ε ' $\mathbf{g}^{\prime} \exists \exists \exists^{\prime} L$ ' ε ' \forall 'SN' L :spıepuetS) Problem 3

7duәゅе ł0u p！	$\frac{K_{-}}{x_{-}}$se uo！ssəıdxә әцł рооұsıәрии әлец кеш $\frac{\kappa}{x}$－ рәґәәәәs очм sұиәрпłs －әэฺ๐чэ ґэәมоэи｜				$\varepsilon^{\prime} \forall^{\prime} \mathrm{SN}^{\prime} \angle$	乙
7duәәие łOU P！	＇sәэ！๐чว ŋәәдоэ әшоs ч！！м səગ！๐૫๐ łэәлиоэи！OMュ ＊səә！๐чэ ұәәдлоэи！Кןио		－əэฺ๐ч๐ ŋэәдоэи！әио pue ‘əગฺ૦૫૭ ఛэәдоэи！әио чไ！м әэ！๐чэ ఛวอม๐๐ әио 	$\begin{aligned} & \varepsilon=\frac{y}{\angle Z^{-}} \\ & y=\frac{\varepsilon}{\angle Z^{-}} \end{aligned}$ ‘səэ！๐ч๐ ఛวәлоэи！ou pue 		\downarrow
0	1	τ	ε	t		
	6u！	6u！doןəләа	6u！	бu！pəәэхヨ／6u！łəәW	paepuers	шәןq0，d

s！ıqny pue Kıewuns ：Z z！̣no ‘s＇L t！un

ł0u p！ 0	＇8\＄s！чой৷ чэеә „о әпјел әцł Ки！уи！чł $\frac{8}{9 \mathrm{I}}$ рәдеןпэеэ әлеч кеш sәчэип। 乙 әұомм очм słиәрпұs ｀ұхәұиоэ u！̣ sıəqunи әл！̣ебәи pue әл！！！！sod 6u！p！м！p pue рәң！ш！！SMOYS צ10M	＇9S\＄to әЈиеıeq е 4ł！М ұч6noq әq pınoง ұецъ səyounl fo ıəqunu ןеъоł әцł рәи！шдәłәр әлец Кеш sәчэип 87 әృомм очм sұиәрпłs ＇sıoıə ұueכ！！！ub！s ЧІ！М＇6u！̣puełsıәрй әృəઇdwoou！ łnq 6u！̣do｜əләр e smous yıom	－＇ε U！әдолм Кәцъ әпюел әчъ Кq 0т sәр！ィ！р ұиәрпұS＂ $6 \cdot \exists$ ＇Sı0גə ı0u！̣ Чł！M ‘6u！puełsıəpun ןenłdəつuoう SMOUS YגOM	səyวun！0Z ‘дәмSU® ұәәдоう	$\varepsilon^{\prime} 9^{\prime} \exists \exists \exists^{\circ} L$ ＇ε＇\forall＇SN＇L	て＇ع
ł0u P！	－рәц！пbәд sем ъои p！p ұnq səyoun 8 Кеш 9І\＄әłолм очм sұиәрпұS ＇孔хәұиоэ u！sıəqunu әл！ұебәи pue əл！！！sod 6u！p！ィ！p pue 	＇səyэun／ 8 Knq of 0ヵ\＄yoot 子！ децд рәдәлдәди！әлец кеш ұпq әэиејеq әч7 әsеәэәр ріпом чэип। цэеә дечъ имоия әлеч кеш sıe川lop s－ әұолм очм słиәрпłS －sıодə ұueכ！！！ub！s Чł！м 6u！puełsıəpun әџәןduoэu！ smous yop	－Кем әл！дебәи ло әィ！！！sod е и！әЈиејед әцъ рәұэәне ұецұ ！！моия łOu p！p łnq Z\＄SłSOO чэип। чоеә децд имоия әлец кеш sıе॥ор Z әұолм очм sұиәрпłя ‘sıодә әшоs Чџ！М Би！puełsıәрй ןenłdəәuos sMOUS YגOM	$\begin{gathered} \text { sıе॥ор Z- • } \\ \text { •дммsuе ұәәдо৩ } \end{gathered}$	ع＇a＇ヨヨ＇L ＇ε＇\forall＇SN＇L	L＇E
0	1	Z	ε	†		
	6u！uu！6əg	6u！doןə＾əロ	6u！¢oeordd＊	6u！pəəэхヨ／6u！łəәW	prepuets	سə¢q0．d

suqny pue Kıemuns ：Z z！̣no＇s＇L tụ

＇7dmente ¥0u p！	－әnגұ sıəqunu pəu6！s би！̣ןоли！̣ uo！̣enbə ue sәуеш ұецұ әવеиел е ґо әпןел әцъ би！и！шшәғәр ๖о 6u！̣puełsıәри рә！！ш！！smous yоом	पІ！М ‘＇6u！puełsıәрй әұәㅣㄸoํ！ е SMOYS y yom	$\frac{\mathrm{S}}{\mathrm{I}} \text { Би!!!uм }$ se yons ‘одә иб！s e sәуеш ұиәрпт＇＇ 6 ・ヨ ＇sıoдə ıоu！u Чџ！м ‘＇6u！puęsıәрй smous y⿺辶M	$\frac{\mathrm{S}}{\mathrm{I}}-$ ләмsǔ ұәәдоэ		L＇t
ł0u p！ 0	‘8\＄s！чэип৷ чэеә ло әпןел әлец кеш sәуоип！ ε әғомм очм sұuәрпłS ＇¥хәұиоо u！sıəqunu әл！̣ебәи pue әл！！！！sod јо бu！̣риеұsıәрй рәџ！ш！smous yом	＂08\＄до әЈиејеq ןеи！ம！！о ／еłоł әЧł рәи！шдәłәр әлец Кеш sәуэип। 0ォ әұомм очм sұuәриłs ＇sıодә ұиеэ！！！uம！ ЧІ！М бu！puełsıәpun 	－\llcorner＇ u！әғомм Кәчұ әпцєл әцъ К૧ 七乙 sәр！и！р ұuәрпłs＂6・ヨ ＇sıодә әшоs ןепłdәэиoo sMOYS Yо～M	səyวun！ZI • ‘әммsuе ұәәдоэ	ع＇タㅋヨ＇L ＇ε＇\forall＇SN＇\angle	$\varepsilon \cdot \varepsilon$
0	\downarrow	Z	ε	t		
	6u！uu！${ }^{\text {evg }}$	6u！̣оןəләа	6u！	6u！pəəэxヨ／6u！əәәW	prepuets	melqodd

s！ıqny pue Kıewuns ：Z z！̣no ‘s＇L t！un

＇fduәдне Łou p！0	＇әпィұ sıəqunu pəuб！ uo！s！！！！p до uo！̣еכ！！ןd！！！nu би！̣ןоли！！uo！̣еnbə ue səуеш ұецł әןqе！ıел е Łо әпןе＾әцł Би！u！̣шぇәәр „о 6u！puełsıәри рәң！ш！ smoчs yגом	＇sıодә ұиеэ！！！uи！ प！！M 6u！puełsıəpun әұәㅣㅣoㅇu！ smous yıom	＇s＇I－ би！ se цэпs ‘днә иб！s e sәуеш диәрпня＂6・ヨ ＇sıоддә әшоs ЧІ！М Бu！̣puełsıәрй ןenłdәэuos smoчs yдом			$\varepsilon ' \downarrow$
＇7duәдие ł0u p！	 бu！̣ィןоии！uo！̣еnbə е ґо әпןе＾әцł Би！u！̣шィәәр до 6u！puetsıәрй рәң！ш！！smoчs yגом	＇sıодә ұиеэ！！！uи！s Чł！М Бu！puełsıәpun әұәןdwoэu！ smous yıom	＇Sも－6и！！！uм se цопs גонә иб！s e sәуеш ұиәрпня＂ 6 ・ヨ ＇sıouә әшоs ןenłdәэиoэ smoys yдом	\qquad		でも
0	1	Z	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！¢эeordd \downarrow	бu！pəəэхヨ／6u！ŋəәw	prepuets	melqodd

ouqny pue Kıemuns ：Z z！̣no＇ G ＇\angle t！un

＇7dmente ł0u p！	uo！ңeue，dxә Łэәлоэи！ло uо！ұеиеןdxә ou чұ！м ләмsuе ґэәлоэи	uопепвə ұnq uo！！sənb ұоәиоои！ səsooч диәрпіs＂＇6・ヨ uо！̣виеןdxә ұәәлоэ ЧІ！М ләмsue ңәәлоэи әңәㅣㅜoэи！ Ч！！М дәмsue ұәәдоつ	＇7Sеə łəəょ 00\＆ sем леэ әчц＂ 6 ・ヨ uo！̣еиедыхә ләмsue ұэәлоэ	$\not \supsetneq ә \partial \nless 00 \varepsilon=(09-)(\mathrm{s}-) \text { seм }$ uo！t！sod s＋！‘едәшеэ әчł pəssed ¿セдәшеэ ә૫ł pəssed \ddagger ！əдəłəq spuoכəs ऽ גеכ әЧł ło uo！！！！sod әЧł Sем ұечМ＇puoכәs е ұе би！！әлед sем ґеэ әчц	$\varepsilon^{*} \forall^{\prime} \mathrm{SN}^{*} L$	$\begin{aligned} & \varepsilon \cdot G \\ & \tau \cdot G \end{aligned}$
－dme»te ł0u p！	uo！peuejdxә ๖эәлоэи！ло uo！̣еиеןdxә ou प！！м ләмsue łэәлоэи।		uo！̣eue．jxә әұәןdயоэ pue ןeэ！ 6 оן पł！M ләмsue łэәлоэи！ 7SEə łəəд 08โ uo！̣eue．jxә ләмsue ұәәлоつ	‘еләшеэ әчł pəssed ！！әлоґәq 081 uo！ңrue，dxə pue ләмsue ұәәлло	$\mathcal{E}^{*} \forall^{\prime} \mathrm{SN}^{*} L$	L＇G
0	1	Z	ε	t		
	6u！uu！ 6 өg	6u！doıəләа	6u！чэeosdd ∇	6u！pəəวхヨ／6u！̣əәW	paepuels	melqodd

Unit 7.5, End-Unit Assessment: Form A
Name \qquad

1. What is the value of $2.6+(-3)$?
A. -0.4
B. 5.6
C. -5.6
D. 0.4
2. Select all of the expressions that are equivalent to $-4.5-5.2$.
$\square-4.5+5.2$$-4.5+(-5.2)$$5.2-(-4.5)$
$\square-5.2-4.5$$4.5-5.2$

Use the positions of x and y on the number line to answer the question.
3. Which expression has a positive value?

A. $x+y$
B. $x-y$
C. $x \cdot y$
D. $\frac{x}{y}$
4. Determine the value of each expression.

Expression	Value
$-\frac{12}{3}$	
$-12+3$	
$12-(-3)$	
$(-12)(-3)$	
$\frac{-12}{-3}$	

\qquad
5. Which question would the equation $b=-\frac{12}{3}$ help to answer?
A. The temperature dropped 12 degrees each hour for 3 hours. How much did the temperature change in total?
B. The temperature dropped 12 degrees over 3 hours. How much did it change each hour?
C. The temperature was $12^{\circ} \mathrm{F}$ and dropped to $-3^{\circ} \mathrm{F}$. How much did the temperature change?

Explain your thinking.

Determine the value of the variable that makes the equation true.
$6.1 \frac{1}{3} a=-5$
$6.2 \quad 12-b=12.5$
$6.31=-10 c$
\qquad
In 2020, Kathryn Sullivan and Vanessa O'Brien became the first women to reach the deepest-known point in the ocean. They started out at 0 feet and traveled at a constant rate toward the ocean floor.

Use the table showing their elevation at different times to help you answer the questions.
7.1 How much did their elevation change each minute?

Show whether the change is positive or negative.

Time (min.)	Elevation (ft.)
0	0
20	-3000

7.2 What was Kathryn and Vanessa's elevation 75 minutes after they started their journey to the bottom of the ocean?
7.3 How many minutes did it take them to reach -36 000 feet after they started their journey? Explain your thinking.

Reflection: Select a question to answer.
\square What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

Answer Key

1. A. -0.4
2. $\checkmark-4.5+(-5.2)$
$\checkmark-5.2-4.5$
3. B. $x-y$
4.

Expression	Value
$-\frac{12}{3}$	-4
$-12+3$	-9
$12-(-3)$	15
$\frac{(-12)(-3)}{-3}$	46

5. B

Explanations vary. If the temperature dropped 12 degrees over 3 hours, then it changed $-\frac{12}{3}=-4$ degrees each hour.
$6.1 \quad-15$
$6.2-0.5$
$6.3-\frac{1}{10}$
7.1 -150 feet per minute
$7.2-11250$ feet
7.3240 minutes

Explanations vary. Kathryn and Vanessa travel at a rate of -150 feet per minute. They need to descend -36000 feet. That's a total of $\frac{-36000}{-150}=240$ minutes to reach the ocean floor.
 －uо！ssəдdxә цэеә

This problem assesses students＇ability to identify different addition and subtraction expressions that have the same value．
This problem corresponds most directly to the work students did in Lesson 3：Bumpers and Lesson 4：Draw Your Own．
（O＇L•＇SN＇L ：psepuets）
Problem 2
－Consider revisiting Lesson 3，Activity 1.
－Consider asking students to draw a number line diagram to represent the expression and use it to determine the value． Suggested Next Steps：If students struggle
students did in Lesson 3：Bumpers．
This problem assesses students＇ability to add positive and negative numbers．This problem corresponds most directly to the work
（L－V＇SN＇L ：pxepuets）
Problem 1

L	G	∇	$\varepsilon^{\prime} 9^{\prime} L^{\prime} 9$	$乙^{\prime} 9$	乙	ε	$\nabla^{\prime} \downarrow$	sü｜qOdd
$\varepsilon^{\prime} 8^{\prime} \exists \exists^{\prime} L$	$\varepsilon^{\prime} \forall^{\prime} \mathrm{SN}^{*} L$	$日^{\prime}$＇＇V＇SN＇L $^{\prime}$	$\chi^{\prime} \forall^{\prime} \mathrm{SN}{ }^{\prime} L$	$\mathrm{Q}^{\prime} L^{\prime} \forall^{\prime} \mathrm{SN}{ }^{\prime}$	$O^{*} L^{\prime} \forall^{\prime} \mathrm{SN}{ }^{\prime}$	$日^{*} L^{*} \forall^{\prime} \mathrm{SN}{ }^{\prime}$	L＇V＇SN＇L	pıepue7S

\forall usos ：o！̣qny pue Kıemuns łuəussess \forall puヨ＇c＇L l！un
'OL uossəך Бu!̣!!!!ィəд дәр!suoう •

- Consider asking students to first determine whether the value of each expression would be positive or negative

to the work students did in Lesson 10: Integer Puzzles.
This problem assesses students' ability to add, subtract, multiply, and divide signed integers. This problem corresponds most directly
(Standards: 7.NS.A.1, 7.NS.A.2.B)
Problem 4
- Consider revisiting Lesson 9, Activity 1.
understand and communicate which expressions do not have a negative value and why
- Math Language Development Consider using the mathematical language routine Critique, Correct, Clarify to help students
Suggested Next Steps: If students struggle
This problem corresponds most directly to the work students did in Lesson 4: Draw Your Own and Lesson 9: Expressions.
signed numbers. Students make use of the structure of the number line to determine which of four given expressions is positive
This problem assesses students' ability to reason about variable expressions involving adding, subtracting, multiplying, and dividing
(Standards: 7.NS.A.1.B, MP7)
Problem 3
Unit 7.5, End Assessment Summary and Rubric: Form A

se|zznd

This problem assesses students' ability to determine the value of a variable that makes an equation with positive and negative
(a'r・シ'SN'L 'z'V'SN'L :spıepuets)
Problem 6

students did in Lesson 8: Speeding Turtles.
as they determine which question the given equation could be used to solve. This problem corresponds most directly to the work
This problem assesses students' ability to connect expressions to real-world situations. Students reason abstractly and quantitatively
(ZdW ' ε ' \forall 'SN' 2 :spıepuełS)
Problem 5
\forall usos :o!̣qny pue Kıemuns łuəussess \forall puヨ ' c 'L l!un
 them to describe how the rate can be used to make predictions about future elevations.
- Consider asking students how the data in the table can be used to determine the rate of change of the elevation.
Suggested Next Steps: If students struggle .
directly to the work students did in Lesson 7: Back in Time and Lesson 12: Arctic Sea Ice.

This problem assesses students' ability to solve problems involving positive and negative rates. Students reason abstractly and
(Standard: 7.EE.B.3, MP2)
Problem 7

7duәə е Ł0u p！ 0	 иәчм ұецł рәдәqшәшәд әлец кеш $\frac{\kappa}{x}$ ィо К • x ұәәә๐ очм sұuәрпıS 			$\kappa-x$	$\begin{gathered} \angle d W \\ \prime L^{\prime} V^{\prime} S N ' L \end{gathered}$	ε
ł0u p！	－Səગ！̣૦૫৩ －Səэ！ฺ๐૫ 					乙
7duәәие łOU P！	$\cdot(\varepsilon-)-9^{\circ} z$ Ł0 әпןел әЧł рәи！шләəәр әлец －әл！̣ебәи sем ןеұоұ әчұ ұецұ мәия рие $\varepsilon+9^{\prime} Z$ рәрре әлец Kеш 9 ＇s－əэәәәs очм słuәpnłS ә૫ł әлец sәпןрл әЧł łецł әz！̣ибоэәд Кеш ォ 0 łכәәә очм słuәpnis			$\begin{aligned} & \pm 0^{-} \\ & \forall \bullet \end{aligned}$	$L^{*} \forall^{\prime} \mathrm{SN}^{\prime} L$	1
0	\downarrow	乙	ε	t		
	6u！uu！6eg	6u！doןəィəன	6u！पэeoıdd＊	6u！pəəэxヨ／6u！ұәəW	prepuełS	سəqodd

7duәәие łOU P!	-6u!̣иедяләрии ๖о әЈиәр!лә чеәМ		-әл!ұебәи s! ł Insə» әЧł pəunsse әлец Кеш б $^{-}=\frac{\varepsilon^{-}}{\text {Z }^{-}}$ $\varepsilon-Z I-$ рәұэеддqns әлец кеш SI- = (ε^{-}) (ZI-) ' ε - ZI рәңэедяп әлец кеш $6=\left(\varepsilon^{-}\right)-Z$ І • $\cdot(\varepsilon+Z I)-$ рәғецпэго әлец Кеш $\mathrm{SI}-=\varepsilon+Z$ I- $^{-}$ рәр!л!р әлец кеш т $=\frac{\varepsilon}{Z I}-$:ұец әң!мм очм słuәpnis "sıолә дои!и цџ!м 'Kıəяsem pue бu!puełsıəрй 	тоәиоэ 	$\begin{aligned} & \mathrm{G} \cdot \mathrm{Z}^{\prime} \forall \mathrm{SN}^{\cdot} \angle \mathrm{L} \\ & \cdot \cdot \forall \cdot \mathrm{SN}^{\prime} \angle \end{aligned}$	t
0	\downarrow	乙	ε	t		
	6u!uu! $\mathrm{S}^{\text {eg }}$	6u!doןəләа	6u! ${ }^{\text {a }}$ (6u!pəәэxヨ/6u!łəәW	prepuets	melqodd

\forall שxos :

7dшәџе łou p！0	－6u！puełsıəри 10 әЈиәр！лә чеәМ	－ε кq pәр！！！p әлец кеш $\frac{\varepsilon}{\mathrm{S}^{-}}$ әт！мм очм słuәpnłs ＇sıодә ұиеэ！！！uи！ पұ！м＇চu！̣puełsıəpun ұnq ठu！̣doןəләр e sMOYS y10M	－sıoдә pue 6u！puełsıəpun ןепłdәэиоэ smous yıom		$て ゙ \forall{ }^{\prime} \mathrm{SN}^{\prime} L$	L＇9
7duәде łou p！0	－uolıeue，dxә ue łnout！M 10 uо！̣еие．dxә ґэәдоэи！ Чұ！М әэ！๐чэ ฉэәдоэи｜	suo！ssəədxə ถu！̣əәuиoว „о би！̣puełsıəрип ן！̣иед sәғеэ！иишшоэ ұечұ ио！џеиеןdхә ＇uо！̣еие｜dxә әғәןdmoэи！ 	＇uo！̣eue｜dxə Ч！！М әэ！очэ џәәиоэи －uo！̣eue｜dxə u！sme｜t roulu 	 рәбиечэ ұ！иәчт ‘sınoч ε дәло ә૫ł ॥ •Kıe＾suo！ఛeue，dxヨ ¿ぇnоч чэеә әбиечэ t！p！p чэnu мон ‘sınoч ε дәло sәәцбәр ә૫ł sıәмsue K｜｜nłssəoons ұuәpnłs		G
0	\downarrow	乙	ε	t		
	6u！uu！̣бeg	бu！̣doןəләа	6u！${ }^{\text {ceeadd }} \boldsymbol{\square}$	6u！pəəэхヨ／6u！̣əәw	paepueis	mə¢q0，

