Amplify Desmos Math NEW YORK

Assessment Guide Sampler

Grade 8

Inside you'll find:

- Unit Assessments

For Review Only.
Not Final Format.

Amplify Desmos Math NEW YORK

Grade 8

Student Edition Sampler

About Amplify

Amplify is dedicated to collaborating with educators to create learning experiences that are rigorous and riveting for all students. Amplify creates K-12 core and supplemental curriculum, assessment, and intervention programs for today's students. A pioneer in $\mathrm{K}-12$ education since 2000, Amplify is leading the way in next-generation curriculum and assessment. All of our programs provide teachers with powerful tools that help them understand and respond to the needs of every student.

Amplify Desmos Math is based on the Illustrative Mathematics (IM) curriculum. IM 6-8 Math was originally developed by Open Up Resources and authored by Illustrative Mathematics, and is © 2017-2019 Open Up Resources. Additional adaptations and updates to IM 6-8 Math are © 2019 Illustrative Mathematics. IM 9-12 Math is © 2019 Illustrative Mathematics. IM 6-8 Math and IM 9-12 are licensed under the Creative Commons Attribution 4.0 International license (CC BY 4.0). Additional modifications contained in Amplify Desmos Math are © 2020 Amplify Education, Inc. and its licensors. Amplify is not affiliated with the Illustrative Mathematics organization.

Desmos ${ }^{\circledR}$ is a registered trademark of Desmos, Inc.
English Learners Success Forum is a fiscally sponsored project of the New Venture Fund (NVF), a 501(c)(3) public charity.

Universal Design for Learning Guidelines and framework are developed by the Center for Applied Special Technology. © 2018 CAST.

The Effective Mathematics Teaching Practices are developed by NCTM in Principles to Actions: Ensuring mathematical success for all. © 2014 NCTM.

Notice and Wonder and I Notice/I Wonder are trademarks of NCTM and the Math Forum.

No part of this publication may be reproduced or distributed in its original form, or stored in a database or retrieval system, without the prior written consent of Amplify Education, Inc., except for the classroom use of the worksheets included for students in some lessons.

Cover illustration by Caroline Hadilaksono.
Copyright by Amplify Education, Inc. 55 Washington Street, Suite 800, Brooklyn, NY 11201 www.amplify.com

Table of Contents

Assessment Overview

Unit Assessments | Including Pre-Unit Checks, Sub-Unit Quizzes, and End-of-Unit Assessments.
Unit 1 Rigid Transformations and Congruence \quad P3

Unit 3 Proportional and Linear Relationships ..
Unit 4 Linear Equations and Linear Systems P P118
Unit 5 Functions and Volume P148

Unit 7 Exponents and Scientific Notation P208

Exit Tickets | Including Exit Tickets from all lessons in every unit.

Amplify Desmos Math New York program resources

Student bundle includes:

NY Student Edition, multivolume, consumable

NY Digital Experience (English and Spanish), featuring:

- Interactive Student Activity Screens
- Enriched feedback
- Collaboration tools

Teacher bundle includes:

NY Teacher Edition, multivolume, spiral-bound

NY Digital Experience (English and Spanish), featuring:

- Facilitation and progress monitoring tools
- Presentation Screens
- Instructional supports
- Assessment

Extra Practice and Assessment Blackline Masters

Program architecture

Course

Unit

Note: The number of sub-units and lessons vary from unit to unit; this depiction shows the general structure of a unit.

Lesson

Warm-up

Activity 1
(1) 15 min

으ํํํํํำํํํำกำ

Activity 2

© 15 min
으ํํํํํำํํํำํํํ

Synthesis
(C) 5 min

Exit Ticket

(1) 5 min
\circ

Practice
(ㄱ) 5 min
ㅇํํํํํํำํํํำกำ
-
Note: The number of activities and timing vary from lesson to lesson; this depiction shows the general structure of a lesson.

Key:	
\bigcirc ㅇ. ${ }^{\circ}$ dependent	ㅇำ Small Groups
ํํํ Pairs	คํำำก Whole Class

Our robust assessments drive learning and inform instruction.

A variety of performance data in Amplify Desmos Math New York provides evidence of student learning, while helping students bolster their skills and understanding.

Throughout lessons, units, and the entire program, you'll find summative and formative assessments meant to provide insights into students' conceptual understandings. Student learning is never a surprise at the end of a unit-with Amplify Desmos Math New York, understanding is made continually visible.

Course-level assessments

Our beginning-of-year digital diagnostic tool measures what students know and how they think, providing teachers with targeted, actionable insights and instructional guidance. These assessments identify areas to target for students who need additional support and opportunities to extend for students who would benefit from more challenge.

- mCLASS beginning-of-year diagnostic
screener: This tool measures the critical skills and concepts aligned to standards that are predictive of future math success. Innovative problem types reveal the processes required for math reasoning and the problem-solving strategies that go beyond the conceptual and procedural knowledge of grade-level math. They also help teachers identify students at risk for math difficulty (including difficulties related to dyscalculia) and provide detailed information about what students know and in which areas they need support. This diagnostic is in the process of being fully validated through thirdparty research studies conducted by WestEd.
- Ongoing interim assessments: These pregenerated and assignment-ready practice sets review critical moments in instruction. Teachers can create their own assessments and practice sets through the online item bank.

c.

D.

2. This graph shows the cost in dollars, C, of w pounds of blueberries.

The relationship is proportional.
Select all of the true statements.
$\square 1$ pound of blueberries costs $\$ 2.75$.
$\square 2.75$ pounds of blueberries cost $\$ 1$.
$\square 5$ pounds of blueberries cost $\$ 15.50$.12 pounds of blueberries cost $\$ 33$.
\square The point $(3,9)$ is on the graphed line.

Digital and print assessment examples

Problem 2

(

Unit-level assessments

Our embedded unit assessments offer key insights into students' conceptual understanding of math. These assessments provide regular, actionable information about how students are thinking about and processing math, with both auto-scoring and in-depth rubrics that help teachers anticipate and respond to students' learning needs.

- Pre-unit check: Each unit begins with a check to determine student proficiency with prerequisite skills needed for success in the upcoming unit. This check is agnostic to the standards covered in the following unit and serves not as a deficit-based acknowledgement of what students do not know, but rather as an affirmation of the knowledge and skills with which they come in.
- Sub-unit quizzes: Student understanding never comes as an end-of-unit surprise with regular sub-unit quizzes. In these checks, students are assessed on a subset of conceptual understandings from the unit, with rubrics that help illuminate where students are and insight into what supports they need to get where they need to go.
- End-of-Unit Assessment: Students engage with rigorous grade-level mathematics through a variety of formats and tasks in the End-of-Unit Assessment. A combination of autoscored and rubric-scored items provide deep conceptual insight.

Lesson-level assessments

Amplify Desmos Math New York lessons are centered around sense-making and in-the-moment feedback. Daily moments of assessment provide valuable evidence of learning for both the teacher and student.

- Exit Tickets: Each lesson has an Exit Ticket focused on one of the key concepts in the lesson. Exit Tickets are carefully designed to minimize the time they take to complete while maximizing the insight the teacher receives on a daily basis in order to attend to student needs during the following class.
- Enriched feedback: We harness the power of digital math and graphing tools to show students the meaning of their thinking in context.

Enriched feedback motivates students and engages them in the learning process.
Student Screen Preview

Rather than telling a student if their paint ratio is right or wrong, we mix the colors for them.

Rather than telling a student if their slope is correct, we use it to land a plane.

Reporting tools monitor progress and provide insight into learning.

Amplify Desmos Math New York provides teachers and administrators with unified reporting and insights so that educators have visibility into what students know about grade-level math-and can plan instruction accordingly for the whole class, small groups, and individual students.

Our reports show proficiency and growth by domain, cluster, standard, and priority concept using performance data from unit assessments, then highlight areas of potential student need to allow teachers to modify their instruction and target differentiated support.

The program also includes reports on student usage, performance on benchmark assessments, school and district data, and information for caregivers. Our team will partner with you to meet the specific data and reporting needs of New York City Public Schools.

At-a-glance views of unitlevel assessment results inform instructional planning, and you can also drill down to item-level analysis.

Our standards report allows you to monitor proficiency at the class and individual student levels.

GRADE 8

Amplify Desmos Math NEW YORK

Assessment

Sampler

This section includes all unit-level assessments from Amplify Desmos Math New York for Units 1-8.

- Pre-unit Readiness Checks are designed to help teachers see which concepts and skills from previous units and grades need to be bolstered in order for students to be successful.
- Sub-unit Quizzes are formal measures of what students know and can do for the lessons that immediately precede the quiz.
- End-of-Unit Assessments are formal measures of what students know and can do for all the lessons in the unit, with an emphasis on the critical concepts and skills of the unit.

Unit 8.1, Readiness Check

Problem 1

Select all of the triangles that can be rotated to match up with Triangle 1.A
$\square \mathrm{C}$
\square D

Problem 2

2.1 Select all of the lines that appear parallel to line f.

2.2 Select all of the lines that appear perpendicular to line f.

Name \qquad

Unit 8.1, Readiness Check

Problem 3

3.1 Plot the points on the coordinate plane.

Point	Coordinates
A	$(2,1)$
B	$(5,1)$
C	$(7,2)$
D	$(4,2)$

3.2 What is the length of $C D$?

Name \qquad

3.3 What kind of quadrilateral is $A B C D$?

Problem 4

Lines $A B$ and $C D$ intersect at E.
4.1 What is the measure of angle $A E D$?

Explain your thinking.
4.2 What is the measure of angle $D E B$?

Explain your thinking.

Problem 5

Is it possible to draw a triangle with these measurements? Explain your thinking.
5.1 Side lengths $2 \mathrm{~cm}, 3 \mathrm{~cm}$, and 4 cm
5.2 Side lengths $2 \mathrm{~cm}, 3 \mathrm{~cm}$, and 6 cm
5.3 Angles $90^{\circ}, 45^{\circ}$, and 45°
5.4 Angles $90^{\circ}, 60^{\circ}$, and 60°

Unit 8.1, Readiness Check

Problem 6

6.1 Find the area of parallelogram A.
6.2 Find the area of parallelogram B.

Problem 7

Here are two triangles.
Describe a way to move triangle $A B C$ so that it matches up perfectly with triangle $F E D$.

1. B and D
$2.1 g$
$2.2 h$
3.1

3.23 units
3.3 Parallelogram
$4.1 \quad 130^{\circ}$
Angles $A E C$ and $A E D$ are supplementary, so their measures add up to 180°.
4.250°
Angles $A E C$ and $D E B$ are vertical angles, so they have the same measure.
5.1 Yes. Responses vary.
5.2 No. Responses vary.
5.3 Yes. Responses vary.
5.4 No. Responses vary.
6.1 6 square units
6.2 6 square units
2. Responses vary. Triangle $A B C$ can be moved down 2 units and then flipped over a vertical line that lies halfway between the two triangles.

Unit 8.1, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problems 1 and 7 before Lesson 1
- Problem 3 before Lesson 5
- Problem 6 before Lesson 8
- Problems 2, 4, and 5 before Lesson 10

Problem 1

(Standard: 8.G.A.1)
This question is intended to surface students' understanding of what rotations are. If students can answer this question correctly, then they already have a good intuition for rigid motions in the plane. This content first appears in Lesson 1: Transformers.

Suggested Next Steps:

- If students do well, it may be possible to move more quickly through Lessons 1 and 2.
- If students struggle, consider reviewing the definition of rotation after Lesson 2 and revisiting this problem. Encourage students to use the sketch tool if it helps them with their thinking.

Problem 2

(Standards: 4.G.A.1, MP7)

This question is intended to surface students' understanding of parallel and perpendicular lines. Students make use of structure as they classify lines as either parallel or perpendicular. This content first appears in Lesson 10: Transforming Angles.

Suggested Next Steps: If students struggle . . .

- Plan to use the Warm-Up in Lesson 4 as a chance to review the term parallel using the isometric grid.
- Consider using Screen 10 of Lesson 5 as an opportunity to review the term perpendicular.

Problem 3

(Standards: 5.G.A.1, 6.G.A.3, MP7)
This question is intended to surface whether students can successfully plot points on a coordinate grid and make use of the grid structure to find distances between points sharing the same x-coordinate or the same y-coordinate. The last part of the problem assesses whether students can identify a parallelogram. This content first appears in Lesson 5: Getting Coordinated.

Suggested Next Steps: If students struggle . . .

- Plan to revisit this problem as part of the Warm-Up for Lesson 5 to review the coordinate plane and to consider how to describe transformations on the coordinate plane.

Unit 8.1, Readiness Check Summary

Problem 4

(Standards: 7.G.B.5, MP7)
This question is intended to surface what students know about calculating angle measures. This question also surfaces what students know about the terms vertical and supplementary. Students must make use of structure to determine a missing angle measure. This content first appears in Lesson 10: Transforming Angles.

Suggested Next Steps: If students struggle . . .

- Plan to use Screen 3 of Lesson 10 to review supplementary and vertical angles, making those terms explicit during discussion.

Problem 5

(Standards: 7.G.A.2, MP3)
This question is intended to surface what students already know about triangle properties. In Math 7, students investigated whether it was possible to draw a triangle given a set of three conditions, but did not learn that the sum of the interior angles of a triangle is 180°. Students must construct a viable argument as to whether or not a triangle can be created from the given properties. This content first appears in Lesson 11: Tearing It Up.

Suggested Next Steps:

- If students do well, it may be possible to move more quickly through Lesson 11.
- If students struggle, plan to use the Warm-Up of Lesson 11 to ensure that students understand the meaning of triangle side lengths and angle measures.

Problem 6

(Standards: 6.G.A.1, MP7)
This question is intended to surface what students already know about finding the area of parallelograms using a grid. Students make use of the grid structure to reason quantitatively about the area of parallelograms. This content first appears in Lesson 8: No Bending, No Stretching.

Suggested Next Steps: If students struggle . . .

- Plan to use the Lesson 8 paper supplement to explore and review the relationship between strategies for finding the area of a triangle and strategies for finding the area of polygons on a grid; this skill will be more important in Unit 8.

Unit 8.1, Readiness Check Summary

Problem 7

(Standards: 8.G.A.2, MP3, MP7)

This question is intended to surface students' ability to describe how to move one shape onto another. Students must use the structure of the grid to construct a viable sequence of transformations to take one shape onto the other. This content first appears in Lesson 3:
Transformation Golf.

Suggested Next Steps:

- If students do well, it may be possible to move more quickly through Lessons 1 and 2.
- If students struggle, consider reviewing the transformations rotation, translation, and reflection after Lesson 3 and revisiting this problem. Encourage students to use the sketch tool if it helps them with their thinking.
\qquad

1. In which pair of figures can figure A be taken to figure B by a rotation?

Pair 1
Pair 2
Pair 3
Pair 4

2. \quad Select all the sequences of transformations that could take figure P to figure Q.

A. A single reflection
B. A single rotation
C. A single translation
D. A translation and then a reflection
E. A reflection and then a different reflection

Unit 8.1, Quiz 1: Lessons 1-6
3. Here are three pairs of figures.
3.1 Which transformation takes figure E to figure F ?

A. Translation
B. Rotation
C. Reflection
3.2 Which transformation takes figure G to figure H ?

A. Translation
B. Rotation
C. Reflection
3.3 Which transformation takes figure J to figure K ?

A. Translation
B. Rotation
C. Reflection
4. Point A is located at coordinates $(-4,3)$. What are the coordinates of each point described in the table?

Point	Description	Coordinates
B	The image of A after a rotation of 180° using $(0,0)$ as the center.	
C	The image of A after a translation 2 units to the right and then a reflection using the x-axis.	
D	The image of A after a reflection using the y -axis. Then a translation 2 units to the right.	

\qquad
5. Draw the image of this figure under a 90° clockwise rotation using center P.

6. Describe a sequence of transformations that takes $A B C D$ to $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

1. Pair 1
2. B and E

3.1 B

3.2 C

3.3 A
4.

Point	Description	Coordinates
B	The image of A after a rotation of 180° using $(0,0)$ as the center.	$(4,-3)$
C	The image of A after a translation 2 units to the right and then a reflection using the x-axis.	$(-2,-3)$
D	The image of A after a reflection using the y-axis. Then a translation 2 units to the right.	$(6,3)$

5.

6. Responses vary. Reflect $A B C D$ over the x-axis. Then translate right 7 units.

directly to the work students did in Lesson 4: Moving Day. analyze the given transformations and decide if different approaches can lead to the same outcome. This problem corresponds most In this problem, students identify which sequences of transformations take one figure to another in a coordinate plane. Students must
(LdW 'L•*‘פ•8 :spıepuets)
Problem 2

- Consider revisiting Lesson 2, Activity 2. figures align entirely.
- Consider asking students to rotate each figure A so that only one corresponding point aligns to figure B, then assess whether the

Lesson 2: Spinning, Flipping, Sliding.
In this problem, students recognize the properties of rotations. This problem corresponds most directly to the work students did in
(Standard: 8.G.A.1)
Problem 1

Standard	8.G.A.
Problems	$1,2,3$

Ћлышums spiopudis łuəұuoכ
Unit 8.1, Quiz 1: Summary and Rubric

having students transform

students did in Lesson 5: Getting Coordinated.
reason about the effect of transformations on a point in the coordinate grid. This problem corresponds most directly to the work
In this problem, students describe the effect of a transformation on a coordinate pair. Students must use the structure of the grid to

Problem 4

most directly to the work students did in Lesson 3: Transformation Golf.
In this problem, students recognize which transformations take one figure to another in a coordinate plane. This problem corresponds
(Standard: 8.G.A.1)
Problem 3
Unit 8.1, Quiz 1: Summary and Rubric (Standard. 8.G.A.1) -
 different sequence of transformations for their response. - Consider working through one sequence of transformations with students to get them started, then asking them to create a Suggested Next Steps: If students struggle . ‘słoવ әЧł Бu!̣כəuuoう sequences that transform the figure correctly. This problem corresponds most directly to the work students did in Lesson 6: use the structure of the coordinate grid to define their own sequence of transformations, and could possibly determine many such In this problem, students describe a sequence of transformations that take one figure to another in a coordinate plane. Students must
(Standards: 8.G.A.1, MP1, MP7)

Problem 6

- Consider revisiting Lesson 4, Activity 1. transformed shape.
Suggested Next Steps: If students struggle . . . in Lesson 4: Moving Day.
In this problem, students draw the image of a figure after a rotation. This problem corresponds most directly to the work students did
 Problem 5
Unit 8.1, Quiz 1: Summary and Rubric

	＇suo！tewiotsuełł 6u！̣puełsıәpun 孔oddns әлош рәәи Keш ұиәрпłS 			UO！̣еjSURג1	L＇＊＇⿹｀8	ع＇غ
	＇ио！̣едал pue ио！ңэәןәл pəsnıuоэ әлец Кеш ұиәрпłS uоппедоу			ио！†ナə｜ృヲપ •	L＇＊＇⿹｀8	て＇E
	pəsnıuоэ әлец Кеш ұиәрnıS ио！ヤગə｜ృəપ્વ			uolperoy－	L＇＊＇⿹｀8	L＇E
łou p！	 әлош ло омł słગəןəs ұuәpnłS －səગ！̣บ৩ 	ue səpnןu！osןe ¡nq Səગ！઼પ૭ ¡ગӘય૦૭ əપł JO OMł 10 əUО słつəəəડ łuәpnłS	 †0 પłOq słગəəəs łuәpnłS Kue ұכəəə łou səop 	uо！ иəપł pue uo！！əә｜ృəみ \forall uoḷełoג əןઠu！̣s \forall Kue łəəə૦ łou səop Ł0 ॥е słગəəəs łuәpnłS	$\begin{aligned} & \text { LdW } \\ & \qquad \cdot \forall \cdot פ ‘ 8 \end{aligned}$	乙
7duәдие łOU P！	－uolieło 。08I әцұ иәәмұәq łu！̣d uowшоэ әцł әлә！əәq Kеш ұиәрпłя pəsnıuоэ әлеч Кеш ұиәрпłS			 LI！ed •	L＇＊＇⿹＇8	\downarrow
0	－	乙	ε	t		
	6u！uu！6eg	6u！doןəләன	6u！uoeorddV	6u！pəəэхヨ／6u！${ }^{\text {a }}$	prepueis	uejq0．d

＇7dmente ł0u p！	－6upuełsıəpun †๐ әЈиәр！＾ә уеәМ	 әлец кеш ұиәрпія （ ε＇\quad－） ＇әұе｜sueגł łou p！p ұnq＇К｜łכәдио рәңэәןəд әлец Кеш ұиәрпłS （ ε－＇七－） ＇sıодә ұиеэ！！！uб！s бu！̣оןәләр е sмочs уиом	－s！xe－К рәғе｜sueגұ әлец Кеш ұиәрпıя （ ε＇z ） －К｜†әдиоэи！ ＇sıoддә ıоu！̣ цІ！м＇Kıәдsem pue 6upuełsıәрй ןentdəouoo sMous yı0M	$\left(\varepsilon^{\prime}{ }^{\prime} z^{-}\right) \bullet$ †эәлоэ pue әәәןdшоэ s！əsuodsəy		でゅ
ł0u p！ 0	－6upuełsıәрии †О әэиәр！＾ə чеәМ	е яо sәұеи！̣рооэ әчъ би！！！им дoddns pəәu Кеш ұиәрnłS （ ε ‘ \downarrow－） ＇sıодә ұиеэ！！！uб！s पұ！м ‘＇దu！puełsıəpun бuịdoןəләр е sмочs удом	－К｜ұכәдиоэи！ ＇sıoдə ıоu！u цІ！м＇Kıәısem pue 6upuełsıәрй ןentdəouoo sмочs yıом		$\begin{gathered} L d W \\ ‘ \cdot \forall \cdot V^{\prime} 8 \end{gathered}$	レ＇t
0	1	乙	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	бu！pəәэхヨ／Бu！${ }^{\text {a }}$	prepuets	məqodd

7dmeŋte łOu p！	－6u！puełsıәрии †о әәиәр！＾ə уеәМ	－әдејзиед иəપł łગ્ઇృə્વ • ＇sıодә ұиеэ！！！uб！s ןеnłdәэиоэ әұәןdmoэи！ ұnq Бu！̣doןəләр е SMOYS y10M	pəsnıuоэ әлец Кеш ұә әцъ of uo！̣еןsuext pue uo！̣әәןə е әәиәдәృәд очм słиәрпłя ＇sıодә лои！̣и ч！！м ＇Kıәдsem pue бu！puełsıәрй ןentdəәuoo sмочs yıом	＇Stụun L ұЧб！！әғе｜suex иә૫ノ＇ธ！хе－x әЧł әәuеıs！ pue uо！！əәд！！प！！м uо！џе｜sueдł е pue s！xe－ е รəગиəдәృəл əsuodsəу		9
7duәəие ł0u p！	－6u！̣puełsıəрии †о әЈиәр！＾ə уеәм	＇sıодә ұиеэ！！！ub！s ұnq రu！do｜əләр e SMOLS yı0M	－sıoдə әшоs पұ！м ‘रıəsem pue ןедәиб sмочs улом	ๆәәиоо pue әґə｜dmo๐ s！əsuodsəy	$\forall V^{\prime} \forall^{\prime} ⿹ 勹 冫$	G
7dme»r 10u P！	－6u！̣puełsıəри ґо әэиәр！ィә уеәМ	¡әәઇәә ұои р！р łnq＇К｜əכәдоо рәғе｜sueג әлеч Кеш ұиәриł （ $\varepsilon^{\prime} z^{-}$） －әұеןsueдł łои р！р әлец Кеш ұиәрпł， （ $\varepsilon^{\prime} \downarrow$ ） －sıодә ұиет！！！uб！s łnq 6u！̣doןəләр е SMOUS yорM	＇S！xe－x әЧł рәғеןऽиед әлец кеш ұиәрпія （ ε－＇$z-$ ） рәғеןsueł әлец Кеш ұиәрпıя （ ε＇\quad ） －К｜ңәдиоэи！әұеи！̣риооэ әцұ sәү！им ұnq ‘łu！̣od ＇sıодәә лои！ш чд！м ןentdәouoo smoys yдом			$\varepsilon ゙ \downarrow$
0	\downarrow	乙	ε	t		
	6u！uu！ $\mathrm{cog}^{\text {a }}$	6u！doןəләа	6u！	бu！pəəวхヨ／6u！¢əәW	prepuets	melqodd

\qquad

You will need a geometry toolkit for this assessment.

1. Which statement describes two figures that are always congruent?
A. Two rectangles that have the same area.
B. Two line segments that each measure 8 units.
C. Two quadrilaterals in which all side lengths measure 4 units.
D. Two triangles that have the same perimeter.
2. Circle all of the pairs of congruent figures.

Pair 1
Pair 2

Pair 3

Pair 4

3. The pre-image on the left is reflected across line k to form the image on the right. Use the information in the original figure to label the corresponding parts in the image. (Length measures are in grid units.)

\qquad
4. Describe a sequence of transformations to show that polygon L is congruent to polygon M.

5. Explain why figure B cannot be the image of figure A after a rotation.

6. Are these figures congruent? Explain your thinking.

1. B. Two line segments that each measure 8 units
2. Pair 1, Pair 3, Pair 4
3.

4. Responses vary. If polygon M is reflected across the x-axis and then reflected across the y -axis, it matches up perfectly with polygon L.
5. Responses vary. The shortest side of figure B is shorter than the shortest side of figure A. Since rotations do not change lengths, figure B is not a rotation of figure A.
6. No.

Responses vary. While the individual parts are congruent, the robots as wholes are not. In the robot on the right, the eyes are 2 units apart. For the robot on the left, they are less than 2 units apart. The ears on the right robot are 1 unit lower than those on the left robot. The mouth on the left is also higher than the mouth on the right, and the nose on the left is lower than the nose on the right. Any one of these differences is enough to determine that the robots are not congruent.

transformations to attempt to align the figures if the measurements are the same．
әsn оұ шәчł Би！
 the work students did in Lesson 7：Are They the Same？ knowledge of rigid transformations to convince themselves that two figures are congruent．This problem corresponds most directly to In this problem，students identify congruent figures using lengths and angles．Students may use the structure of the grid and their
（LdW＇Z＇V’૭’8 ：spıepuełS）
乙 Шวโq0．】 －Consider revisiting Lesson 9，Activity 2 on the process of elimination．
－Consider having students to construct on fon－congur figur with Suggested Next Steps：If students struggle
Lesson 9：Are They Congruent？
In this problem，students identify the properties of congruent figures．This problem corresponds most directly to the work students did
（Standard：8．G．A．1．A）
โ ШวโqO．」

Unit 8．1，Quiz 2：Summary and Rubric

- Consider revisiting Lesson 9, Activity 2. sequence of transformation for their response.

 In this problem, students justify why two figures are congruent using the language of transformations. Students must use the structure
(LdW 'عdW'て'V'૭’8 :sprepuets)

- Consider revisiting Lesson 8, Activity 2. to the others.

No Stretching. Bending, to properly label quantities on the reflected image. This problem corresponds most directly to the work students did in Lesson 8: No In this problem, students determine the effect of a reflection on angle measures. Students use the structure of the grid and the figure

६ Шวโq0лd
Unit 8.1, Quiz 2: Summary and Rubric
－Consider revisiting Lesson 9，Activity 2.

> understanding of congruence to construct a viable argument to support their answer．This problem corresponds most directly to the In this problem，students justify whether or not two figures are congruent．Students must use the structure of the grid and their
（LdW ‘とdW＇Z＇V＇૭’8 ：spsepuełS）
Problem 6
－Consider revisiting Lesson 3，Activity 1. them to write specific differences they notice．
－Consider showing students how to use the tracing paper tool to compare the two figures directly on top of each other，then asking Suggested Next Steps：If students struggle ．
This problem corresponds most directly to the work students did in Lesson 3：Transformation Golf． Students must construct a viable argument using properties of the figures and the transformation to support their answer．
In this problem，students apply the properties of rotations to explain why one figure cannot be the image of another after a rotation．
（عdW＇レ＇シ｀అ’8 ：spıepuełS）
Problem 5
Unit 8．1，Quiz 2：Summary and Rubric

＇7dшәие ł0u p！ 0	＇sұuәшәлnseәш Кןフәлиоэ ұuәpnis －6u！puełsıәрй †о әЈиәр！лә чеәМ	‘słuәшәлnseəш әл！！әЧł ＇sıодәә ұиео！！！uб！！ ןenłdәวиоэ әұә｜dшoэи！ łnq 6u！̣doəəләр e SMOUS yIOM	＇słuәшәиnseәш K｜łכәлио ұuәpnts ＇s．0лдә ı0u！ pue 反u！puełsəəpun ןenłdəouoo sMous yı0M	＇ұэәлоэ puе 		ε
＇7duәние łou p！0	Кןио słэəәәs ұиәрпіs	әәэ๐чэ ŋəәルоวu！ue səpn｜ou！ osje łnq səગ！o૫ว ıо әио słગ્əəs ұนәpnts	＇səэ！！чч Łou səop pue səə！૦чว 10 әио słગəəəs ұuәpnts			Z
＇7dme»re łOU P！O	－ədeys әшеs ә૫ł әлец łsnu suo6人〈оd әЧł „о чэеә ұецұ ұиеәш s！чł łчбпочł әлец Кеш ұиәрпі －stụn ъ әגnseәu sцłбuә әр！৷ ॥е цગ！чм u！suob			stupun 8 anseәш цэセә ұセЧł słuәшбәs əu！！OMュ	＊＇レ・＊＊⿹＊8	\downarrow
0	\downarrow	Z	ε	t		
	6u！uu！ $\mathrm{Seg}^{\text {a }}$	6u！doןəләа	6u！	6u！pəəэхヨ／6u！̣әәW	paepuers	шə¢о入d

＇7duәə е ł0u p！ 0	－uo！̣еие．dxә ue łnout！M 10 uo！̣еиеןdxә ңэәдоэи！ पІ！М дәмsue ґэәдоэи｜		＇uo！̣eue｜dxə Ч！！М әәмsuе џәәноэи ＇uo！̣еueןdxә u！SME｜t dou！u Ч！！М дәмsue łәәцоว	－uede stuun Z səןочм se səınб！！әчł＇łuәnィ6uoə ＇ON • －uо！̣еиеןdxә әұәןdшоэ pue ןeગ！రoן e səpnjou！pue uo！！sənb 	LdW ‘ $\varepsilon d W$ ‘でジ૭’8	9
＇łduәə ł0u p！	－6upuełsıәpun \nvdash әэиәр！лә чеәМ		suolizełod ssnos！p łou səop łnq әшеs ә૫ł łои әде sцłбuә әЧł łецł sәłеłs łuәpnis ＇sıoдə әшos पұ！̣＇Kıәısem pue ןедәиәб sмочs удом	g иобККоd ‘sцұбиә әбиецэ ұои әр！s łsәдоцs әчł ueчł дәцоцs s！ 	$\begin{gathered} \varepsilon d W \\ \vdash \cdot \forall ` \circlearrowleft>8 \end{gathered}$	G
7dmeңе łOU P！	－әdeys әшes ә૫ъ әлец Кәцł әsneəəq ұиәnגбиоэ әд Кәчц suo！̣emxодsuex ио！ңиәш ұои səop łuәpnłS	－uo6人ןod әцъ әұе｜sueג」 ＇suo！łешлодsueдł ¡эәлоэи！ suo！̣uәш ұиәрпł！	әЧł 10ł l！әłeło о子 әлец рІпом no人 －So！！！oəds łou łnq ‘suo！̣ewiołsuełł suo！\downarrow иәu ұuәpnłS	 рәłગ્ઇłә иә૫ł pue s！xe－x әપł әэnpoudәл of K K！！！！！ ‘suo！̣e｜suełł suo！̣uәu ұuәpnłs	LdW ‘ $\varepsilon d W$ ‘でジ૭’8	\dagger
0	\downarrow	乙	ε	t		
		6u！doıəләа	6u！uэeorddv	6u！pəəэxヨ／6u！łəәW	paepueis	məq0．d

Unit 8.1, End-Unit Assessment: Form A
You will need a geometry toolkit for this assessment.

1. The point $(1,-3)$ is shown on the graph.

What are the coordinates of the point after a reflection using the x-axis?
A. $(-1,-3)$
B. $(1,3)$
C. $(3,-1)$
D. $(-3,1)$
\qquad

2. Which of these sequences of transformations does not return a shape to its original position?
A. Translate 3 units up, then 3 units down.
B. Reflect over line p, then reflect over line p again.
C. Translate 1 unit to the right, then 4 units to the left, then 3 units to the right.
D. Rotate 120° counterclockwise around center C. Then rotate 120° counterclockwise around C again.
3. Juan and Zahra each made a design using 5 circles.

Select all of the true statements.
\square The smallest circle in Juan's design is congruent to the smallest circle in Zahra's design.
\square Juan's design is congruent to Zahra's design.
\square If you translate Juan's design 14 units to the right, you get Zahra's design.
\square Each circle in Juan's design has a
 congruent circle in Zahra's design.

Unit 8.1, End-Unit Assessment: Form A Name \qquad
4. Use translations, rotations, and/or reflections to explain how you know that polygon A is congruent to polygon B.

5.1 Is shape A congruent to shape B ?

Explain your reasoning using translations, rotations, and/or reflections.

\qquad
5.2 Is shape A congruent to shape B ?

Explain your reasoning using translations, rotations, and/or reflections.

6. Lines $A B$ and $C D$ are parallel. Determine the measures of the three angles in the diagram.

Unit 8.1, End-Unit Assessment: Form A

Name \qquad
To create this diagram:

- Triangle $A B C$ was translated so that A goes to C.
- Then triangle $A B C$ was translated so that A goes to B.

7.1 Identify at least two pairs of congruent angles in the figure.

Explain how you know they are congruent.
7.2 Name a triangle that is congruent to triangle $C B E$.
7.3 What is the measure of angle $C B E$?

Explain or show your thinking.
\qquad

Reflection: Select a question to answer.
What is something you are proud of from this unit?

Write what you know about a topic from this unit that you weren't asked about today.Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

Answer Key

1. B
2. D
3. $\quad \checkmark$ The smallest circle in Juan's design is congruent to the smallest circle in Zahra's design.
\checkmark Each circle in Juan's design has a congruent circle in Zahra's design.
4. Responses vary. If polygon A is rotated 90° counterclockwise around its far right point and then translated 4 units to the right, it matches up perfectly with polygon B.
5.1 Yes. Explanations vary. I can reflect shape A, rotate it, and then translate it onto shape B.
5.2 No. Explanations vary. The shapes look congruent, but when shape A is moved on top of shape B with a 90° clockwise rotation and a translation, they do not match up.
5.

7.1 Responses vary. Angle $A B C$ is congruent to angle $C E F$ and angle $B D E$ because triangle $A B C$ is congruent to triangle $C E F$ and triangle $B D E$, and corresponding angles in congruent figures have the same measure.
7.2 Responses vary.

- Triangle EFC
- Triangle $B C A$
- Triangle $D E B$
$7.3 \quad 72^{\circ}$. Explanations vary. The three angles with vertices at B must total 180° since they make a line. I know that angle $E B D$ is the same measure as angle $A, 45^{\circ}$, and angle $A B C$ is the same measure as angle $D, 63^{\circ}$. Angle CBE must be $180^{\circ}-45^{\circ}-63^{\circ}=72^{\circ}$.

most directly to the work students did in Lesson 3：Transformation Golf．
In this problem，students demonstrate their understanding of transformations that carry a figure onto itself．This problem corresponds
（レ・ジפ•8：：рериełs）

Problem 2

Suggested Next Steps：If students struggle
students did in Lesson 5：Getting Coordinated． structure of the grid to transform the point and accurately record its coordinates．This problem corresponds most directly to the work In this problem，students recognize the effect of a reflection on a single point in the coordinate plane．Students make use of the
（Standards：8．G．A．3，MP7） โ Шวโqoud

ع＇L＇L＇L＇9	1	G＇t	でし	ε	乙	sməpodd
¢•＊゚૭•8		でギロ・8			ト・Ө゙ロ・8	paepuels

- Consider revisiting Lesson 9, Activity 2. helps students with their thinking.

 - Consider drawing students' attention to the space in between parts of each design rather than comparing each
component directly.
- Consider revisiting Lesson 9, Activity 2 .
Problem 4
(Standards: 8.G.A.2, MP3, MP7)
In this problem, students use rigid transformations to show multistep congruence on a grid. Students use the structur
construct a viable sequence of transformations that takes one figure onto the other. This problem corresponds mos
work students did in Lesson 9: Are They Congruent? Suggested Next Steps: If students struggle . . .
directly to the work students did in Lesson 9: Are They Congruent? another. Students must critique given statements to determine whether or not they are correct. This problem corresponds most not enough that the individual parts of complex shapes are congruent; they also need to be in the same position relative to one In this problem, students recognize that distances between all pairs of corresponding points of congruent figures are the same. It is

－Consider revisiting Lesson 12，Activity 1 ． corresponds most directly to the work students did in Lesson 12：Puzzling It Out．
Suggested Next Steps：If students struggle ．．． Students make use of the structure of vertical and supplementary angles to reason about angle measures．This problem In this problem，students use given angle measurements and relationships with parallel lines to find the angles in a triangle． （LdW＇s＇甘‘⿹｀8 ：spıepuets） Problem 6
 corresponds most directly to the work students did in Lesson 9：Are They Congruent？ In this problem，students determine if two shapes are congruent without the use of a grid．Students must persevere to find a sequence
of transformations that shows the shapes are congruent，or determine a reason why the shapes cannot be congruent．This problem （IdW＇Z＇甘‘⿹’8 ：spıepuełs） Problem 5

most directly to the work students did in Lessons 10-12. Students construct viable arguments to justify angle congruence and identify an unknown angle measure. This problem corresponds
In this problem, students recognize angle relationships in congruent triangles given a diagram composed of transformed triangles.
 Problem 7

＇7duәңце Ł0u p！ 0	＇səә！๐ч๐ －รәэ！оч๐ 	－әэ！ฺ๐э ґэәлоэи！ ue səpn｜ગu osje łnq ‘səo！ouo sə！！！！uәр！łuəpnłS	＇sәә！๐чэ ґәәноэи！ səop pue ‘səэ！очว łЈәцоО әЧł ！әио sə！！！！uәр！ұuәpnłS	＇uถ！！səp s，ехчеZ u！ sey ub！！eəp s，uenf и！əઇગ！ㅣ પગ૨ヨ s！ub̄！səp s，uen u！ 		ε
＇7dmeдие ł0u P！ 0	st！un t fo ןедоґ е рәлош әdeys әчł 			＇u！̣eб́e \boldsymbol{y} punoxe әธ！муフо｜эдәұипоэ。0ZI әұеұод иәப」 әธ！муフо｜ગдəииоо っOZI әłедоч •	ト＇＊＇⿹｀8	Z
＇7dməие łOu P！ 0	‘suo！̣כəןəય łnoqe sбu！puełsıəpuns！̣u ग！seq әлец Кеш ұиәрпłя （ $\varepsilon^{\prime} \mathrm{I}-$ ） $10(\mathrm{I}-\mathrm{c} \varepsilon)$ ‘s！xe－x әЧł łO peәłsu！s！xe－К әЧł дәло рәұэәןәд әлец Кеш ұиәрпłя （ ε－＇\quad－）			（ ε^{\prime}＇）•	$\begin{gathered} \angle d W \\ { }^{2} \forall \cdot V^{\prime} 8 \end{gathered}$	1
0	\downarrow	乙	ε	t		
	6u！̣u！̣əəg	6u！doןəләа	6u！	ถu！pəəэxヨ／6u！ұəәW	paepuets	แәq0ıd

7dməще łou p！0	－uo！̣еие．dxә ґэәдоэи！ ŁnOपఫ！M 10 पł！M дәмsue łэәлоэи｜	－uo！̣ent！s ә૫ł „о 6u！̣puełsıəрй ן！！иед sәғеэ！иишшоэ ұечұ ио！̣еиеןdхә Чџ！М дәмsuе ұәәдоэи｜ －uo！̣еue，dxә ЧІІМ ләмsue џәәлиО	＇V әdeus ueył ＇uo！̣еuédxə әәәјduoo pue ןеэ！ цџ！М дәмsuе ұәәддоэи －uo！̣еие．dxә u！SME｜t doulu ЧІ！М ләмsue ןәәлоう	－dn цэæеш ъои ор Кәчъ＇ио！̣е｜ऽиедъ е рие g әdeus fo doł uo pəлош s！ \forall әdeys uәчм $\ddagger n q$＇\ddagger uәnıбuoo yool sədeus əu।＇on －uoḷeue．dxә е səpn｜ગu！pue uo！！sənb әЧł sıəмsue Ki｜nıssəวэns ұuәpnłS		Z＇G
łou P！ 0	＇ио！̣еиедdxә ఛэәиоэи！ ŁnOपł！！M 10 पł！M дәмsuе ұәәлоэи	 децұ ио！ңеиејдхә Чџ！М дәмsuе ұәәдоэи｜ －uo！̣еue．dxә ә્əઇ｜moכu！ ЧІІМ дәмsue џәәлиว	－uoḷeue｜dxә Ч！！М дәМsue ґэәдоэи －uo！̣еue．dxә u！SME｜f dou！u 	－g әdeys оұuo t！әґе｜sueגł иәЧł pue＇ł！әғеңо八 ‘ V ədeцs łગəןəə ueว । ‘sə入 ＇uo！̣еиеןdxә әғәןdmos pue 		L＇S
łou p！o	－әdeys әшes әપł әлец Кәцъ әsneวəq łuәnィбuos әде Кәцц ＇suo！̣ешлоృsueג Kue иo！̣иәш Łou səop ұuәpnłs	－рәəэәןәд sем ұ！иәцł рие ＇suo！̣emiotsuex џэәлоэи！ suo！̣uəu ұuәpnts	－әнеңол ＇so！̣！ łou ұnq ‘uoliełos ı／：pue uo！pe｜suext e suo！̣uәш ұиәрnłs	 ．06 V әғеłоч －әэnpordәл ol so！！！ 	$\begin{gathered} \text { LdW } \\ \text { ‘とdW } \end{gathered}$	t
0	\downarrow	Z	ε	七		
	6u！uu！ $\mathrm{Seg}^{\text {a }}$	6u！̣doןəләа	6u！${ }^{\text {ceeadd }} \boldsymbol{\sim}$	6u！pəəэхヨ／6u！̣əәw	рдериеıs	melqodd

7duә立 łou P！ 0	－6u！̣puełsıəpun $\downarrow 0$ әЈиәр！лә чеәМ	પ！！̣ ‘＇万u！̣puełsıəpun łnq Su！̣doəəләр e SMOUS yIOM	＇sıoдə pue 6u！puełs．apun ienidəouoo smoys yıом	 	EdW 	でし
7dme»！ 10u P！	－әэиәпィбиоэ ృо దu！puełsıəрй †о әэиәр！＾ә уеәМ	－sə｜6ue！！ ґиənィбиоэ ґо słəs ınof əде әдə૫। • ＇sıодә ұиет！！！uб！s Чд！М＇రu！̣puełsıəpun łnq бu！̣doןəләр e sMous yıom	ә｜бue of łuәnıбuoo s！J\＆V ə｜бu甘 s．souə pue 6u！puetsıapun редәәб sмочs чиом	＇әлnseәu әшеs u！sə｜бue 反u！puodsəлио pue＇gดg әןбuе！и pue 	$\begin{gathered} \varepsilon d W \\ \prime \cdot \forall \cdot \vartheta ‘ 8 \end{gathered}$	－＇L
7duәฆц łou p！0	†эәлиоэ әле sәן位 əપł łO əuON	＇łәәлоэ s！sə｜6ue әәцчł ә૫ł ґо łno әuо	†эәлоэ әде sәбие әәццł ә૫ł łо ұnо ОМュ	＇łวәлоэ әле səן6ue әәлй II甘		9
0	1	乙	ε	t		
	6u！̣uu！${ }^{\text {eg }}$	6u！̣doןəләа		бu！pəəэхヨ／6u！¢əәW	paepueis	melqodd

7duәине ł0u p！		•08I of dn ppe \ddagger snu sə｜ธue әчц：。乙L －uo！̣ent！s ә૫ł „о бu！̣puełsıəpun ן！！иед sәғет！иишшоэ ұечł ио！ңеиеןdхә Чџ！М дәмsǔ ұэәдоэи｜ －uo！̣eue，dxə цІІМ дәмsue ґэәлоэ	－uo！̣еuе．dxә ләмsuе ұэәлоэи －uoḷeue，dxә u！SME｜f dOu！u Чџ！М дәм	әq \ddagger snu se әunseəu әues ə૫ł S！ 。08L Iełol łsnu g łe səગ！̣əィ sдәмsue K｜｜nıssəәons ұuәpnłs	$\begin{gathered} \varepsilon d W \\ ‘ \cdot \forall {f3a56a4e6-235f-4fd4-81c5-f5c11d91400b} 8 \end{gathered}$	$\varepsilon \cdot L$

\forall שxos ：

Unit 8.2, Readiness Check
Name \qquad

Problem 1

Problem 2

Which of these points is closest to the y-axis?
A. $(-6,0)$
B. $(-2,12)$
C. $(4,2)$
D. $(5,1)$

Use the coordinate plane if it helps you with your thinking.