7duәәе łOU P！ 0	－6upuełsıәpun $\ddagger 0$ әЈиәр！лә чеәМ	＇sıoдәә ұиет！ч！ub！s бu！doןəләр е sмочs удом	－әбuецэ ә૫ł ґо uб！s ә૫ł рәдәр！suоэ әлец ұои Кеш 0SI әџ！uм очм słuәpnłs ＇sıодә дои！̣ш цџ！м ןentdəouoo smous yıом	әұnu！u əəd łəəょ 0SI－• †эәдио 	$\begin{gathered} \text { ZdW } \\ { }^{\prime} \cdot \mathrm{g}^{\prime} \exists \exists \cdot L \end{gathered}$	1－2
7dme»е łOU P！ 0	－6u！̣puełsıəpun 10 әэиәр！лә уеәМ	sлодә ұиет！！！uб！s бu！doןəләр е sмочs удом	рәдәр！suoə әлец 孔ои кеш I＂0 әұ！им очм słuәpnłs ＇sıодә дои！̣ш цџ！м ןenłdәouoo smous yдом		Z＇甘＇SN＇L	$\varepsilon ' 9$
7duәəие łOU P！ 0	－6upuełsıәрun 10 әЈиәр！лә чеәМ	${ }^{\circ} Z I-\mathrm{s} \cdot \mathrm{Z}$ рәделпэеэ әлец кеш s ：0 әب！им очм słuәpnłs ＇sıодәә ұиет！！！ub！s бuido｜əләр е smous yиом	sıолә лои！ш पд！м ‘Kəəsew pue бu！puełsıәрй ןenłdəәuos smous yдом		$\square^{*} \cdot{ }^{\prime} \forall^{\prime} \mathrm{SN}^{\prime} L$	て＇9
0	ν	Z	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	6u！pəәэхヨ／6u！ұәәW	prepuets	merqodd

7dшәџе łou P！ 0	иоо！еие．dxә ue łnout！M 10 uo！̣eue．dxə Łэәлиои！Ч！！М әэ！๐чэ ґэәдоэи	＇səseәдэи！ ן！！pued sәңгэ！иишшоэ ұец дәмsue ұәәдоэи｜ －uo！̣еие．dxә дәмsuе ұәәлоう	－әш！！u！әбиецэ әцł ә૫ł рәsn иәчł pue łəәł 000 ع ε Кq рәбиецэ ио！！еләәә әцұ ұецґ рәә！！ои әлец кеш шоџоq әцд $100 Z 0$ દદ ә！！мм очм słuәpnłS －uoḷeue．dxә U！SME｜f дOU！	səənu！̣ $0 \succcurlyeq Z=\frac{0 \text { SI－}^{-}}{0009 \varepsilon^{-}}$ puəэsəp of pəəu pue səŋnu！̣ 0ヵZ －uo！̣еиеןdxə әұәןdmo๐ pue ןeэ！ 6 оן e səpn｜ou！ pue uo！！sənb әपł Sıəмsue K｜｜nłssəววns ұuәpn＋S	$\begin{gathered} Z \mathrm{~d} W \\ { }^{\varepsilon} \mathrm{g}^{\prime} \exists \exists \cdot L \end{gathered}$	$\varepsilon \cdot L$
7duәәце łou P！ 0	－6u！puełsıәрии $\nvdash 0$ әЈиәр！лә чеәМ		－ио！џеләәә мәи әцł әи！யшәәәр оł шоィ әэиәдә！р әцł pəsn әлец ＇sıoдə ıоu！u 		$\begin{gathered} Z d W \\ ‘ \varepsilon^{\prime} g^{\prime} \exists \exists \cdot L \end{gathered}$	でし
0	\downarrow	τ	ε	t		
	6u！̣u！̣əəg	6u！doןəләа	6u！	6u！pəəэxヨ／6u！ŋəәW	paepueis	melqodd

\qquad

Determine whether each equation matches Diagram A, Diagram B, or neither diagram. Circle your answer.
A

\longmapsto		
4	3	

B

3	3	3	3

1.1 $7=3+4$ matches Diagram A/Diagram B/neither diagram.
1.2 $4-3=7$ matches Diagram A/Diagram B/neither diagram.
$1.3 \quad 4 \cdot 3=7$ matches Diagram A/Diagram B/neither diagram.
1.4 $3+3+3+3=12$ matches Diagram A/Diagram B/neither diagram.
$1.5 \quad 12=4 \cdot 3$ matches Diagram A/Diagram B/neither diagram.

Vihaan collects stickers. He has x stickers. After getting 15 more stickers, he has 60 stickers total.
2.1 How many stickers did Vihaan start with?
2.2 Select all of the equations that could be used to determine how many stickers Vihaan started with.$x+15=60$$x=60-15$$x=60+15$$15 x=60$$x=60 \cdot 15$
3. Select all of the equations that are true when x is -4 .
$\square-8=2 x$$-12=x \cdot-3$
$\square-12=x+x+x$
$\frac{x}{4}=-1$
$\square x+4=-8$
\qquad
Solve each equation.
$4.1 \quad p+12=7$
$4.2 \quad 90=-20 r$
$4.3 \quad \frac{1}{3} s=7$
5. Which expression is equivalent to $4(x+2)$?
A. $12 x$
B. $4 x+2$
C. $6 x$
D. $4 x+8$

Explain your thinking.
6.1 Cameron is selling boxes of cookies. His goal is to sell more than 5 boxes. Which graph shows how many boxes Cameron must sell in order to reach his goal?
A.

B.

C.

D.

Explain your thinking.
6.2 Arnav is also selling boxes of cookies. He sells each box for $\$ 3.75$. His goal is to make more than $\$ 30$. How many boxes of cookies could he sell to reach his goal?

Explain your thinking.
1.1 A
1.2 Neither
1.3 Neither
$1.4 \quad \mathrm{~B}$
1.5 B
2.145 stickers
$2.2 \checkmark x+15=60$
$\checkmark \quad x=60-15$
3. $\checkmark-8=2 x$
$\checkmark-12=x+x+x$
$\checkmark \quad \frac{x}{4}=-1$
$4.1 \quad p=-5$
4.2 $r=-4.5$ (or equivalent)
$4.3 s=21$
5. D

Explanations vary. This is like 4 groups of $x+2$, which is like $4 \cdot x+4 \cdot 2$ or $4 x+8$.
6.1 B

Explanations vary. Cameron wants to sell more than 5 boxes, so that's like shading to the right of 5 . We don't shade the 5 though because if he sells 5 boxes, he didn't reach his goal.
6.2 9 or more boxes

Explanations vary. To make exactly $\$ 30$, Arnav needs to sell $30 \div 3.75=8$ boxes of cookies. But he wants to make more than $\$ 30$, so he needs to sell 9 or more boxes.

Unit 7.6, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problem 1 before Lesson 2
- Problem 2 before Lesson 3
- Problems 3, 4, and 5 before Lesson 6
- Problem 7 before Lesson 13

Problem 1

(Standards: 2.OA.A, 3.OA.A, MP7)
This question is intended to surface what students already know about tape diagrams. Students make use of diagram structure to choose equations that are representative of the diagrams. This content first appears in Lesson 2: Smudged Receipts, where students interpret tape diagrams and use them to determine unknown values in context.

Suggested Next Steps: If students struggle . . .

- Consider revisiting this question as a class before beginning Lesson 2 or spending extra time during the Warm-Up of Lesson 2 discussing the structure of the tape diagram.

Problem 2

(Standards: 6.EE.B.6, 6.EE.B.7, MP2)
These questions are intended to surface what students already know about writing and solving equations to represent real-world situations. Students reason quantitatively to answer the first problem in context, then reason abstractly to model the situation as an equation. This unit builds on the work students did with equations in Math 6. This content first appears in Lesson 3: Equations.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem before beginning Lesson 3, or spending extra time discussing the relationship between the scenarios in Activity 1 of Lesson 3 and the equations that represent them.

Problem 3

(Standards: 6.EE.B.5, 7.NS.A.1)
This question is intended to surface what students already know about how to decide whether a given number makes an equation true. This content first appears in Lesson 7: Keeping It True.

Suggested Next Steps: If students struggle . . .

- Consider checking all of the solutions in Activity 1 of Lesson 7 together as a class.

Unit 7.6, Readiness Check Summary

Problem 4

(Standards: 6.EE.B.7, 7.EE.B.4)
These questions are intended to surface what students already know about solving equations of the forms $x+p=q$ and $p x=q$, where p, q, and x are positive or negative numbers. This content first appears in Lesson 6: Balancing Equations, where students first use balancing moves to determine solutions to equations.

Suggested Next Steps: If students struggle . . .

- Consider spending extra time reviewing this problem to surface strategies for solving equations before beginning Lesson 6.

Problem 5

(Standards: 6.EE.A.3, 6.EE.A.4, MP7)
This question is intended to surface what students already know about how to identify when two expressions are equivalent. Students make use of the structure of the expressions to select an equivalent expression. This content first appears in Lesson 8: Factoring and Expanding.

Suggested Next Steps: If students struggle . . .

- Consider spending extra time reviewing the Warm-Up in Lesson 8, helping students see the connection between the various representations.

Problem 6

(Standards: 6.EE.B.8, 6.RP.A.1, 7.NS.A.3, MP2)
These questions are intended to surface what students already know about representing solutions to inequalities on number line diagrams and answering questions about inequalities in context. Students reason abstractly and quantitatively to represent and solve the problems as inequalities in context. This content first appears in Lesson 13: I Saw the Signs.

Suggested Next Steps: If students struggle . . .

- Consider reviewing both problems before beginning Lesson 13. Ask students to test whether or not 8 boxes of cookies will help Arnav reach his goal, and help students make connections between the number line diagrams and the word problem.
\qquad

1. Sothy is baking 5 batches of muffins. Each batch uses 4 teaspoons of sugar for the topping and more sugar for the batter. Sothy uses 100 teaspoons of sugar in total.

Which tape diagram matches this situation?
A

100
C

D

2. Select all of the expressions that are equivalent to $3(8-4 x)$.$24-4 x$$-12 x+24$$2(12-6 x)$$12 x-24$$24-12 x$

Solve each equation.
$3.1 \quad 3 x+7=40$

$$
3.2-2(x+5)=10
$$

\qquad

Here is Kwame's work writing the expression $4-2(x+5)$ using fewer terms.
4.1 Describe the mistake that Kwame made.

Kwame's Work
$4-2(x+5)$
$2(x+5)$
$2 x+10$

Isaiah's vegetable garden is 15 feet long by 5 feet wide. He plans to increase the width and length of his garden and put a fence around it.

He writes this expression for the total amount of fencing: $(x+15)+(x+5)+(x+15)+(x+5)$.
5.1 Describe what x represents in this situation.
5.2 Write an equivalent expression that uses fewer terms.
5.3 How much will the length of Isaiah's garden increase by if he uses 50 feet of fencing in total?

1.

2. $\quad \checkmark-12 x+24$
$\checkmark 2(12-6 x)$
$\checkmark 24-12 x$
$3.1 \quad 11$
$3.2-10$
4.1 Responses vary. Kwame subtracted $4-2$ first, but the -2 is actually multiplied by $x+5$, so that needs to happen before you combine like terms.
$4.2-2 x-6$ (or equivalent)
5.1 Responses vary. x is how much longer and wider Isaiah's new garden is than his old garden.
$5.24 x+40$ (or equivalent)
$5.3 \quad 2.5$ feet
 - Math Language Development Consider using the mathematical language routine Critique, Correct, Clarify to help students the work students did in Lesson 9: Always-Equal Machines.
Suggested Next Steps: If students struggle . . . - Consider revisiting Lesson 3.
Problem 2
(Standards: 7.EE.A.1, MP7)
This problem assesses students' ability to determine whether
Students make use of the structure of the expressions to sele teaspoons of sugar are needed for each of the 5 muffins.

- Consider asking students to describe the meaning of the variable s in the given situation. Consider asking them how many Suggested Next Steps: If students struggle . . .
tape diagram matches the given situation. This problem corresponds most directly to the work students did in Lesson 3: Equations. abstractly and quantitatively as they determine which
This problem assesses students' ability to connect tape diagrams, equations, and verbal descriptions in context. Students reason
(Standards: 7.EE.B.4, MP2) โ Шวโqoud

ε	1	G	ャ'乙	sməq0,d
		$\varepsilon^{\prime} 9^{\prime} \exists \exists \exists^{\circ}$	$1^{*} \forall^{\prime} \exists \exists^{\prime} \angle$	paepueis

ग!ıqny pue Kıemuns :z!no ' 9 'L t!un
 Consider asking students how the given

meaning of the variable x in context．This problem corresponds most directly to the work students did in Lesson 12：Community Day． and solve equations to represent situations in context．Students reason abstractly and quantitatively as they explain and apply the This problem assesses students＇ability to connect visual representations，equations，and verbal descriptions of the same situation （Standards：7．EE．B．3，MP2） § Шวโqoud －Consider revisiting Lesson 10 understand and communicate the mistake that Kwame made and how the mistake could be corrected． －Math Language Development Consider using the mathematical language routine Critique，Correct，Clarify to help students Suggested Next Steps：If students struggle
corresponds most directly to the work students did in Lesson 10：Collect the Squares． critique the reasoning of another student and construct a viable argument to determine the correct final expression．This problem This problem assesses students＇ability to write equivalent expressions with fewer terms by expanding and adding terms．Students （Standard：7．EE．A．1，MP3） Problem 4 －Consider revisiting Lesson 7，Activity 1. step they can take to solve each equation．
 Suggested Next Steps：If students struggle ． negative numbers．This problem corresponds most directly to the work students did in Lesson 7：Keeping It True． This problem assesses students＇ability to solve equations of the form $p x+q=r$ and $p(x+q)=r$ that involve positive and （＊＇も゙g＇ヨヨ＇L ：pıpuets） Problem 3
Unit 7．6，Quiz：Summary and Rubric

＇7duәฆц łOU P！	＇sıəqunu әィ！̣ебәи pue әл！！！！sod әл｜оли！ ұецъ $l=(b+x) d$ pue t $=b+x d$ шио „о Бu！puełsıәрй рәң！ш！！SMOчs צом	$\angle=x \not \approx ə \varnothing$ oł S イq słveдұqns иәчł uо！ұепbә әцł 」о sәр！s цłоq әэиејеq оł Z sppe पł！M ‘＇6u！pueıs．əәpun әұәјவшоэи！ ұnq రu！̣doןəләр e SMOUS y10M	－0І би！ e sәуеш ұиәрп7s＂ $6 \cdot \exists$ ＇sıодәә дои！ ן（nłdəouoo SMOUS YイOM	$0 L-\bullet$ дәм		て＇દ
－duməце ł0u P！	＇sıəqunu ә＾！̣ебəи pue әл！！！！sod әлןоли！ ұечъ $l=(b+x) d$ pue $ォ=b+x d$ шио „о бu！puełsıәрй рәң！ш！！sMous yом	$\frac{\varepsilon}{\angle t}=x$ ұәб оұ ع ќq sәр！п！р иәцд ‘uо！ұепbә әчł „о sәр！s цłоq әэиејеq оł \angle sppe К｜дәәноои！ұиәрпя＂ $6 \cdot \exists$ ＇sıодәә ұиеэ！！！ub！s ЧІ！М Бu！puełsıәрй әұәןdسoэи！ smous you	＇IL－би！！！uм se чэпs ‘онә иம！！ е sәуеш диәрпнs＂ $6 \cdot \exists$ ＇sıoддә әшоs ЧІІМ бu！puełs．əәpun smous yגоM	$\begin{gathered} \text { LI • } \\ \text { дәмsue łэәлоう } \end{gathered}$		－＇E
0	\downarrow	乙	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	бu！pəәәххヨ／6u！əәәW	prepuets	шəq0ıd

${ }^{7}$ dшәәие ıOU P！		＇əәәן u！pəınseəu әวuә！ ＇әэиә ә૫ъ 10 sч！un дәчц！ə səэนәдәəə uo！̣d！！əsəด	әэцәу －ə๐иәґ ә૫ł „о цъбиә рие чıр！м әчł 	＇иәрхеб роо s！ч иечд s！uәрıеб мәu s،че！es｜ дәр！м рие дәбиоо чэпш моч s！x＂＂σ • ＇ио！！d！игэәр ұәәиоэ	$\mathcal{E}^{\prime} \underbrace{\prime} \exists \exists \exists^{\circ} L$	L＇G
＇7dmәџе ъ0u p！0	uo！ұd！иэsәр ұэәлоэи！ ло ou ч！！м uo！sseлdxə ұиәןем！̣nbә ңэәлиоэи	6u！puetsıәрй ן！！ued smoys ұецł uo！̣d！ıэsәр Чł！uoissordxə ұиәןем！̣nbə ఛэәлоэи uo！̣d！ıэsəp әұəןduoכu！ Ч！！M uolsserdxə ұиәןем！̣ьә ұэәлоэ	uo！̣d！̣эsəp әұәןdmoэ pue ןеэ！ Ч！！M uo！̣ssəлdxə ұиәןем！！ pəュпq！uұs！p әлец pıпочs әшему＂ $6 \cdot \exists$ uo！̣d！uosəp u！SME［！ ұиәек！̣nbә ұэәлио	（子uәןеィ！！nbə ィо） $9-x$－：uo！sseddxy поК әлоғәq 7 s！！！ uәddey оł spәәи ұецд os＇ $5+x$ 亿́q рә！！d！\downarrow пи әшему＂ 6 • \exists ＇uolsserdxə ұиәјем！̣ивә ఛวәม๐о pue 	$L^{\prime} \forall^{\prime} \exists \exists{ }^{\prime}$	$\begin{aligned} & \text { Z't } \\ & \text { L't } \end{aligned}$
0	1	Z	ε	t		
	6u！uu！ 6 ®g	6u！doןəләа	6u！	бu！pəəэxヨ／6u！ŋəәW	prepuers	melqodd

ग！uqny pue Kıewuns ：z！̣o＇ 9 ＇L t！un

7dməュе łou p！0	‘чІр！м рие чұбиә әцł „о әр！s әио Кןио рәәә！！suоэ кјио әлец кеш 0\＆ 10 SI әұомм очм sұuәрпł 孔uәsəıdəィ of suo！̣enbə бu！̣｜os pue uo！̣enł！s әшеs әЧł ！0 suo！̣d！！əsəр ¡еqəəィ pue ‘suo！！enbə ‘suo！̣ełuəsəıdə」 ןセns！̣ィ চu！̣əəәuuoo јо 6u！puełsıәрй рәң！ш！！SMOYs צдом	－0s иецł дәцдо әпјел e ot se！！！！！ әр！s рие чłбиә ＇sıодәә ұиеэ！！！uи！！ ЧІІМ бu！̣puełsıәрй sMOYS צ10M	－Кィวәноэи！x лод sәлоs $\nrightarrow n q 0 \mathrm{~S}=0 t+x_{\ddagger}$ sə！！ıм ұиәрпłs КК｜дәшиоэ ！！sәл／оs иәчł pue 0S ot ןenbə て＇ 9 и！әұомм Кәчł ио！ұепbә әцł słәs ұиәрпłs＂ $6 \cdot \exists$ ＇sıодә әшоs प！！M 6u！puełsıәpun ןenłdәouoo smoys yдом	ґәәょ s＇Z • ‘әммsuе ґәәдлоう	$\varepsilon^{\prime} \underbrace{\prime} \exists \exists{ }^{\circ} \mathrm{L}$	$\varepsilon^{\prime} \mathrm{G}$
7dmәде łou p！	 ＇ұхәңuos u！uo！̣ent！s әшеs әЧł 10 suo！̣d！！ ןеqıл pue ‘suo！̣еnbə ‘suo！̣ełuəsəıdəл „о 6u！puełsıәрй рәң！	sәрпןти！ұиәрпłs＂ $6 \cdot \exists$ －sıодә ұиеэ！！！ubis Ч！！M 6u！puełsıəpun әұəઇdmoэu！ smous yиом	дnoqe рәsnfuo әдәм ұпq чłр！м рие чұбиә әчł чł०q оł Z әчł әұпq！идs！p от рәддшәде әлец кеш $(\mathrm{SI}+x)+(\mathrm{S}+x) 乙$ әұолм очм sұиәрпңs ＇sıодә әшоs jenłdәouos smous yıом	（ұиәןел！̣nbə л） $0 \pm+x_{\square}$ ‘әммии ґэәдоう	$\varepsilon^{\prime} \underbrace{\prime} \exists \exists \exists^{\circ} \mathrm{L}$	Z＇G
0	1	乙	ε	t		
	6u！uu！ $\mathbf{V e g}^{\text {a }}$	6u！doןəләа	6u！	бu！pəəэхヨ／6u！̣əәW	paepueis	шə¢\％osd

1. Which number line shows all of the values of x that make the inequality $3 x-1 \leq-7$ true?
A.

B.

C.

D.

2. Parv has a $\$ 50$ gift card. He uses the gift card to buy a pack
A. $9.99+3.99 n \geq 50$ of games for \$9. 99 .
B. $9.99+3.99 n \leq 50$

He also wants to buy n movies. Each movie costs $\$ 3.99$.
C. $9.99-3.99 n \geq 50$

Which inequality describes how many movies Parv can buy?
D. $9.99-3.99 n \leq 50$
3.1 Write an equivalent expression in expanded form.

$$
-\frac{1}{4}(-8 x+12)
$$

3.2 Write an equivalent expression in factored form.

$$
36 a-16
$$

Solve each equation.
$4.14(x+2)=40$

$$
4.2-2 x-10=-6
$$

Here is Diya's work writing the expression $6-2 x+5+4 x$ with fewer terms.
5.1 Describe the mistake that Diya made.
5.2 Write an expression equivalent to $6-2 x+5+4 x$ that has two terms.
Diya's Work

$6-2 x+5+4 x$
$4 x+9 x$
$13 x$

Joel's family car has a 14 -gallon gas tank. The car uses about 0.5 gallons of gas each day. A warning light comes on when the fuel left in the tank is 1.5 gallons or less.
6.1 If Joel's family starts with a full tank, can they drive the car for 15 days without the warning light coming on?