Which of these points is closest to the point $(7,1)$?
A. $(11,1)$
B. $(4,1)$
C. $(7,-1)$
D. $(7,4)$

Use the coordinate plane if it helps you with your thinking.
\qquad

Problem 3

Quantities x and y are in a proportional relationship.

Complete the table.

x	y
4	16
3	
	8

Problem 4

A car traveled at a constant speed. The graph shows how far the car traveled, in miles, during a given amount of time, in hours.

4.1 What does the point $(3.5,210)$ mean in terms of the car?
4.2 Is the point $(1,60)$ on this line? Explain your thinking.

Problem 5

Evaluate these expressions:
$5.14 \div \frac{1}{3}$
$5.2 \quad \frac{3}{8} \div \frac{7}{2}$
$5.3 \quad 3 \frac{1}{2} \div \frac{7}{4}$

Unit 8.2, Readiness Check
Problem 6

Problem 7

The two triangles displayed are scaled copies of one another.
6.1 What is the scale factor?
6.2 What is the value of a ?

Is figure B a scaled copy of figure A ? Explain your thinking.

1. B
2. C
3.

x	y
4	16
3	12
2	8

4.1 It means that after 3.5 hours, the car traveled a distance of 210 miles.

4.2 Yes. Responses vary.

The car is traveling at a constant speed, and 300 miles in 5 hours means the car travels 60 miles each hour. That means the point $(1,60)$ is on the graph.
$5.1 \quad 12$ (or equivalent)
$5.2 \quad \frac{3}{28}$ (or equivalent)
5.3 2 (or equivalent)
6.1 $\frac{5}{2}$ or $\frac{2}{5}$ (or equivalent)

$6.2 \quad 12$

6.3 No.

Responses vary. The horizontal segments in figure B are twice as long as the corresponding segments in figure A, and the vertical segments are three times as long.

Unit 8.2, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problems 3, 6, and 7 before Lesson 2
- Problems 1 and 2 before Lesson 3
- Problem 5 before Lesson 4
- Problem 4 before Lesson 9

Problem 1

(Standard: 6.NS.C.8)
This question is intended to surface what students already know about plotting coordinates and the y-axis. This content first appears in Lesson 3: Match My Dilation, where students describe dilations on a coordinate plane.

Suggested Next Steps: If students struggle . .

- Plan to use this problem and Unit 1, Lesson 5 to review distance on a coordinate grid. Students will have more opportunities to find distances on a coordinate grid in Lesson 4.

Problem 2

(Standard: 6.NS.C.8)
This question is intended to surface what students already know about distances and locations on the coordinate plane. This content first appears in Lesson 3: Match My Dilation, where students multiply the distance between a point and a center by a scale factor.

Suggested Next Steps: If students struggle . . .

- Plan to launch Lesson 4 by reviewing this problem and the concept of distance on the coordinate plane.

Problem 3

(Standards: 7.RP.A.2, MP7)
This question is intended to surface what students already know about determining unknown values in proportional relationships. Students make use of the structure of proportional relationships to recover unknown values. This content first appears in Lesson 2: Dilation Mini Golf, where students use scale factors to calculate lengths.

Suggested Next Steps: If students struggle . .

- Plan to review this problem before beginning Lesson 2.
- Math Language Development Consider asking students what they think proportional relationship means.

Unit 8.2, Readiness Check Summary

Problem 4

(Standards: 7.RP.A.2.D, MP2, MP7)
This question is intended to surface students' understanding of graphs of proportional relationships. Students make use of the structure of the grid to reason abstractly and quantitatively about the meaning of a point on a line in the coordinate plane in context. This content first appears in Lesson 9: Water Slide, where students begin to calculate slope.

Suggested Next Steps: If students struggle . . .

- Plan to support this thinking in Lesson 9 as students investigate why two triangles sharing one side along the same line are similar.

Problem 5

(Standard: 6.NS.A.1)
This question is intended to surface students' understanding of fraction division. This content first appears in Lesson 4: Dilations on a Plane, where students use fraction division to calculate unknown side lengths of similar triangles.

Suggested Next Steps: If students struggle . . .

- Consider monitoring students' work on Lesson 4, Activity 1, Problem 2, and making connections between dilating by a fractional scale factor and fraction division.

Problem 6

(Standards: 7.G.A.1, MP7)
This question is intended to surface what students already know about scaled copies and scale factors from Math 7. Students use the structure of similarity to recover an unknown value. This content first appears in Lesson 2: Dilation Mini Golf, where students first use scale factors.

Suggested Next Steps: If students struggle . . .

- Plan to revisit this problem as part of the Warm-Up for Lesson 2 to review scaled copies and scale factors.
- Math Language Development While students have not formally been introduced to dilations yet, consider asking them what they think the word scale factor means.

Unit 8.2, Readiness Check Summary

Problem 7

(Standards: 7.G.A.1, MP7)
This question is intended to surface students' understanding of scaled copies from Math 7. Students use the structure of the grid to determine if two figures are similar. This content first appears in Lesson 1: Sketchy Dilations.

Suggested Next Steps: If students struggle . . .

- Plan to spend time on Lesson 1, Activity 1, Screen 7 using the "eyeball test" and emphasizing the relationship between equivalent ratios and scaled copies in the synthesis.
\qquad

You will need a geometry toolkit for this quiz. Note: These figures are not drawn to scale.

1. Which statement could be used to describe the dilation that takes triangle $G E F$ to triangle $G^{\prime} E F^{\prime}$?

A. Dilate triangle $G E F$ using G as the center of dilation with a scale factor of 2 .
B. Dilate triangle $G E F$ using G as the center of dilation with a scale factor of $\frac{1}{2}$.
C. Dilate triangle $G E F$ using E as the center of dilation with a scale factor of 2 .
D. Dilate triangle $G E F$ using E as the center of dilation with a scale factor of $\frac{1}{2}$.
2. Circle all of the pairs of polygons in which the image appears to be the result of a dilation of the pre-image.
Pair 1
Pair 2
Pair 3
Pair 4

\qquad
3. Triangle $A B C$ is dilated using D as the center of dilation with a scale factor of $\frac{1}{3}$.
3.1 Show the center of the dilation. Label it D.
3.2 Label the side and angle measurements in triangle $A^{\prime} B^{\prime} C^{\prime}$.

4. The smaller figure is dilated to create the larger figure. The center of dilation is labeled C.

Describe this dilation. Be sure to include all of the information someone would need to perform the dilation.
\qquad
5. Here is triangle $Q R X$.
5.1 Draw the dilation of $Q R X$ using center Q and a scale factor of 2 . Label the vertices of the dilation.
5.2 Draw the dilation of $Q R X$ with center R and a scale factor of $\frac{1}{4}$. Label the vertices of the dilation.

1. D
2. Pair 1 and Pair 4
3.

4. Responses vary. The smaller figure is dilated using $C=(2,2)$ as the center of dilation with a scale factor of 4 .
5.

 Dilations．
In this problem，students recognize dilations as scaled copies．Students use the structure of the image and pre－image to determine if
the dilation has been performed correctly．This problem corresponds most directly to the work students did in Lesson 1：Sketchy
（Standards：8．G．A，MP7）
Problem 2
 －Consider having students draw the triangles side by side on a separate piece of paper．Have students label each triangle
appropriately and identify both the direction of the dilation（from small to large，or large to small）and the scale factor． Suggested Next Steps：If students struggle
students did in Lesson 3：Match My Dilation．
In this problem，students describe a dilation with a scale factor less than 1．This problem corresponds most directly to the work

Problem 1

G＇t＇レ	ε＇ 2	smejqodd
ガザワ・8	$\forall \bullet \bigcirc ` 8$	prepueis

Unit 8．2，Quiz 1：Summary and Rubric

Consider asking students what they would

students did in Lesson 4: Dilations on a Plane.

In this problem, students precisely describe a dilation on a coordinate plane, including its center and scale factor. Students use the
(LdW '9dW 'カ'V'⿹’8 :sprepuets)

Problem 4

directly to the work students did in Lesson 2: Dilation Mini Golf.
structure of dilation to recover the missing center of dilation, unknown lengths, and unknown angles. This problem corresponds most
In this problem, students identify the center used in a dilation and calculate side lengths of an image after a dilation. Students use the
(Standards: 8.G.A, MP7)
Problem 3
Unit 8.2, Quiz 1: Summary and Rubric

connecting the center of dilation and the corresponding point of the image.

 Suggested Next Steps: If students struggle
the work students did in Lesson 3: Match My Dilation. definitions of dilation and scale factor to choose the correct
In this problem, students apply dilations to a figure on a grid. Students reason abstractly and quantitatively as they apply the
(Standards: 8.G.A.4, MP2)
Problem 5
Unit 8.2, Quiz 1: Summary and Rubric

＇7duәュе łou p！0	－6u！puełsıәрии рәң！u！！sMoys yגOM	－ио！ұе！！р әчд омł әЧł иәәмұә૧ ұи！оd ＇sıодә ұиеэ！！！uம！ Ч！！М ‘＇దu！puełsıәрй әұәㅣㄸoํ！ łnq రu！̣doןəләр e SMOUS y10M	＇ио！ұеэо৷ ұэәноэ Кл৷еләиәб әЧł и！ио！џе！！р әЧł 10 дәұиәง лои！̣ш पұ！м＇6u！puełsıәрй ןenłdəәuos sMous yıom	ґэәдоэ 		－＇$¢$
＇7duәュе łou p！0	－səэ！！чч џәәцоэ әшоs प！！м әлош ло OM1 ＇səગ！！чบ ¡эәлоэи！К｜ио	pue әэ！очэ ұэәлоэ әио	pue səગ！очэ ұэәлоэ чłоя ou pue әэ！очэ łэәдоэ әио	† l！̣ed 1 lied ‘ऽәэ！๐ч๐ ๖эәлоэи！ou pue รәээ๐чэ џэәлоэ II甘		乙
－quшәџе łOU P！	әбеш！－əдd pue әбеш！әч7 рәsпıиоэ әлец кеш ＂Z ：이아 әleगs очм słиәрпłS ‘әэ！ฺчэ ұэәдоэи｜			 g ：גəұนəつ • －әэ！ฺч ґэәцоэ	ガジ⿹｀8	\downarrow
0	\downarrow	乙	ε	七		
	6u！	6u！doןəләа	6u！чэeorddv	бu！̣рәәэхヨ／6u！${ }^{\text {a }}$	paepuets	யəəqodd

ouqny pue Kıemuns：：L z！no＇z＇8

＇7dme»！ łOU P！ 0	－6u！pueısıәрй рәң！ய！！ sMOLS yגOM	－əz！s әцґ səィqnop＋！әsneวəq Z s！ио！ұе！！әч।＇ 6 ・ヨ ＇sıодә ұиеэ！！！uб！s чұ！м Бu！puełs．əәрй 	 әјеэs ло ио！ие！！ро ләұиәэ әчұ sио！ұиәш ұиәрпнs＂6・ヨ ＇s．ouə лои！ш पд！м＇6u！̣puezsıәрй jentdeouos smous yом	 ио！џе！！ әчł se $ј$ бu！sn рәґణ！！s s！әпn！！ лә„ешs әчд＂6’ヨ ＇uо！ఛе！！p ә૫ł әэnpoдdəд 아 K！！o！！！ पІ！М доłวef әןeos pue ио！！џ！！ suo！̣uәu ұиәрпłS	LdW＇9dW ‘ガザソ’8	七
＇fduәュе łOu p！	－6u！puezs．əәpun рәң！ш！ smoys you	イq słиәшәипsеәш әןбие әчł เ๐ ॥е sə！！ ＇sıодә ұиеэ！！！uб！s ЧІ！М Бu！̣puełsıәpun 	 ＇sıддә ןenłdәэuos smous yдом	○80I：，っファu • っIS ：：g7u • っIZ：，V7U • †эәиоэ pue 		$\varepsilon^{\prime} \varepsilon$
7dməне łou p！ 0	－6u！̣puęsıәрии рәџ！ய！！ sMoys yom	－әр！s әио ＇sıодәә ұиеэ！！！uи！ प！！M 6u！puełsıәpun әұәןdmoou！SMOYs y10M	＇səp！s OMt ＇sıoдә ןenłdәouos sMoчs yооМ	แว $Z: V_{1} J \bullet$ ‘эәлоэ pue 		て＇E
0	\downarrow	Z	ε	七		
	6u！uu！ $\mathrm{Seg}^{\text {a }}$	6u！̣doןəләа		бu！pəәэхヨ／бu！ŋәәW	рдерuers	mejqodd

＇7dшәне łou p！0	－suo！̣е！！！ бu！̣эnıяsuoo 6u！puełsıәрй рәџ！ய！！ smous yגоM	би！џе！！p sıодә ıои！W＇＂ 6 ・ヨ －10ł๖ゃ」 дәұиәэ әцд se у pəsก＂ $6 \cdot \exists$ ＇s．одә ұиеэ！！！uб！！ Ч！！М бu！̣puełsıәрй әұәןdmoэu！SMOपs yооМ	＇słu！̣od ә૫ł 〕0 ＂uо！ְе！！ －s．ouә jenłdәouos smous yıоM	тэәиоэ pue әұәઇdmoo s！чиом		て＇G
7dшәне ъ0u p！	－6u！puęsıәрии рәџ！ய！！ smous yom	－słu！̣od ә૫ł ґо әәдчł ло омұ －גоłフе әןอэs рə！｜！dde К｜ңэәдоэи！ งsодә ұueэ！！！ub！s पІ！М 6u！puełsıәpun әұәןdmoэu！SMOчs yом	＇słuḷod ә૫ł 〕0 әио би！ฺ̣！！ －uo！ue！！p ә૫ł ґо дәұиә๐ ә૫ъ se δ әsn งлолә fentideouos smous yrom	ๆวәлоэ 		L＇G
0	\downarrow	Z	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	бu！pəəэxヨ／6u！łəəw	paepuets	məqodd

s！ıqny pue Kıemuns：：L z！̣no＇z＇8 t！un
\qquad

Note: These figures are not drawn to scale. All measurements are in grid units.

1. The two triangles shown are similar and their corresponding sides are parallel. Which is the value of $\frac{y}{x}$?

A. 0.5
B. 0.8
C. 1.25
D. 1.5
2. Circle all of the triangles that must be similar to triangle T.

\qquad
3. These two triangles are similar. Find side lengths a and b.

4. Are these triangles similar?

Explain how you know or what additional information you need to decide.
5. Figure $H J K L$ is similar to figure $H X Y Z$.

5.1 Label the missing side and angle measurements in both figures.
5.2 Describe a sequence of transformations that shows that figure $H J K L$ is similar to figure HXYZ.

1. C
2. A, B, D
3.

4. Responses vary. Yes, the triangles are similar. Triangles need two congruent angles to be similar. Angles A and E are both 51°, and angles $A C B$ and $E C D$ are congruent since they are vertical angles.
5.1

5.2 Responses vary. I would reflect $H J K L$ across line $H J$, and then dilate it by a factor of 2 using H as the center of dilation.

-08L әq łsnu

to the work students did in Lesson 7: Are Angles Enough?

In this problem, students use side lengths and angle measures to determine whether or not triangles are similar. They use the structure
(Standards: 8.G.A.4, 8.G.A.5, MP7)
Problem 2

- Consider revisiting Lesson 8, Activity 2. the ratio the problem asks them to solve.

In this problem, students apply their knowledge of similar triangles to calculate a side length. They determine a ratio of unknown
(ZdW ‘マ’⿹’8 :spıepuełS)
[Шวโqoud

's ' $¢$ '	smejqodd
$\forall \bullet \bigcirc ` 8$	рдериеıs

Unit 8.2, Quiz 2: Summary and Rubric

are similar. This problem corresponds most directly to the work students did in Lesson 7: Are Angles Enough? vertical angles to reason about the missing angle measures, then use the structure of triangles to determine whether the triangles
In this problem, students use angle measurements to justify whether or not two triangles are similar. Students use the structure of
(Standards: 8.G.A.5, MP7)
Problem 4

$$
\text { - Consider revisiting Lesson 8, Activity } 1 .
$$

Consider asking students to identify
Suggested Next Steps: If students struggle .
This problem corresponds most directly to the work students did in Lesson 8: Shadows. Students must attend to precision when comparing corresponding sides of each figure and by being careful to include proper units.
In this problem, students determine missing side lengths in pairs of similar triangles using quotient relationships between side lengths.
(9dW ' \forall 'כ‘8 :spıepuełS)
Problem 3
Unit 8.2, Quiz 2: Summary and Rubric

Lesson 7: Are Angles Enough.

Problem 5
Unit 8.2, Quiz 2: Summary and Rubric

'7dшәџе łOU P!	'sцłбuә әр!s uәәмұәq sd!usuo!̣e\|əય ұuә!!onb 6u!̣s „о 6u!puezs.әрии рәң!u!! sMOYs yגоM	-sцдбиә әр!s би!!puodsәдоэ иәәмұәq әэиәдә!! әчъ рәи!еұи!еш әлец Кеш шо I S! WT децұ әұ!им очм słиәрпұs "6・ヨ 'sıодә ұиеэ!!!uб!s प!!М 'চu!puełsıәpun бu!̣dоןәләр е sмочs yиом	дәцдо әцұ ио лонә лодеппјеэ лои!ш е sәуеи рие цұбиә әио sәи!шиәұәр ןenłdәэuoo smoys yдом	шว 9 :, Y, $7 \bullet$ шว ε :W7 • 'łәәлоэ pue әұәјdшоэ s! чуоМ		ε	
'7dшәне ł0u p!0	'sәэ!очэ ұәәиоэ әшОS Ч!!М ડəગ!૦૫ગ ఛวәлоэи! чłоя -ऽəэ!๐чจ ұэәлоэи! Кןио	әээ๐чэ ұәәноэи! әuo səpn\|כu! os	e ฉnq 	 'səગ!0पગ ఛวәлоэ омұ ло әио	sәээ๐чэ ఛәлдоэu! ou pue 		Z
-quшәце łOU P!	-əбие!и әцд „о sәр!s әчł иәәмұәq әэиәдәд! ұ ұиеұsиоо е рәи!еди!еш әлец очм słuәpnts -әэฺฺчэ ґэәдоэи\|					\downarrow	
0	\downarrow	Z	ε	t			
	6u!uu! $\mathbf{V e g}^{\text {a }}$	6u!doןəләд	6u!чэeosddv	6u!pəəэxヨ/6u!̣әəW	pappuels	məq0ıd	

э!ıqny pue Kıemuns : : z!̣no 'z'8

＇qdmә»е łou p！0	＇suo！̣emurısueд ృ๐ səつuәnbəs ృ๐ 6u！puełsıəpun рәң！ш！！ smous yıom	－4ł0q łou ұnq ‘иопе！！р е ло ио！дәәәәл e sәq！иэзәр ұиәрпіs＂ 6 ・ヨ ＇sıодә ұиеэ！！！uи！ ЧІ！М Бu！̣puełsıәpun әұәјdmoэu！SMOपs yдоМ	лоłフед әןеэs әчł 10 ио！д！！ ＇sıoддә ıоulu पІ！М ‘6u！puełs．əәpun ןenłdәэиoэ smoчs yдом	‘ио！ұе！！до дәұиәэ е イq ч！әде！！р иәчł рие ‘‘Н 		Z＇G
łou P！	＇sannб！！גe｜！u！ u！sd！̣suo！ıe｜әд әઇбие pue әp！s əપł łО 6u！puezsıәрun рә！！ய！！ SMOUS Y1OM	＇7Н／Н әınб！！u！səןбие әдnseәш әцł әдппр ә»е ZХХН әпnБ！！u！səן泣 әч7 ＇sıодәә ұиет！！！uб！s पұ！м Бu！̣puełsıәpun әұәןdwoэu！sMOपs yооМ	＇sұиәшәлияеәш ＇sıoıə ıоиіш Чұ！м＇6u！̣риедsıәрй ןEnłdәouoo smous y⿺辶M	。ES：Zフய• っLE：$H 7$ • －u！0I：ZH• o9II：Y7u• †эәлоっ pue әəәןdmo๐ s！чиоМ	＊゙ヅ8	L＇S
${ }^{7}$ Idmełte łOU P！	－Ktueplums әןถие！иұ K！！？sn！or sұuәшәиnseәш әןరue 6u！̣n „о 6u！puezsıәрй рәң！ш！ smous yom	－әןбие 。IS е pue әdeys әшes әчд әлец sәббиеид －sıодә ұиет！иии！！s प！！M 6u！puełsıəpun әұәјdwoou！SMOYS y10M	де！！ய！！әле səןБuย！ı әЧł ！！әр！эәр оұ ұиәпибиот әде sәбие 6u！puodsaноэ до suled омł ұseә де децł моиу оұ рәәи । ио！дешлоди！ цбпоиә доN＂＂ 6 ＇sıодә әшоs पІ！М Бu！puełsıәpun ןenłdәэиoo smoцs yдом	‘səןбие ןеэ！ддәл әде Кәцд әэи！！ұиәпибиоэ омұ рәәи sәбие！ 1 ＂ 6 ・ヨ גI！！ய！${ }^{\circ} \forall$ • －uo！̣еue｜dxə 		t
0	\downarrow	乙	ε	t		
	6u！uu！ 6 －g	6u！doןəләа	6u！५эeorddV		prepueis	แәq0．d

\qquad

1. Which line has a slope of $\frac{5}{2}$?

2. Which statement is true?
A. Dilations of a triangle keep angle measures the same.
B. Dilations of a triangle keep side lengths the same.
C. Dilations of a triangle must be congruent to the original triangle.
D. Dilations of a triangle always make the sides longer.
3. Here is Triangle 1. Triangle 2 also has a 30° angle.

Explain or show why Triangle 1 and Triangle 2 might not be similar to each other.

Triangle 1
\qquad

Here are some polygons.
4.1 Circle all of the polygons that are similar to polygon A.

Polygon G is also similar to Polygon A.
4.2 Describe a sequence of transformations that takes Polygon A to Polygon G.

5. Triangles $A B C$ and $D E F$ are similar. Determine the exact lengths of segments $D F$ and $E F$.

Unit 8.2, End-Unit Assessment: Form A

Name \qquad

All of the points in the graph are on the same line.
6.1 Determine the slope of the line.
6.2 Determine values for a and b.

$$
a=\quad b=
$$

6.3 What is the y-coordinate when $x=0$?

Explain or show your thinking.

7.1 Triangle $E F G$ is a dilation of triangle $A B C$ with center B and a scale factor of 3 .

Draw triangle $E F G$.

7.2 Triangle $I J K$ is a dilation of triangle $A B C$ with center A and a scale factor of $\frac{1}{2}$.

Draw triangle $I J K$.

7.3 Explain why $E F G$ and $I J K$ are similar.
\qquad

Reflection: Select a question to answer.
What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.

Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

1. B
2. A. Dilations of a triangle keep angle measures the same.
3. Responses vary. For two triangles to be similar, all 3 pairs of corresponding angles must be congruent. One pair of corresponding angles is 30°, but the remaining angles could be different in each triangle.
4.1 Polygons D, E, and F
4.2 Responses vary. Translate Polygon A 11 units right, then dilate Polygon A using a scale factor of 2 and center S.
4.

6.12 (or equivalent)

$$
6.2 \quad a=5
$$

$6.3-2$
Responses vary. This can be found by counting left 1 and down 2 twice from $(2,2)$.
7.1

7.2

7.3 Responses vary. If $E F G$ is dilated with center B and a scale factor of $\frac{1}{3}$, the result is $A B C$. If $A B C$ is dilated with center A and a scale factor of $\frac{1}{2}$, the result is $I J K$.
＇9 uossəך Кu！！！！！＾əд дәр！suoう •
－Consider helping students craft an example using the sketch tool so they can check each property for themselves

Lesson 6：Social Scavenger Hunt．
In this problem，students recognize the properties of dilations．This problem corresponds most directly to the work students did in

Problem 2

$$
\text { - Consider revisiting Lesson 9, Activity } 1 .
$$

Suggested Next Steps：If students struggle ．
directly to the work students did in Lesson 9：Water Slide．
In this problem，students use the structure of the grid to determine the slope of a line in a plane．This problem corresponds most
（LdW＇9＇g＇ヨヨ＇8 ：spıepuets）
โ Шวโqoud

9 ＇	ε	L＇S＇カ＇て	smejqoid
$9 \cdot 9 \cdot \exists \exists \cdot 8$	¢•＊゙ロ・	ガジツ・	prepuels

 - 子unh
 the grid to define their transformations, and could possibly determine multiple transformations that lead to the same outcome. In this problem, students use transformations on a grid to describe why two polygons are similar. Students use the structure of
(LdW 'rdW 't'V'⿹'8 :sprepuets)
Problem 4

- Consider revisiting Lesson 7, Activity 1. 30° angle.
- Consider reviewing the total interior angle sum of a triangle, and ask students if they can draw multiple triangles with at least one
 Enough?
why the given triangles must be similar. This problem corresponds most directly to the work students did in Lesson 7: Are Angles In this problem, students recognize the information necessary to establish similarity of triangles. Students construct an argument for

Problem 3
\forall שxis : o!sqny pue Kıemuns łuəussess \forall pus ' Z ' 8 t!un

- Consider reviewing the definition of slope and helping students organize the given information into a table. Then ask students

This problem corresponds most directly to the work students did in Lesson 10: Points on a Line.
In this problem, students use the structure of the grid to calculate slopes and use them to determine coordinates of points on a line
(Standards: 8.EE.B.6, MP7)
Problem 6

This problem corresponds most directly to the work students did in Lesson 8: Shadows.
In this problem, students determine missing side lengths in pairs of similar triangles using quotient relationships between side lengths.

Problem 5

Consider revisiting Lesson 3, Activity 1.

 Consider asking students to draw the slope triangle connecting the center of dilation with a point in the preimage (or line if Suggested Next Steps: If students struggle . My Dilation
In this problem, students use the structure of a grid to apply dilations to a polygon. Students use the structure of the grid to precisely
dilate a given figure with various scale factors. This problem corresponds most directly to the work students did in Lesson 3: Match
(LdW ‘9dW 't'V'V'8 :spıepuels) Problem 7
Unit 8.2, End Assessment Summary and Rubric: Form A

tduә立e ł0u p！o	＇sə｜6ue pue səp！s pəsnıuoə әлец кеш＂．әшes ә૫ł sцłбuә әр！s Łəәәә очм sұиәрпłS －גе！！и！ ЧІ！м ұиәпибиот рлом әчł ๒əәəs очм sұuәpnłS			－əسеs əપł Səયnseəس ә｜бuе dәәу 	ナージ⿹｀8	Z
	sıолә чłоq әреш әлец Кеш әчұ оұ би！̣риәде ұпочұ！мм әdoᅵs әчł рәұйоэ әлец Кеш 7． 7 ！ әчұ рәұипоэ pue sәұеu！̣рооэ әdoןs pәsnıuoэ әлеч Кеш 			8 әu！${ }^{\text {• }}$	$\begin{gathered} \text { LdW } \\ 9^{\prime} 9^{\prime} \exists \exists \cdot 8 \end{gathered}$	\downarrow
0	\downarrow	乙	ε	t		
	6u！uu！${ }^{\text {eveg }}$	6uıdoןəләа	6u！${ }^{\text {a }}$（	бu！pəәэхヨ／6u！əәәW	paepueis	merqodd

	＇ธәэ！！чч џəәдоכ әшоs प！！м 	‘әэ！ฺочэ ґәәциои！әио pue səэ！очэ ŋәәцоэ ә૫ł －әэ！ฺчэ Łәәдоэи！ue sәpn｜ou！ osje łnq səэ！๐чэ до әио słэəəəs 孔uәрпłs	גеו！ әде suo6人〈ןod ұuәnıбиоэ ұецł әz！！ибоэәд дои Кеш ג！！ łou op очм słuәpnłS －รәэ！！чч ŋәәиоэи！Кие ұәәәऽ ъоu səop pue səэ！๐чэ 		ナ＊＊＇⿹｀8	L＇t
Ł0u p！o	－sd！̣suo！̣e｜əи әןбue Kue uo！̣uәш łou səop ұuәpnts －K！！ue！！u！ „о әэиәр！лә чеәМ	－K！u®！！u！ s！səן6ue 反u！puodsəıиоэ әuо ұецł sәłеłs ұuәрnłs －sıодә ұиет！！！uб！s पł！М ‘欠u！̣puełsıəpun łnq Бu！̣doןəләр e sMous yrom	＇słuәшәлnseәш ә｜రิue әןq！ssod бu！ssnos！p u！додә дои！̣ e sәyeu ұuәpnłS ＇sıoдə әшоs पІ！м＇Kəұsem pue 6u！puełsıəpun ienideouoo smoys yıом	－әбие！иұ чэеә u！łuәəәఘ！әq pınoo sə｜бue 反u！u！̣eшәл 6u！̣puodsəュиоэ ィо əq \ddagger snu sə｜ธue 6u！̣puodsәлио fo suled әәјчł ॥е ‘גе！！ш！әq 	$\begin{gathered} \varepsilon d W \\ S^{\prime} \forall \cdot V^{\prime} 8 \end{gathered}$	ε
0	\downarrow	乙	ε	t		
	6u！̣u！̣əəg	6u！doןəләа	6u！	6u！pəəวxヨ／6u！łəәW	paepuets	шәq0ıd

\forall שxos ：

7duməれе łou p！o	sәp！s 反u！puodsəдıо оł дəqunu әшes әчł рре Кәцł ұецł уи！чł Кеш әцł Kes очм słuәpnłs „о би！̣риеұsıәрип уеәм sмочs ұuәрпłs	－ － Łо әЈиәр！ィә sмочs sıодә sәуеш ұuәpnłs	＇tД ұиәшбәs иәчм додә Бu！puno» е әреш әлец Кеш Z S！да ұиәшКәs ๖๐ чъбиә әчъ Kes очм słuәpnis ＇sцłбuә OMt әપł $\ddagger 0$ әио sәu！uиәəәр 	se səm！$\frac{Z}{\varepsilon}$ ）st！un （马Д ұuәш6әs se 6uo se әכ！мı）stuun †эәиоэ 	ガジ⿹｀8	S
łou p！	‘ \forall se әues ə૫ł S！అ ＇suo！̣ешхояsueג Kие ио！！uәш łou səop łuəpnłS ＇suo！̣ешхояsueג 6u！̣puełsıəpun „о әЈиәр！лә уеәм	 е ч！！м \forall әғе！！а suo！！emiołsuexł jo əวuənbəs e səq！uગsəp К｜ŋวәлиоэи！ұиәрnts ＇sıодә ұиеэ！！！uб！s łnq চu！̣doןəләр e SMOYS yı0M	иәЧł ‘ \forall әғॄ！！ －әs！эəлdu！ s！suo！！ewiołsueג Ł0 uo！！d！uこsəр әЧł ұnq suo！teшхоґsueגł 〕о əэuәnbəs e səquэงəp K｜łכәдиоэ ұиәрпłS ＇s．oддә pue бu！̣puełsiəpun ןenıdәәuoo smoцs yиом	‘S дəұиәэ pǔ 乙 ґо \forall uobКן． \forall uo6К｜od әғе｜sue»」 †Јәдио s！t！pue＇uo！̣ewiotsuex ә૫ъ әэnpoıdə оł ！！ełəр э！！！ suo！̣uәu ұuәpnłS †эәдоэ 		でも
0	\downarrow	Z	ε	\dagger		
	6u！uu！${ }^{\text {evg }}$	6u！̣doןəләа	6u！${ }^{\text {a }}$（	бu！pəәэхヨ／6u！¢əәw	prepuels	merqodd

－dmәие ł0u p！	$\nvdash 0$ əЈиәр！лә чеәМ	＇sıддә 	－иo！̣е｜nəןeo u！ pue бu！puełsıәри ןenłdәכuoう smous yıом	$9=q ' \mathrm{~s}=\mathrm{p}$ ¡эәдио pue әұәןdmos s！yィом	$\begin{gathered} \text { LdW } \\ 9^{\prime} g^{\prime} \cdot \exists \exists \cdot 8 \end{gathered}$	て＇9
7dme»е ł0u p！	－əu！！ e ృ૦ әdoןs ә૫ł әા民｜nગןอ Of MO4 ถu！̣puełsıəрии ょ○ әэиәр！ィә чеәМ	（диәјел！пиə ィо）I＇$\frac{\mathrm{S}}{\varepsilon}$ ، $\frac{\varepsilon}{\mathrm{S}}$ －sənjen－К pue x әцъ Ки！̣！̣！！p pue ұu！̣od әןбu！s d！̣suo！̣еןəд ןeuo！̣uodoad e －sıддә ұnq 6uildoןəләр е sмочs удом	（ұนәјем！̣В ןұұиoz！̣оч әчұ рәдәр！suoэ әлец кеш ұиәрпія бu！̣puełsıəpun ןenłdəэиoง ןедәuә6 smoчs yдом	（диәјем！̣пbə до）乙 • ңәәио๐ 	$\begin{gathered} \text { LdW } \\ 9^{9} g^{\prime} \exists \exists \cdot 8 \end{gathered}$	L＇9
0	\downarrow	Z	ε	t		
	6u！uu！ 6 ¢я	6u！doəләव	6u！	6u！pəəэxヨ／6u！łəәW	prepuets	melqo．d

＇7dməュе tou p！o	łフnגłSUOכ Oł MOU ょо әэиәр！лә чеәм	‘şu！̣od әчұ „о әәдчъ до омұ бu！̣е！！p sıолә дои！w ‘ロłファ」 әןгэs pə！！｜dde К｜ŋәәиоои！ ue पł！М ұnq ‘uо！̣е！！р әчł ＇sıодә ұиеэ！！！uб！ Чұ！м＇бu！̣puełsıəpun бu！doןəләр е sмочs yиом	şuulod әцł 〕૦ әио би！џ叉！！ ә૫ł se g әsn łou p！p әшos पұ！м ‘रıəısem pue ןедәиәб sмочs чдом	＇ұэәлоэ pue 		L＇L
＇7duәəце łou p！0	＇ио！ңеиејdxә ఛэәлоэи！ дәмsuе ұәәлоэи	－Kןuo uo！̣ew！！！sə ןens！＾ －ədoןs „о 6u！̣puełsıəpun ן！！̣ее sәғет！иишшоэ децұ ио！̣еиеןдхә Ч！！М дәмsǔ ұэәдиоэи｜ ＇uo！̣еиеןdxә әғәןdmosu！ ЧІІМ дәм	－ədojs ıo －uo！̣eue．jdxə әғәןdmoo pue ןеэ！ ＇uo！̣eue｜dxə u！̣ SME｜f дои！̣ш цұ！м дәмsue ұәәдоう	－（ Z＇z ）子uiod әчұ шод әэ！мя Z имор pue I みə рәұипоэ ।＇Z－ －ио！̣еие．dxә әұәןdmoэ pue ןеэ！ฺоן е sәрпןои！ pue uo！！sənb әчł sıәмsue K｜｜nłssəoэns łuәpnłs	$\begin{gathered} \angle d W \\ \prime 9 \cdot g^{\prime} \exists \exists \cdot 8 \end{gathered}$	$\varepsilon \cdot 9$
0	1	τ	ε	t		
	6u！uu！̣бeg	6u！doןəләа	6u！	бu！pəәэхヨ／6u！ŋәәw	paepuels	məq0，${ }_{\text {d }}$

7duәие łOU P！	＊） 아 әғદןə」 suo！！ее！！м моч 6u！̣puełsıəpun ґо әэиәр！ィə уеәМ	suo！̣uәш әsuodsəy е smoys uo！	 se цวns uo！ цэセә ґо suо！џе！！әде ＇sıoдə ןедәuә6 smoys uo！̣eue｜dxヨ	＇У／I s！ұןnsəд ә૫ł е pue \forall дәұиәо е рие g дәұиәэ чџ！м s！uo！̣eue｜dxヨ		$\varepsilon \cdot L$
＇7dmәще łOu P！	－uo！̣e！！p е ұэпұциоо Ot MOY †0 əวиәр！＾ə уеәМ	‘słụ̣od әцł łо әәдцł до ue प！̣м ұnq ‘uo！̣民！！p ＇sıодә ұиеэ！！！uб！s бu！̣dоןəләр е sмочs уиом	‘słu！̣od ә૫ł 〕0 әио би！！џ！！！додә лои！w －uо！ңе！！p fo дəұนәつ ə૫ł se \forall әsn łou ＇s．0גə бu！puełsıəри ןentdəәuoo ןедәиб smoчs yıо	¡эәдио 		でし
0	\downarrow	τ	ε	t		
	6u！uu！̣əg	6uldoןəләа	6u！чэeosddv	6u！pəәэхヨ／6u！ŋəәW	prepuets	məq0，

\qquad

Problem 1

Circle all of the tables that could represent proportional relationships.

A

x	y
2	3
5	7.5
10	15

B

x	y
0	0
3	7
6	14

C

x	y
0	2
2	4
4	6

Problem 2

To mix a particular shade of purple paint, red paint and blue paint are mixed in the ratio $5: 3$.

Find the number of gallons of red paint and of blue paint needed to make 20 gallons of this shade of purple paint.

Problem 3

At one gas station, gas costs $\$ 2.75$ per gallon. Write an equation that relates the total cost, C, to the number of gallons of gas purchased, g.

Problem 4

4.1 Plot and label three different points with an x-coordinate of 3 .
4.2 Describe all of the points with an x-coordinate of 3 .

Unit 8.3, Readiness Check

Problem 5

Name \qquad

On the coordinate plane, draw:

- A line m that is a translation of line l.
- A line n that is a rotation of line l using the origin as the center of rotation.

Label these lines m and n.

Problem 6

A store sells ice cream with assorted toppings. They charge $\$ 3.00$ for an ice cream plus 50 cents per ounce of toppings.
6.1 How much does an ice cream cost with 4 ounces of toppings?
6.2 How much does an ice cream cost with 11 ounces of toppings?
6.3 If Alejandro's ice cream costs $\$ 3.50$ more than Dakota's ice cream, how much more did Alejandro's toppings weigh?

1. A and B
2.

Red Paint	Blue Paint
12.5 gallons	7.5 gallons

3. $C=2.75 \mathrm{~g}$ (or equivalent)
4.1 Responses vary.

4.2 Responses vary.

- The line $x=3$ is drawn.
- The equation $x=3$ is written.
- The written response includes "a vertical line" as a description for the points.

5.

$6.1 \quad \$ 5$
$6.2 \quad \$ 8.50$
6.37 ounces

Unit 8.3, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problems 1, 2, and 3 before Lesson 1
- Problem 4 before Lesson 4
- Problems 5 and 6 before Lesson 5

Problem 1

(Standards: 7.RP.A.2.A, MP7)

This question is intended to surface what students already know about proportional relationships. Students make use of structure as they look for patterns that indicate a proportional relationship. This content first appears in Lesson 3: Posters.

Suggested Next Steps: If students struggle . . .

- Plan to use this problem or a similar one as an additional Warm-Up activity. While students are working, listen for and record student language. Note any words or phrases that can be added to a visual display for students to use throughout the unit.
- During Lessons 1 and 2, plan to focus on multiple ways to know that a relationship is proportional (e.g., graph with a line through the origin, equivalent ratios in tables, etc.) and how to calculate equivalent ratios using coordinates of points on a graph.

Problem 2

(Standard: 7.RP.A.3)
This question is intended to surface what students know about solving problems with proportional relationships before they encounter linear relationships. This content first appears in Lesson 2:
Water Tank.
Suggested Next Steps: If students struggle . . .

- Consider using Unit 2, Lesson 1 of Math 7 to practice the concept of generating equivalent ratios before beginning Lesson 1.

Problem 3

(Standards: 7.RP.A.2.C, MP4)
This question is intended to surface what students already know about writing equations to describe proportional relationships. Students model with mathematics as they represent the proportional relationship between total cost of gas and the number gallons of gas purchased with an equation. This content first appears in Lesson 1: Turtle Time Trials.

Suggested Next Steps: If students struggle . . .

- Plan to spend extra time on Lesson 1, Activity 1, Screen 7 selecting a variety of students' equations and inviting the class to predict the turtle's race results before revealing the animation.

Unit 8.3, Readiness Check Summary

Problem 4

(Standard: 8.EE.B)
This question is intended to surface what students already know about the coordinate plane for their work with graphing lines. This content first appears in Lesson 4: Stacking Cups.

Suggested Next Steps: If students struggle . . .

- Plan to use Lesson 4, Activity 1, Screen 4 as an opportunity to strengthen student understanding of how a coordinate plane relates to the context. Consider asking students what each of the points on the graph represents.

Problem 5

(Standards: 8.G.A.1, 8.G.A.1.C)
This question is intended to surface what students know from previous units about the effects of transformations on a line. Students will use this to make sense of equations of the form $y=m x+b$. This content first appears in Lesson 6: Translations.

Suggested Next Steps: If students struggle . . .

- Plan to use the Warm-Up in Lesson 6 to review translations. If students need additional practice recalling translations, refer to Unit 1, Lesson 3: Transformation Golf.

Problem 6

(Standards: 7.EE.B.3, MP2)
This question is intended to surface what students already know about solving problems of the form $p x+q=r$. Students must reason abstractly and quantitatively to make sense of the problem in context and formulate a solution. This content first appears in Lesson 5: Flags.

Suggested Next Steps: If students struggle . . .

- Plan to review it with them before beginning Lesson 5. Be sure to amplify terms like "constant of proportionality" and "unit rate" throughout this lesson.
\qquad

1. The percentage of forest area is determined by dividing the forest area by the total land area of a region. The percentage of forest area in three countries was recorded over the past 25 years and is displayed in the graph.

Which statement is true?
A. The percentage of forest area in Mexico increased as time passed.
B. The percentage of forest area in Brazil decreased at a constant rate.
C. Initially, the percentage of forest area was greater in Mexico than in Brazil.
D. The percentage of forest area in Mexico decreased faster than it did in Brazil.
2. Write an equation for each line.

$h:$
$j:$
$k:$
$m:$

\qquad
3. Organic rice costs twice as much per pound as conventional rice at a bulk food store. Circle all of the graphs that could represent the prices of rice at this store.
A.

C.

B.

D.

\qquad
4. Nicolas planted three seeds. Each grew at a different constant rate. He measured the height of each plant every day and recorded his data below.

The graph, the equation, and the table show the relationship between time, t, in days and height, h, in centimeters for each of the plants.

Plant 1

Time (days)	Height (cm)
2	6
4	12
6	18
8	24
10	30

Plant 2

Plant 3

Which of the three plants grew the fastest? Explain how you know.
\qquad
5. Marquis started at an elevation of 3000 feet and hiked down a mountain at a constant rate. His elevation decreased 500 feet per hour.
5.1 Graph the relationship between Marquis' elevation and time as he hiked down the mountain.