Explain or show how you know.
6.2 Which expression describes the gallons of gas in the tank after d days?
A. $14-0.5 d$
B. $14 d-0.5$
C. $0.5-14 d$
D. $0.5 d-14$

Write an inequality that represents the number of days Joel's family can drive without the warning light coming on.
6.3 Solve the inequality you wrote.

Explain what the solutions mean in this situation.

Reflection: Select a question to answer.
\square What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.
\square Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

1. A.

2. B. $9.99+3.99 n \leq 50$
3.1 $2 x-3$ (or equivalent)
3.2 $2(18 a-8)$ or $4(9 a-4)$ (or equivalent)
$4.1 x=8$
$4.2 x=-2$
5.1 Responses vary. Diya added all of the terms together instead of adding $6+5$ and $-2 x+4 x$.
$5.211+2 x$ (or equivalent)
6.1 Yes.

Explanations vary. Joel's family would use 7.5 gallons of gas in 15 days, so there would still be $14-7.5=6.5$ gallons of gas left in the tank.
6.2 A
$14-0.5 d>1.5$ (or equivalent)
$6.3 d<25$
Explanations vary. The solutions to this inequality represent the number of days that Joel's family can drive without the warning light coming on.
－Consider revisiting Lesson 15. understand and communicate which inequalities do not describe the scenario and why．
－Math Language Development Consider using the mathematical language routine Critique，Correct，Clarify to help students
 Lesson 15：Budgeting． This problem assesses students＇ability to write an inequality to represent a context．Students reason abstractly and quantitatively
as they decide which inequality describes the given situation．This problem corresponds most directly to the work students did in （Standards：7．EE．B．4．B，MP2） Problem 2 －Consider revisiting Lesson 14，Activity 2. understand and communicate which number lines make the inequality false and why．
－Math Language Development Consider using the mathematical language routine Critique，Correct，Clarify to help students Suggested Next Steps：If students struggle ．． （Standard：7．EE．B．4．B） Problem 1

て＇レ	†	ع＇9＇て＇9	$\varepsilon \cdot 9 ' 1.9$	G＇ε	smejqodd
		$\nabla^{*} 9^{*} \exists \exists \cdot\llcorner$	$\varepsilon^{\prime} \mathrm{g}^{\prime} \exists \exists{ }^{\text {a }}$	$1 \cdot \forall \cdot \exists \exists \cdot L$	prepueis

 step they can take to solve each equation．
Consider asking students to draw a hanger diagram to help them with their thinking．
This problem assesses students＇ability to solve equations of the forms $p x+q=r$ and $p(x+q)=r$ ．This problem corresponds
most directly to the work students did in Lesson 6：Balancing Equations．
Suggested Next Steps：If students struggle ．．

Problem 4
－Consider revisiting Lesson 9. each problem．
－Consider asking students to create and complete a factoring puzzle to help them with their thinking and to help them complete
Suggested Next Steps：If students struggle ．．
most directly to the work students did in Lesson 8：Factoring and Expanding and Lesson 9：Always－Equal Machines．
This problem assesses students＇ability to write equivalent expressions using expanding and factoring．This problem corresponds
（レ・ジヨヨ＇L ：prepuets）
Problem 3
Unit 7．6，End Assessment Summary and Rubric：Form A

＇шәப।
This problem corresponds most directly to the work students did in Lesson 15：Budgeting and Lesson 17：Write Them and Solve Students reason abstractly and quantitatively as they describe the gallons of gas in the tank using an expression and an inequality This problem assesses students＇ability to write，solve，and interpret the meanings of solutions to inequalities in context．
（ZdW＇t＇g＇ヨヨ＇L＇ع＇g＇ヨヨ＇L ：spıepuełS）
Problem 6

7dme»！ łou p！0	＇pəłכセłұqns əq p｜nous łunoue ＇ғецъ уи！чұ кеш 0я＞$u_{66}{ }^{\circ} \varepsilon-66^{\circ} 6$ 10 0S＜$u_{66}{ }^{\circ} \varepsilon-66^{\circ} 6$ ŋəəə๐ очм słuәpnłS $\cdot>$ pue＜sıoquKs Kı！ әчł „о бu！̣иеәш әчł риеłsıәрии дои Кеш 0S＜$u_{66}{ }^{\circ} \varepsilon+66^{\circ} 6$ 			$0 S>u_{66}{ }^{\circ} \varepsilon+66^{\circ} 6$	ZdW ＇ 9 ＇t＇$\underbrace{\prime} \cdot \exists \exists \cdot L$	Z
7dшәџе łOU P！	＇pəsoןจ әq оұ pәрәәu K！！！enbəu！әчł －oquks әЧł Чł！м Чdeגб әЧł łગəәәs очм słuәpnłS			\forall •	$8^{*} \downarrow^{*} 8^{\prime} \exists \exists \exists^{\circ} \mathrm{L}$	\downarrow
0	1	Z	ε	t		
	6u！̣uu！${ }^{\text {eg }}$	6u！̣doןəләа	6u！¢эeordd \forall	бu！pəәวхヨ／6u！əәәw	prepuels	məq0ıd

7duшәれе łOU P！		$\cdot p 9 \varepsilon=p \cdot 9 \varepsilon$ ұецұ рәз！̣ибоэә» әлец кеш（9I－p） 9ε әчим очм słuәpnis －шиә әлец кеш（9－р9Z）0І әу！！suo！ssəədxә әұ！мм очм słuәpnis －sıддә łnq 6uildoəәләр е sмочs yıом	－uo！̣eגәdo әЧł рәдоұэæц әлец кеш $(8+n 8 \tau) 乙$ әџ！мм очм słuәpnłs ＇sıoдл pue 6u！puefsıəpun ןепıdәәuoo sмочs yдом	$\begin{array}{r} \left(\pm-p_{6}\right) \amalg \\ \left(8-p_{8 I}\right) Z \end{array}$ †эәдоっ pue әдәрdmoว s！yィом	L＇＊＇ヨヨ＇L	て＇ع
7dшәде tou P！	－6u！puełsıәpun Ł0 әЈиәр！＾ә чеәМ	$\cdot x_{8}-\kappa q$ ZI $+x$ ә ә！им очм słиәрпłS ןепıdәәиоэ әңә｜dшoэи！ 	әлец кеш $\varepsilon+x Z$ әұ！мм очм słuәрпłS ＇sıoдə pue 反u！puełsıəpun ןепıdәәuoo sмочs yиом		L＇V＇ヨヨ＇L	－＇E
0	1	乙	ε	t		
	6u！uu！̣əəg	6u！doןəләа	6u！чэeosddv	6u！pəəวхヨ／6u！əәәN	рдериеıs	məq0．d

7dme»te łou P！ 0	－6u！̣puełsıәрии †о әэиәр！ィә уеәм	 səp！s yłoq moג 0I pәұэexұqns әлеч Кеш 8 ә！！мм очм słuәphłS －dəłs 7 S ！！ य！əЧł SE 9－＝xZI－иәџ！им әлец кеш $\frac{Z}{\text { I }}$ әтим очм sұuәрпłS sıoдə ןепłdәэиоэ әұәןdшoэи！ 	－uo！̣njos ג！əとł би！！！uм иәчм әл！̣ебәи әчł рәрпןэи！әлец ъои Кеш Z әтимм очм słuәpnłS ＇sıoдə pue бu！puełsıəpun ןепłdəәuos SMOUS צ10M	$z^{-}=x \bullet$ ґэәдоэ pue әұәןdmoo s！y1оМ	$\forall^{\prime} セ^{\prime} \mathrm{G}^{\prime} \exists \exists \exists^{\circ} \mathrm{L}$	でも
7düдие łou P！ 0	－6u！puełsıәрии †о әэиәр！＾ә уеәМ	 кеш т ε ә！！мм очм słиәрпłS ＇шләt ı0 dәłs łS！！！д！д！ цэеә шо» Z рәңгедqns әлеч кеш $\frac{\hbar}{8 \varepsilon}$ әр！мм очм sұuәpnis －sıдлә ןепłdәэиоэ әұә！dmoэи！ 	peә！su！əp！s цวセә оł Z рәрре иәчł pue ๒ $^{\text {Kq səp！s }}$ чłоq рәр！л！р әлец кеш ZI әицмм очм SłuәpnłS ＇sıoдә pue 反u！puełsıəpun ןentdəouoว smous yıom			L＇t
0	1	乙	ε	t		
	6u！	6u！doəләव	6u！		prepuets	melqodd

łOU P！ 0	－uo！̣eue，dxə ue ұnout！M 10 uo！̣еиеןdxә ¡эәдоэи！ ЧІ！М גәмsue ŋэәдоэи｜	＇uo！ ә૫ł ґо бu！̣puełsıəpun ןетдед sәдеэ！unumos ұецł ио！ңеиеןdхә Чł！М дәмsuе ұэәлоэи ＇uo！̣еиеןdxə әұәןdmoou！ 	＇uo s！łчচ！！бu！̣uem әчł д！ 10 se6 ג！ə૫ł 」0 ॥e pəsn sey K！！ueł s،｜əOৎ łOu ло ләцłәчм рәдәмsue әлец Кеш＂оN，＂ puodsəд очм słuәpnts －uo！̣еиејdxә ＊uo！̣euejdxə u！SME！t 	＂yиеұ әцł $S^{\prime} 9=S^{\circ} L-\nabla I$ әq I！！ os ‘sKep SI U！se6 £o suo॥eb s＇L əsn pinom K！！weł s،əəOৎ＇sə入 －uo！ңeueןdxә әұәןdmoっ pue ןеэ！боן e səpn｜כu！ pue uo！！sənb әЧł sдəмsue K｜｜nıssəววns łuəpnłs	$\begin{gathered} \text { ZdW } \\ \text { ' 'G• } \exists \exists \cdot L \end{gathered}$	L＇9
łOU P！ 0	－uo！̣d！̣лsәp е ұnouł！ ло uo！！d！！əэәр ఛวəఎоОи！ Ч！！М גәмsue 	$\cdot x_{\nabla}=x_{Z}-9$ рәұоедұ口и әлец кеш S＋x_{8} әұ！мм очм sұuәрпłs ＇suגəł дəмәд రu！̣s uo！̣səədxә ue ¡ецł ио！ұеиејdхә 		（ұиәјел！пивә ло） $x_{Z}+I I$ $x_{7}+x_{Z}-$ pue $\mathrm{S}+9$ бu！̣ppe ヶо реәłsu！дәңłəбоł suxәł ә૫ł ґО ॥е рәрре еК！○ －uo！ssəдdxә ұиәןем！！nbә pue әуеłs！ய әЧł ！o 	$\begin{gathered} \varepsilon d W \\ ‘ \cdot \forall \cdot \exists \exists \cdot L \end{gathered}$	G
0	1	乙	ε	t		
	6u！uu！̣eg	6u！doןəィəロ	6u！पэeoıdd＊	6u！pəəวхヨ／6u！${ }^{\text {a }}$	prepueis	mejq0．d

7dшәџе Ł0u p！	－uol！eue｜dxə †эәมоэи｜ －6u！puełsıəpun Łо әэиәр！лә чеәМ	－Кұ！！enbəu！ә૫ł „0 ио！̣эәц！р әцъ Үวәцว ъои p！̣p łnq ‘uo！̣enbə рәґеןәл әчъ рәл｜оs Кןəәәиоэ әлец кеш SZ＜p әч！мм очм słuәpnłs －6u！puełsıəpun ןе！диеd smoys ұецł әuo ‘＇иu！̣puełsıəpun ןenłdəэиоэ әұәןdmoכu！łnq Бu！̣doןəләр e smous uo！！njos	－әлир иег sイер әчъ ұиәsәлдә」 Kイ！！enbəu！s！！ of suo！nnos әч। 	－uo 反u！̣ıo ъцб！！Би！̣ием әчł ұпочұ！м ұецд sКер ло дәqunи әчł łиәsəдdəд К！！！enbəu！ S！̣ł Ot suo！̣nןos ə૫। $\mathrm{s} Z>p \bullet$ ио！̣еиеןdxә әдәןdmoэ pue ןеэ！боן е sәұ！им ұuәpnts ＇て＇9 и！әғомм 		$\varepsilon \cdot 9$
7duәџе ¥0u p！		suoŋe6 s＇I oł みə se6 әлеч S＇I＞pS＇0－七I әң！мм очм słuәpnłs ‘suo॥e6 S＇I 10 әวиеэ！！！uб！ әчұ рәz！̣ибоэәд әлец Кеш S • I иечł дәұеәлб ио！ssəдdxә －sıодә ұиет！！！uб！s бu！̣doןəләр е sмочs чом	＇se6́ до suo॥e6 әчł łечł рәz！uбоэәд әлец Кеш әұим очм słuәpnis ＇s．oдл pue 反u！puełsıəpun ןепıdәәиоо SMOUS YIOM			て＇9
0	1	τ	ε	t		
	6u！uu！ 6 ®g	6u！doןəләа	6u！чэeosddv	6u！pəəэxヨ／6u！̣әəW	prepuers	mejqodd

\qquad

1. Match each diagram with a phrase that describes it. You will have one description left over.

Quadrilateral $A B C D$ has four angle measures: $45^{\circ}, 75^{\circ}, 90^{\circ}$, and 150°.
2.1 Write each angle measure in the appropriate location on the diagram.
2.2 Select all of the acute angles.

3. What is the area of this figure?

Explain or show your strategy.

\qquad
4.1 What are some things you know about volume and surface area?
4.2 What are some things you still wonder about volume and surface area?
5.1 How many faces does this triangular prism have?
5.2 Describe or draw the shape of each face.

6.1 How many 1-by-1-by-1-inch cubes fit inside of this rectangular prism?

6.2 How many square inches of paper would you need to cover the entire prism?

Show or explain your thinking.
1.1

2.1 $A=90^{\circ}, B=150^{\circ}, C=45^{\circ}, D=75^{\circ}$
$2.2 \checkmark \angle C$
$\checkmark \angle D$
3. 30 square meters.

Explanations vary. I split the shape into a rectangle and a triangle. The area of the rectangle is $6 \cdot 4=24$ square meters, and the area of the triangle is $0.5 \cdot 3 \cdot 4=6$ square meters, so the total is 30 square meters.

4.1 Responses vary.

- Surface area is the amount it takes to cover the outside of an object, and volume is the amount it takes to fill up an object.
- The volume of a cube is the side length cubed.
4.2 Responses vary.
- Is the volume of every object length times width times height?
- Why is surface area measured in units squared?
- How do you remember the difference between volume and surface area?
5.15 faces
5.2 Responses vary. There are three rectangles and two triangles. The triangles are the same size and shape.
$6.1 \quad 120$ cubes
6.2 164 square inches

Explanations vary. There are two faces whose areas are $4 \cdot 3=12$ sq. inches, two faces whose areas are $4 \cdot 10=40$ sq. inches, and two faces whose areas are $3 \cdot 10=30$ sq. inches. So the total surface area is $12+12+40+40+30+30=164$ square inches.

Unit 7.7, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problems 1 and 2 before Lesson 1
- Problems 3, 4, and 6 before Lesson 10
- Problem 5 before Lesson 12

Problem 1

(Standards: 4.G.A.1, 4.MD.C.5, 4.MD.C.5.A, 4.MD.C.5.B)
This question is intended to surface what students already know about describing angle measures. This content first appears in Lesson 1: Pinwheels where students determine unknown angle measures around a circle.

Suggested Next Steps: If students struggle . . .

- Consider revisiting this problem as a class before beginning Lesson 1 or spending extra time during the Warm-Up of Lesson 1 discussing whether the angles on Screen 2 are acute, obtuse, right, or straight.

Problem 2

(Standards: 4.G.A.1, 4.MD.C.5, 4.MD.C.6)
These questions are intended to surface what students already know about estimating angle measures. This content first appears in Lesson 1: Pinwheels.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem as a class after Lesson 1's Warm-Up, where students will get to practice and receive feedback on estimating angle measures.

Problem 3

(Standards: 6.G.A.1, MP1)
This question is intended to surface what students already know about calculating the area of non-rectangular quadrilaterals. Students can make sense of the problem to determine the area in multiple different ways. This content first appears in Lesson 11: More Complicated Prisms.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem as a class before beginning Lesson 11. Highlight several different strategies students used to calculate the total area, including surrounding and subtracting, decomposing, or using a trapezoid area formula.

Unit 7.7, Readiness Check Summary

Problem 4

(Standards: 6.G.A.2, 6.G.A.4)
These questions are intended to surface what students already know about volume and surface area of objects. This content first appears in Lesson 10: Simple Prisms where students calculate the volumes of rectangular and triangular prisms.

Suggested Next Steps: If students struggle

- Consider taking time before beginning Lesson 10 to share what students already know about volume and surface area.
- Consider recording what they wonder publicly to refer to throughout Lessons 10-13.

Problem 5

(Standard: 6.G.A.4)
This question is intended to surface what students already know about triangular prisms and their surface areas. This content first appears in Lesson 12: Surface Area Strategies where students calculate the surface area of various prisms.

Suggested Next Steps: If students struggle . . .

- Consider spending extra time reviewing the Warm-Up in Lesson 12 or using a physical representation of a triangular prism to make sense of the number and shapes of its faces.

Problem 6

(Standards: 6.G.A.2, 6.G.A.4, MP3)

These questions are intended to surface what students already know about calculating the surface area and volume of rectangular prisms. Students construct a viable argument for their calculations when they explain their thinking. This content first appears in Lesson 10: Simple Prisms.

Suggested Next Steps: If students struggle . . .

- Consider reviewing Problem 6.1 before beginning Lesson 10 and Problem 6.2 before Lesson 12. Ask students to describe their strategies.
- Consider using a physical representation of a rectangular prism to support students' understanding.
\qquad

1. What is the value of a ?
A. 18°
B. 36°
C. 45°
D. 72°
E. 108°

2. Here are three line segments that intersect at a point. Select all of the true statements.The angles marked x° and z° are complementary.The angles marked w° and z° are supplementary.$x=y$$y+z=90$$x+y+z=180$

3. How many nonidentical triangles can be made using these side lengths?
$4 \mathrm{~cm}, 8 \mathrm{~cm}, 14 \mathrm{~cm}$
A. Zero triangles
B. One triangle
C. More than one triangle

Explain your reasoning.
\qquad
4. A triangle has one side that is 5 units long, one 25° angle, and one 90° angle.

Complete the two diagrams to create two different triangles with these measurements.
Label the 90° angle in each diagram.
Triangle \#1

Here are three lines that intersect at one point.
5.1 Write a true equation based on this diagram.
5.2 Determine the values of x, y, and z.
5.3 Laila wrote the equation $x+18=90$.

Describe the error that Laila might have made.

1. 36°
2. $\quad \checkmark$ The angles marked w° and z° are supplementary.
$\checkmark y+z=90$
3. Zero triangles

Explanations vary. 4 centimeters and 8 centimeters are not long enough to make a triangle if one side is 14 centimeters. The two sides will not connect to make a triangle.
4.

5.1 Responses vary. Some possible equations are:

- $x+y+z=180$
- $z+x+18=180$
- $x=64$
- $2 y=36$
$5.2 x=64^{\circ}, y=18^{\circ}, z=98^{\circ}$
5.3 Responses vary. Laila may have assumed that the angle marked z° was a right angle, so 90° was left for x° and 18°.
－Consider revisiting Lesson 3，Activity 2.
understand and communicate which statements are false and why．
－Math Language Development Consider using the mathematical language routine Critique，Correct，Clarify to help students

This problem assesses students＇ability to describe angle diagrams with words and equations．Students make use of the structure of
the diagram to determine true and false statements about the diagram．This problem corresponds most directly to the work students （Standards：7．G．B．5，7．EE．B．4，MP7）
This problem assesses students＇abilt
 －Consider revisiting Lesson 4：Activity 1. Consider asking students how identifying the angle relationship can help them determine the value of a ．
－Consider asking students to classify the three angles labeled in the diagram as either complementary，supplementary，or neither． Suggested Next Steps：If students struggle ．．
corresponds most directly to the work students did in Lesson 4：Missing Measures． supplementary angles．Students make use of the structure of the diagram to determine an unknown angle measure．This problem This problem assesses students＇ability to determine unknown angle measures by reasoning about complementary and （Standards：7．G．B．5，MP7） Problem 1

g＇z＇r	$\nabla^{\prime} \varepsilon$	乙	smejqodd
$9 \cdot 9 \cdot 9 \cdot L$	でV゚け゚く	$\nabla^{*} 9^{\prime} \exists \exists \exists \cdot L$	prepuets

Unit 7．7，Quiz：Summary and Rubric

- Consider revisiting Lesson 3, Activity 2. supplementary.
- Consider asking students which pair of angles are vertical. Consider asking them which angles are complementary and which are

This problem assesses students' ability to write and use equations to determine unknown angle measures. Students make use of the
structure of the diagram to determine the value of the variables x, y, and z. This problem corresponds most directly to the work (Standards: 7.G.B.5, MP7) Problem 5 - Consider revisiting Lesson 8, Activity 1, Description 3.
- Consider asking students to describe what they could do to create two different triangles with the given measurements. Suggested Next Steps: If students struggle .
This problem corresponds most directly to the work students did in Lesson 8: Can You Draw It? determine two different ways to meet the given constraints.
This problem assesses students' ability to draw triangles given three measurements. Students must make sense of the problem to (Standards: 7.G.A.2, MP1) Problem 4 - Consider revisiting Lesson 5, Activity 1. understand and communicate why it is
- Math Language Development Consider using the mathematical language routine Critique, Correct, Clarify to help students Suggested Next Steps: If students struggle
lengths. This problem corresponds most directly to the work students did in Lesson 5: Can You Build It? construct a viable argument to support their conclusion about the number of triangles that can be constructed with the given side This problem assesses students' ability to determine how many triangles are possible given three specific side lengths. Students (EdW 'Z'V'כ'L :spıepuets) Problem 3
Unit 7.7, Quiz: Summary and Rubric

＇Idmente ł0u p！ 0	＇sәэ！！оч џəәдоכ әшоs पџ！м －รәэฺ๐чэ ұэәлиоэи！К｜ио	รәэ！๐чэ ґэәдоэи！ омұ səpnjou！osןe łnq әэ！๐чэ ұәәлиэ әио	－әэ๐๐чэ әио ч！！м әэ！̣чэ ఛэәдоэ әио ィо 	$06=z+\kappa$ －イеұиәшәןddns әле ${ }^{\text {z }}$ pue 。M рәуцеш sә｜бие әчь 	 ‘s・ロ・ロ＂	Z
ł0u p！ 0	 лон рәлоs әлец кеш っ乙L рәұәәәл очм sұиәрпłs －әэฺ๐чэ ұэәдоэи｜				$\mathrm{s}^{\prime} \mathrm{a}^{\prime} \mathrm{O}^{\prime} \mathrm{L}$	\downarrow
0	1	Z	ε	\dagger		
	6u！uu！ 6 ®g	6u！dopəләа	6u！upeordd \downarrow	6u！pəəэxヨ／6u！̣әəW	paepuets	melqodd

o！uqny pue Kıewuns ：z！̣o＇＇＇ 2 t！un

7dme»re ъ0u p！o	＇słuәшәиnseəш әәдчł иәл！ 6 sәןбией би！медр 	чэns se рәəәqеı ұои әд Кәчł ұпq ‘‘06 әу！！syool дечł әןбие ие әлец зшелбе！р чдоя ＇sıодә ұиеэ！！！uб！s ЧІ！М Бu！puełsıәpun 	†эәцоэ s！шелбе！р әио ＇sıouә әшоs ЧІ！М Бu！̣puełsıәрй ןеnłdəәuos smous youm		で＊゚⿹｀L	\dagger
＇7dmәне łou p！	uo！peuejdxә ¡эәлоэи！ло uо！ұеиеןdxә ou чи！м ләмsuе ґэәлоэи৷	sмочs ұечұ uo！̣еиеןдхә Ч！！М ләмsue ¡эәлоэи। ＇uо！ңеиеןdxә әңәןdmoэu！ पІ！М ләмsue łכәлоつ	$\forall<\hbar I+8$ pue $8<\dagger I+\downarrow$ se पัns әр！s ричит әчд әледшоэ рие sәр！s omı dn ppe of zdməュe ие sәрприи ио！ұеиеןdхә uо！ңеиерыхә ЧІ！М ләмsue łэәлоэи！ ＇uо！ңеиеןdxә u！SME｜f dou！u Ч！！М ләмsue łэәлоэ	－әбиецд е әуеш оұ ұэәииоэ ұои ॥！！мәр！s †โ s！әр！s әио ！！әןбие！и е әуеш о子 цБпоиә био ұои әде sıәдәш！ұиәง səן6ue！̣ł ОəəZ ио！̣еиеןdxә ұәәдоэ Чџ！М ләмsue ұәәллоכ	でオ゙Э「	ε
0	\downarrow	Z	ε	t		
	6u！uu！ 6 өg	6u！doəəләа	6u！	6u！pəәэхヨ／6u！əəәW	paepuets	werqodd

	＇səınseəu əןбue of suoḷenbə 6u！̣s pue бu！！ụum of 6u！puełsıәри рәџ！ய！！ sMOUS yגOM	$\leadsto 06=\downarrow 9+\kappa$ иәәq әлец pınoчs 7 „， ‘6и！！！！м se yons би！уи！ч7 ұәәноэи！sәрпји！оs／е －sıодә ұиет！̣！！uб！s Ч！！М 6u！puełsıәри 	‘ךои әле Кәчł моиу Кәчъ моч u！̣едхәә 7．usəop ұпq sәןбие Киеұиәшәдшоэ дои әле 。8I pue 。 x К｜дәәноэ ұиәрпня＂ $6 \cdot \exists$ ＇sıодә әшоs Чұ！м 6u！̣puełsıәрй ןenłdəouos sMoys yдоМ	；81 pue 。x 10ł みә sem 。06 os ‘əбие ұчமுı е sем 。z рәулеш әбИие әчł ұецł pəunsse әлеч кеш е！！ет＂ 6 ・ヨ －ио！̣еиеןdxә ұәәлоう	$9^{\prime} 9^{\prime} \underbrace{\prime} 2$	$\mathcal{E}^{\prime} \mathrm{G}$
	＇səınseəu әןбue имоияй әи！யшəəəр 아 suolupnbe రu！̣sn ヶо 6u！puełsıəpun рәџ！ய！！ sMOUS yגOM	 ＇sıoдә ұиео！！！uб！s Ч！！М Бu！puełsıәри әұәןdmoэu！sMous yıоМ	 ‘sıoıə әسоs Ч！！М Бu！puełs．ıәpun ןenłdəouos smoys yıOM	＇sıәмsue łəәдлоう	$9^{\prime} 9^{\prime} 9^{\prime} 2$	Z^{\prime}＇
	＇sənnseəu əן6ue имоияй әи！̣шәəәр 아 suo！̣enbe бu！！uмм Łо 6u！puełsıәри рәџ！ய！！ sMous yגOM	＇sıoдәә ұиет！！！uб！s Ч！！м Бu！puełsıәри 	－Киедиәшәдышол әәәм sәןИие әлец кеш $06=\rceil 9+К$ әұомм очм sұиәрпłs ‘sıoдәә әшos Чд！М 6u！puełsıәри ןenłdəәuos smoys yıоМ	$\begin{array}{r} 9 \mathcal{9 \varepsilon}=\kappa Z \\ \sqcap 9=x \\ 08 \mathrm{I}=8 \mathrm{I}+x+z \\ 08 \mathrm{I}=z+K+x \end{array}$ ＇suoḷenbə әq！ssod əmos＂ $6 \cdot \exists$ ‘əәмsuе ұэәдло	$9^{\prime} 9^{\prime} 0^{\prime} 2$	L＇G
0	\downarrow	乙	ε	†		
	6u！uu！̣əg	6u！doןəィəன	6u！uoeoıddV	6u！pəəэхヨ／6u！łəәw	paepueis	wejqodd

oụqny pue Kıemuns ：z！̣no＇ 2 ’ 2 t！un
\qquad

1. How many nonidentical triangles can be made using these side lengths?

$$
5 \mathrm{~cm}, 7 \mathrm{~cm} \text {, and } 10 \mathrm{~cm}
$$

A. Zero triangles
B. One triangle
C. More than one triangle
2. Here is a prism and a pyramid with identical square bases. Each figure is sliced parallel to the base.

Select all of the true statements.Cross Section A is a square.Cross Section B is a square.
\square Cross Section A has the same area as the base of the prism.Cross Section B has the same area as the base of the pyramid.
Cross Section A and Cross Section B have the same area.
3. Draw one or more diagrams that show each of the angle relationships in the word bank. Label each relationship in your diagram(s).

Word Bank

complementary angles
supplementary angles
vertical angles
4.1 Draw a triangle with one 30° angle, one 4 cm side, and one 6 cm side.

4.2 Is it possible to draw more than one unique triangle with the same three measurements? Explain or show your thinking.

Here is a right triangular prism.
5.1 What is the volume of the prism?
5.2 What is the surface area of the prism?

\qquad
6.1 Determine the values of x and y.
6.2 Titus wrote the equation $x+y+y+35=180$.

Change Titus's equation to make it true.

7. Afia bought a brand new box of sugar. He wants to transfer it to a new container.

Will there be sugar left over after filling the new container? Explain how you know.

Reflection: Select a question to answer.
\square What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

1. One triangle
2. $\quad \checkmark$ Cross Section A is a square.
\checkmark Cross Section B is a square.
\checkmark Cross Section A has the same area as the base of the prism.
3. Drawings vary. Angles 1 and 3 are vertical angles. Angles 1 and 2 are supplementary angles. Angles 3 and 4 are complementary angles.

4.1 Drawings vary.

4.2 Yes. Explanations vary. If the angle is between the two given sides, it creates a different triangle than if the angle is between the 6 centimeter side and the unknown third side.
5.136 cubic inches
5.2 84 square inches
$6.1 x=35$
$x=72.5$
6.2 Responses vary. $x+y+y=180,2 y+35=180, x+y+y+35=215$
4. No. Explanations vary. The volume of each container is equal, which means they can each hold the same amount of sugar. The original container's volume is $8 \cdot 20 \cdot 30=4800$ cubic centimeters. The new container's volume is
$25 \cdot(12 \cdot 12+0.5 \cdot 12 \cdot 8)=25 \cdot(144+48)=25 \cdot 192=4800$ cubic centimeters.
－Consider revisiting Lesson 9，Activity 2.

Slicing Solids． figures to determine which statements must be true．This problem corresponds most directly to the work students did in Lesson 9： assesses students＇ability to compare and contrast cross sections of prisms and pyramids．Students make use of the structure of the This problem assesses students＇ability to describe cross sections that result from slicing three－dimensional figures．In particular，this
（LdW ‘と＇甘‘⿹’L ：spıepuełS）
Problem 2

－Consider revisiting Lesson 6，Activity 2.
 understand and communicate why it is impossible to draw more than one triangle with the given length．
 －Math Language Development Consider using the mathematical language routine Critique，Correct，Clarify to help students Suggested Next Steps：If students struggle ．

corresponds most directly to the work students did in Lesson 5：Can You Build It？and Lesson 6：Is It Enough？ This problem assesses students＇ability to determine how many triangles are possible given three side lengths．This problem
（Standard：7．G．A．2） Problem 1

L＇G	9 ＇ε	乙	†＇レ	で9	sməq0．d
$9 \cdot 9 \cdot Э \cdot L$	c＊a＇⿹勹L	$\varepsilon \cdot \forall ゚ \bigcirc \bullet L$	でヤ゙⿹゙く		рıериеıS

（9＊9＊⿹＇L ：pıepuełs）

Problem 5

－Consider asking students to create an acute triangle and an obtuse triangle with the given measurements．

You Draw It？ non－identical triangles．Students are prompted to approach the problem from multiple entry points，thus making sense of the problem This problem assesses students＇ability to draw shapes with given conditions and explain when the conditions determine multiple
（IdW＇Z＇甘‘⿹＇L ：spıepuełS）
Problem 4
－Consider revisiting Lesson 2，Activity 2 or Lesson 3，Activity 1.
Consider asking students to describe what the terms complementary angles，supplementary angles，and vertical angles mean Suggested Next Steps：If students struggle ．．
directly to the work students did in Lesson 2：Friendly Angles and Lesson 3：Angle Diagrams． Students attend to precision when they create diagrams to exemplify mathematical vocabulary．This problem corresponds most
This problem assesses students＇ability to understand the key terms of the unit：complementary，adjacent，and vertical angles．
（Standards：7．G．B．5，MP6） Problem 3
Unit 7．7，End Assessment Summary and Rubric：Form A

- Consider asking students whether the surfar revisiting Lesson 13, Activity 1 .
Consider asking students whether the sur

This problem corresponds most directly to the work students did in Lesson 13: Popcorn Possibilities. reason abstractly and quantitatively to determine that the questions can be answered by comparing the volumes of each container.
This problem assesses students' ability to solve real-world problems involving the volume of three-dimensional prisms. Students
(ZdW '9'g'⿹'L :pıepuełs)
Problem 7

> Dev: Coutine Critique Corret Claity to help students Suggested Next Steps: If students struggle . .
This problem corresponds most directly to the work stud in a figure. Students are asked to determine the values of the variables x and y by making use of the structure of the given diagram.
This problem assesses students' ability to use facts about supplementary, vertical, and adjacent angles to determine unknown angles
(Standards: 7.EE.B.4, 7.G.B.5, MP7)
Problem 6

- Consider revisiting Lesson 10, Activity 2 or Lesson 12, Activity 2.
\forall שגוּ

7dшәни łOu P！	sәэ！очэ ұэәдоэи！әдош 10 Омұ SłગəəəS ұuәpnts К｜ио słэәәәs ұиәрпłs	－әэฺ๐чэ ґэәมоэи！ ue səpnןэu！osןe әЧł 10 ОМł 10 әио słəəə๐ \downarrow uәpnłs	әио рие sәэ！очэ ॥е słวəəəs ұuәpnłS ＇səગ！очэ ఛәәиоэи！ Kuе łəәəəs łou səop ә૫ł 」о омұ ло әио słગəəəs ұuәpnis	－usul ә૫ł „0 әseq ә૫ł se eәле әшes ә૫ł se૫ \forall uо！！כәs ssoגכ • －əıenbs e s！g uoljoəs ssouj • －əıenbs e s！\forall uo！̣כəs ssoio 	$\begin{gathered} \angle d W \\ { }^{2} \forall \forall^{\prime} O^{\prime} L \end{gathered}$	Z
7dшәџе łou p！0	－ə｜q！ssod sə｜6ue！ әдәцł ‘səןбие әәццъ иәл！！ Łечł рәдәqшәшәл әлец łou op səp！s әәдцł ło słәs әшоs łечł рәдәqшәшәд әлеч кеш＂รә｜бие！ 				で甘゙勺゙し	\downarrow
0	\downarrow	Z	ε	t		
		6u！doןəләа	6u！uэeoıdd \downarrow	бu！pəəэхヨ／6u！̣əәW	paepueis	melqodd

\forall uxos ：o！̣qny pue Kıemuns łuəussess \forall pus＇ 2 ＇L t！un

7dme»е ł0u P！ 0	－6upuełsıəpun †O әәиәр！лә чеәМ	－sıодә ұиет！！！uб！s łnq రu！̣doןəләр е SMOपs yдом	 ienłdәэиоэ sмочs уиом	－əp！s шว 9 әио pue ґэәдоэ рие әұәןdmoэ s！чхоМ		L＇t
7düдие ł0u p！	－6upuełsıəpun ！ 0 әәиәр！лә чеәМ	－иеәш ןеэ！дәл pue ‘イıеұиәшәןddns ‘Кıұұәшәјdшоэ spıoм әчұ ұечм ұпоqе бu！̣ueə әq ו！！？ Kem sd！чиsuo！̣e｜əд әןбuе әшоs Kןио медр очм słuәpnłS ＇sıодә ұиеэ！！！uб！s ЧІ！М ‘＇Бu！̣puełsıəpun ןentdəouos әృәןdmoэu！ ұnq రu！̣do｜əләр е SMOYS y10M	＇sə｜6ue Кщеұиәшәןddns पł！M Kew o08L of uns səן自ue Киұұәшәәышоо ұецъ әңеэ！ри！очм słuәpnłS ＂ео！！дәл pue＇रıełиәшәəddns ‘Киеұиәшәјdшоэ spıом әчł Ч！！M әכ！̣כeגd әдош рәәи кеш sәшeu d！чsuo！̣еןəд ә｜бuе ә૫ł әsnıuoo łnq sd！̧̣suo！̣еןəд ә｜бии әәдчł ॥е медр очм słuәpnłs ＇sıодә дои！̣ पџ！м ＇Kıәłsem pue бu！̣ ןentdәouoo smous yиом	әןбие әЧł ЈО цэセә smoys Кןәәдиоэ би！меда ґэәдоэ рие әұәןdmoэ s！чхоМ		ε
0	\downarrow	Z	ε	t		
	6u！uu！ 6 өg	6u！doəләа	6u！	6u！pəəэxヨ／6u！ŋəәW	prepuets	melqodd

7dmette ł0u p！	－бu！̣puełsıəри Ł0 әЈиәр！лә чеәМ	иәл！̣б чэャә рә！！d！！｜nи әлец Кеш sәчэи！э！яnэ 09ε ә！！им очм słuәpnłS łnq бuildoןəләр е sмочs yıом	－usụd ә૫ł ґо әseq ә૫ł иәчм 乙 Кq рәр！ィ！р әлец łou Kеш səчэи！э！̣no ZL ә！！！м очм słuәpnts pue 反u！puełsıəpun ןentdəouoo sмочs yıом	sə૫ગu！ગ！̣nจ 9を・ ¡эәдио 		－＇G
7dшә»！ łou p！ 0		Омł әЧł łеЧł рәכ！！Ou pue әр！s யכ 9 әપł pue әр！s шว ォ әлец Кеш әןવ！ssod łои S！ఛ！łセЧł ә！！ ＇səp！s әәдчł иәл！̣б әןбие！и ןеэ！！uәр！иои әио медр К｜ио иет noर ұецł дəqшәшәд Keш ә｜q！ssod łou S！І！ҒЕЧł ә！！！М ОЧМ słuәpnłS ＂uo！̣ent！s sәңеэ！иишшоо ұечұ ио！ңеиеןдхә Ч！！М дәмsuе ұәәлоэи	－uo！̣еие．dxә әғәןdmoэ pue ןеэ！ ＇uo！̣eue｜dxə u！̣ SME｜f 	－әр！̣ риич umouyun ә૫ł pue әр！s дəłәш！！иəә－9 ә૫ъ иәәмұәд s！ә｜биие әપł ！！иецł әбии！！ұ 孔әәәц！р е ОМł әЧł иәәмłәq s！əןбue әપł ㄱ sə人 • －ио！̣еие．dxә әуәןdmos pue ןеэ！ uо！！sənb әцł sıəмsue K｜｜nıssəoэns ұuәpnłs		でも
0	\downarrow	τ	ε	t		
	6u！	6u！doןəләа		бu！рәәэхヨ／6u！ұәәW	prepuets	məq0ıd

7dme»te ł0u p！	－6u！puełsıәрии ๖○ әЈиәр！лә чеәМ	 е s！әдәцł ұецł рәләqшәшәл әлец кеш $09 \varepsilon=\kappa+\kappa+x$ әч！мм очм słuәрпłs ＇s．ouə łnq ठuildoןəләр е sмочs чиом	－sıдлә pue 反u！̣puełsıəpun ןenłdəouos sMous yıом			で9
＇7dшәне łOU P！ 0	－ －u！̣puełsıəpun $\ddagger 0$ әэиәр！лә чеәМ	$08 \mathrm{I}=\mathrm{S} \varepsilon+\kappa_{Z}+x$ uo！̣enbə әцұ pәsn әлец кеш SS $=К$ әәимм очм sұиәрпłS łnq ठu！	－K pue x дод sənjeл әчł dn pәx！ш $\ddagger \mathrm{nq}$ səןqеuел әчł доң рәл৷оs КІэәдио әлец Кеш $\mathrm{s} \varepsilon=К$ pue s ${ }^{\prime} Z L=x$ әџ！мм очм słuәрпłs －sıдлә лои！ш чł！м＇Kıəısem pue 6u！puełs．əәpun ןenıdəouoo smoys yıом	$\begin{aligned} \mathrm{S} \cdot Z L & =\kappa \\ \mathrm{SE} & =x \end{aligned}$ †эәдоь 	$\begin{gathered} \angle d W \\ c^{\prime} g^{\prime} \cdot{ }^{\prime} \angle \end{gathered}$	L＇9
7duәみе łou p！0	－6u！puełsıәpun \nvdash әЈиәр！лә чеәМ	ә૫ł рәғеןпэןэ әлеч Кеш sәчэи！ әлenbs 8t ә！！！м очм słuәpnłs －sıoдə łnq ठuildoןəәр е sмочs чиом	＇s．ouə ıои！ш पІ！М＇Кдәдsem pue סu！̣puełsıəpun ןenłdəәuoo sмочs yıом	sə૫วu！әлеnbs †8 ๆวәдоэ pue әұәઇdmo๐ s！ч⿺夂М	9＊9＊⿹＇L	て＇G
0	\downarrow	Z	ε	\dagger		
	6u！uu！ 6 əg	6u！doןəләа	6u！	бu！pəəэхヨ／6u！${ }^{\text {a }}$	paepuers	melqodd

\forall שiog ：

＇7dшәне 10u P！	－uoḷeue，dxә ue łnouł！M 10 uо！！еиеןdxә ґэәдоэи！ цІ！М дәмsue ңэәдоэи｜	ләи！̣еұиоо »е6ns әчł иецł גәночs s！дәи！ециоо мәи әЧł łецł рәә！̣ои әлец Кеш＂Sə人＂ әт！мм очм słuәpnłs －uo！̣ent！s ә૫ł „о 6u！̣puełsıəрй ¡セ૫ł uo！̣еие｜dхә Чұ！М дәмsuе ұәәдоэи ＇uo！̣еиеןdxә әұәјdmoэи！ ЧІІМ ләмsuе џәәдоう	‘әшnןол puoכəs дои！̣ е әреш pue әлец Кеш＂Sə入＂ әч！мм очм słuәpnłs －uo！̣еие．ןdxə әғәןdmoo pue ןеэ！ Чł！M גәMsue łכәлиоэu｜ －uo！̣eue｜dxə u！̣ SME｜f 	 $=\left(8 \cdot Z I \cdot \frac{Z}{I}+Z I \cdot Z I\right) s Z$ ＇sıəəəш！̣uәว ง！̣ทง $008 \searrow=0 \varepsilon \cdot 0 Z \cdot 8$ s！ әшпןо＾s،»әи！ециоэ ןеи！̣！ио әчн －גe6ns „о \ddagger unowe әшеs әчł рІоч чэеә иеэ Кәцъ suеәш цગ！чм ‘јеnbə s！ е səpnןэu！pue uo！̣sənb әчł sдәмsue K｜｜nıssəәons ұuәpnłS	$\begin{gathered} Z d W \\ 9^{\prime} \cdot a^{\prime} \cdot{ }^{\prime} L \end{gathered}$	2
0	\downarrow	Z	ε	t		
	6u！uu！ 6 өg	6u！doıəләа	6u！	6u！pəəэхヨ／6u！łəәW	prepueds	mejqodd

\qquad

1. You look at the weather forecast and it says 10% chance of rain today.

Would you take an umbrella? Explain your thinking.
2. Plot and label each number on the number line: $0.75, \frac{1}{4}, 0.2,0.5, \frac{8}{10}$.