5.2 Complete the table showing Marquis' elevation at different times during his hike.

Time (hr.)	Elevation (ft.)
0	
	2000
5	

5.3 Write an equation relating the number of hours hiked, t, and Marquis' elevation in feet, f.

1. B
2.

$h: y=-2 x+4$	$k: y=\frac{1}{3} x+2$
$j: x=6$	$m: y=-4$

3. A and D
4. Plant 2 grew the fastest.

Responses vary. The table shows that Plant 1 is 6 centimeters taller every two days, so Plant 1 grew 3 centimeters each day. The line in the graph has a slope of 5 , so Plant 2 grew 5 centimeters per day. Plant 3's equation shows that for each day it grew 1.5 centimeters.
5.1

5.2

Time (hr.)	Elevation (ft.)
0	3000
2	2000
5	500

$5.3 f=3000-500 t$ (or equivalent)

For the vertical line, have students plot points and ask them what each coordinate pair has in common (the x-coordinate).
słdәכљәұи! pue sədo|s әи!

work students did in Lesson 9: Coin Capture. to the In this problem, students write equations of lines, including horizontal and vertical lines and lines with negative slope. Students
make use of the structure of the coordinate plane to write equations in slope-intercept form. This problem corresponds most directly (Standards: 8.EE.B.6, MP7)

Problem 2

- Consider revisiting Lesson 7, Activity 1. understand and communicate how words like greater, faster, and increased can be visualized on the graph.
- Math Language Development Consider using the mathematical language routine Critique, Correct, Clarify to help students Suggested Next Steps: If students struggle . . . students did in Lesson 7: Water Cooler. In this problem, students interpret lines with positive and negative slopes that represent real-world situations. Students must critique
the given statements to determine if they are supported by the data shown. This problem corresponds most directly to the work ($દ d W$ ' 9 'ヨヨ'8 :spıepuełS) โ Шวโq0.d

g 'ح	$\nabla^{\prime} \varepsilon$	1	
$9^{\prime} 9^{\prime} \exists \exists \exists^{\prime} 8$	$9^{\prime} 9^{\prime} \exists \exists \exists^{\prime} 8$		prepuers

Unit 8.3, Quiz: Summary and Rubric
－Consider revisiting Lesson 3，Warm－Up or Activity 1. the slope．
－Consider asking students to determine the slope in each representation then ask them which units they should use to measure

corresponds most directly to the work students did in Lesson 3：Posters．
different data representations to determine a measure of growth that can be compared between the three situations．This problem
In this problem，students compare proportional relationships given in different representations．Students must make sense of the
（LdW＇s＇g＇ヨヨ＇8 ：sprepuełs） Problem 4

corresponds most directly to the work students did in Lesson 1：Turtle Time Trials．
In this problem，students interpret diagrams or graphs of proportional relationships in context．Students attend to precision when
they decide on the appropriate relationship between the lines given the problem context and various axis labels．This problem
（9dW＇s＇g＇ヨヨ＇8 ：spıepuełs） Problem 3
Unit 8．3，Quiz：Summary and Rubric
 ио!̣еұиәsәл

 corresponds most directly to the work students did in Lesson 7: Water Cooler. make sense of the problem in context to represent the information given in a graph, a table, and an equation. This problem

(IdW '9'g'ヨヨ'8: :pıepuets) Problem 5

Unit 8.3, Quiz: Summary and Rubric

＇7dmente ¥OU p！	＇ธəэ！๐чจ џэәноэ әшоs प！！̣ ‘səэ！๐чэ ұэәдлоэи！Кןио	әәэ๐ч๐ Łәәมдоэu！әuo pue әэ！очэ џәллоэ әио	－әоэ๐ч ¡эәมоэи！әио puе －รәэ！๐чจ ๖эәлоэи！ou pue 	－รәэ！๐чว ఛวอлиоэи！ou pue 	$\begin{gathered} 9 \mathrm{dW} \\ \mathrm{c}^{\prime} \mathrm{g}^{\prime} \exists \exists \cdot 8 \end{gathered}$	ε
＇7dmente ¥OU P！	＇səu！！גnof әцł „о әио ıод suо！ңеnbә sә！！мм К｜дэәноэ ұиәрпңs＂ 6 ・ヨ －6u！pueqsıәрй рә！！ш！SMOपS צגоМ	＇səu！！ınод әЧł „О Омł 10д suо！ұепbə sә！！мм －sяолә ұиет！！ииб！s पұ！м Бu！̣риеұsıәрй әұәן쑤이！ smous yiom	 КІәәдиоэ ұиәрпіs＂ 6 ＂ヨ ＇sıoддә доulu पІ！м ‘＇6u！puełs．əәрй ןentdəәuos smous yגоM	$\begin{aligned} t^{-} & =\kappa: w \bullet \\ Z+x \frac{\varepsilon}{\mathrm{~L}} & =\kappa: y \bullet \\ 9 & =x:!\bullet \\ \star+x Z^{-} & =\kappa: y \bullet \end{aligned}$ ＇łәәлоэ pue 	$\begin{gathered} \text { LdW } \\ ‘ 9 \cdot 9 \cdot \exists \exists \cdot 8 \end{gathered}$	乙
＇7dmente ł0u P！ 0	！！！zeля рие оэ！хәю чłоq ıод Ки！seәләәр s！ еәле дรәлод до әбедиәэләд әцъ ұецұ рәэ！пои әлец Кеш ＂！！zeлg u！p！p t！иецł 九əłseł рәsеәләр оо！хәW и！еәле ‘ロ，，ұәәəәs очм słиәрпłS 			－әдед ұиедsuoo е ұе рәлеәләәр 	$\begin{gathered} \varepsilon d W \\ ‘ \mathrm{~g}^{\prime} \exists \exists \cdot 8 \end{gathered}$	\downarrow
0	\downarrow	Z	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	6u！pəəэxヨ／6u！łəәW	paepuets	məqodd

o！̣qny pue Kıemuns ：z！̣no＇ε＇8

ł0u p！ 0	suo！̣e！！p 6u！ұэпィұsuoo u！̣ бu！̣puełsıəpun рә！！ш！！ sMous you	－nou цэセә 00s Кq səseәəәәр pue әчł łецъ риеұsıəрип кеш 00S－000E $=f$ әч！мм очм słuәpn＋s＂6・ヨ ＇sлодәә ұиеэ！！！uи！ Ч！！M 6u！̣puełsıәpun әұәןdwoэu！sMOчs yооМ	‘גпоч чэеә 00S Kq səseәләәр pue 000ε łе рәцеұs ио！！ұләәә кеш 00S－7000\＆$=f$ әи！мм очм sұuәpnis＂＂ $6 \cdot \exists$ \qquad ןenłdəэuos sMoys you	（ұиәјел！пивә ィо） $700 \mathrm{~S}-000 \varepsilon=f$ ¡эәдоэ 	$\begin{gathered} \text { LdW } \\ 9 \cdot 9 \cdot \exists \exists \cdot 8 \end{gathered}$	$\varepsilon \cdot \underline{\square}$
＇7duәə е ł0u p！ 0	－səпןел sә！！мм Кןэәдоо ұиәрпнs＂ $6 \cdot \exists$ －6u！puełs．əәрип рәң！ш！！ sMoपs yגOM	＇sənןe＾ әәцұ әчұ „о әио sәц！им к／дכәноэ ұиәрпіs＂6・ヨ sıoдә ұueכ！！！ub！s Ч！！М Бu！̣puełsıәрй әұәןdwoэu！sMoчs yィоМ	әәцұ әцд „о омд sәə！им －sıддә ןenłdəәuos sMous yı0M		$\begin{gathered} \text { LdW } \\ 9 \cdot 9 \cdot \exists \exists \cdot 8 \end{gathered}$	て＇G
0	\downarrow	τ	ε	七		
	6u！	6u！doןəләа	6u！	бu！pəәэхヨ／6u！ұəәW	paepueis	melqosd

o！̣qny pue Kıemuns ：z！̣no＇ε＇8

Unit 8.3, End-Unit Assessment: Form A
Name \qquad

1. This graph shows the line $2 x+4 y=20$. Select all of the points that are on the line.
$\square(0,5)$
$\square(0,10)$$(1,2)$$(5,0)$
$\square(10,0)$

2. This graph shows the highest temperature each day for two weeks in Memphis and Phoenix.

Which statement is true?
A. The highest temperature in Phoenix was never the same as the highest temperature in Memphis.
B. The highest temperature in Memphis decreased steadily.
C. Initially, the highest temperature was warmer in Phoenix than in Memphis.
D. The highest temperature in Memphis increased each day.

3. Raspberries cost twice as much as blueberries. The prices of blueberries and raspberries represent proportional relationships.

Select all of the graphs that could represent the cost of raspberries and blueberries.

Unit 8.3, End-Unit Assessment: Form A

Write an equation for each line.

4.1

Equation:

4.3

Equation:

Name \qquad
4.2

Equation:
4.4

Equation:
\qquad
5. One day, three runners ran 10 miles, each at their own constant speed.

Which runner ran the fastest?

Explain your thinking.

Runner 1

Runner 2

Time (minutes)	Distance (miles)
18	2
36	4
54	6
72	8
90	10

Runner 3
$d=\frac{1}{8} t$
t time (minutes)
d distance (miles)

Beans cost $\$ 1.50$ per pound. Rice costs $\$ 1.00$ per pound. Joel has $\$ 7.50$ for beans and rice.
6.1 Complete the table showing three ways Joel can spend exactly $\$ 7.50$ on beans and rice.

Pounds of Beans, b	Pounds of Rice, r
1	
	3
5	

6.2 Write an equation of the pounds of beans, b, and rice, r, Joel can buy for \$7. 50 .
6.3 Draw a graph of the pounds of beans, b, and rice, r, Joel can buy for $\$ 7.50$.

Unit 8.3, End-Unit Assessment: Form A

Name \qquad

A cell phone plan costs $\$ 200$ to start. Then, there is a $\$ 50$ charge each month.
7.1 What is the total cost (startup fee and monthly charge) to use the cell phone plan for 2 months?
7.2 Write an expression to represent the total cost to use the cell phone plan for x months.

7.3 Make a graph of the cost of the cell phone plan over two years (24 months).

Be sure to:

- Label the axes.
- Label each grid line with a number.

7.4 A new cell phone plan costs $\$ 100$ to start. Then there is a $\$ 50$ charge each month.

Describe how the graph of this new plan would be the same and how it would be different.

Reflection: Select a question to answer.
What is something you are proud of from this unit?

Write what you know about a topic from this unit that you weren't asked about today.

Describe or show one strategy you found helpful in this unit.
Name any students who helped you with this strategy.What else would you like your teacher to know?

1. $\quad \checkmark(0,5)$
$\checkmark(10,0)$
2. B
3.

$4.1 \quad y=4$
$4.2 y=4-2 x$
$4.3 y=x-1$
$4.4 x=-4$
5. Runner 3

Explanations vary. Runner 1's rate is 1 mile every 10 minutes. Runner 2's rate is 1 mile every 9 minutes, and Runner 3 's rate is 1 mile every 8 minutes.
6.1

Pounds of Beans, b	Pounds of Rice, r
1	6
3	3
5	0

$6.21 .5 b+1 r=7.5$
6.3

Answer Key

$7.1 \quad \$ 300$

$7.2200+50 x$
7.4 Responses vary. They have different vertical intercepts. They have the same slope. They are parallel to each other. One is a translation of the other.
7.3 Responses vary.

Months
‘ غ К
apparent minimums and maximums are，and any points of intersection．

 the work students did in Lesson 5：Flags． quantitatively as they consider what the lines＇relationship to each other means in context．This problem corresponds most directly to In this problem，students recognize how to interpret linear graphs that represent contexts．Students reason abstractly and
（Standards：8．F．B．4，MP2） Problem 2
 Suggested Next Steps：If students struggle ．
directly to the work students did in Lesson 10：Solutions．
In this problem，students recognize what a solution to a linear equation in two variables means．This problem corresponds most
（Standard：8．EE．B）
โ Шวโqo．d

でく＇で9 「て	L＇9＇9＇ε		smə¢q0，d
ガタゴ8	$9^{\prime} 9^{*} \exists \exists{ }^{\prime} 8$	9＊\exists^{\prime}＇8	spaepuets

Unit 8．3，End Assessment Summary and Rubric：Form A

did in Lesson 9: Coin Capture. students
Students use the structure of the coordinate plane to write equations of lines. This problem corresponds most directly to the work
In this problem, students write equations of lines with positive slope, negative slope, and horizontal and vertical lines.
(LdW 'g‘ヨヨ’8 :spıepuełs)
Problem 4

- Consider revisiting Lesson 1, Activity 1. is purchased.
Suggider drawing ir ate to Suggested Next Steps: If students struggle .
directly to the work students did in Lesson 1: Turtle Time Trials.
the appropriate relationship between the lines given the problem context and various axis labels. This problem corresponds most
In this problem, students recognize the meaning of slope in graphs without a scale. Students attend to precision when they decide on
(Standards: 8.EE.B.5, MP6)
Problem 3
Unit 8.3, End Assessment Summary and Rubric: Form A
 they can combine those expressions to represent the given context.
- Consider asking students to write separate expressions for the amount of money spent on beans and rice, then ask them how Suggested Next Steps: If students struggle ...
corresponds most directly to the work students did in Lesson 10: Solutions.
Students reason abstractly and quantitatively when they use proportional relationships to solve problems in context. This problem
In this problem, students recognize the relationship between the solutions of a situation in two variables, its equation, and its graph.
(Standards: 8.EE.B, 8.EE.B.5, 8.F.B.4, MP2)

Problem 6

- Consider revisiting Lesson 3, Warm-Up and Activity 1. the slope.
- Consider asking students to determine the slope in each representation, then ask them which units they should use to measure

This problem corresponds most directly to the work students did in Lesson 3: Posters. sense of the different data representations to determine a measure of growth that can be compared between the three situations. In this problem, students compare different proportional relationships given different representations of them. Students must make
(LdW 's'g'ヨヨ'8 :spıepuełS) Problem 5

- Consider revisiting Lesson 5, Activity 3.
how they can combine the two to represent the total bill.

students did in Lesson 5: Flags.
with mathematics as they represent the given context as an equation and a graph. This problem corresponds most directly to the work
In this problem, students represent a situation with an initial value and rate of change with an equation and a graph. Students model
(Standards: 8.EE.B, 8.F.B.4, MP4)
Problem 7
Unit 8.3, End Assessment Summary and Rubric: Form A

łou p！0	－รәэ！๐чจ әлош ло омұ słગəəəs ұиәрпłS ＇sə๐！๐ч๐ ґәәноэи！słэәәәs Кןио ұиәрпłS		－әэ！ฺочэ ґәәлиои！әио Ł0 પł૦q słכə｜əs łuәpnłs Kue ұәәəs łou səop pue səэ！очэ џәәдио ә૫ł 	Э әэ！๐૫๐ • \forall әэ！๐ч๐ • －sәэ！очэ ұәәноэи！Kue ¡әәәs 孔ou səop pue ૫łoq słગ્｜əs ұuәpnłS	$\begin{gathered} 9 \mathrm{dW} \\ \mathrm{G}^{\prime} \mathrm{g}^{\prime} \exists \exists \cdot{ }^{\prime} 8 \end{gathered}$	ε
7dшәџе łou p！0	łunome рәseəдэи！s！ч 			－К！！реәұs рәsвәләә s！̣duәW u！әגпңеләduәł łsəцธ！！әц」		Z
－7duәュе tou p！O	－รәэ！！чэ әош ло ОМұ ડłગəəə ұนәpnłS －səэ！๐чว 	әәэฺ๐чจ ฉэәиоэи！ әио pue ә૫ł $\ddagger 0$ әио słขə｜əs ұuәpnłs	 Ło әио słગəəəs łuәpnłS		8＇ヨヨ＊8	\downarrow
0	1	τ	ε	七		
	6u！uu！ 6 ®g	6u！doןəләа	6u！	бu！pəəэxヨ／6u！łəәW	prepuets	melqodd

＇qduәıte ıou P！	－6u！̣uełsıəри 10 әэиәр！лә чеәМ	‘૫łOq łou ¡nq ‘ədo｜s ло ұdәэəəృu！－К ә૫ł рә！！！！uәр！К｜łәәцоэ әлеч Kew I－$=К$ ィо $x \tau=К$ әџ！мм очм sұuәрпłS ＇Sı0дд ұueכ！！！uß！̣s पł！м ‘＇bu！puełsıәpun ןenłdәכиоэ әұәןdmoэu！ łnq бu！̣doןəләр е smous yдом	ue әреш ұnq ‘łdәэдә孔и！－ К ло әdoןs әцł рә！！！！uәр！ К｜†כәдоэ әлец Кеш $I-x-=К 10 \Sigma+x=К$ әџ！мм очм słuәpnts ＇sıолә лоu！w प！̣м ＇Kəəsem pue 6u！̣puełsıәрй ןenłdәэuoэ sмочs yдом	$I-x=K \bullet$ †эәдоэ pue 	$\begin{gathered} \angle d W \\ g^{\prime} \exists \exists \cdot 8 \end{gathered}$	ع＇も
7duәə łOu P！	－6u！̣puełsıəрй 10 әэиәр！лә уеәМ	－4ヤOq әчł рә！！！！иәр！К｜ұәәлиоэ әлец кешォ $=К$ ло x_{Z} К $^{-}=К$ әұ！̣м очм słuәpnłs ＇sıoגə ןепıддәиоэ әұәןdmoэи！ łnq 6uidoןəләр е sмочs улом	＇sədo｜s әл！ұебәи pue әл！̣！！sod иәәмұәq әэиәдәщ！р әцъ puełsıəрй әчъ рә！！！！иәр！К Кұэәдоэ әлец Кешォ $+x Z=К$ әџ！мм очм słuәpnts ＇SıOגə лои！ய पІ！м ןenłdәouoэ smous yоом		$\begin{gathered} \angle d W \\ g^{\prime} \exists \exists \cdot 8 \end{gathered}$	でも
7duәə łOu P！	－6u！̣puełsıəpun \nvdash әэиәр！лә чеәм	－słuәsəдdәл әпןел цэеә ұецм риеґsıәрй әчł Чł！м גе！！！шеғ әq Кеш $\nabla+x_{\nabla}=К 10 x_{\nabla}=К$ әџ！мм очм słuәрпłS ＇sıouə ןепıдәэиоэ әґәןdшоэи！ ұnq 6uidoןəләр е sмочs yлом	 puełsıəрй дои кеш т ло $\succsim=x$ әт！мм очм słuәpnłS ＇久ıəłsem pue סu！̣puełsıəpun ןепłdәэuoэ sмочs yдом	$\succsim=К \bullet$ ＇ఛวәגоэ pue 	$\begin{gathered} L d W \\ g^{\prime} \exists \exists \cdot 8 \end{gathered}$	L＇も
0	－	Z	ε	t		
	6u！uu！6eg	6u！doןəィəด	6u！uoeosdd ${ }^{\text {d }}$	6u！pəəэхヨ／6u！${ }^{\text {a }}$	prepueis	uejqodd

7dmәни tou P！O	－uo！̣eue．dxә ue ұnout！м до uo！̣еиеןdxə ¡эәлоэи！ цІ！М גәмsue เэәлоэи	－uo！̣enbə s، ε дəuuny sem 乙 дәuйч децł рәрпןэиоэ pue 乙 pue L sıəuuny рәлеdmoо Кןио әлец кеш乙 дəuuny రu！！əəəəs słuәpnłS ＇sәдед Бu！̣әдdıәци！ Чң！М дәмSUе ұэәдоэи｜ ＇uo！̣еиеןdxә әұәןdmoэu！ 	ə！！u ıəd səŋnu！u fo ıəqunu Ł גəuuny Бu！̣эəəəs słuәpnts ＇uo！̣еuе．dxə әұәןdmos pue －uoļ̣eueןdxә u！	＇səənu！̣u 8 Кəəлә ıәuuny pue＇səənu！̣u s،Z גəuuny＇sə⿰七nu！u 0I Кıəлә ə！！ய L S！əfe» s،L dəuuny ε ıəuuny • －イум suieןdxə pue uо！！！епnb әцł sıәмsue K｜llıssəəoวns ұuəpnts	$\begin{gathered} \text { LdW } \\ \text { G'g' }^{\prime} \exists \exists \cdot 8 \end{gathered}$	G
7dməュе łou p！0	－6upuełsıәpun 10 әЈиәр！лә уеәМ	＇słuәsəдdəィ әпןел цэеә ұечм puełsıəpun әұ！им очм słuәpnłS ＇sıодәә ұиеэ！！！uи！！ पఫ！М ‘దи！̣puełsıəpun бu！̣dоןәләр е sмочs улом	$\cdot[$［би！чłәшоs $]=К$ чұ！м иәџо ұечұ ןеэәд Кеш т до $\star=К$ әч！мм очм słuәриıs ןenłdәәuoo smous yдом		$\begin{gathered} \angle d W \\ g^{\prime} \exists \exists \cdot 8 \end{gathered}$	ナ゙も
0	\downarrow	Z	ε	t		
	6u！	6u！̣doןəләа	6u！	6u！pəəэxヨ／6u！${ }^{\text {a }}$	paepuers	шә¢qodd

\forall سл⿵ ヨ ：

ł0u p！	－6u！puełsıәрй „о әЈиәр！лә уеәМ	－d！̣suo！̣民｜әд иәл！ 6 ә૫ł uo pəseq łou s！łnq әu！ן e səpn｜כu！ұецł чdeגб ә｜qeuoseәу ＇s．ouд ұnq Suildoןəәәр е sмочs улом	＇ңэәлиои！ әપł moィ słu！od әәдцł әчъ К｜ио su！̣еұиoo чdел ＇sıддә pue бu！puełsıəpun ןentdəouoo sмочs yıом	ґэәлоэ рие 	$\begin{gathered} Z d W \\ g^{\prime} \exists \exists \cdot 8 \end{gathered}$	$\varepsilon \times 9$
7duшәне tou pIO	＇ұи！едияsuoo 05 $\angle \$$ ә૫ł дәр！suoว дои sәoр уорм ＇6uupuełs．apun „о әоиәр！лә чеәМ	－sıouə łnq Suildoןəләр е sмочs yлом	＇s．0גə ıои！ш पд！М ‘イıəısem pue 6u！̣位sıəрй ןenłdəәuoう smous yиом	ue uo pəseq uo！̣enbə ұәәлоう $S^{\circ} L=\ell I+q S^{\circ} I$ ＇ఛวәлоэ pue 	$\begin{gathered} \text { ZdW } \\ \nabla^{\circ} G^{\prime} \exists^{\prime} 8 \end{gathered}$	て＇9
7duшәне łOU P！	＇ұu！eдs suoo 05 $\angle \$$ әЧł дәр！suoว łou səop yıM ＇6u！puetsıəpun јо әЈиәр！лә уеәМ	 ＇sıouə ұnq Suildoןəләр е sмочs улом	ұәдиоо sмод әәдчł ґо омュ ＇s．ouә pue 6u！puełsıəpun ןenidəәuoo sмочs yıом	（0 ¢ ¢）• （ ε＇ε ）• （9＇L）• ＇џәшиоэ рие 	$\begin{gathered} Z d W \\ c^{\prime} g^{\prime} \exists \exists \cdot 8 \end{gathered}$	L＇9
0	\downarrow	乙	ε	t		
	6u！uu！̣əəg	6u！doןəләа	6u！чэeorddv	бu！pəəэxヨ／6u！əəəW	paepuets	məq0］d