3. Complete the table so that each column has the same value.

Fraction	$\frac{7}{10}$		$\frac{3}{5}$	$\frac{3}{8}$
Decimal	0.7	0.75		
Percent		75%		37.5%

Nihkil surveyed 20 students at his middle school and 13 of them had at least one sibling.
4.1 What percent of the students surveyed have at least one sibling?
4.2 There are 300 students at Nikhil's middle school. If the rest of the school is consistent with these results, about how many students would have at least one sibling?

Explain your thinking.
5.1 What are some things you know about mean and median?
\qquad
5.2 What are some things you know about IQR (interquartile range) and MAD (mean absolute deviation)?
5.3 What are some things you still wonder about mean, median, IQR, or MAD?

Eva is curious how much students at her school sleep.
She asked 10 students how many hours they slept last night and recorded their answers in a dot plot.

6.1 How many students slept for 8 or more hours last night?
6.2 Calculate the mean number of hours that all 10 students slept.
6.3 Do you think the mean you calculated is similar to the mean of all the students in Eva's school? Explain your reasoning.

There are 11 dancers in a performance. Their ages (in years) are:

$$
5.5,6,6,6.5,7,7.5,8,8,8.5,9,9
$$

7.1 What is the median age of these dancers? \qquad
7.2 Determine the first quartile, median, and third quartile of the dancers' ages. Label them on the box plot below.

7.3 What is the interquartile range (IQR) of the dancers' ages?

1. Responses and explanations vary.

- Even though there is some chance of rain, it isn't that high, so I wouldn't bring an umbrella.
- I would bring an umbrella because it might rain, even if the chance is low.

2.

3.

Fraction	$\frac{7}{10}$	$\frac{3}{4}$ (or equivalent)	$\frac{3}{5}$	$\frac{3}{8}$
Decimal	0.7	0.75	0.6	0.375
Percent	70%	75%	60%	37.5%

$4.1 \quad 65 \%$
4.2 Anywhere between 180 and 210 students.

Explanations vary. If the percentage of all students in the school who have siblings is also 65%, then 65% of 300 is 195 . It might not be exactly 195 , but close.
5.1 Responses vary.

- To find the mean, add up all the numbers and divide by how many numbers you have.
- Median is the middle number.
- When figuring out the median, you need to put all the numbers in order.
5.2 Responses vary.
- You can figure out IQR using a box plot.
- MAD is a lot of calculations and has to do with the mean.
- IQR is related to the median.
5.3 Responses vary.
- What is IQR?
- How do you calculate the MAD?
6.1 5 students
$6.2 \quad 7.7$ hours
6.3 Responses and explanations vary.
- I think so because the small group probably covers all different types of students: students who sleep a lot and students who don't sleep a lot.
- I don't think so because we don't know all the students in the school and how many hours they sleep for.
$7.1 \quad 7.5$ years
7.2

$7.3 \quad 2.5$ years

Unit 7.8, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problem 1 before Lesson 1
- Problems 2, 3, and 4 before Lesson 2
- Problems 5 and 6 before Lesson 9
- Problem 7 before Lesson 13

Problem 1

(Standards: 6.RP.A.3, MP3)
This question is intended to surface what students already know about concepts of chance.
Students construct a viable argument concerning why they would or would not bring an umbrella given a 10\% chance of rain. This content first appears in Lesson 1: Chance Experiments, where students conduct their own experiments using phrases like "likely" and "equally likely as not" to describe the likelihood of events.

Suggested Next Steps:

- Consider surfacing students' arguments before beginning Lesson 1 in order to come to a shared understanding of what chance and likelihood mean.

Problem 2

(Standards: 6.NS.C.6, MP7)
This question is intended to surface what students already know about benchmark fractions and decimals between 0 and 1, which are useful in probability. Students use the structure of the number line to place fractions and decimals relative to each other. This content first appears in Lesson 2: Prob-bear-bilities, where students use the sample space to determine the probability of an event as a number between 0 and 1 .

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem as a class before beginning Lesson 2 and asking questions like: Which value is closest to 1 ? 0 ? How do you know?

Unit 7.8, Readiness Check Summary

Problem 3

(Standards: 6.RPA.3.C, MP1)
This question is intended to surface what students already know about equivalent fractions, decimals, and percentages. Students can complete the missing information in the table by making sense of the problem from multiple entry points. In this unit, students will express probabilities in all three forms. This content first appears in Lesson 2: Prob-bear-bilities, where students compare the probability of events expressed as fractions, decimals, and percentages.

Suggested Next Steps: If students struggle . . .

- Consider spending extra time on Screens 2 and 3 of Lesson 2.
- Consider asking questions like: What would the probability look like written as a decimal? As a fraction? As a percentage? What form would be most helpful for comparing these probabilities?

Problem 4

(Standards: 6.RP.A.3, 7.RP.A.3)
This question is intended to surface what students already know about proportional relationships and percentages from earlier in Math 7. This content first appears in Lesson 3: Mystery Bag, where students use proportional relationships to predict the sample space of a mystery bag.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem as a class before Lesson 3 or spending extra time during Lesson 3's Warm-Up discussing several different examples of bags that would lead to a 40% chance of picking a green block. If students struggle with Problem 4.2, consider spending extra time discussing students' strategies on Screen 7 of Lesson 3.

Problem 5

(Standards: 6.SP.A.2, 6.SP.A.3)
This question is intended to surface what students already know about measures of center and variability: mean, median, mean absolute deviation (MAD), and interquartile range (IQR). This content first appears in Lesson 9: Car, Bike, or Train?, where students calculate the mean and mean absolute deviation (MAD) for a data set, and use those measures to interpret data.

Suggested Next Steps:

- Consider taking time before beginning Lesson 9 to share what students already know about these measures and record their wonderings publicly to return to throughout Lessons 9-15.

Unit 7.8, Readiness Check Summary

Problem 6

(Standards: 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.C, MP7)
This question is intended to surface what students already know about dot plots and means.
Students make use of the structure of the dot plot to calculate the mean number of hours slept by the sample of students. This content first appears in Lesson 9: Car, Bike, or Train?, where students calculate the mean and mean absolute deviation (MAD) for a data set and use those measures to interpret data.

Suggested Next Steps: If students struggle . . .

- Consider spending extra time before Lesson 9 reviewing how to calculate mean, as students may not have used this concept for some time.

Problem 7

(Standards: 6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.C, MP7)
This question is intended to surface what students already know about box plots, medians, and IQRs. Students make use of the structure of box plots to support their thinking. This content first appears in Lesson 13: Plots and Samples, where students estimate the measure of center of a population based on one or more samples sometimes expressed as a box plot.

Suggested Next Steps: If students struggle .

- Consider spending extra time before beginning Lesson 13 reviewing what median and IQR represent about data and how to calculate them.
- Consider using a routine like Notice and Wonder when students first encounter a box plot in Lesson 13.
\qquad

1. Which event is possible, but unlikely?
A. Flipping one fair coin that lands with heads facing up.
B. Opening a 300 -page book to exactly page 143.
C. Rolling a seven on a standard number cube.
D. Getting wet if you stand in the rain without an umbrella.
2. Select all of the ways you could accurately simulate a 40% chance of rain tomorrow.
Land on red in one spin.

Both coins
Select a cube labeled "P".
Roll a 4 in one roll.
Select an "E" land on heads.

Esi does an experiment where she picks a block out of a bag without looking 50 times, putting it back each time. She picks a green block 32 times.
3.1 Out of 200 picks, how many times do you predict Esi will pick a green block?
3.2 If the bag has 8 blocks, how many do you think are green?

Explain your reasoning.

\qquad
The Spin N' Dine Restaurant has a special deal. For $\$ 20$, you can spin two spinners to select one appetizer and one entree at random.
4.1 How many different possible combinations of appetizer and entree could you spin?
4.2 What is the probability you will spin at least one item with cheese in the name?

Appetizers

A. Chicken wings
B. Onion dip
C. Cheese sticks
D. Crab cakes
E. Fried pickles

Entrees

1. Cheese pizza
2. Barbecue ribs
3. Meatloaf

Vihaan and Neena use a spinner to decide who has to do the dishes each night. They make a graph of the fraction of days that Vihaan has to do the dishes.
5.1 Is this spinner fair?

Use at least one piece of evidence to support your claim.

Fraction of Days Vihaan Does the Dishes

5.2 Describe or sketch what you think their spinner could look like.

1. B. Opening a 300-page book to exactly page 143.
2. $\quad \checkmark$ Land on red in one spin.
\checkmark Select a cube labeled "P".
$3.1 \quad 128$ times
3.2 5 green blocks

Explanations vary. 32 green blocks out of 50 is 64% of the blocks. 64% of 8 blocks is 5.12 , which is closest to 5 green blocks.
4.1 15 different combinations
$4.2 \quad \frac{7}{15}$ (or equivalent)
5.1 No.

Explanations vary. If the spinner were fair, then the probability should get close to 0.5 as you spin it more and more times. Looking at the graph, the probability gets closer to 0.75 or 0.8 .
5.2 Responses vary.

- The spinner would have 4 sections with 3 of them labeled for Vihaan, so the probability of him doing the dishes would be $\frac{3}{4}$.
- The spinner would have 10 sections with 8 of them labeled for Vihaan, so the probability of him doing the dishes would be 0.8.
- Consider revisiting Lesson 7, Activity 2. understand and communicate which events would not accurately simulate a 40% chance of rain and why.
- Math Language Development Consider using the mathematical language routine Critique, Correct, Clarify to help students

 situations. Students reason abstractly and quantitatively as they select which of the given probability events could simulate a 40% This problem assesses students' ability to connect real-world situations and the probability tools that could be used to simulate those (ZdW 'O'8'O'dS'L :spıepuełS)

Problem 2

 Consider revisiting Lesson 1. Suggested Next Steps: If students struggle .students did in Lesson 1: Chance Experiments.
This problem assesses students' ability to describe the likelihood of events. This problem corresponds most directly to the work
(Standard: 7.SP.C.5)
Problem 1

Standard	7.SP.C. 5	7.SP.C. 6	7.SP.C. 7	7.SP.C.7.B	7.SP.C. 8	7.SP.C.8.A	7.SP.C.8.B	7.SP.C.8.C
Problems	1	3, 5	5	3, 5	4	4	4	2

Unit 7.8, Quiz: Summary and Rubric

- Consider revisiting Lesson 4. -əəuu!̣ds әцł Оł
- Consider asking students how they can use the graph to determine the fraction of the days Vihaan would do the dishes according

 model with mathematics when they design a spinner that This problem assesses students' ability to use the results of a repeated experiment to describe the probability of an event. Students
(Standards: 7.SP.C.6, 7.SP.C.7, 7.SP.C.7.B, MP4) Problem 5 - Consider revisiting Lesson 6, Activity 2.
Consider asking students to make a table or a tree diagram to represent the sample space of the event. Suggested Next Steps: If students struggle work students did in Lesson 6: Fair Games.
This problem assesses students' ability to calculate the probability of a multistep event. This problem corresponds most directly to the (Standards: 7.SP.C.8, 7.SP.C.8.A, 7.SP.C.8.B) Problem 4
- Consider revisiting Lesson 3, Activity 1. there were 200 picks.
- Consider asking students how they can use the results of Esi's experiment to make predictions if the bag contained 8 blocks or if Suggested Next Steps: If students struggle .
events and unknown information. This problem corresponds most directly to the work students did in Lesson 3: Mystery Bag. and future events. Students reason abstractly and quantitatively when they use experimental data to make predictions about future This problem assesses students' ability to use the results from a repeated experiment to make predictions about the sample space (Standards: 7.SP.C.6, 7.SP.C.7.B, MP2) Problem 3
o!ıqny pue Kıemuns :z!no ' 8 'L t!un

7dшәџе łOU P！	＇sұuәлә әגnłņ pue әэeds әोdues әपł łnoqe suo！！o！pəd әуеш оұ łиәш！！әdхә рәдеәдәд е moג sұ！nsəд әчł бu！̣n до 6u！puełsıәрй рәң！ш！！sMoчs צגоM	＇ио！дэ！рәлд рипод әош 10 גə！ 100ε оł Z\＆рәрипол әлец イеш 0†I Oł 0ZI иәәмłәq sıәмsие ә！！ıм очм słuәрпłs ＇sıодәә ұиеэ！！！ub！s Чџ！М Бu！̣puełsıәрй 	‘sıoдəә әшоs पІ！М Бu！puełsıәpun jentidəouoo SMOUS YIOM	səm！！8ZI • дәмsuе ґәәио	$\begin{aligned} & \text { g'LO'AS'L } \\ & \text { '9'O.dS'L } \end{aligned}$	－＇ع
7dшәџе łou p！0	‘səэ！！чั ұәәдоэ †כコュ00u！OM1 －ऽəэ！๐чэ ґэәдоэи！Кјио	รәэ！๐ч๐ 	－әэฺ๐чэ Łэәมлоэи！әио pue －әэ！ฺчэ ఛэәлоэи！әио ч！！М әэ！๐чэ ґэәม๐๐ әио до әэ！๐ц๐ ґэәлио әио	əqnว 飞 łગəə －ulds әиo u！̣ pəд иo puеך －รəэ！๐чว ఛコәมоэи！ou pue 	O＊8＊O＇dS＇L	乙
7dшәне tou p！0	＇əэ！очэ ґจәлиоэи			아 yooq ә6ed－ 00ε e бu！üədo －әэ！๐чэ ґәәиоэ	$\mathrm{s}^{\prime} \mathrm{O}^{\prime} \mathrm{dS}^{\prime} \mathrm{L}$	\downarrow
0	\downarrow	τ	ε	t		
	6u！uu！${ }^{\text {eg }}$	6u！doןəләа	6u！чэeosddv	6u！pəəэxヨ／6u！${ }^{\text {a }}$	pappueis	merqodd

łou p！0	ұиәлә dәғs！！ \mid m е ґо K！！！！qeqoиd јо 6u！puełsıәрй рәџ！ய！！sMOYs צגOM	－әәциә ıо ıәz！əədde ие lot uo！？do ue se әиои бu！！sooчจ ьо К！！！！！！！ssod әчъ рәдәр！sиол оз／е әлец кеш є乙 әұолм очм słиәрпłS ＇sıодәә ұиеэ！！！uи！ ЧІ！М бu！̣puełsıәрй әұəㅣㅣoㅇu！ smous you	‘sıoдə әшоs पұ！м Кu！̣puełsıәрии ןenłdәэuos smoys yдом	suo！！eu！quoo SI ＇дәMSUе ұЈәлоэ		L＇t
＇7dшәие tou p！	uо！ңeueןdxә ఛэәлоэи！ 10 uо！̣еиеןdxə ou ч！！М ләмsue łэәлоэи	＇иәәб әе әдош әsпеэәа 9 ＇ 9 ・ヨ －6uppueqsıәрии re！ped smoys ләмsuе ұэәлоэи uо！̣еиерыхә әә키뚱u！ 	－dn pәрипол ио！ұеиелдхә әұәлдшоэ е ч！！М 9 sıәмsие диәрпıs＂ $6 \cdot \exists$ ио！ңеиедdxә प！！М ләмsue łэәлоэи। ＇syวo／q 9 punoлe әq ұчถ！ш әдәцд uo！peue，dxә u！SME｜f JOU！ Ч！！М ләмsue łэәллоכ	＇syગ0／q иәәฝ s оt ZSəSO／D S！पग！чM＇ZI＇S s！ әЧł fo \％も9 s！0S fo łno syวolq นәәлБ S ＇ио！ңеиеןdxә ұэәдио Ч！！М ләмsue ұәәлоэ		て＇દ
0	\downarrow	Z	ε	\dagger		
	6u！uu！ 6 өg	6u！doəлəன	6u！upeordd \forall	6u！pəəэхヨ／6u！ŋәәW	prepueis	melqosd

oụqny pue Kıemuns ：z！̣no＇8＇L t！un

＇7dшәџе łOU P！ 0	uo！̣еиелыхә Łэәлоэи！ло uо！！eueןdxә ou पұ！M ләмsue ұәәдоэи｜	－6u！puęsıәрй ןe！pued sмочs ұецұ иo！̣еиеןdxә әұәןdmoэu！ Чұ！М ләмsue џәәлоэ	uoḷeuejdxə Ч！！М дәмsue łэәлоэи •enbə әq pınoys еиәәл рие иееч！л әsпеכәq ‘on＂ $6 \cdot \exists$ uo！ңeuejdxә u！SME｜f JOU！ J Ч！！М ләмsue łәәллоכ	słә6 Kł！！！qeqoud әчł＇чde»6 әлош pue әлош ！！uḷds noर Чџ！М ләмsue ŋәәлоэ	$\begin{aligned} & \text { a'LOdS'L } \\ & \text { 'L'OdS' } \\ & \text { '9'OdS' } \end{aligned}$	L＇G
łOU p！	＇I рие 0 иәәмұәq әле sә！！！！！qеqолd ॥е дечł риедsıәрии дои кеш I иечъ дәғеәцб Би！чдイие әдомм очм sұиәрпіs ¡孔иәлә dәıs！！ןnu е ґо K！！！！qeqoдd до 6u！puetsıәрии рәң！u！！smous yגOM	－K！！！！qeqoud е se дечł ә！！мм оł моч әınsun әдәм ұпq əรәә૫๐ реч децł sәшоэдпо әq！！ssod L әдәм әдәцд рооұsıәрип әлец кеш L әұомм очм słиәрпłs ＇sıодә ұиеэ！！！uб！s प！！M 6u！̣puełsıәpun әұәןdmoэu！sMoчs y⿺辶M	＇sıодә әшоs पІІМ దu！puełsıәрй sMous yom	（łиәјеп！！nbə ィо）$\frac{\text { SI }}{L}$ • ‘әммsuе ґәәноэ		でも
0	\downarrow	Z	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	6u！pəəэxヨ／бu！ұәәW	prepuets	melqodd

7dшәне łou p！0	－еұер иәл！！ 6 е доł әן әq pınoэ ұечł юо 6u！puęsıәрии 	дәuu！ds ц！eл e әлец кеш ऽ＂0 әq оł səцs！p әчł Ђu！ор иееч！\wedge Ło К K！！！！qeqoıd әчъ әлеб децъ ләии！ds е әреш очм słuәрпłs ＇sломә ұиеэ！！！uб！s Чџ！М Бu！̣puełsıəpun әңәןdسoэи！ sMOYS yIOM	＇sıодә әшоs Чł！M 6u！puełsıәрии ןentøәэиoo sMOUS y10M	－ 8 ：0 әq pınoм səys！p әчъ Би！ор ш！ч ғо Ки！！！！qеqол шәЧł 」O 8 Ч！！м suo！łวəs 0І әлец рІпом дәиu！ds әчц $\frac{.}{\varepsilon}$ әq ріпом sәчs！p әч7 би！ор ш！ч „о Кו！！！！qeqодd әч7 os＇иеец！＾доł рәәqе» шәч7 рлпом ләии！ds әчд＇ $6 \cdot \exists$ ло uo！ıd！！		でG
0	\downarrow	Z	ε	t		
	6u！uu！ 6 ®g	6u！doəләன	6u！	бu！pəəэxヨ／6u！łəәW	prepueis	melqodd

o！̣qny pue Kıemuns ：z！̣o＇ 8 ＇L t！un
\qquad

1. You pick a block out of this bag without looking. What is the probability of picking a star?
A. $\frac{1}{3}$
B. $\frac{3}{4}$
C. $\frac{3}{7}$
D. $\frac{4}{7}$

2. A principal wants to know if students want to change the start time of the school day. Which strategy is most likely to produce a representative sample?
A. Ask each teacher to select one student.
B. Select a day at random. Ask the first students who arrive at school that day.
C. Select students from a list of all students at random. Ask those students.
D. Select tables in the library at random. Ask the students sitting at those tables.
3. Adriana is curious: do more customers go to fast-food restaurants or to other restaurants?

She went to a random sample of 50 restaurants (25 fast-food and 25 other).

At each restaurant, Adriana recorded the number of customers the restaurant had that day.

Select all of the true statements:
Fast-food restaurants tend to get more customers than other restaurants.Other restaurants tend to get more customers than fast-food restaurants.Fast-food restaurants have a more consistent number of customers than other restaurants.Other restaurants have a more consistent number of customers than fast-food restaurants.All fast-food restaurants have more customers than other restaurants.
\qquad
4. Abdel, Binta, Carlos, Diya, and Ethan use a spinner with 5 equal sections to decide who will mop the floor of their shared apartment each week. Diya says, "After 100 weeks, I will have mopped the floor exactly 20 times.
Do you agree or disagree with her? Explain your thinking.

The Spin N' Dine restaurant sells ice cream for dessert. You spin two spinners to select one random flavor of ice cream and one random topping.
5.1 How many different possible combinations could you spin?
5.2 What is the probability of spinning vanilla ice cream with chocolate or rainbow sprinkles?

Rudra is wondering, "Should I start a petition for a longer lunch and longer school day at my school?" They survey a random sample of 20 students and find that 12 of them agree.
6.1 What is the population for Rudra's question?
6.2 If the school has 250 students, about how many do you predict would agree?
6.3 The next day, Rudra surveys another 20 random students and finds that 8 of them are in favor. Does this make you more or less confident in your prediction? Explain your thinking.
\qquad

Maneli is wondering if her class gets more homework than her twin sister Yasmine's class.
Maneli selects a random sample of 7 students from each class and asks those students how long they spent on homework last night.

Sample of Yasmine's Class
$15,30,35,40,40,40,45$
7.1 Dylan looks at the data and says that there are only 7 students in Yasmine's class. Do you agree? Explain your thinking.
7.2 In which class do students spend more time on homework?

Use at least two different pieces of evidence to support your claim.

Reflection: Select a question to answer.
\square What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.
\square Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

1. $\frac{3}{7}$
2. C. Select students from a list of all students at random. Ask those students.
3. $\quad \checkmark$ Fast-food restaurants tend to get more customers than other restaurants.
\checkmark Other restaurants have a more consistent number of customers than fast-food restaurants.
4. Disagree

Explanations vary. Diya might have mopped the floor 20 times, but she also might have mopped the floor close to 20 times, like 19 or 22 times. You can't predict the exact results.
$5.1 \quad 12$ different combinations
$5.2 \frac{2}{12}$ (or equivalent)
6.1 All the students at Rudra's school.
6.2 About 150 students.
6.3 Less confident.

Explanations vary. In Rudra's first sample, over 50% of students agreed. In their second sample, less than 50% agreed. This means that the variation is large, which makes me less confident in my prediction.
7.1 No.

Explanations vary. This is only a sample of Yasmine's class, not the whole population.
7.2 Yasmine's class

Explanations vary. The median of Maneli's class is 25 minutes of homework. The median of Yasmine's class is 40 minutes. This is a 15 -minute difference. The IQR for both classes is 10 minutes, so the difference is more than the IQR, which means that Yasmine's class definitely gets more homework. Also, in Maneli's class, the least amount of time a student took is 10 minutes, whereas in Yasmine's class, it was 15 minutes.
－Consider revisiting Lesson 11，Activity 2. understand and communicate which sampling methods would not produce a representative sample and why．
Math Language Development Consider using the mathematical language routine Critique，Correct，Clarify to help students
 Lesson 11：Headlines． their understanding on how to gather a random sample．This problem corresponds most directly to the work students did in This problem assesses students＇understanding that random sampling tends to produce representative samples as well as

Problem 2

 －Consider asking students to describe how they think probability is determined．－Consider revisiting Lesson 2，Activity 2 ． Suggested Next Steps：If students struggle ．
students did in Lesson 2：Prob－bear－bility．
This problem assesses students＇ability to determine the probability of events．This problem corresponds most directly to the work
（Standard：7．SP．C．7．A）
Problem 1

$1 \cdot 9$	て＇G	\downarrow	†		て＇L＇＇	$\varepsilon \cdot 9^{\prime} 1 \cdot 9$	乙	swəq\％d
$\mathrm{g}^{\prime} 8^{\circ} \mathrm{O} \mathrm{dS}^{\prime} \mathrm{L}$	$\forall^{\prime} 8^{\circ} \mathrm{O} \mathrm{dS}^{\prime} \mathrm{L}$	$\forall^{\prime} L^{\prime}{ }^{\circ} \mathrm{dS}{ }^{\prime} L$	$9^{\circ}{ }^{\circ} \mathrm{dS}$＇ 2	$\nabla^{\prime} \mathrm{A}^{\prime} \mathrm{dS}^{\circ} \mathrm{L}$	$\varepsilon^{\prime} \mathrm{g}^{\prime} \mathrm{dS}^{\prime} L$	$z^{\prime} \forall^{\prime} \mathrm{dS}^{\prime} L$	$L^{*} \forall^{\prime} \mathrm{dS}^{\prime} L$	paepueis

 -6u!

This problem assesses students' ability to describe that the results of a repeated experiment may not exactly match the actual
(ε dW '9'0'dS' L :sprepuets)
п шวгqoォd

Suggested Next Steps: If students struggle . .

(Standards: 7.SP.B.3, 7.SP.B.4, MP2) ε Шวโq0.d

- Consider revisiting Lesson 14, Activity 2.
difference to the IQR can help determine whether a difference in the amount of homework given in the two classes exists.
- Consider asking students to calculate the median and IQR for each sample. Consider asking them how comparing the median Suggested Next Steps: If students struggle . . .
This problem assesses students' ability to compare two populations using measures of center and measure of variability for numerical
data from random samples. This problem corresponds most directly to the work students did in Lesson 14: Student Newspaper.
(t'g'dS'L ' $\varepsilon \cdot \mathbf{g}^{\prime} d S$ ' L :spıepuets) Problem 7 - Consider revisiting Lesson 12, Activity 1. Consider asking students how the sample can be used with proportional reasoning to estimate information about the population. Suggested Next Steps: If students struggle . Lesson 12: Flower Power. multiple samples affect their confidence in their predictions. This problem corresponds most directly to the work students did in samples to gauge the variation in those predictions. Students reason abstractly and quantitatively when they explain how results from This problem assesses students' ability to use data from a random sample to make predictions about a population and to use multiple
(ZdW 'ナ'g'dS'L 'Z'V'dS'L :spıepuełS)
Problem 6
- Consider revisiting Lesson 6. - Consider asking students to make a table or a tree diagram to represent the sample space of the event Suggested Next Steps: If students struggle
students did in Lesson 6: Fair Games.
This problem assesses students' ability to find probabilities of compound events. This problem corresponds most directly to the work

Problem 5

łou p！0	－Kıexq！！ рәләр！suoo әлеч łои Кеш＂sәןqеł әsouł łе ‘uo！̣d！̣әsәр әцł и！шориел рлом әчł 			＇słuәpnłs əsouł ys \forall mopued łe słuәpnłs słuəpnłs łગəəəડ	$L^{\prime} \forall^{\prime} \mathrm{SS}^{\prime} L$	乙
7dme»te 10u P！	－иoom әлец кеш $\frac{L}{t}$ џәәәэ очм słuәpnłS ‘suoow ıо дәqunu әлеч кеш $\frac{t}{\varepsilon}$ џәәәә очм sұuәpnłя ＇sıełs әәдчł әлец кеш $\frac{\varepsilon}{\text { I }}$ џәәәs очм sұuәpnts			$\frac{L}{\varepsilon} \bullet$	$\forall^{\prime} L^{\prime}{ }^{\prime}{ }^{\text {d }}{ }^{\prime} L$	\downarrow
0	\downarrow	Z	ε	t		
	6u！uu！̣əəg	6u！̣doןəләа	6u！	6u！pəəэxヨ／6u！ұәәW	prepuets	məqodd

7dme»е ł0u P！ 0	＇uo！̣eue．dxә ue łnout！M 10 uo！！eue｜dxә †эәมоวи！ цІ！М дәмsue ఛวәนоэи｜	－uo！̣ent！s ә૫ł 〕૦ бu！̣puełsıəри ן！！̣ued децł ио！̣еиеןдхә ч！！м ләмsuе ұәәдоэи －uol！eue｜dxə әғәןdmoכu！ 	рыпом 0Z иәчұ ‘孔иәлә ие ғо K！！！！qеqолд әчł рәчэъеш К｜ңэехә ұиәш！ H 0 OZ $=00$ I $\cdot \frac{\mathrm{S}}{\mathrm{I}}$ łеЧł рәz！！ибоэәд әлец кеш еК！ Чł！М әәдБе очм słuәpпłs －uo！̣feue｜dxə u！̣ SME｜f 	＇sұןnsəд ұәехә әцł 10 6I әу！！‘səس！！0Z Ot əsoן os｜e ə૫s łnq ‘səu！ 0 0Z 100｜ әәцБеs！ด ＇uo！̣еuеןdxə әłəןdmos pue ןeэ！ pue uo！！sənb әчł sıәмsue K｜иnłssəoэns ұuәpnłS	$\begin{gathered} \varepsilon d W \\ ‘ 9 \cdot O \cdot d S \text { ' } L \end{gathered}$	†
7duшәие łOU P！ 0	－รәэ！！ч๐ ฉәәцоэ ә૫ł ฉэәдоэи！әош 10 омұ słフəəәs łиәрпłs ‘ऽəэ！！๐ч ¡эәนоэи！ ડłગə｜əs Kןио ұиәрпіs	－әэ！ฺчэ ґэәлоэи！ әио pue səэ！๐чэ ఛәәиоつ әЧł ！О әио ડłગəəəડ łuәpnłS	－әэฺ๐чэ ఛэәдоэи！ әио pue səэ！очэ ફәәиоэ әપł Ł0 પł૦q słગəəəs łuәpnłS ә૫ł ł0 әио słขəəəs łuәpnłS	＇słueגnełsal poof－lseł иецł sıəmołsno fo дәqunu ұиәґs！suoo әдош е әлец sұueגnełsәл дәчłО －słuexnełsed дәцłо иецł sıәшоłsno әлош ұә6 оұ риәұ słuennełsal poof－lse」 • Łou səop pue səэ！очэ џəәио๐ 		ε
0	\downarrow	乙	ε	t		
	ถu！̣u！̣бəg	6u！doןəләа	6u！	бu！pəəэхヨ／6u！¢əәW	paepuets	məqodd

łOU P！		－uoḷejndod Łəә！qns әцł иәәب！им әлец кеш ＂イер ןоочэs дəбuoן pue yכun｜ дәбио｜，，ә！！им очм słuәpnłs sıouə łnq ठuildoןəләр е sмочs улом	－uoḷejndod ә૫ł dn səyеш ןоочэs әЧł łnoqe ұечм 1 о ә！！мм очм słuәpnts pue 6u！̣puełs．əpun jenłdәouov smous yиом	－ООपЈs s，expny ie słuəpnłs əપł II甘 ＇ఛәлиоэ pue әұәןdmos s！yைом	て＇V＇dS＇L	L＇9
7dmәңte Ł0u p！0	$\left\|\begin{array}{rr} \text {-бu!pueısıәрии } \\ \text { †o } \\ \text { әоиәр!лә уеәМ } \end{array}\right\|$	－（səyuulds моqu！̣еג＇sәү्रu！̣ds әғеןоэочо ＇飞া！！ueл）suo！̣do fo ıəqunu ןеұоł әчұ рәдипоэ әлец кеш $\frac{Z I}{\varepsilon}$ әұ！мм очм słuәpnłS łnq Suidoןəләр е smoчs yıом	－suo！̣do әүчu！uds омұ әцд до әио Кןио рәэ！̣ои әлец кеш $\frac{\text { Z }}{\text { I }}$ әт！мм очм słuәpnłs pue 6u！puełsıəpun ןenłdәәuov smoys yом	（ұиәןел！̣nbə до） $\frac{Z I}{Z}$ ＇ұэәлоэ рие 	＊＇8＇О＇dS＇L	
7dməュte łOU P！		suo！̣do fo ィəqunu кеш \angle әт！им очм słиәрпłя －sıoдə łnq రuildoןəләр е sмочs улом	pue бu！puełsıəpun penłdəouo smoys yıом	sиuo！̣eu！quos ұиәдә！！ZI ＇łวәлоэ pue әұәјdшоэ s！чィоМ	®＇8＇O＇dS＇$^{\prime}$	L－G
0	\downarrow	乙	ε	t		
		6u！doןəләа	6u！	бu！pəәэхヨ／6u！əәәW	paepuers	mejqodd

7duәде tou p！o	－uolıeue．dxә ue ұnouł！м 10 uo！¥eue｜dxə ґэәдоэи！ Ч！！М дәмsue ฉэәноэи	－uo！̣ent！s ә૫ł „о 6u！̣puełsıəpun łеЧł uo！łеue｜dxə цұ！м дәмsuе ұэәдоэи ‘uo！̣еие｜dxə әғәןdmoכu！ цІІ дәмsuе łэәлоэ	－səjdurs иәәмұәq Кұ！！！qеиел әЧł иецł дәцłед имедр sәןdues ґо бu！̣イed иәәq әлец －uo！̣еue，dxә －uo！̣eue｜dxə u！̣ SME｜f дои！ш чұмм дәмsuе ұәәлоэ	u！łuәp！fuoo ssə әu səлеә ио！џе！иел әблеן s！чд＇рәәдбе \％0S ueчł ssə ‘əədues słuәpnłs fo \％0S дәло ＇əədumes łsi！！s，expny ul ұиәр！чиоэ ssəך pue ןeэ！ฺo｜e səpnןગu！ pue uo！̣sənb әЧł SдəMsue K॥nłssəoэns łuәpnłS	$\begin{gathered} \text { ZdW } \\ \text { 'Z'V'dS'L } \end{gathered}$	$\varepsilon ' 9$
＇7dməみне łou p！o	－6upuełsıəpun 10 әЈиәр！лә уеәМ	$\frac{Z I}{0 \mathrm{SZ}}$ рәґॄппэеэ әлец кеш LZ ә！！！м очм słuәpnts ＇sıодә ұиеэ！ бu！doןəләр е sмочs чиом	－оочэs 아 $\frac{0 Z}{Z I}$ о！̣ед әчł Бu！$К \mid$ dde иәчм додә ио！！џן е sәуеш ұиәрпңs －sıодә дои！̣ш ц！！м ＇Kıəsem pue бu！̣ ןentdəouoo smous yıом	słuəpnłs 0SI ¡әәдио 	t＊＇dS＇L	で9
0	\downarrow	Z	ε	t		
	6u！	6uıdoןəләа	6u！чэeordd \boldsymbol{V}	бu！pəəวxヨ／6u！əəəW	paepuets	melqodd

\forall سiog ：o！

＇7dme»！ łou p！	－uolifeue｜dxə ue ұnout！ 10 uо！̣еuеןdxә Łэәлоэи！ цІ！м дәмsue ңэәлоэи｜	－əسеs әчł s！әןdmes цэeә u！ әлец кеш әшеs әцł łnoqe s！уомәшоч łо łиnome әчъ ұецъ Кеs очм słuәpnłs ＇əןdures s،əu！use入 $\ddagger 0$ әбueג ә૫ł иецł ґәбдеן s！əןdurs рәэ！！ои әлец кеш чиомәшоч әıо山 sey Ssejo s！！əuиew ұецұ Кеs очм słuәpnłs －uo！̣entis әчұ ґо би！̣риеъsıәрй ן！！̣ед sәłет！иишшоэ ұецł ио！̣еиеןdxə Ч！！М дәмsuе ұэәдоэи｜		‘уомәшоч ＇sə⿰nu！u 0t S！Sseןo s，əu！use人 fo sse｜כ s，əu！̣use入 －uo！̣еиеןdxә әłәןdmoэ pue 	$\varepsilon \cdot \square \cdot d S ' L$	でし
－duәәце łou p！	－uoḷeue．dxә ue łnOपł！ 1 M do ио！！eue｜dxә ŋэәлоэи！ цІ！м дәмsue ฉวәлоэи｜	＇sueəu әןdures е ұечм ұnoqe бu！̣uеәә әq ו！！？s Kew＂sə人＂Kes очм słuәpnłS －uolipentis Ч！！М дәмsue łәәлоэи －uol！eue，dxә 		 －ио！！ееие｜dxә әұәјduоэ pue 	t＊GdS＇L	L＇L
0	\downarrow	乙	ε	t		
		6u！̣doןəләа	6u！${ }^{\text {¢ }}$	6u！pəәэхヨ／6u！${ }^{\text {a }}$	prepuels	melqodd

GRADE 7

Exit Tickets

Exit Tickets provide an opportunity for students to show what they individually understood about the main idea of the lesson.

This section includes all Exit Tickets and Teacher Moves for Units 1-8, as well as printable PDFs for sample lessons. Please note that Exit Tickets are referenced as Cool Downs in this review.

Kayla and Daniela started walking at constant speeds. After 3 seconds:

- Kayla walked 6 feet.
- Daniela walked 12 feet.

1. Label each graph with the name of the person whose walk it represents.
2. Write an equation that represents Kayla's walk. Use d for distance and t for time.

How did you feel about this lesson?

Reflect on the math from this lesson

- I can write an equation of a proportional relationship from a point on a graph.
- I can compare related proportional relationships on the same graph.

> Exit Ticket PDFs are available for all lessons. Here are samples from Amplify Desmos Math New York, fully designed.
\qquad
\qquad

Exit Ticket

Solve the inequality $19 \geq 2 x+10$. Explain your thinking.

How well did you understand the math in this lesson?

How did you feel about this lesson?

Reflect on the math from this lesson.

- I can determine the solutions to an inequality with positive numbers.
- I can explain how to solve an inequality.

The following pages in this section include digital versions of all Exit Tickets and their Teacher Moves for Units 1-8.

Please note that Exit Tickets are referenced as Cool Downs in the partially designed samples that follow.

7.1 Cool-Downs

Lesson Checklist

\square Complete the lesson using the student preview.
\square Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.
\square Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.
\square Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?
\square Anticipate screens where students will struggle, then plan your response.
\square Consider how to use snapshots to select and present student thinking for class discussion.

Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.

Click one shape that is not a scaled copy of figure A.

Teacher Moves

Support for Future Learning: Students will have more opportunities to determine whether or not shapes are scaled copies, so if students struggle with this cool-down, there is no need to slow down or add additional work to the next lessons.

四 Sample Responses

B, D, or F
Explanations vary.

- Figure B is not a scaled copy of figure A because the side lengths are not proportional. The figures are the same height, but not the same width.
- Figure D is not a scaled copy of figure A because it's not the same shape. The two figures are the same height and width, but the area of figure D is greater.
- Figure F is not a scaled copy of figure A because the side lengths do not make equivalent ratios. The height ratio is $\frac{5}{3}$ and the width ratio is $\frac{2}{2}$.

2 Lesson 2: Lengths and Scaled ...
Figure B is a scaled copy of figure A.

Label the missing side lonothe of

Figure B is a scaled copy of figure A.

Label the missing side lengths of figure B.

Reacher Moves

Support for Future Learning: If students struggle to determine missing measurements, consider spending extra time during the discussion on Screen 6 of Lesson 3 to reflect on the proportional relationship between the side lengths of the original and scaled copies.

㨡 Sample Responses

Left side length: 4.5 (or equivalent)
Base length: 18 (or equivalent)

3 Lesson 3: Drawing Scaled Cop...

Use the sketch tool to draw a scaled copy of the polygon using a scale factor of 3 .

Teacher Moves

Support for Future Learning: If students struggle to draw a scaled copy, consider reviewing this cool-down as a class before Lesson 4 or offering individual support where needed during the "Draw It!" task during Practice Day 1.

㨡 Sample Responses

Image solution

What scale factor would make figure A match figure B ?

What scale factor would make figure B match figure A ?

Enter your answers in the table.

Teacher Moves

Support for Future Learning: If students struggle to determine the scale factors, consider reviewing this cool-down as a class before Practice Day 1 or offering individual support where needed during the "Reverse It!" task during Practice Day 1.

艮 Sample Responses

A to $B: \frac{5}{2}$ (or equivalent)
B to $A: \frac{2}{5}$ (or equivalent)

Imagine scaling this rectangle using a scale factor of 4 .

What is the area of the scaled copy?

P] Teacher Moves

Support for Future Learning: If students struggle to draw a scaled copy, consider reviewing this cool-down as a class before Practice Day 1 or offering individual support where needed on Problem 2 of the Fix It! task during Practice Day 1.

四 Sample Responses

240 square units

6 Lesson 6: Comparing Scale Fa...

Here is a scale drawing of National Stadium, also known as the Bird's Nest, located in Beijing, China.

Estimate the actual width and height of National Stadium.

Enter your estimates in the table.

T] Teacher Moves

Support for Future Learning: Students will have more opportunities to reason using scale, so if students struggle with this cool-down, there is no need to slow down or add additional work to the next lessons.

四 Sample Responses

Width: 332.3 meters (Answers between 330 and 340 meters are marked correct.)
Height: 68.5 meters (Answers between 60 and 80 meters are marked correct.)

7 Lesson 7: Scale Drawings
A scale drawing of a school bus has a scale of $\frac{1}{2}$ in. to 5 ft . If $f(x)$

8 Lesson 8: Creating Scale Draw...
You need a ruler for this cool-down.

Aaliyah is making a map nfthn Innl

A scale drawing of a school bus has a scale of $\frac{1}{2}$ in. to 5 ft . If the length of the school bus is 4 inches on the scale drawing, what is the actual length of the bus?

Teacher Moves

Support for Future Learning: If students struggle to determine the missing length, consider spending extra time discussing strategies for determining missing lengths during Activities 1 and 3 in the next lesson.