7dme»е łou P！O	„о әэиәр！лә чеәм	¡fsoo бuluplıs ә૫ł әрnןગu！ł૦u səop łnq ‘słu！̣od ұueләןə әЧł „О IIe MOYS Ot łOU se os uəsouo ＇sıодә ұиеэ！！！uб！s प！！М ‘欠u！̣puełsıəpun łnq రu！̣оןәләр е sмочs улом	‘әןอэs uәsoчว ә૫ł U！̣！！̣М স！！pinom łeцł Słu！̣od Ło łəsqns e Kןuo suịezuoo ydero ＇sıoддә доu！̣ш u！̣ełuoo səjeวs s！xe әчł łnq －sıодә pue 6u！puełsıəpun ןセnłdәэиоэ smoys yıom	‘sцłuou до sıəqunu әочм би！ұиәsəдdə słu！̣od to Kןuo łs！suoo Kew t！ 10 ‘əu！！snonu！̣uo e әq Кeس чde」Б әц」 ‘sцłuou 七Z әЧł oł dn \ddagger soo әцł sмочs pue 	$\begin{gathered} \dagger \mathrm{d} W \\ g^{\prime} \exists \exists \cdot 8 \end{gathered}$	$\varepsilon ' L$
7duәәце łOU P！	－6u！̣puełsıəpun ґо әЈиәр！лә чеәМ	＇גеәu！！s！d！̣чsuo！̣е｜әд әЧъ ґецł әz！̣ибоэә» кеш （ұиәјел！̣nbә ло）$x_{002}+0 \mathrm{~S}$ әұ！！м очм słuәpnłs ＇sıодә ұиеэ！！！uб！ પұ！м＇రи！̣puełsıəpun ןenłdәэиоэ әұәןдшоэи！ łnq 6uildoəәләр е sмочs yом	＇s．ддлә pue бu！puełsıəpun ן smous yдом	（ұиәјел！пивә ィо） $x_{0 S}+00 Z$ †эәлио pue әұәઇdmo๐ s！ч1оМ	$\begin{gathered} \succ \mathrm{d} W \\ \nabla^{\bullet} \mathrm{g}^{\prime} \exists^{\prime} 8 \end{gathered}$	でし
＇7duәңне ł0u p！ 0	－6u！̣puełsıəpun „о әЈиәр！лә чеәМ	＇ł！pelqnop иәЧł рие પłuow I IOł łSOO әчł рәұеןпэןә әлец Кеш 00S\＄ә！！мМ очм słuәpnłS ＇6u！̣puełsıəpun ןenłdәэиоэ әґәןdшoэи！ 	－sıoдл pue 反u！puełsıəpun ןепłdәэиоэ sMous yıom		8＇ヨヨ＊8	－＇L
0	1	Z	ε	t		
	6u！uu！ $\mathbf{c o g}^{\text {a }}$	6u！doןəләа	6u！	бu！pəəэхヨ／6u！ŋəәW	paepueis	melqodd

7dme»е ł0u p！	－6u！puełsıәрun $\ddagger 0$ әэиәр！лә чеәМ	‘sudeı6 әцł әлеdmoэ łou səop łnq łxəұuoว ә૫ł səssnəs！p əsuodsə๖્પ ＇sıодә ұиеэ！！！uи！ бu！doןəләр е sмочs yом	－yıoq ¥ou ұnq ‘ұиәәән！ 10 әшеs ә૫ł әq pןnom sydeגб ә૫ł моц səq！ుəsəp Kןuo əsuodsəy ＇sıoдə pue 6u！puełs．əәpun ןenıdәәuoo smous yдом	＇дə૫łО ә૫ł „о ио！̣е｜sueגł е s！ әио әәцłо чэеә оұ ןәןелед ә૫ł әлец Кәцц ‘słdәЈдәцu！ ןеэ！рәл ұиәдән！р әлец Кәц। • 	8＊ヨヨ＊8	ナ゙L
0	1	乙	ε	t		
	6u！uu！̣бəg	6u！doןəләа	6u！	бu！pəәэхヨ／бu！əәәW	paepueis	melqodd

\qquad

Problem 1

Which of these expressions is equivalent to $3(x-2)$?
A. $3 x-6$
B. $3 x-2$
C. $3 x+2$
D. $3 x+6$

Problem 2

Which of these expressions is equivalent to $-2(x-5)$?
A. $-2 x-5$
B. $-2 x+5$
C. $-2 x+10$
D. $-2 x-10$

Problem 3

For each expression, combine like terms and write an equivalent expression with the fewest number of terms.

3.1	$4 x+3 x$	3.2	$3 x+5 x-1$
3.3	$5+2 x+7+4 x$	3.4	$4-2 x+5 x$

\qquad

Problem 4

For each equation, find a value for x that makes the equation true.

\qquad

Problem 5

For each equation, determine whether $x=2$ is a solution.

5.1	$-2(x-4)=4$	$\frac{26}{x}=13$

1. A. $3 x-6$
2. C. $-2 x+10$
$3.17 x$
$3.28 x-1$
$3.3 \quad 6 x+12$
$3.44+3 x$
$3.5 \quad 13 x-7$
$4.1 \quad x=36$
$4.2 x=\frac{17}{2}$ (or equivalent)
$4.3 x=\frac{5}{2}$ (or equivalent)
$4.4 x=6$
$4.5 x=9$
$4.6 x=8$
5.1 Yes, because $-2(2-4)=4$.
5.2 Yes, because $\frac{26}{2}=13$.
5.3 No, because (-3.8) $\cdot 2 \neq-7.4$.
5.4 No, because $4(2-1)-3(2-2) \neq-8$.

Unit 8.4, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problem 3 before Lesson 2
- Problems 1, 4, and 5 before Lesson 3
- Problem 2 before Lesson 6

Problem 1

(Standard: 6.EE.A.3)
This question is intended to surface what students already know about the distributive property. This content first appears in Lesson 3: Balanced Moves, where students can use the distributive property to support them in solving equations.

Suggested Next Steps: If students struggle . . .

- Plan to review the distributive property before Lesson 3, Activity 1. Consider using hanger diagrams as a context for reviewing the distributive property. Another opportunity to practice using the distributive property appears in Lesson 7.

Problem 2

(Standard: 6.EE.A.3)

This question is intended to surface what students already know about the distributive property, especially involving multiplication with negative numbers. This content first appears in Lesson 6: Strategic Solving, where students describe strategies for solving linear equations with one variable that have different features or structures.

Suggested Next Steps: If students struggle . . .

- Plan to revisit this question before Lesson 6. Consider inviting students to choose a few values to substitute for x to verify their choice of equivalent expressions. (Note: This method is not sufficient for judging equivalent expressions.)

Problem 3

(Standard: 6.EE.A.3)
This question is intended to surface what students already know about combining like terms. This content first appears in Lesson 2: Keep it Balanced, where students critique the reasoning of others in solving a linear equation with one variable.

Suggested Next Steps: If students struggle . . .

- Plan to ask them to write expressions in Lesson 4 in different ways, using the hanger diagram to emphasize that $x+5 x$ is equivalent to $6 x$. Each hanger diagram in the lessons offers an opportunity to write equivalent expressions that support students in combining like terms.

Unit 8.4, Readiness Check Summary

Problem 4

(Standards: 7.EE.B.4.A, 6.EE.B.7)

This question is intended to surface different strategies students use to solve equations with one instance of a variable. This content first appears in Lesson 3: Balanced Moves, where students make connections between changes on hanger diagrams and moves that create equivalent equations.

Suggested Next Steps: If students struggle .

- Plan to revisit this item before Lesson 4 and after students have worked with the hanger diagrams. Work with the hangers should support students with making decisions about equation-solving moves.

Problem 5

(Standards: 6.EE.B.5, MP8)
This question is intended to surface what students already know about what it means for a value of a variable to be a solution to an equation. Students look for an express regularity in repeated reasoning as they substitute $x=2$ and apply the order of operations in each problem. This content first appears in Lesson 3: Balanced Moves, where students first solve equations written with variables.

Suggested Next Steps: If students struggle . . .

- Beginning in Lesson 3, Activity 1, invite them to check the solutions they calculate by substituting values back into equations. Emphasize that a solution to an equation is a value for the variable that makes the equation true.
\qquad

1. Here is a balanced hanger diagram. If a square weighs 12 grams and a circle weighs 9 grams, what does a triangle weigh?
A. 2 grams
B. 3 grams
C. 4 grams
D. 5 grams

2. Select all of the equations that are true for all values of x.
$\square 7 x=7 x$
$\square 10-19+12 x=4 x-9+8 x$$x \cdot 2 \cdot(-6)=x \cdot 3 \cdot 4$
$\square \frac{1}{2}(6 x+5)=3 x+2.5$

$$
x-6=6-x
$$

Liam, Anika, and Sai are each solving the same equation for x. Describe the first step they each make for the equation.

Original equation: $12 x+4=20 x-12$

3.1 The result of Liam's first step was $4=8 x-12$.	3.1 The result of Anika's first step was $3 x+1=5 x-3$	3.1 The result of Sai's first step was $12 x+16=20 x$

Unit 8.4, Quiz: Lessons 1-8
Name \qquad
Imani and Esteban each have different audiobook club memberships:

- Imani's book club costs $\$ 10$ for the membership and then $\$ 5$ per book.
- Esteban's book club costs $\$ 16$ for the membership and then $\$ 2$ per book.
4.1 After listening to 4 audiobooks, whose book club costs more?

Explain how you know.
4.2 After how many audiobooks will both book clubs cost the same total amount?

Solve each equation. Explain or show your reasoning.

| 5.1 | $1 d+12=14-2 d$ | $4(2 r+5)=10 r$ |
| :--- | :--- | :--- | :--- |
| | | |
| | | |
| $5.2(5+x)-1=3(x+3)$ | | |

1. Here is a balanced hanger diagram. If a square weighs 12 grams and a circle weighs 9 grams, what does a triangle weigh?
A. 2 grams
B. 3 grams
C. 4 grams
D. 5 grams

2. Select all of the equations that are true for all values of x.
$\checkmark 7 x=7 x$
$\checkmark 10-19+12 x=4 x-9+8 x$
$\square x \cdot 2 \cdot(-6)=x \cdot 3 \cdot 4$
$\checkmark \frac{1}{2}(6 x+5)=3 x+2.5$$x-6=6-x$

Liam, Anika, and Sai are each solving the same equation for x. Describe the first step they each make for the equation.

Original equation: $12 x+4=20 x-12$
3.1 The result of Liam's first step was $4=8 x-12$.

Responses vary. Liam subtracted $12 x$ from each side.
3.2 The result of Anika's first step was

$$
3 x+1=5 x-3
$$

Responses vary. Anika divided each term in the equation by 4 .
3.3 The result of Sai's first step was
$12 x+16=20 x$.
Responses vary. Sai added 12 to each side.

Imani and Esteban each have different audiobook club memberships:

- Imani's book club costs $\$ 10$ for the membership and then $\$ 5$ per book.
- Esteban's book club costs $\$ 16$ for the membership and then $\$ 2$ per book.
4.1 After listening to 4 audiobooks, whose book club costs more?

Imani's book club
Explain how you know.
Responses vary.
After 4 books, Imani's book club total is $\$ 30$ and Esteban's total is \$24.
4.2 After how many audiobooks will both book clubs cost the same total amount?

2 audiobooks

Solve each equation. Explain or show your reasoning.

Unit 8.4, Quiz: Summary and Rubric
 on the same side of the equation before combining them． Consider reminding students of valid balancing moves．Encourage students to use balancing moves to group like terms together
 rectly to the work students did in Lesson 5：Equation Roundtable．
this problem，students calculate a value that is a solution to a linear equation with one variable．This problem corresponds most
（9：L＇0＇ヨヨ・8：：prepuets） －Consider asking students to determine the cost after 1 book，then 2 books，etc．
－Consider revisiting Lesson 8，Activity 1 ．
Problem 5 Suggested Next Steps：If students struggle ． When Are They the Same？ determine and compare variable quantities in context．This problem corresponds most directly to the work students did in Lesson 8 In this problem，students solve a problem in which two conditions are equal．Students reason abstractly and quantitatively as they
（Standards：8．EE．C．7，MP2）

Problem 4

 Suggested Next Steps：If students struggle．．．most directly to the work students did in Lesson 4：More Balanced Moves．
In this problem，students describe the reasoning of others in solving a linear equation with one variable．This problem corresponds
（EdW＇L’O‘ヨヨ＇8 ：spıepuełS） Problem 3
Unit 8．4，Quiz：Summary and Rubric －Consider revisiting Lesson 4，Activity 1.
Consider reminding students of valid balancing moves，then ask them which ones were used by Liam，Anika，and Sai．

－дdшәџе tou p！	－6u！pueısıәри рәң！ш！！smoчs צגом	－x I әчł ьо ри доб ше！7＇＇б・ヨ x0Z pue xZI әчд рәи！qшол ше！${ }^{\prime}$＇6・ヨ －sıодә ұиеэ！！！uи！！ ЧІ！М＇6u！̣puełsıәрй әұәрыسоэи！ ұnq ถu！̣dəəләр e smous yrom	－әр！s чэеә шод ZI งлодә ıоulu पł！М ‘＇6u！puełs．əәрй ןепłdәouoo sMOUS צ10M	‘әр！s чэеә шод xZI рәдгедя †эәдио pue әұәןdmoo s！чиоМ	$\begin{gathered} \varepsilon d W \\ \qquad C^{\circ} \exists \exists \exists 8 \end{gathered}$	－＇$¢$
－．dmәие łou p！0	＇səэ！๐чэ ฉэәиоэ әшоs ч！！м 	＇әэ！ฺчэ ґэәдлоэи！ əuo səpn｜วu！ osje łnq səગ！o૫ว ұэәлоэ омұ до әио	－әэฺочэ ґэәлиэ๐и！әио ＇sәэ！！чэ ұэәдоэи！ ou pue səว！oчว ұэәдоэ омұ до әио			乙
łou p！a	－Би！и！ешәд sәןБие！и 乙 Би！леә ‘әр！s цэеә шоц әбиеид е рәлошәл әлец Кеш＂sшелб Z＂， ұวәәs очм sұuәрпıs＂ $6 \cdot \exists$ 			sweג6 ع｀g • 	$\begin{gathered} \angle d W \\ \prime \bigcirc \cdot \exists \exists \cdot 8 \end{gathered}$	\downarrow
0	1	乙	ε	t		
	6u！uu！̣əəg	6u！doןəләа	6u！	бu！pəəэхヨ／6u！ŋəәW	prepuets	шә¢q0．d

o！̣qny pue Kıemuns ：z！no＇t‘8

＇ұduәәце ¥OU P！	－6u！puełsıәрй рәң！ш！！ SMOYS yооM	әлош stsoo qno yooq s！uemi งлодә ұueכ！！！uб！s पІ！M 6u！puełsıəрии ә્히dwoэu！sмочs צдоМ	＇もZ\＄s！Iełoł s，ueqəłsヨ pue 0e\＄S！ןełoł qno yooq s！ıuewi＇syooq t rəłt ＇sıодә әшоs पł！м 6u！̣puełsıәрй ןenłdəouos sMOपs yı0M	＇もZ\＄s！Iełol s، ueqəəsヨ pue 0e\＄S！letot qпј уооq s！！ueш！ ‘syooq t ıәұ \downarrow yooq s！！uew＇＂ 6 ・ヨ ЧІ！М дәм	$\begin{gathered} \text { ZdW } \\ \qquad \cdot 0 \cdot \exists \exists \cdot 8 \end{gathered}$	L＇t
＇ұduәәце łOU P！	－6u！̣puełsıәрй рәџ！ш！ smous yıom	＇ZL әчд ло р！доб ！es＂6•ق ＇ZI әцł рие ゅ әцł рәи！qшол ！es＇ 6 ・ヨ －sıодә ұиет！！！uб！s पł！̣М ‘＇6u！̣puełsıәри бu！̣doןəләр е sмочs удом	†t pue zI pəppe！es＂ 6 ・ヨ ＇sıдлә 	әәр！s цэеә oł ZI pappe ！es＂6・ヨ †эәдио pue әұәןdmoo s！чиом	$\begin{gathered} \varepsilon d W \\ \qquad \cdot D^{\circ} \exists \exists \cdot 8 \end{gathered}$	$\varepsilon^{\prime \prime} \varepsilon$
7duәə ¡0u p！	－6u！̣иеұsıәрии рәџ！ய！！ SMOYS yоㅆ	－sıəqunu дәןешs ц！！м ио！депbә әчд әдомм еу！иヲ＂6•ق －sıодә ұиет！！！uб！s бu！̣оןәләр е sмочs yлом	чэеә рәр！м！р еу！и丬＇ 6 •ق งлодә ןentideouos sMOYS y10M	ә૫ł и！шләґ чэеә рәр！ィ！р еу！и丬＂6・ヨ ¡эәдоэ 	$\begin{gathered} \varepsilon d W \\ \hdashline \cdot \circ \cdot \exists \exists \cdot 8 \end{gathered}$	て＇દ
0	\downarrow	Z	ε	七		
	6u！uu！ 6 eg	6u！doıəләа	6u！upeordd \forall	6u！pəəวхヨ／6u！łəәW	prepuets	melqord

qduәュе ı0u P！	－6u！puełsıəрии рәң！ய！！ smous you	sәsəцдиәлед әЧł и！шиәł łS！！！әЧł Оł п әЧł рәғпq！ид！！әлец кеш $\frac{\mathrm{Z}}{\mathrm{S}}=\ell$ әт！им очм słиәрпіs＂＂ 6 ＇sıодә ұиеэ！！！uи！！ Ч！！М＇6u！puęs．əәpun бuidoןəләр е sмочs yдом	＇sıодә ןenłdəouoo sMoys you		ダじう｀ヨヨ＊	Z＇G
－dшәәе ıOU P！	－6u！puełsıəрии рəŋ！！u！ sMOUS YイOM	uoџə әу！！рәрре әлец кеш 9Z－ әұ！им очм słиәрпłs＂${ }^{6}$ ・ヨ ＇sıодәә ұиеэ！！！uи！！s पł！M ‘＇6u！pueıs．əәpun ठu！̣doןəләр е sмочs улом	＇p 1оя Z $=p$ б Ки！л／оs лолә ие әреш әлец кеш $\frac{Z}{\varepsilon}=p$ әұ！им очм słиәрпнs＂6・ヨ งлодә ןenłdəouos sMOYs y10M	$\frac{\varepsilon}{z}=p \cdot 6 \cdot \exists$ ¡эәлио pue 	8＇L゙う｀ヨヨ＇8	L＇S
	－6u！puełsıəрии рәң！！！！ smous you	‘səээıd ұиәлән！ Кәцд әsпеэәя ұипоше әшеs ＇sıодә ұиет！！！uб！s Ч！！м ‘＇దu！puełssəәpun бu！̣dоןəләр е sмочs чиом	уооq чъоq иәчм дипоше әчъ рәц！шдәәәр әлец кеш ＇sıoдә ןenłdəәuos sMous yı0M	syooqo！pne Z＂ $6 \cdot \exists$ ґэәлио рие 	$\begin{gathered} Z d W \\ ‘ \because ` \exists \exists 8 \end{gathered}$	でも
0	1	Z	ε	t		
	6u！uu！ $\mathbf{c o g}^{\text {a }}$	6u！doןəләа	6u！	6u！pəəэxヨ／6u！ŋəәW	prepuers	merqodd
ouqny pue Kıemuns ：z！no＇t‘8						
	Gu!pueqsıәрй рәџ!ய!! sMoys youm	‘ио!ұепbә әч7 „о әр!s みә әцł ио sшиәұ әцł әлец кеш $\frac{\mathrm{S}}{\mathrm{LI}}-=x$ әұ!им очм sұuәрпłs " $6 \cdot \exists$'s.одә ұиеэ!!!ub!s पұ!М '6u!̣puełsıәpun бuildoןəләр е sмочs удом	-әмиебәи әцд әчҰ рәлол әлец Кеш т $=x$ әт!им очм słиәрпіs " " 6 'sıouә ıои!ш чұ!м '6u!pueұs.əәpun ןenłdәouos smous yомM			$\varepsilon \cdot \underline{ }$
:---:	:---:	:---:	:---:	:---:	:---:	:---:
0	\downarrow	Z	ε	t		
	6u!uu!̣бəg	6u!doןəләа	6u! ${ }^{\text {ceradd }}$ -	бu!pəәэхヨ/бu!əәәw	paepuers	mə¢q0,
э!ıqny pue Kıewuns :z!no ‘‘‘8 t!un
\qquad
1. Here is a balanced hanger diagram.

A circle weighs 3 grams and a square weighs 2 grams. What is the weight of a triangle?
A. $\frac{8}{3}$ grams
B. 10 grams
C. 16 grams
D. 5 grams

2. A system of two equations has the solution $(6,2)$. Here is a graph of one of the equations.

What could the other equation be?
A. $y=4 x-2$
B. $y=\frac{2}{3} x-1$
C. $y=\frac{1}{2} x-1$
D. $y=-\frac{3}{2} x+6$

3. Which system of equations has exactly one solution?
A.
$y=3 x+1$
$y=-3 x+7$
B. $\begin{aligned} & y=3 x+1 \\ & y=3 x+7\end{aligned}$
C. $\begin{gathered}y=x+10 \\ 2 y=2 x+20\end{gathered}$
D. $\begin{aligned} & y=-x+10 \\ & y=-x+12\end{aligned}$

Explain your thinking.

Solve these equations.

5. Solve this system of equations. Write your answer as an ordered pair (x, y).

$$
\begin{aligned}
& 3 x+4 y=36 \\
& y=-\frac{1}{2} x+8
\end{aligned}
$$

\qquad
Josiah and Kiri are each saving money.

- Josiah starts with $\$ 100$ in savings and saves $\$ 5$ per week.
- Kiri starts with $\$ 40$ in savings and saves $\$ 10$ each week.
6.1 After 4 weeks, who has more money in savings?

Explain your thinking.
6.2 After how many weeks will Josiah and Kiri have the same amount of money in savings?

Use the graph if it helps with your thinking.

\qquad

Tay is making jam. Their recipe calls for 3 strawberries for each apple.
7.1 Complete the table so that each row matches Tay's recipe.