㨡 Sample Responses

40 feet

Explanations vary.
The scale drawing is 4 inches, so there are $\frac{1}{2} \cdot 4=8$ half inches in the drawing. Since each half inch represents 5 feet , $8 \cdot 5=40$ feet.

You need a ruler for this cool-down.

Aaliyah is making a map of the local park.

The park has a rectangular swimming pool that measures 50 meters in length and 25 meters in width.

Make a scale drawing of the swimming pool where 1 centimeter represents 10 meters.

Label the side lengths of your scale drawing.

P] Teacher Moves

Support for Future Learning: If students struggle to create a scale drawing, consider reviewing this cool-down as a class before
beginning Lesson 9 or offering individual support where needed on Task 2 of Practice Day 2.

畈 Sample Responses

```
Image solution
```

9 Lesson 9: Same Object, Differ...
Here are two scale drawings of the Hagia
$f(x)$

Here are two scale drawings of the Hagia Sophia in Istanbul, Turkey.

Complete the scale by entering the number of meters the black segment represents.

Teacher Moves

Support for Future Learning: If students struggle to identify the scale, consider reviewing this cool-down as a class before Practice Day 2 or offering individual support where needed on Task 4 of Practice Day 2.

田 Sample Responses

11 m

Explanations vary.

In the bottom drawing, 2 units represent 10 meters, so 1 unit represents 5 meters. In this drawing, the Hagia Sophia is 11 units tall, so the actual height is $5 \cdot 11=55$ meters. In the top drawing, the Hagia Sophia is 5 units tall, so each unit must represent 11 meters.

10 Lesson 10: Choosing Your Ow...

You want to fit the Statue of Liberty onto a

You want to fit the Statue of Liberty onto a sticker to put on your computer (12 in. by 9 in.).

What scale might you use to make the drawing?

P] Teacher Moves

Support for Future Learning: If students struggle to choose an appropriate scale (e.g., 1 inch to 30 feet), consider offering individual support where needed on the Are You Ready for More? of Practice Day 2. This skill will not be assessed on the End-Unit Assessment.

四 Sample Responses

Responses vary.

7.2 Cool-Downs

Lesson Checklist

Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.1 Lesson 1: Using Equi...

Teacher Moves

Support for Future Learning: The concept of equivalent ratios will be reinforced over the next several lessons. Consider checking in with students individually to monitor their understanding as the unit progresses.

Sample Responses

```
Image solution
```

2 Lesson 2: Introducing..
Complete this table so that the relationship is proportional.

Complete this table so that the relationship is proportional.

Teacher Moves

Support for Future Learning: The concept of using proportional relationships to determine unknown values will be reinforced over the next several lessons.

Sample Responses

- $x=3, y=10$
- $x=60, y=200$

3 Lesson 3: Constant o...
When you mix two colors of paint in

When you mix two colors of paint in equivalent ratios, the resulting color is always the same. Each row of the table represents a way to make the same shade of green paint.

What is the constant of proportionality in this relationship?

Sample Responses

5 or $\frac{1}{5}$

Explanations vary. The constant of proportionality means that this particular shade of paint is made with 5 cups of yellow paint for every 1 cup of blue paint.

4 Lesson 4: Proportion...田 It is snowing in Syracuse, New York. After 2

$f(x)$

It is snowing in Syracuse, New York. After 2 hours, 1 inch of snow has fallen. The snow falls at the same rate.

Complete the table.
Then write an equation for the amount of snow, s, that has fallen after h hours.

Teacher Moves

Support for Future Learning: The skills of writing an equation for a proportional relationship will be reinforced over the next several lessons.

Sample Responses

Snow: $0.5,3.5$
Equation: $s=0.5 h$ (or equivalent)

5 Lesson 5: More Equa...

The height in inches, h, of s sheets of paper can be described by the equation $h=0.004 s$.

What does the 0.004 mean in this situation?

Teacher Moves

Support for Future Learning: If students struggle to interpret the meaning of the constant of proportionality, consider spending extra time during the Warm-Up of the next lesson discussing the meaning of the constant of proportionality or reviewing the cool-down as a class.

Sample Responses

Responses vary. The 0.004 means that each sheet of paper is 0.004 inches tall.

6 Lesson 6: Two Equati...
An albatross is a large bird that can fly 400 kilometers in 8 hours at a constant sne.e.

7 Lesson 7: Equations ...
Select ALL of the proportional relationships.

:

An albatross is a large bird that can fly 400 kilometers in 8 hours at a constant speed.

1. What are two constants of proportionality for the relationship between distance in kilometers, d, and number of hours, t ?
2. Write two equations that relate d and t in this situation.

Sample Responses

Constant of proportionality: $\frac{400}{8}, \frac{8}{400}$
Equation: $d=\frac{400}{8} t, t=\frac{8}{400} d$

Select ALL of the proportional relationships.

Teacher Moves

Support for Future Learning: Using the structure of an equation to determine it represents a proportional relationship will be revisited over the next several lessons. Offer individual support during the next several lessons as needed or review the cool-down before the next lesson.

Sample Responses

- $1.08 x=y$
- $y=8 x$
- $y=\frac{x}{8}$

8 Lesson 8: Introducing..
Select ALL of the graphs that could represent a proportional relationship.
:

Select ALL of the graphs that could represent a proportional relationship.

Teacher Moves

Support for Future Learning: Offer individual support where needed, or lead a whole-class discussion at the beginning of the next class if enough students struggle with the cool-down.

Sample Responses

```
Image solution
```

9 Lesson 9: Interpreting...

Water runs
from a faucet into a bucket at
!三

Water runs from a faucet into a bucket at a steady rate.
The relationship between the amount of water in the bucket and time is proportional.

Select ALL of the true statements.

Teacher Moves

Support for Future Learning: Determining the constant of proportionality from a graph and interpreting its meaning will be reinforced in the next lesson.

Sample Responses

- After 1 second, there are 4 ounces of water in the bucket.
- The point $(1,4)$ is on the graph of the line.
- A constant of proportionality for this relationship is 4 .

10 Lesson 10: Proporti...

Kayla and
Daniela started walking at
$f(x)$

Kayla and Daniela started walking at constant speeds.
After 3 seconds:

- Kayla walked 6 feet.
- Daniela walked 12 feet.

Label each graph with the name it represents.
Then write an equation for Kayla's walk. Use d for distance and t for time.

Teacher Moves

Support for Future Learning: If students struggle to write an equation, offer individual support where needed before or during the next lesson, or review the cool-down before the next lesson.

Sample Responses

Image solution

$$
d=2 t
$$

11 Lesson 11: Connect...

Here are four representations of a

Here are four representations of a proportional relationship.
Explain where you can see the constant of proportionality in each representation.

Sample Responses

Description: The constant of proportionality is the cups of flour for each tablespoon of honey, $\frac{10}{8}$.
Equation: The constant of proportionality is k in the equation $f=k h$. Here, it is 1.25 .
Table: Multiply each value in the first column by 1.25 to get the values in the second column.
Graph: The constant of proportionality is the y-coordinate that corresponds to the x-coordinate of 1 . Here, the line goes through the point (1, 1.25).

12 Lesson 12: Let's Pu... Marshall wants to buy a kitchen faucet.

:

Marshall wants to buy a kitchen faucet.
Which faucet uses less water?

Sample Responses
Faucet B
Explanations vary. Pick a constant amount of time for both faucets, such as 2 minutes. In 2 minutes, Faucet A would use 8 gallons of water, and Faucet B would use 6 gallons of water.

7.3 Cool-Downs

Lesson Checklist

\square Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.
\square Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.

Figure B is a scaled copy of figure A.

What is the perimeter of figure B ?

P] Teacher Moves

Support for Future Learning: The concept of perimeter, particularly of circles, will be revisited in Lesson 3.

拫 Sample Responses

31.2 units

The diagram shows 4 segments and a point. The point is located at the center of the circle.

Click on all of the segments that are diameters.

Then explain how you know a segment is a diameter.

Teacher Moves

Support for Future Learning: The meanings of radius and diameter will be reinforced over the next several lessons.

畈 Sample Responses

Image solution

What is the approximate circumference of this circle?

Teacher Moves
Support for Future Learning: If students struggle, offer individual support during the warm-up of Lesson 4, or practice calculating the circumference of circles as a class before beginning Lesson 4.

比 Sample Responses

20π inches

4 Lesson 4：Calculating Perimet．．．

What is the perimeter of this figure？
$f(x)$

What is the perimeter of this figure？

P］Teacher Moves

Support for Future Learning：If a few students struggle with this cool－down，offer them individual support during Practice Day 1．If a large portion of the class struggles，facilitate a whole－class discussion about this question or a similar question at the beginning of the next class．

四 Sample Responses

$10 \pi+20$ centimeters

What is the approximate area of this figure？

T］Teacher Moves

Support for Future Learning：Students will revisit estimating the area of a shape with curved edges at the beginning of the next lesson．

㨡 Sample Responses

Estimates between 15 and 18 square units are marked correct．

6 Lesson 6：Exploring Circle Area
Circle A has a diameter of approximately 20 inches．
:三

Circle A has a diameter of approximately 20 inches．

Which of these could be the area of circle A ？

Teacher Moves

Connection to Future Learning：This concept of circle area will be

㨡 Sample Responses

About 300 square inches
Explanations vary．If the diameter of the circle is about 20 inches， then its radius is about 10 inches．The area of a circle is a little more than 3 times the area of the radius square，which would be $10^{2}=100$ square inches．This means the area of the circle is a little more than $100 \cdot 3=300$ square inches．

Calculate the area of this circle．

P］Teacher Moves

Support for Future Learning：If students struggle，offer individual support during the warm－up of Lesson 8，or practice calculating the area of circles as a class before starting Lesson 8.

比 Sample Responses

49π square centimeters
Explanations vary．I figured out the radius by counting the number of units between the center of the circle and the edge．Then，I squared that number and multiplied by π to get $7^{2} \cdot \pi=49 \pi$ square centimeters．

8 Lesson 8：Calculating Areas of．．．

What is the area of this figure？

Teacher Moves

Support for Future Learning：If students struggle on the cool－ down，consider revisiting before the End－Unit Assessment． Students will not explore complex shapes in Lesson 9 or Practice Day 2.

畈 Sample Responses

$$
100+25 \pi
$$

The circumference of this circle is 60 feet.

What is the circle's area?

Teacher Moves

Support for Future Learning: If students struggle, consider revisiting this question or a similar question before students begin Practice Day 2.

四 Sample Responses

$\left(\frac{60}{2 \pi}\right)^{2} \cdot \pi$

7.4 Cool-Downs

Lesson Checklist

Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.

What percentage of the square is yellow?

Teacher Moves

Support for Future Learning: If students are struggling to calculate the percentage that is shaded yellow, consider reviewing questions similar to the warm-up and the cool down as students work on Lessons 2 and 3 to prepare them to revisit percentages in Lesson 4.

Sample Responses

40\%

Explanations vary. There are 5 rows in the design. Therefore, each row makes up 20%. Since two full rows are yellow, the design is 40% yellow.

2 Lesson 2: Rates and ... Aba mixes $2 \frac{1}{2}$ cups of water with $\frac{1}{2}$ of a cup of lemon \because 二

Aba mixes $2 \frac{1}{2}$ cups of water with $\frac{1}{3}$ of a cup of lemon juice.

Esteban mixes $1 \frac{2}{3}$ cups of water with $\frac{1}{4}$ of a cup of lemon juice.

Whose lemonade mixture tastes stronger?

Teacher Moves

Support for Future Learning: If students struggle to compare two relationships with fractions, consider reviewing the cool-down as a class before students begin Lesson 3.

Sample Responses

Esteban
Explanations vary. Aba uses $7 \frac{1}{2}$ cups of water per 1 cup of lemon juice because $2 \frac{1}{2} \div \frac{1}{3}=7 \frac{1}{2}$. Esteban uses $6 \frac{2}{3}$ cups of water per 1 cup of lemon juice because $1 \frac{2}{3} \div \frac{1}{4}=6 \frac{2}{3}$. Esteban's mixture has less water for the same amount of lemon juice.

3 Lesson 3: Revisiting ... It costs $\$ 3.75$ to buy $\frac{3}{4}$ pounds of chopped walnuts.

It costs $\$ 3.75$ to buy $\frac{3}{4}$ pounds of chopped walnuts.

How many pounds of walnuts can you purchase with $\$ 11.25$?

Teacher Moves

Support for Future Learning: Students will continue to use tables to calculate unknown values in the remainder of the unit.

Sample Responses

$$
2 \frac{1}{4} \text { (or equivalent) }
$$

4 Lesson 4: Percent Inc...
The number of fish in a pond decreased by 10% this year compared to last year.

$f(x)$

\qquad
\square

The number of fish in a pond decreased by 10% this year compared to last year.

Last year, there were 60 fish in the pond.
How many fish are in the pond this year?

Teacher Moves

Support for Future Learning: This idea will be reinforced over the next several lessons.

Sample Responses

54 fish

5 Lesson 5: Percent Inc...
Jayla's bank account increased by 7% this year. $f(x)$

Jayla's bank account increased by 7\% this year.
Write an equation to represent the relationship between the amount that Jayla started with, b, and the amount she has now, c.

Teacher Moves

Support for Future Learning: If a few students struggle with this cooldown, offer them individual support during Activity 2 of Lesson 6. If a large portion of the class struggles, consider facilitating a whole-class discussion about the different equations representing a percent increase or decrease during the discussion for Problem 6 of Lesson 6, Activity 1.

Sample Responses

Responses vary.

- $1 b+.07 b=c$
- $1.07 b=c$
- $c=(1+0.07) b$

6 Lesson 6: Percent Inc... A company claims that their new bottle holds 40% more laundry soap.

$$
f(x)
$$

\qquad
\qquad
A company claims that their new bottle holds 40% more laundry soap.
If their original container held 53 fluid ounces of soap, how much does the new container hold?

Teacher Moves

Connection to Future Learning: Double number lines will not be specifically addressed in future lessons. Students will have more opportunities to practice calculating original amounts, new amounts, and percent change using other representations in Lesson 7 and beyond.

Sample Responses

74.2 fluid ounces

7 Lesson 7: Calculating...

A number went into this machine and 36 came out.

What number went in?

Teacher Moves

Support for Future Learning: Consider offering individual support to students who struggle with the cool-down before students take the quiz, or conduct a whole class discussion before the next class.

Sample Responses

48

A meal costs $\$ 30$ before tax and tip.

There is a 7% sales tax. After the tax, a 20% tip is added.
What is the total after tax and tip?
Teacher Moves
Support for Future Learning: Consider checking in with students who struggle on this cool-down when they work on stations during the

Practice Day, or review this question as a class before the end of the unit.

Sample Responses

$\$ 38.52$

9 Lesson 9: Real-World...
Tariq works as a server making $\$ 9$ per hour. In a typical 8-hour shift, he earns $\$ 65$ in tips.

:

Tariq works as a server making $\$ 9$ per hour. In a typical 8 -hour shift, he earns $\$ 65$ in tips.

The restaurant offers Tariq a 50% raise on his hourly rate. If he takes the offer, he would stop collecting tips.

If you were Tariq, would you accept this offer?

Teacher Moves

Support for Future Learning: Students will revisit these concepts in Lesson 10: Cost of College.

Sample Responses

Responses vary.

- No. During a typical 8 -hour shift, Tariq currently makes $\$ 137$ ($9 \cdot 8+65$). A 50% raise means making $\$ 13.5$ per hour, but in an 8 hour shift without tips, he would only make $\$ 108$.
- Yes. During a typical 8 -hour shift, Tariq currently makes $\$ 137$ (
$9 \cdot 8+65$), but it could vary depending on tips. With the raise, he would make less money on average, but at least the amount he makes would be predictable.

10 Lesson 10: Real-Wo... Tyler purchased a vintage video game for $\$ 60$.

$f(x)$

Tyler purchased a vintage video game for $\$ 60$.

The value of the video game is expected to increase by 4% each year.
How much will the video game be worth after two years?

Teacher Moves

Support for Future Learning: Students will have an opportunity to
practice calculating multiple percent increases during the Practice Day.

Sample Responses

$\$ 64.90$

To be labeled as a jumbo egg, an egg is supposed to weigh 2.5 ounces.
Rafael buys a carton of jumbo eggs and finds that one egg weighs 2.4 ounces.

What is the percent error?

Teacher Moves

Supports for Future Learning: If students struggle, consider inviting these students to spend extra time on the section of the Practice Day that involves percent error, or reviewing this question before students begin the Practice Day.

Sample Responses

$$
4 \%
$$

12 Lesson 12: Analyze ...

Here are two facts.
Write a question that you could figure out using this information and whose answer is not already given.

Teacher Moves

Support for Future Learning: Students will continue to work with realworld situations involving percent increase and decrease in the Practice Day.

Sample Responses

Responses vary. How many wild tigers are there in the world today?

7.5 Cool-Downs

Lesson Checklist

\square Complete the lesson using the student preview.
\square
Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.
\square Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.

This submarine's starting position is -2 units.

Select the THREE actions that would make the final position 1 unit.

P] Teacher Moves

Support for Future Learning: Students will have more opportunities to analyze combinations of floats and anchors in Lesson 2 and 6 , so if students struggle with this cool-down, there is no need to slow down or add additional work to the next lessons.

畈 Sample Responses

- Add 3 floats
- Remove 3 anchors
- Add 1 float and remove 2 anchors

2 Lesson 2: Adding and Subtrac...

R] Teacher Moves
Support for Future Learning: If students struggle to determine the value of each expression, plan to revisit this when opportunities arise during Lessons 3 and 4. Consider spending extra time during Activity 1 of Lesson 3 connecting the bumper context to floats and anchors or spending extra time during Lesson 4's warm-up surfacing students' strategies for determining the value of each expression.

排 Sample Responses

- 3
- -3
- -7
- 3

T] Teacher Moves

Support for Future Learning: If students struggle to determine the unknown value in each equation, consider making time to explicitly revisit these ideas before Quiz 1.

护 Sample Responses

- $a=10$
- $b=-5.1$
- $c=\frac{6}{6}$ (or equivalent)
$-2.3-(-3.5)$

P] Teacher Moves

Support for Future Learning: If students struggle with determining the value of each expression, plan to revisit this when opportunities arise in Lesson 5. Consider asking students to draw a number line diagram to support their thinking during Activity 1 of Lesson 5, particularly Screens 2 and 3.

㨡 Sample Responses

- 1.2
- -5.8

Image solution

5 Lesson 5: Practice With Addin...
Make four true equations by flipping the cards.
(Note: You

Make four true equations by flipping the cards.
(Note: You can click on a card to flip it and switch the sign.)

P] Teacher Moves

Support for Future Learning: If students struggle to reason about subtracting negative and positive numbers, consider reviewing this
screen as a class before Practice Day 1 or offering individual support where needed during Task 3 of Practice Day 1.

畈 Sample Responses

－ $1.5-(-2.5)=4$
－$(-1.5)-(-2.5)=1$
－ $1.5-2.5=-1$
－$(-1.5)-2.5=-4$

R Teacher Moves

Support for Future Learning：Students will have more opportunities to multiply positive and negative integers in upcoming lessons．

讯 Sample Responses

－-20
－-12
－ 21

Two of these equations are true．One is false．

Select the false equation．

P］Teacher Moves
Support for Future Learning：If students struggle to select the false equation，plan to revisit this when opportunities arise during Lesson 8．For example，consider spending extra time discussing the sign of each expression in the Lesson 8 warm－up．

泪 Sample Responses

$(-3) \cdot(-8)=-24$
Explanations vary．

The equation is false because when you multiply two negative numbers，the total is positive．

Make it true by changing -8 to 8 ．

Reacher Moves

Support for Future Learning：If students struggle to determine the value of each expression，consider making time to explicitly revisit these ideas before the quiz．Consider spending extra time discussing the sign of $\frac{x}{y}$ and $\frac{y}{x}$ in Activity 1 of Lesson 9.

讯 Sample Responses

－ 80
－-5
－ 5
－-5

9 Lesson 9：Variable Expressions x and y are plotted on the number line． $\uparrow 三$
x and y are plotted on the number line．
Order the expressions from least to greatest．
Use the number line if it helps you with your thinking．

Teacher Moves

Support for Future Learning：If students struggle to order the variable expressions，consider spending extra time on Task 3 of Practice Day 2 or reviewing this question before Quiz 2.

㽗 Sample Responses

Least

－$x \cdot y$
－$x+y$
－$\frac{x}{y}$
－$x-y$

Determine the value of each expression.

Teacher Moves

Support for Future Learning: If students struggle to determine the value of each expression, consider reviewing this screen as a class before Practice Day 2 or offering individual support where needed during the Practice Day.

比 Sample Responses

- -4
- 8
- 12
- -3

Verkhoyansk, Russia, has one of the largest temperature differences between its summer and winter temperatures.

P3 Teacher Moves

Support for Future Learning: If students struggle to calculate the difference, consider reviewing this screen as a class before Lesson 12 or offering individual support where needed during the lesson. Students need to be able to calculate differences between large positive and negative numbers throughout Lesson 12.

排 Sample Responses

$110.5^{\circ} \mathrm{F}$

12 Lesson 12: Real-World Situati...
In 2020, the average temperature in some parts of the Arctic was about $-19.3^{\circ} \mathrm{F}$.

$f(x)$

\qquad

If the Arctic continues to warm at the same rate, what will be the average temperature in 2050?

Teacher Moves

Support for Future Learning: If students struggle with using rates to make a prediction, consider making time to explicitly revisit these ideas before students take the End Assessment, where they will be asked to use a rate to make a prediction.

㨡 Sample Responses

$-15.25^{\circ} \mathrm{F}$
In 2020, the average temperature in some parts of the Arctic was about $-19.3^{\circ} \mathrm{F}$.

The temperature in the Arctic increased about 0.135 degrees per year in the last decade. arage terature

13 Lesson 13: Real-World Situati...

Teacher Moves

Support for Future Learning: If students struggle to calculate the total due, consider making time to explicitly revisit these ideas before the End-Unit Assessment.

㨡 Sample Responses

Electricity used: 900 kilowatt-hours
Electricity generated: 712 kilowatt-hours
Total due: \$53.92

7.6 Cool-Downs

Lesson Checklist

Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.1 Lesson 1: Non-Propo...

Here is the pattern from the lesson synthesis.

Teacher Moves

Support for Future Learning: Students will have more chances to develop their understanding of non-proportional relationships throughout the unit.

Sample Responses

No
Explanations vary. Each stage adds 6 new tiles. If I keep adding 6 tiles, later stages will have 46 and 52 tiles, but not 50 .

2 Lesson 2: Connectin...
Neel and his sister are making $\stackrel{\text { ® }}{ }$

Neel and his sister are making gift bags for a party.
Neel puts 3 pencil erasers in each bag. His sister puts x stickers in each bag. After filling 4 bags, they have used a total of 36 items.

Which diagram best represents the story?

Teacher Moves

Support for Future Learning: If students struggle to connect situations and tape diagrams, plan to revisit this when opportunities arise during Lesson 3 . Consider spending extra time discussing how diagrams connect to situations in Lesson 3, Activity 1.

Sample Responses

Diagram C
$x=6$

3 Lesson 3: Representi...
Ella ran 6 times arnoind hor : 三

Ella ran 6 times around her school building. Then she ran 4 miles home.

Her phone told her that she ran 7 miles total.
Select an equation that represents this situation.

Teacher Moves

Support for Future Learning: Students will have more chances to develop their understanding of equations, situations, and solutions in the upcoming lessons, particularly Lesson 4 and Lesson 12.

Sample Responses

$$
\begin{aligned}
& 6 x+4=7 \\
& x=0.5 \text { (or equivalent) }
\end{aligned}
$$

4 Lesson 4: Practice W...
Deiondre

$f(x)$

Deiondre bought a keychain for $\$ 6.75$ and 3 shirts that cost x dollars each. Altogether, the items cost $\$ 31.50$.

Write an equation to represent the situation.

Teacher Moves

Support for Future Learning: If students struggle with this cool-down, they will have more opportunities to write equations from contexts, particularly in Lesson 12 and Practice Day 1.

Sample Responses

Tape Diagram: 3 sections of x and one section of 6.75 . The total length is 31.50 .

Equation: $6.75+3 x=31.50$ (or equivalent)

Solution: $x=8.25$ (or equivalent)

Meaning: Responses vary. The shirts cost $\$ 8.25$ each.

5 Lesson 5: Introductio...

Here is a new balanced hanger. $f(x)$

Here is a new balanced hanger.
What is the weight of a triangle?
Use the sketch tool if it helps you with your thinking.

Teacher Moves

Support for Future Learning: If students struggle with this cool-down, they will have more opportunities to determine unknown weights in balanced hangers, particularly in Lessons 6 and 7.

Sample Responses

2.5 pounds

6 Lesson 6: Solving Eq...
What is the value of x in the equation $5 x+\frac{1}{4}=\frac{61}{4}$? $f(x)$
\qquad

What is the value of x in the equation $5 x+\frac{1}{4}=\frac{61}{4}$?

Teacher Moves

Support for Future Learning: If students struggle with figuring out the value of x, plan to revisit this when opportunities arise in Lesson 7. Consider spending more time during Activity 1 of Lesson 7 connecting the moves on the hanger in Problem 1 with the equation steps in Problems 2 and 3.

Sample Responses

$$
x=3
$$

7 Lesson 7: Solving Eq...
\#
\qquad

Teacher Moves

Support for Future Learning: If students struggle to solve each equation, consider reviewing these problems as a class before beginning Lesson 8, or spending extra time during Lesson 8, Activity 2 discussing students' strategies and highlighting common errors.

Sample Responses

- $x=-7$
- $x=-1$

Solve the equation.

Teacher Moves

Support for Future Learning: If students struggle to solve the equation, plan to revisit this when opportunities arise in Lesson 11 and Practice Day 1. Consider spending extra time on Problems 2 and 3 of Set 1 in Activity 1 of Lesson 11.

Sample Responses

```
x=9
```

9 Lesson 9: Equivalent ...
Write an equivalent expression for $-5(3-2 x)$.

$f(x)$

---------------------------------1
\qquad

Write an equivalent expression for $-5(3-2 x)$.

Teacher Moves

Support for Future Learning: If students struggle with writing an equivalent expression, plan to revisit this when opportunities arise in Lesson 10. Consider spending extra time during Activity 1 of Lesson 10 (where expressions in factored form are introduced) discussing strategies for rewriting these in expanded form and what errors might come up.

Sample Responses

Responses vary. $-15+10 x$

10 Lesson 10: Adding ...
Write each expression with fewer terms.
$f(x)$

Write each expression with fewer terms.
$10 x-2 x$

Teacher Moves

Support for Future Learning: Students will have more chances to develop their understanding of writing expressions with fewer terms in Lesson 11 and Practice Day 1.

- $8 x$
- $14 x-7$

11 Lesson 11: Solving .. Saanvi and Ichiro each started solving this equation for x :

:

Saanvi and Ichiro each started solving this equation for x :
$3+5(x-1)=48$

- The result of Saanvi's first step was $5(x-1)=45$.
- The result of Ichiro's first step was $3+5 x-1=48$.

One of them made an error. Who was it?

Teacher Moves

Support for Future Learning: If students struggle with identifying the error, consider checking in with individual students as they solve equations during Practice Day 1, or reviewing this problem as a class before beginning Practice Day 1.

Sample Responses

Ichiro
Responses vary. The error was that Ichiro didn't expand correctly. He only multiplied 5 to the first term in the parentheses.

12 Lesson 12: Using E... Noe is hiking in a canyon. At one point during the

$f(x)$

Noe is hiking in a canyon.
At one point during the hike, Noe is at an elevation of 453 feet. After descending at a rate of 50 feet per minute, she reaches an elevation of 146 feet.

How long does the descent take?

Teacher Moves

Support for Future Learning: If students struggle to answer the question in context, consider making time to explicitly revisit these ideas
before the Quiz. Students will have the opportunity to answer questions like these during Practice Day 1.

Sample Responses

6.14 minutes

To work at an amusement park, employees must be at least 14 years old.

1. Make a graph on the number line to represent the possible ages of employees at this park.
2. Write an inequality to represent this situation.

Teacher Moves

Support for Future Learning: If students struggle with writing or graphing an inequality based on the situation, plan to emphasize this when opportunities arise over the next several lessons. For example, plan to spend extra time making connections between the inequality and the situations in Activity 1 of Lesson 15.

Sample Responses

Image solution
$x \geq 14$ or $14 \leq x$

14 Lesson 14: Solution... Solve the inequality $19 \geq 2 x+10$.

$f(x)$

Solve the inequality $19 \geq 2 x+10$.

Teacher Moves

Support for Future Learning: If students struggle with solving the inequality, plan to emphasize this when opportunities arise over the next several lessons. For example, spend extra time in Lesson 15 discussing strategies for solving the inequality that represents each situation.

Sample Responses

$$
4.5 \geq x
$$

15 Lesson 15: Solving I...
It is currently $14^{\circ} \mathrm{C}$ outside and the
\qquad $f(x)$

It is currently $14^{\circ} \mathrm{C}$ outside and the temperature is dropping 4 degrees every hour.

Zahra will only stay outside if it is $-10^{\circ} \mathrm{C}$ or warmer.
Solve the inequality $14-4 h \geq-10$.

Teacher Moves

Support for Future Learning: If students struggle to solve the inequality and interpret the solution, plan to emphasize this when opportunities arise during Lesson 17 and Practice Day 2. For example, consider spending extra time during Activity 1 of Lesson 17 discussing students' strategies for solving the inequality

Sample Responses

$h \leq 6$

Responses vary. Zahra will stay outside only for the next 6 hours.

16 Lesson 16: Solving I... Graph the solutions to
\qquad

Graph the solutions to $-3>-2 x+9$.

Teacher Moves

Support for Future Learning: If students struggle to solve and graph the solutions to the inequality, consider reviewing this screen as a class before beginning Lesson 17 or offering individual support where needed during Lesson 17 and Practice Day 2.

Sample Responses

Image solution

17 Lesson 17: Modelin...

Describe the mistake that Wey Wey made.

Teacher Moves

Support for Future Learning: If students struggle to identify and correct the error, consider checking in with individual students as they solve inequalities during Practice Day 2 or reviewing this problem as a class before beginning Practice Day 2.

Sample Responses

Responses vary. Wey Wey should have used the less-than-or-equal-to symbol.

- $8 x+58 \leq 500$
- $x \leq 55.25$

Wey Wey can download 55 movies or fewer.

7.7 Cool-Downs

Lesson Checklist

\square Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.

1 Lesson 1: Exploring Angles

What angle was used to create this pinwheel?

P] Teacher Moves

Support for Future Learning: Students will have more chances to develop their understanding of angle measures of a circle in the upcoming lessons, particularly Lesson 2 where students reason about angle measures in pattern blocks.

目 Sample Responses

$$
60^{\circ}
$$

Explanations vary. There are six pieces and no gap, so I divided 360° by 6 .

2 Lesson 2: Complementary an...

The measure of angle X is 60°.
X and Y are complementary angles.

What is the measure of angle Y ?

P] Teacher Moves
Support for Future Learning: If students struggle with measures of complementary and supplementary angles, plan to emphasize this when opportunities arise over the next several lessons. Consider spending extra time during Lesson 3's warm-up naming the angle relationships in the diagram and describing what that means about their measures.

把 Sample Responses

$$
\begin{aligned}
& Y=30^{\circ} \\
& Z=120^{\circ}
\end{aligned}
$$

3 Lesson 3：Vertical Angles and ．．．

Determine the values of a and b ．

P］Teacher Moves

Support for Future Learning：If students struggle with determining the missing angle measures，plan to emphasize this during Lesson 4 ，where students will practice determining unknown angles in diagrams．

四 Sample Responses

$$
a=53, b=65
$$

Write at least one true equation based on this diagram．

Teacher Moves

Support for Future Learning：If students struggle with writing equations or determining the missing measures，consider reviewing this as a class before Practice Day 1 or offering individual support where needed during the practice day．

㨡 Sample Responses

1．Equations vary．$a+50=90, a=b, a+c=180$ ．
2．$a=40, b=40, c=140$

Select all the groups of side lengths that will form a triangle．

Teacher Moves

Support for Future Learning：If students struggle to determine which groups of side lengths form triangles，consider reviewing this screen as a class before Practice Day 1 or offering individual support where needed during the practice day．

畈 Sample Responses

－ 6,11 ，and 6 units
－ 12,8 ，and 9 units

讯 Sample Responses

Image solution
Support for Future Learning：If students struggle with determining the number of different possible triangles，plan to emphasize this when opportunities arise over the next several lessons．For example，in Lesson 8，spend extra time during the debrief of Activity 1 discussing how many triangles are possible with each description．

7 Lesson 7：Building Triangles Wi．．．

Image solution

T］Teacher Moves

Support for Future Learning：If students struggle to create two different triangles，consider reviewing this screen as a class before beginning Lesson 8.

讯 Sample Responses

8 Lesson 8：Drawing Triangles W．．．

Alejandro was asked to draw a triangle with two 45° angles and a side length of 8 cm ．

He drew the triangle shown here．
Is it possible for Alejandro to draw a different triangle with the same measurements？

Teacher Moves

Support for Future Learning：If students struggle to describe how to create a different triangle，consider reviewing this screen as a class or offering individual support where needed during Practice Day 1.

㨡 Sample Responses

Yes
Explanations vary．Alejandro could make it so that the 8 cm segment is on one of the smaller sides rather than on the largest side．This arrangement would create a different triangle．

9 Lesson 9：Describing Cross Se．．．

Here is a triangular prism．
Select all the cross sections that are possible with these cuts．

P］Teacher Moves

Support for Future Learning：Students will have more opportunities to develop their understanding of three－dimensional solids in the upcoming lessons．

㨡 Sample Responses

－Triangle
－Rectangle
－Trapezoid

10 Lesson 10：Using Base Area t．．．
Which prism
has the greater
：

Which prism has the greater volume？
Use paper and pencil if that helps you with your thinking．

Teacher Moves

Support for Future Learning：If students struggle to compare the volumes，consider reviewing this screen as a class before beginning Lesson 11 or offering individual support where needed during Lesson 11＇s warm－up．

㽗 Sample Responses

Same volume

Explanations vary．Both volumes are 30 cubic units．The rectangular prism is $5 \cdot 2 \cdot 3=30$ cubic units and the triangular
prism is $\frac{1}{2} \cdot 2 \cdot 5 \cdot 6=30$ cubic units.

What is the volume of this prism?
Use the sketch tool if it helps you with your thinking.
T- Teacher Moves
Support for Future Learning: If students struggle with calculating the volume, consider making time to explicitly revisit these ideas. A strong understanding of volume will support students in Lesson 13 and the End Assessment.

把 Sample Responses

63 cubic units

Calculate the surface area of this prism.
Use the sketch tool if it helps you with your thinking.

Teacher Moves

Support for Future Learning: If students struggle with calculating the surface area, consider reviewing this question as a class before Lesson 13 or offering individual support where needed during the surface area-focused parts of Lesson 13.

四 Sample Responses

300 square centimeters

Here is a new container without a top lid.
How much popcorn can it hold (in cubic units)?

Teacher Moves

Support for Future Learning: If students struggle with calculating volume or surface area, consider making time to explicitly revisit these ideas. A strong understanding of each will support students in both Practice Day 2 and the End Assessment.

畈 Sample Responses

Popcorn: 120 cubic units
Cardboard: 144 square units

7.8 Cool-Downs

Lesson Checklist

\square Complete the lesson using the student preview.
\square Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.
\square Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.
\square Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?
\square Anticipate screens where students will struggle, then plan your response.
\square Consider how to use snapshots to select and present student thinking for class discussion.

Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.

Write the letter that matches the likelihood of spinning each color on one spin.
A. Impossible
B. Unlikely
C. Equally likely as not
D. Likely
E. Certain

Teacher Moves

Support for Future Learning: Students will have more opportunities to develop their understanding of likelihood in the upcoming lessons, particularly in Lesson 2 and 3.

四 Sample Responses

- E (Certain)
- C (Equally likely as not)
- A (Impossible)
- B (Unlikely)
- B (Unlikely)

Here is a menu from a restaurant.
If one item is selected at random, what is the probability that the item is a salad?

Teacher Moves

Support for Future Learning: Students will have more opportunities to develop their understanding of calculating probability in the upcoming lessons, particularly in Lessons 3 and 4.

四 Sample Responses

$$
\frac{2}{6} \text { (or equivalent) }
$$

3 Lesson 3: Predicting Sample S... A new
 mystery bag has 5 blocks.
$f(x)$

A new mystery bag has 5 blocks. Some are red and some are blue.
Based on these results, how many blocks are likely to be red?

Teacher Moves
Support for Future Learning: If students struggle to determine the number of red blocks, consider reviewing this screen as a class before Practice Day 1 or offering individual support where needed during the practice day.

四 Sample Responses

3 blocks

The graph shows the results of 500 spins.

Which spinner is most likely to have produced this graph?

Teacher Moves

Support for Future Learning: If students struggle with connecting the results of a graph to the probability of spinners, plan to emphasize this when opportunities arise during Lesson 5. Consider spending extra time analyzing the graphs of results of repeated experiments during Activity 1.

畈 Sample Responses

The spinner with 1 red section out of 5 .

This graph shows the results of 100 rolls with a number cube.
Describe the number cube that could have generated these results.

P] Teacher Moves

Support for Future Learning: If students struggle to estimate the probability of rolling a two, consider reviewing this screen as a class
before Practice Day 1 or offering individual support where needed during the practice day.

护 Sample Responses

Responses vary. Maybe the cube has 2 sides with one dot, 2 sides with two dots, 1 side with three dots, and 1 side with six dots.

```
\frac{2}{6}}\mathrm{ (or equivalent)
```

Pablo plays a game that involves rolling a standard number cube and flipping a coin.

How many possible outcomes are in the sample space?

Teacher Moves

Support for Future Learning: If students struggle to determine the number of possible outcomes or the probability, consider reviewing this screen as a class before Practice Day 1 or offering individual support where needed during the practice day.

泪 Sample Responses

- 12 outcomes
- $\frac{3}{12}$ (or equivalent)

7 Lesson 7: Estimating Probabili...
Lucia's school closes if it
 snows.

Lucia's school closes if it snows.
Lucia created these bags to simulate the forecast for the next 3 school days.

Press "Simulate" to run the experiment 100 times.

Teacher Moves

Support for Future Learning: If students struggle with interpreting the simulation, plan to emphasize this when opportunities arise in

Lesson 8. Consider spending extra time during the warm-up discussing how to interpret the results of the simulation.

畈 Sample Responses

Students will be marked correct if they estimate the probability between 0.28 and 0.38 .

8 Lesson 8: Designing Simulatio...
Natalia is playing in a very close basketball game.

9 Lesson 9: Using Mean and MA... Here is a new set of data: 4,5 $5,6,8,8$.

$f(x)$

Natalia is playing in a very close basketball game.
She is about to shoot 3 free throws and needs to make all 3 to win the game. She typically makes about 75% of her free throws.

Describe a simulation you could run to determine the probability that she wins the game.

PTeacher Moves
Support for Future Learning: If students struggle to design a simulation, they will have more opportunities to practice analyzing simulations during Practice Day 1.

眀 Sample Responses

Responses vary. Create three identical spinners to simulate each free throw. Give each spinner four sections: three sections that say "MAKE" and one that says "MISS." Spin the three spinners and write down how many free throws Natalie "makes" in the simulation. Repeat this many times, and keep track of the percentage of experiments where "MAKE" comes up all three times.

Here is a new set of data: $4,5,5,6,8,8$.

Calculate the mean.

P] Teacher Moves

Support for Future Learning: If students struggle to calculate the mean, they will have more opportunities during Lesson 10. If students struggle to calculate the MAD, they will have more opportunities during Lesson 14. Consider spending extra time reviewing each calculation before beginning these lessons.

㨡 Sample Responses

Mean: 6
MAD: 1.33

10 Lesson 10: Sampling From La...
Ariel wants to know the most popular chip flavor among teenagers in the United States.

Ariel wants to know the most popular chip flavor among teenagers in the United States.

1. What is the population for Ariel's question?
2. What is a sample Ariel could use to help answer this question?

Teacher Moves

Support for Future Learning: If students struggle with defining the sample and population, plan to emphasize this when opportunities arise over the next several lessons. For example, spend extra time during Lesson 11 defining the population for each question and headline.

Sample Responses

1. The population is all teenagers in the United States.
2. A sample could be the teenagers at their school.

11 Lesson 11: Sampling Bias

Teacher Moves

Support for Future Learning: If students struggle to connect sampling methods with possible conclusions, consider spending extra time during Lesson 12 discussing how different sampling methods might impact your understanding of how many different types of flowers are in the seed mix.

四 Sample Responses

Image solution

12 Lesson 12: Using Percentages...

\#	20 random students from Median
	$f(x)$

20 random students from Median $f(x)$

20 random students from Median Middle School were asked what superpower they wanted. Here are the results.

Median Middle School has 500 students. Estimate the number of students who want teleportation.

R Teacher Moves
Support for Future Learning: If students struggle to estimate the population based on the sample, consider reviewing this screen as a class before Practice Day 2 or offering individual support where needed during the practice day.

TBample Responses

100 students

Omari wants to know the median height of all 200 students in his dance school. He sampled 20 students on three different days and recorded their heights.

1. Predict the median height for all students.

R-] Teacher Moves
Support for Future Learning: If students struggle with estimating the median from a box plot, consider making time to explicitly revisit these ideas.

把 Sample Responses

Responses and explanations vary.

1. 62 inches
2. Since the medians and IQRs are all pretty close, I think my prediction is pretty accurate.

Do you agree with Caasi？

Teacher Moves
 ．

Support for Future Learning：If students struggle with using evidence to determine if the means of data sets are different，plan to emphasize this when opportunities arise during Lesson 15. Consider asking students if the difference between the asthma rates of the two areas students are comparing is big or not and to explain why．

四 Sample Responses

No
Explanations vary．I don＇t agree with Caasi because the difference between the means is $5.3-3=2.3$ ，which is more than one MAD of either data set（ 0.9 and 0.8 ）．When the difference between the means is equal to one or more MADs，that means there is a big difference between the number of movies watched by each population．
Caasi wonders if students watched more movies than teachers over the winter break．

After collecting data from a random sample of 11 students and 11 teachers，she decides that the difference between the number of movies watched isn＇t that big． poplation．

15 Lesson 15：Putting It All Toget．．．
Select one question below and record your response．
：三

Select one question below and record your response．

Teacher Moves

If time allows，consider checking in with each student throughout the remainder of the year about their responses to the cool－down．

四 Sample Responses

Responses vary．

Amplify. For more information visit amplify.com