Apples, x	Strawberries, y
	3
8	15
3	

7.2 Tay used 52 pieces of fruit altogether.

They wrote two equations, where x is the number of apples and y is the number of strawberries:

$$
\begin{gathered}
y=3 x \\
52=x+y
\end{gathered}
$$

How many apples and strawberries did Tay use?
Show or explain your reasoning.

Reflection: Select a question and answer it below.What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.Describe or show one strategy you found helpful in this unit.
Name any students who helped you with this strategy.What else would you like your teacher to know?

1. D. 5 grams
2. C. $y=\frac{1}{2} x-1$
3. A. $\begin{aligned} & y=3 x+1 \\ & y=-3 x+7\end{aligned}$

Explanations vary. Each line in this system of equations has a different slope, so I know they are not parallel and they are not the same line. They would intersect at exactly one point.
$4.1 \quad x=\frac{9}{5}$ (or equivalent) $4.2 x=6$ $4.3 x=-3$
5. $(4,6)$
6.1 Josiah

Explanations vary. Josiah has $\$ 120$ because $120=100+4 \cdot 5$. Kiri has $\$ 80$ because $80=40+4 \cdot 10$.

6.2 12 weeks

Explanations vary. The number of weeks is the solution to $100+5 n=40+10 n$. The solution is $n=12$. After 12 weeks, Joshiah and Kiri each have $\$ 160$ in their savings accounts.
7.1

Apples, x	Strawberries, y
1	3
8	24
5	15
3	9

7.2 13 apples

39 strawberries
Explanations vary. Solving the system of equations using substitution means $52=x+(3 x)$. Then $52=4 x$, so $13=x$. Substituting $13=x$ into $y=3 x$, I found that $y=39$.
• K K！！！！！

 Lesson 12：Line Zapper． In this problem，students recognize what a solution to a system of equations means．Students use the structure of the coordinate
plane to reason about solutions to equations in two variables．This problem corresponds most directly to the work students did in
（LdW ‘甘＇8＇つ‘ヨヨ’8 ：spıepuets）
Problem 2 －Consider revisiting Lesson 2，Activities 1 and 2. －Consider asking students to sum all known quantities on each side，then all unknowns，and write an equation using their sums． Suggested Next Steps：If students struggle ．
the work students did in Lesson 2：Keep It Balanced．
In this problem，students determine the weight of an unknown object using a hanger diagram．This problem corresponds directly to
（Standard：8．EE．C．7）
Problem 1

L	G	乙	†	ε	9 ＇	smejqodd
О $8 \cdot 0 \cdot \exists \exists$ 8	タ＊8•О・ヨヨ＊8	$\forall \cdot 8 \cdot 0 \cdot \exists \exists>8$		＊＇し゚О・ヨヨ＊8	L•・ヨコ・8	prepueis

\forall سл⿵」 ：
 side of the equation before combining like terms

directly to the work students did in Lesson 4: More Balanced Moves.
In this problem, students calculate a value that is a solution to a linear equation with one variable. This problem corresponds most

Problem 4

- Consider revisiting Lesson 13, Activity 1.

corresponds most directly to the work students did in Lesson 13: All, Some, or None? Part 2
In this problem, students determine whether a system of equations has one solution, infinitely many, or no solutions. This problem
(Standard: 8.EE.C.7.A)
Problem 3

- Consider asking students to determine the savings after 1 week, 2 weeks, etc. Then have students use their work to determine
Suggested Next Steps: If students struggle . . .
work students do in Lesson 9: On or Off the Line? abstractly and quantitatively as they set up and solve equations representing a context. This problem corresponds most directly to the In this problem, students determine a point that satisfies two relationships simultaneously using a table or a graph. Students reason
(ZdW 'L`0'ヨヨ'8:sprepuełs)
Problem 6
- Consider revisiting Lesson 13, Activity 1. equal to each other.

Suggested Next Steps: If students struggle . . .
work students did in Lesson 13: All, Some, or None? Part 2
In this problem, students calculate values that are solutions to a system of equations. This problem corresponds most directly to the
(Standard: 8.EE.C.8.B)
Problem 5

did in Lesson 9: On or Off the Line? and Lesson 14: Strategic Solving Part 2.
In this problem, students calculate a solution to a system of equations in context. It corresponds most directly to the work students
(0'8'0'ヨᄏ'8: :prepuets)
Problem 7

－duәə е łou p！o	 әлец I $-x \frac{\varepsilon}{Z}=К$ ұәәәө очм sұиәрпłS әлец кеш $Z-x_{\ddagger}=К$ дәәәь очм słиәрпı $\frac{\varepsilon}{Z}-$ ృ0 әdoןs е pəsn łnq ‘әu！！әчł имедр әлец кеш $9+x \frac{Z}{\varepsilon}-=\kappa$ ұәәәә очм słиәрпıS			$\tau-x \frac{Z}{I}=\kappa \bullet$	$\begin{gathered} \text { LdW } \\ ‘ \forall 8^{\prime} \bigcirc \cdot \exists \exists \cdot 8 \end{gathered}$	Z
ł0u p！	－дәцłәбоґ әчł рәрре sшeג6 9L ґכəәә очм słuәpnłS $\cdot x 9=9 І \text { uo!̣enbə әчұ рәлюоs }$ sweגб 9І sәрпןэи！ләбиеч әЧł łецł рәэ！ңои －би！̣ụешәд sшeגб 0I peч цłоq moィ sədeys ұuәןел！̣nbə әЧł рәлошәд 			sment s •	L｀О＇ヨヨ＇8	1
0	\downarrow	Z	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！чэeordd \forall	6u！pəəวхヨ／6u！łəəw	paepuets	melqodd

łou p！	$\ddagger 0$ әэиәр！лә уеәМ	＇sıoдлә ן sәрпןи！чиом ұиәриłя －sıодә ұиео！̣！uб！s 4！！̣ ‘＇6u！̣puełsıəpun ןentdәэиоэ әұәןdmoэu！ ұnq 6u！̣doəəлр е SMOUS yоом	－долә ио！̣еןпэןэ дои！！ш е sәрпןэu！уィом ұиәрпłS ＇sıoдл pue bu！puełsıəpun ןenłdəכuoo smous yıом	$9=x$ 	8＊L｀｀｀ヨゴ8	て＇も
	－бu！̣puełsıәрun $\downarrow 0$ әэиәр！лә уеәм	＇sıoдәә ןепұдәоиоэ әшоs sәрпןји！צдм ұиәриłS －sıодә ұиео！̣！uб！s ұnq চu！̣doəəләр e smous you	‘додә ио！̣еןnэןеэ дои！̣ш е sәрnןэu！уィом ұиәрпłя －sıoдə pue 6u！puełsıəpun ןenłdəouoo smous yıом	$\frac{\mathrm{s}}{6}=x \cdot$ 	8＊し゚○・コゴ8	レ＇も
7dme»це łOU P！	－uo！̣enbə цэеә әчł łе рәуоо кןио әлец кеш $\begin{gathered} 0 Z+x Z=\kappa Z \\ 0 I+x=\kappa \\ \text { Łəəןə } \\ \text { очм słuәpnłS } \end{gathered}$			рипом Кәцд＇әu！！әшеs ә૫ł łоu әле Кә૫ł pue ןәןелед łои әде Кәцł моиу I Os ‘ədoᅵs ұиәдәщ！ e sey suo！̣enbə $\begin{array}{r} L+x_{\mathcal{E}^{-}}=\kappa \\ \mathrm{I}+x_{\mathcal{E}}=\kappa \end{array}$ 	V＇L｀〇「ヨヨ＇8	ε
0	－	乙	ε	†		
	6u！uu！̣əg	6u！do｜ə＾əロ	6u！पэeosdd ${ }^{\text {d }}$	бu！рәəэхヨ／6u！${ }^{\text {a }}$	paepuets	سəpqodd

\forall שxos ：\quad ：

	－6u！̣иеұsıәрun £0 әэиәр！лә чеәМ	－6u！！ 1 иәчм $8+x \frac{Z}{\text { L }}-$ u！шиәд Кјио әлец Квш（9－‘8Z） ә！！мм очм słuәpnts • ＇sıouә ןепұдәэиоэ әңәןdmoou！ łnq ठuildoןəəәр е sмочs yиом	$8+x \frac{\mathrm{z}}{\mathrm{~L}}-=\kappa$ иәчм әл！̣ебәи ә૫ł дәр！suo๐ ұои p！̣ иәцł łnq x ィо әпןе＾ әлеч Кеш（0І ‘t） әчимм очм słuәрпіs • ＇Kıәısem pue бupuełsıәрй ןentdəouoo sмочs yıом		タ＇8＇О＇ヨヨ＇8	G
7duәәе łou p！ 0	－6u！puełsıәpun 10 әәиәр！лә чеәМ	＇St－＝xS uo！̣enbə pue ‘swiəł әу！！әપł Бu！ppe кq uo！̣ənbə әЧł рәл৷оs әлец кеш $6^{-}=x$ әұ！мм очм słuәpnłs ＇səsəцұиәлед чэеә и！̣ шләң рәұnquıз！р Кןио әлец кеш $\mathrm{S}=x$ әұ！мм очм słuәpnłS －sıодә łnq бuildoןəəәр е sмочs yиом	－әл！！ебәә әчł łобıоł ұnq рәлјоs әлец кеш $\varepsilon=x$ әџ！им очм słuәpnłs ＇sıодә дои！ш ч！！м ןentdəouoว sмочs yıом		タ＇L゙う｀ヨヨ＊	$\varepsilon ゙ \downarrow$
0	1	乙	ε	†		
	6u！uu！ 6 əg	6u！doןəләа	6u！	бu！pəәәххヨ／6u！əәәW	prepuers	шә¢о＾d

ıduəıй ıou p！o	uo！ңеиеןdxә ue łnout！M ло uo！̣еиеןdxә ¡วәлоэи！ पІ！М גəMsue ґวәлоэи｜	－001\＄ sey ！！৷＞I！ Kиеш моч рәи！шләəәр әлеч Кеш sуәәм 9 Kes очм słuәpnıs －uo！̣ent！s ә૫ł ґо סu！puełsıəpun ן！！れed sәұеэ！unumov ¡ечł ио！џеиеןdхә Ч！！М גəмsue ґวәлоэи｜ 		09โ\＄әлеч Чગеә ！！！ $\cdot u_{0 I}+0 \pm=u S+00 L$ Of UO！̣n｜OS әЧł S！Kəuou f0 łunowe әшеs әцł әлец оł шәцł 10f SyəəМ f0 ґəqunu əપ」 syəəм ZI －uo！̣еиеןdxə әұәןdmoэ pue ןeэ！ 6 оן e səpnןou！ pue uo！̣sənb әЧł SəəMsue K｜｜nıssəวэns ұuәpnłs	$\begin{gathered} \text { ZdW } \\ \text { ¿ン・ヨヨ・8 } \end{gathered}$	て＇9
łOU P！	＇uo！̣еueןdxә ue łnout！M ло uo！̣euejdxә ґวәдоэи！ पІ！M גəMsue ¡วәлоวи｜	＊uo！̣ent！s ә૫ł Łо бu！̣puełsıəpun ן！̣цед sәґеэ！ ұецł ио！ұеиеןdхә Чџ！М дәмsǔ ґэәлоэи｜ 	－уәәм дәд ठи！̣ィеs әде Кәцł 孔иnoшe әчł Кןио рәдәр！suoэ әлеч Кеш＂،！！！ puodsәд очм squәpnłs －uo！̣eue，dxə әұәןdmos pue ןеכ！ Ч！！М дәмsue łәәлоэи 		$\begin{gathered} \text { ZdW } \\ \therefore \because \because \exists \exists \cdot 8 \end{gathered}$	L＇9
0	\downarrow	乙	ε	†		
	6u！uu！6eg	6u！doןəләன	6u！บэeosdd \forall	бu！pəəэхヨ／6u！${ }^{\text {¢ }}$	prepuefs	سə¢q0．d

7duәәце tou p！	ло ио！̣еиеןdxә ұәәлоэи！ 	$\cdot \varepsilon=К$ sem məts κ ss ә૫ł u！uo！̣enbə łsi！！ ә૫ł łцб゙почł әлец Кеш sә！иәдмедяs ε pue səjdde 6 t Kes очм słuәpnłS －uo！̣ent！ әчł „о Бu！̣puełsıəpun ן！！иед sәғеэ！иишшоэ ұецұ ио！ңеиеןдхә Ч！！М дәмsuе ұэәдиоэи －uo！̣еиеןdxə 	－иоп̣еиејdxә Ч！！М дәмsǔ łэәдоэи －uoḷеue．dxә U！SME｜f dOu！ Чł！М дәмsue łЈәлоЭ	${ }^{6} 6 \varepsilon=\kappa{ }^{\prime} \times \varepsilon=\kappa$ оди！ x dof ε ᄃ 6u！ph！！！sqns $\cdot x=\varepsilon L$ os＇$x_{7}=z \mathrm{~s}$ иәчн $\cdot(x \varepsilon)+x=z \mathrm{~S}$ ＇uo！！nu！？sqns 6u！s sə！uәqмедıs 6ε sə｜dde ε 上 • －uo！̣eue｜dxə әұәઇ ${ }^{\text {duos pue }}$ ןеэฺธоן е səpn｜כu！pue uo！！sənb әңł sıәмsue 	О＇8＊О｀ヨ习＊	でし
‘qduәде łou p！	－uo！̣eo！！｜！！！fnu „о реәґsu！ uo！！！！ppe pesn әлец Кеш səןdde 8 10f Sə！यәqмедя IL ә！！м очм Słuәp \ddagger § юо әэиәр！лә уеәМ	＇sənje＾גnof ә૫ł до омł ұnq రu！̣doןəләр e SMOUS y10M	е fo ł！nsə ə૫ł К｜əપ！！\ddagger sou ‘sənןе＾ Кদэәлоэ ұиәрпія		О＇8＇О｀ヨヨ＇8	$1 \cdot 2$
0	\downarrow	Z	ε	t		
	6u！uu！ 6 ®g	6u！doןəләа	6u！uэeosddv	6u！pəəэxヨ／6u！łəәW	prepuers	məq0ıd

Unit 8.5, Readiness Check

Name \qquad

You will need a calculator for this assessment.

Problem 1

Juana is three years older than twice her brother's age.

Select all of the equations that represent the relationship between Juana's age, j, and her brother's age, b.

$$
\square j=2 b+3
$$$j=2(b+3)$

$$
b=2 j+3
$$

$$
b=\frac{j-3}{2}
$$

$j=\frac{b}{2}-3$

$$
b=\frac{j}{2}-3
$$

Problem 2

Select all of the proportional relationships.

\square The relationship represented by this table:

x	y
3	6
4	12
5	24

$\square y=3 x$, where x and y are both positive numbers.
$\square y=\frac{1}{x}$
number of miles the train has traveled is d.
A train is traveling at a constant speed of 60 miles per hour. The number of hours the train has been traveling is t. The

Unit 8.5, Readiness Check

Name

Problem 3

There are 16 cups in a gallon.

The equation $c=16 \mathrm{~g}$ gives the number of cups in terms of the number of gallons.

Write an equation for this situation that gives the number of cups in terms of the number of gallons.

$$
g=
$$

Problem 4

Given the equation:

$$
y=-3 x+2.5
$$

4.1 When x is 1 , what value of y makes the equation true?
4.2 When x is -1.5 , what value of y makes the equation true?
4.3 When y is 8.5 , what value of x makes the equation true?
\qquad

Problem 5

A circular field has an area of 14400π square feet.
5.1 What is the radius of the field?
5.2 What is the diameter of the field?
5.3 What is the circumference of the field? Round your answer to the nearest foot.

Problem 6

A rectangle has length x and width y.

Select all of the statements that must be true.The perimeter is $x+y$.
The perimeter is $x y$.The perimeter is $2(x+y)$.The perimeter is $2 x y$.The perimeter is $2 x+2 y$.The area is $x+y$.The area is $x y$.The area is $2 x y$.

Problem 7

Here is a rectangular prism.

7.1 What is the surface area of the prism? Show your thinking.
7.2 What is the volume of the prism? Show your thinking.

Answer Key

1. $\checkmark j=2 b+3$
$\checkmark \quad b=\frac{j-3}{2}$
2. $\quad \checkmark$ A train is traveling at a constant speed of 60 miles per hour. The number of hours the train has been traveling is t. The number of miles the train has traveled is d.
$\checkmark y=3 x$, where x and y are both positive numbers.
3. $g=\frac{1}{16} c$
$4.1 \quad y=-\frac{1}{2}$
$4.2 \quad y=7$
$4.3 x=-2$
$5.1 \quad 120$ feet
5.2240 feet
$5.3 \quad 754$ feet or 240π feet
4. $\quad \checkmark$ The perimeter is $2(x+y)$.
\checkmark The perimeter is $2 x+2 y$.
\checkmark The area is $x y$.
$7.1 \quad 69.6$ in. 2
$7.2 \quad 28.8$ in. 3

Unit 8.5, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problem 6 before Lesson 3
- Problems 1, 3, and 4 before Lesson 4
- Problem 2 before Lesson 7
- Problems 5 and 7 before Lesson 11

Problem 1

(Standards: 7.EE.B.4, MP2)
This question is intended to surface what students already know about writing equations to represent the relationship between quantities in context. This content first appears in Lesson 4: Window Frames, where students represent functions with equations.

Suggested Next Steps: If students struggle . . .

- Plan to review this problem as part of the Warm-Up for Lesson 4. Consider using tape diagrams to support students with connecting equations and situations.

Problem 2

(Standards: 7.RP.A.2.A, MP6)
This question is intended to surface what students already know about representations of proportional and non-proportional relationships. Students attend to precision when they categorize each relationship. This content first appears in Lesson 7: Feel the Burn, where students compare inputs and outputs of functions that are represented in different ways.

Suggested Next Steps: If students struggle . . .

- Plan to revisit the definition of proportional relationships before Lesson 7. Students worked with these relationships in Unit 3: Linear Relationships, so it may be helpful to revisit practice problems from that unit.

Problem 3

(Standard: 7.RP.A.2.C)
This question is intended to surface what students already know about representing the same proportional relationship with two different equations. This content first appears in Lesson 4: Window Frames, where students connect equations with independent and dependent variables.

Suggested Next Steps: If students struggle . . .

- Plan to spend extra time during the Synthesis of Lesson 4 discussing the relationship between the two equations. Students worked with this content in Math 7, Unit 2, Lesson 6: Two and Two. It may be helpful to revisit this lesson and the practice problems.

Unit 8.5, Readiness Check Summary

Problem 4

(Standards: 6.EE.A.2.C, 7.NS.A.1, 7.NS.A.2, MP8)
This question is intended to surface what students already know about substituting numbers for variables and signed number arithmetic. Students express regularity in repeated reasoning as they substitute various x-values to determine corresponding y-values. This content first appears in Lesson 4: Window Frames, where students use equations of functions to solve problems.

Suggested Next Steps: If students struggle . . .

- Plan to revisit it before Lesson 4. Invite several students to share their strategies and ask a question like: When might this strategy be helpful?

Problem 5

(Standards: 7.G.B.4, MP2)
This question is intended to surface what students already know about the relationship between the area and radius of a circle. Students reason abstractly and quantitatively to determine unknown quantities, then use those to determine new unknown quantities. This problem is especially helpful for thinking about when it is useful to use an approximation for π. If students begin by approximating π, the work is much harder. This content first appears in Lesson 11: Cylinders, where students calculate volumes of cylinders.

Suggested Next Steps: If students struggle . . .

- Plan to revisit this item at the end of Activity 1. Consider discussing the advantages and disadvantages of leaving a value as a multiple of π.

Problem 6

(Standards: 3.MD.D.8, 3.MD.C.7, MP6)
This question is intended to surface what students already know about using expressions to represent perimeters and areas. Students attend to precision as they check whether the given expressions align with the given properties. This content first appears in Lesson 3: Function or Not?, where students examine functions and non-functions that represent perimeter and area.

Suggested Next Steps: If students struggle . . .

- Consider inviting students to revisit this question and revise their response after Lesson 3.

Unit 8.5, Readiness Check Summary

Problem 7

(Standard: 7.G.B.6)
This question is intended to surface what students know about surface area and volume of prisms. This content first appears in Lesson 11: Cylinders, where students calculate volumes of cylinders.

Suggested Next Steps: If students struggle

- Plan to spend time before Lesson 11 reviewing strategies for calculating volumes of rectangular prisms.
\qquad

1. If the input, x, is 16 , which equation would result in an output of 4 ?
A. $y=x^{2}$
B. $y=x+12$
C. $y=x-20$
D. $y=x-12$
2. Select all of the graphs that represent y as a function of x.

\square

\square

\qquad
3. Jaleel wrote a book. He wants to print some copies for his friends and family. The printing company charges a one-time fee of $\$ 200$, plus $\$ 2$ for each printed book.
3.1 Is Jaleel's total cost a function of the number of books he prints? Explain your thinking.
3.2 Is the number of books he prints a function of his total cost? Explain your thinking.
3.3 Jaleel wrote the equation $c=200+2 b$, where c represents his total cost and b represents the number of books he printed. Identify the independent variable and the dependent variable for this equation.

Independent variable:
Dependent variable:
4. Adriana is planning to ride the public bus to and from school this year. She wants to figure out how much it will cost her. The bus ride costs $\$ 1.25$ each direction.
4.1 Identify a quantity to be the independent variable and one to be the dependent variable for this situation. Then, explain your thinking.

Independent variable:
Explanation:

Dependent variable:
4.2 Write an equation that describes the situation. Use x to represent the independent variable and y to represent the dependent variable.
4.3 How much will it cost Adriana to get to school and back home for a five-day week?

1. D. $y=x-12$
2. Select all of the graphs that represent y as a function of x.
\checkmark

3.1 Responses vary.

- Yes. For each number of books, there is only one possible cost.
- Yes. The number of books he chooses to print determines the cost.
- Yes. The cost depends on the number of books.
3.2 Responses vary.
- Yes. For each cost, there is only one possible number of books he can buy.
- Yes. The cost determines the number of books.
- Yes. The number of books he can print is dependent on the cost.
3.3 Independent variable: Books printed (b)

Dependent variable: Total cost (c)
4.1 Responses vary.

Independent variable: Number of bus rides
Dependent variable: Total cost

Explanation: Adriana's total cost depends on the number of rides that she takes.
4.2 Responses vary depending on variables chosen in 4.1.
$y=1.25 x$
4.3 $\$ 12.50$ (5 days means 10 bus trips. $1.25(10)=12.5$.)

－Math Language Development Consider using the mathematical language routine Critique，Correct，Clarify to help students

In this problem，students determine whether a graph represents a function．Students attend to precisions as they classify each graph
using the definition of a function．This problem corresponds most directly to the work students did in Lesson 3：Function or Not？
（9dW＇L＇V＇ヨ＇8 ：spıepuets）
Problem 2
－Consider asking students to substitute the x－value into each equation，then perform the given operations
Suggested Next Steps：If students struggle
students did in Lesson 4：Window Frames．
In this problem，students make sense of a function written as an equation．This problem corresponds most directly to the work
（Standard：8．F．A．1） Problem 1

†	$\varepsilon `$＇\downarrow	swejqo．d
カ゚ロコ・8		prepuets

s！ıqny pue Kıemuns ：L z！̣o＇s＇8 t！un

- Consider revisiting Lesson 4, Activity 2, Screen 9.
Consider asking students to identify relevant quantities in context, then ask which variable should act as the input.

corresponds most directly to the work students did in Lesson 4: Window Frames. mathematics as they choose both their independent and dependent variables to model a situation in context. This problem
In this problem, students represent a function with an equation and to use the equation to solve problems. Students model with
(tdW 't'g'ヨ'8 :spıepuets)
Problem 4

problem corresponds most directly to the work students did in Lesson 2: Guess My Rule and Lesson 4: Window Frames. precision as they consider the definitions of function, dependent variable, and independent variable in the context of the problem. This in a function. Students reason abstractly and quantitatively to represent the given context with various equations. Students attend to
In this problem, students determine whether a situation represents a function, and they identify independent and dependent variables
(Standards: 8.F.A.1, MP2, MP6) Problem 3
Unit 8.5, Quiz 1: Summary and Rubric

－dmeभte ł0u p！	ио！ңеиеןdxә ұэәдоэи！ло ou पџ！м ләмsue łәәллоэи	－6u！puezs．әри uo！̣eueןdxә पџ！м ләмsuе łэәлиоэи uo！̣еиеןdxә әృәןduoכu！पł！M ләмsue łәәлоつ	uо！̣еиеןdxә Ч！！М ләмsue ңэәлиоэи। 7500 1еłоł әцł ґәцচ！ч әЧł ‘słu！ud әц syooq әıош әчд әsпеэәq ‘sə人＂ $6 \cdot \exists$ uо！ңеие．dxә u！SME｜f dou！̣ Ч！！М ләмsue ұәәлоכ	syooq „о ıәquпи fulud of səsoouo әц syоо૧ ь๐ »әqшии әчь ＇7soo ә，q！ssod әио К｜uо s！әәцц7 ‘syооq ＇ио！̣еиеןdxә ұәәдоэ Чџ！М ләмsue ґэәлоэ	L＇＊゙ゴ8	－＇E
－dmeभte ł0u p！	－ә๐！๐чэ ґэәдоэи！ әuo səpn｜วu！os｜e 	әuo səpn｜ગu！ osje łnq səэ！oчจ ґэәлиоэ ОМц	＇әэฺочэ ұәәлоэи！әио ＇әэ！๐чэ ґэәдоэи！ ou pue səэ！๐ч๐ ңэәлио омұ ло әио	＇sydeı6 әәцц ґэәноэ әцł ડłગəəડ ＇รәэฺочэ ¡эәлоэи！ 	L＇V＇ゴ8	乙
＇7duәәне ł0u p！	łndıno pue ұndu！әчł dn рәх！ш әлец кеш $z^{x}=К$ ґәәәә очм słиәрпłs ＇әэ！๐чэ ұэәцоэи｜			$\begin{gathered} \text { ZI }-x=К \quad \bullet \\ \text { әо!очэ ұэәлоэ } \end{gathered}$	L＇Ө＇ヨ＇8	\downarrow
0	1	τ	ε	t		
	6u！	6u！doןəләа	6u！	6u！pəəэхヨ／6u！¢əәW	paepuets	

＇7duәəие ł0u p！	IIIe ze（0） 7 soo syooq ио！ұиәш ұои səop диәрпт＇＂ $6 \cdot \exists$ －uo！̣ount e u！ səןqе！ие＾ұиәриәdәр pue ұиәриәdәри！ әчł Би！イ！！！uәр！ „о 6u！puełsıәри рәұ！u！！SMOYS צגOM		sуоод ：әдяецел ұиәриәдәри • әғəઇ｜யسоэи｜	 （q）pełu！̣d syoog ：əøqе！ие＾ұиәриәdәри｜ ＇sıәмsuе дәәлоэ	L＇Ө＇ヨ＇8	$\varepsilon \cdot \varepsilon$
＇7duәəие ł0u p！	uо！ңеиеןdxә ఛэәлоэи！ 10 uо！џеиеןdxә ou чұ！м ләмsuе ґэәлиоэи｜	＇6u！pueqsıәрй ןe！ped smous łечł uo！̣euepdxa पł！M ләмsuе ұэәлоэи uo！feuejdxə ләмsue łәәлоつ	uoḷеиеןdxә әұәןdmos pue ןеэ！ ЧІ！М ләмsue ¡әәлоэи əәб І！！м әу syооq әлош әчд әsпеэәq ‘sə人＂ $6 \cdot \exists$ uoḷeueןdxә u！SME｜t dOu！u Ч！！М ләмsue ґэәллоכ	 ‘syooq ıо ıəqunu －Knq ueכ әц syooq „о ıәquinu ә／q！ssod әио रןио 	L＊＊＇8	て＇દ
0	\downarrow	τ	ε	七		
	6u！	6u！doןəләа	6u！	бu！pəəэхヨ／6u！ŋəәW	paepueis	шә¢о＾d

＇7duәңче ł0u P！	－uo！̣enbə ue צł！M uo！̣ount е бu！ұuәsəıdəд „о 6u！puełsıәрй 	uo！qenbə sәрпјои！ұиәрпнs＂ $6 \cdot \exists$ ＇sıодәә ұиеэ！！！uи！！s Чџ！М бu！puełsıәрй әృəןduoou！SMOYS yגOM	$\cdot \operatorname{KZ} \cdot \mathrm{I}=x$ se yэns ‘sə／qеиел әцд sdемs ұиәрпнs＂ $6 \cdot \exists$ sıouə 	$x_{\mathrm{SZ}} \cdot \mathrm{I}=\kappa \bullet$ ＇L’t mox uolizenbe uo рәseq ләмsuе ұәәлоэ	ガタゴ8	でゅ
7dme»е ł0u p！ 0		－6u！puełsıәрй ןe！pued sмочs ұечł uo！̣еuеןdxә Ч！！М дәмsue łэәлоэи uo！̣eue，dxә әృәןduoou Чџ！м ләмsue ұәәлоэ	＇sәуэдеш дечұ ио！ңеиеןdхә ие sәџ！м рие әчł sdeмs ұиәрпłя＂ $6 \cdot \exists$ uo！̣еие ןdxə Ч！！М ләмsue ¡әәлоэи дәч 7500 I！！м t！әлощ әцł＇sәует еие！ир \forall sәр！ц snq әлош әчц＂ $6 \cdot \exists$ uo！̣eue，dxa u！SME｜t JOU！ M Ч！！М ләмsue ґәәльо	＇sәуеł әчs ұецд sәри до ıәquпи әчł ио spuәdәр 7500 ןełot s，eue！pp＂ 6 • \exists lSOO｜EłOL ：əાqе！̣е＾ұиәриədəด səp！！ snq ło ґəqunN ＇suo！̣eueןdxə pue sıәмsue ұәәлоэ	ガダゴ8	L＇t
0	1	乙	ε	t		
	6u！uu！ $\mathrm{Seg}^{\text {a }}$	6u！̣doןəләа	6u！	бu！pəәэхヨ／бu！ŋәәw	prepuers	məq0．d

＇7duәュне tou PIO	uolyenbə यəәцł оұи！sduı snq 0L 10 sイep s әłn！！ дои sәор ұиәрпұs＂ 6 ・ヨ ＇sməgoud әлןos of uo！̣enbə ue 6u！̣s fo 6u！pueұsıəpun рәң！ш！smous yıом	＇uо！ұеnbә п！әчł оұи！ sduı snq 0I 10 sイep S ıəцł！ə səən！！！sqns イ／ио ұиәрпіs＂ 6 ・ヨ งлодә ұиет！！！uб！s ЧІ！М бu！̣риеұsıәрй әұәןdmoэu！ smous yıом	－uo！¥enbə цәәчъ оұи！sduı snq 0L pue skep s סu！̣nt！\ddagger sqns шод ио！ұепbә ұэәноэи！ səsn дuәphłs＂ 6 ＇\exists ＇sıoддә әшоs Ч！！М 6u！̣puełsıəpun jentadesuos smous yıom	$0 S^{\prime} Z I \$ ~ \bullet$ •дәмsue ұэәлоэ	ガロゴ8	$\varepsilon ' t$
0	\downarrow	乙	ε	\dagger		
	6u！uu！ 6 өg	6u！doןəләа	6u！		prepueis	məq0ıd

\qquad

1. Two movie theaters, Star Theater and Cinepolis, opened in 2000. The price of a movie ticket at each theater changed over time.

Years Since 2000	Movie Ticket Price at Star Theater (dollars)
0	$\$ 6.75$
2	$\$ 7.75$
5	$\$ 8.25$
8	$\$ 10.00$
10	$\$ 11.50$

Which statement is true?
A. In 2000, the movie ticket price was higher at Cinepolis than at Star Theater.
B. In 2010, the price of a movie ticket was the same at both theaters.
C. Between 2000 and 2002, the ticket price at Star Theater increased by $\$ 1$ per year.
D. Between 2008 and 2010, the ticket price increased more at Cinepolis than at Star Theater.
2. Consider the following situation:

55 people got on an empty bus. After 30 minutes, 40 of them got off the bus. After 15 more minutes, the rest of the passengers got off the bus.

Sketch a graph that represents this situation. Label the axes with independent and dependent variables.

\qquad
3. Joel went on a long hike. The graph below represents his journey.

Select all of the statements that are true.Joel's distance is a function of time.Joel's fastest speed occurs in the first hour of the hike.After 5 hours, Joel had hiked 3 miles.Joel hiked a total of 10 miles.The graph is decreasing at all times between 3.5 hours and 7 hours.
4. A small company is selling a new board game, and they need to know how many to produce in the future. They sold a total of 400 games after 11 months, 800 games after 21 months, and 1500 games after 36 months.

Is a single linear model a reasonable option for this data? If so, use the model to estimate the number of games sold after 48 months. If not, explain your reasoning.
\qquad
5. While watching a movie, Laila and Thiago shared a bag of popcorn and ate it at a steady rate. They each sketched a graph to represent the situation.

5.1 Label each graph's vertical axis so that both graphs accurately represent the situation.
5.2 Write your own equation in the form $y=m x+b$ that could represent Laila's graph. Explain what each number in your equation means in terms of the situation.
5.3 What is one advantage of your equation over the graph?

1. D. Between 2008 and 2010, the ticket price increased more at Cinepolis than at Star Theater.
2.

Responses vary. See graph. Note that any correct response should have two horizontal segments. Some students may add a third segment on the horizontal axis. Others will connect the endpoints to indicate that not everyone instantly leaves the bus, and some may have short line segments in a staircase to indicate that people leave the bus one at a time.
3. $\quad \checkmark$ Joel's distance is a function of time.
\checkmark Joel hiked a total of 10 miles.
\checkmark The graph is decreasing at all times between 3.5 hours and 7 hours.
4. Yes. Responses vary. After 48 months there should be between 1900 and 2100 sales depending on the data points used for the model.
5.1 Responses vary.

5.2 Responses vary. $y=-5 x+200$. The 200 represents the amount of popcorn in the bag at the beginning of the movie. -5 signifies that the popcorn was eaten at 5 pieces per minute.
5.3 Responses vary. While the graph is useful for seeing the general trends, the equation provides specific numbers that give information about the situation, such as the initial amount and the rate of change.
－Consider revisiting Lesson 6，Activity 1.

work students did in Lesson 6：Graphing Stories． and graph the relationship between independent and dependent variables in context．This problem corresponds most directly to the In this problem，students draw the graph of a function that represents a context．Students model with mathematics as they determine
（tdW＇s＇g＇g＇8 ：sprepuets）乙 Шวโqoud
－Consider revisiting Lesson 7，Activity 1，Cards 1 or 2. compare relevant rates of change．
－Consider asking students how a rate of change expresses itself in both a graph and a table，then have students determine and
 problem corresponds most directly to the work students did in Lesson 7：Feel the Burn． and quantitatively when they compare different data displays and determine a measurement（slope）to compare between the two．This In this problem，students compare inputs and outputs of functions that are represented in different ways．Students reason abstractly （ZdW＇Z＇V＇ヨ’8 ：spıepuełs） โ Шวโqoud

ε＇\quad	G＇t	†	1	swojqosd
¢＊＊＊8	ガタゴ8	と＊ゴ8	でギゴ8	prepueis

o！̣qny pue Kuemuns ：Z z！no＇s＇8 t！un
Consider revisiting Lesson 9, Activity 2. -əsuәs әуеш sədo৷s əsə૫ł łецł оs

 (Standards: 8.F.B.4, MP6) Problem 5 - Consider revisiting Lesson 8, Activity 1. students determine the slope between each pair of points in their display. linear function. This problem corresponds most directly to the
work students did in Lesson 8: Charge!
Suggested Next Steps: If students struggle...

- Consider having students organize the given data into a tab In this problem, students reason abstractly and quantitatively to decide whether or not it is reasonable to model a relationship with a (Standards: 8.F.A.3, 8.F.B.4, MP2) Problem 4 - Consider revisiting Lesson 5, Activity 1. form a narrative for each section.
 Suggested Next Steps: If students struggle...
the given situation. This problem corresponds most directly to the work students did in Lesson 5: The Tortoise and the Hare. In this problem, students interpret the graph of a function in context. Students make use of the graph to determine what happened in (LdW 's'g'g'8 :spıepuełs) Problem 3

＇7duәңч ł0u p！	＇sıəбиәssed и！әsеәлоәр е sем әәчұ роодяләрип әлец кеш sұиәшбәs әdо／s әм！ұебәи цวұәуร очм słuәрпłs ¡ұхәұиoэ е sұuәsəлdәл би！медр ло 6u！pueұsıәрип 	＇pәəәqеı дои әле səәq！иел әцł łпq әдедпоэе K／fSou sıодә ұueэ！！！uб！ 4 ч！м Gu！puezs．әрии ә્દㅣㅣㄸoכu！ sMous yıom		әцъ әлеә әддоәд ұецұ әұеэ！ри！ of əseगulełs e и！słиәшбәs әи！！मочs әлец кеш әшоs pue＇snq әчł səлеә К1диеłsu！ әиоКәлә ґои ұецъ әұеэ！ри！ оұ słu！odpиә әчł ұэәииоэ II！M sıə૫łO＇s！xe ןełuoz！uou әчł ио ұиәшбәs ри！чъ е рре кеш słиәрпıs әшоs＇słиәшбәs ıедиоz！иоч омł әлеч pinoчs əsuodsəл ұәәноэ Kи甘＂6’ヨ snq әцł uo әןdoəд • ：əાqе！ие＾ұиәриәdəด әய！！ ：ə｜qе！̣е＾ұиәриәdәри｜ ఛэәлоэ 	¢＊ロゴ8	乙
7duәде łou p！o	－әбиецэ ґо әдел әчъ рәґеш！৷sә әлец Кеш＂леәК ıəd I\＄イ́q рәsеәлии！ләеәчц ＇乙00乙 рие 000乙 иәәмұәд，， рәңЈәәәs очм słиәрпłs ＇әээ๐чэ ұэәдоэи｜			 ‘OLOZ pue 800Z иәәмұә马 －әЈ！очэ џәәцоう	でオ゙ゴ8	\downarrow
0	\downarrow	乙	ε	t		
	6u！uu！ 6 eg	6u！dojəләа	6u！̣veordd \forall	6u！pəəэxヨ／6u！ŋəәW	prepuers	melqodd

7dmeュе ъ0u p！	＇əsuәs әуеш ұои ор s／əqе। s，4deл6 чłод＂ 6 ・ヨ ұхәұиоэ рие чdeлб е иәл！！ sәxe би！！əәqе｜ до 6u！puełsıәри рәң！\quad ！！SMOपs צגоM	＇иопұепи！s әцд słиәsəıdəィ ＇sıодә ұиет！！！uб！！ पł！M Бu！pueł̧sıəpun әұәןdسoэu！ sMOUS y10M	－uoodod әч7 әэиәдәృәд ұои ор ұпq әsиәs әуеш s／əqе sıoдə әшоs ЧІІМ Би！̣риеұsıәрй ןenłdəәuos SMOUS YIOM	иәңேヨ uxoodod би！̣！̣ешәу uxoodod $\text { - } 6 \cdot \exists$ 	ガダゴ8	L＇G
¥0u p！		＇6u！puezs．әрии ןe！ped smous ұецъ ио！̣еиејdхә чұ！м ләмsuе ұэәлиоэи －uo！̣eueןdxə әұәрыسоэи！ ЧЏММ ләмsue łכәл兀О	＇ио！̣еиерыхә ләмsuе ңэәлоэи। uolpeuejdxə u！SME｜I dOU！W पł！M ләмsue ұәәлоう	әрош әчł ıод pәsn słu！！od еұер әЧł ио би！pиədəp səןes 00LZ pue 006I иәəмłəq əq pןnoцs sə入 • uo！̣еuеןdxə 		\dagger
7duшәне ł0u p！	‘səэ！！чэ ұәәдоэ әшОS પ！！М ડəગ！๐૫จ ఛэәлоэи！ОМ1 ＇səэ！！чบ ¡эәлоэи！К｜ио	‘səэ！ฺ๐๐ ఛวәлдоэu！OMұ sәpn｜כu！ osje łnq səэ！очจ џәәлоэ омұ ло әио	－әэ！๐ч๐ ＇əગ！૦૫э łวәлоэи！ ou pue səગ！очจ ఛәәлио Омұ 10 әио	＇s．noy \angle pue s．noч S ‘ ε иәәмłəq səш！\ddagger ＇sə！！u 0L fo ןełoł e pəy！પ｜ə૦ৎ －әш！\downarrow 〕 	¢＇9＇ゴ8	ε
0	\downarrow	τ	ε	t		
	6u！uu！${ }^{\text {eg }}$	6u！doıəләа	6u！uэeordd \downarrow	6u！pəəэxヨ／6u！ŋəәW	prepuets	merqodd

7duәə е ł0u p！	＇ио！̣еұиәsәлdәд ןอэ！чdeג6 pue uolpenbe ue иәəмłәq səつuәдән！ pue sə！！u！e！！u！ әцъ Би！̣！！ „о 6u！pueıs．əәри рәң！！u！SMOYS צ10M	－КІәципоэеи！әбиецо „о әұед 10 дипоше ן！！！！！！səวนәдəə ұиәрпнs＂ 6 • \exists ＇sıодә ұиеэ！！！uи！ ЧІІм Бu！puełsıәрй әұәјduoou！ sMOYS yоㅆ	＂uourenbə pue чdелб әцł чłоq u！səsеәләәр ииоэdod чłоq децł әбеұиелре ие sәэиәдәдә ұиәрпня＂6・ヨ －sıoдә әшоs प！！м 6u！̣puełsıəрй ןenłdәouos sMOYs y10M	－әбиецо „о әұе» әЧł рие ұипоше ןе！！！u！әцł se чכпs ‘uо！ұеп！！！s әцł łпоqе ио！дешлоли！ әл！ децд sıəquinu ग！！！эәds sәр！ィодd иоцұепbә әцд ‘spиәдұ Іеләиәб әчъ би！әәs лод －uo！！d！uэsәр ұәәлио	ガダゴ8	$\varepsilon \cdot \mathcal{S}$
＇7duәәне ł0u p！ 0	ио！ңеиерыхә ¥コอมィоэu！ 10 uo！̣eue，dxә ou पұ！м ләмsuе ұэәлоэи！	－6u！̣риедsıәрии ןе！̣ее smoys ұечұ uo！̣fuédxə पł！！M ләмsuе ұэәлоэй ᄃऽ イq sәseәдәәр uиоэdod әчь＂ 6 ・ヨ uo！̣eue．jxә ләмsuе ұэәлоэ	чио！ұејәдләди！дэәноэ е pue ədols ұәәиоэ е seц uoḷeuejdxə Ч！！М ләмsue ¡эәлоэи। イ́q sәseәлоәр pие 00Z ұе uo！̣eue．jdxә u！SME｜t dOu！u Чџ！М ләмsue ఛэәлио	－әұnu！u ıəd sәכə！d ऽ ұе иәғеә sем ияооdod әчł łецł sә！！！uб！s S－əә！лои әчъ „о Би！ии！Бәq әцъ ұе Беq ә૫ł u！uıoכdod to łunowe （łdəコンəłu！－ К әл！！！ әл！̣ебәи е ч！̣м uо！̣еnbə Kue） $00 Z+x$ S－$=К$ ＇L＇G moxt s｜əq®｜ sәчэңеш ұецł ио！ңеиеןdxә 	ガロゴ8	Z＇G
0	\downarrow	乙	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	6u！pəəวхヨ／6u！łəəW	prepuets	шәqо入d

\qquad

1. This table shows a linear relationship between the amount of water in a container and time. Which of these statements is true?

The water in the container is:
A. Increasing at 2 gallons per minute.
B. Increasing at 10 gallons per minute.
C. Decreasing at 2 gallons per minute.

Time (min.)	Water (gal.)
0	30
5	20
10	10

D. Decreasing at 10 gallons per minute.
2. A cylinder has a volume of $78 \mathrm{~cm}^{3}$.

What is the volume of a cone with the same radius and height?
A. $26 \mathrm{~cm}^{3}$
B. $39 \mathrm{~cm}^{3}$
C. $156 \mathrm{~cm}^{3}$

\qquad
3. This graph shows the temperature in Mariam's house between noon and midnight one day. Select all of the true statements.
\square Time is a function of temperature.The lowest temperature occurred between 4:00 and 5:00.The temperature was increasing between 9:00 and 10:00.The temperature was 74° twice during this time.

There was a four-hour period during which the temperature did not change.

4. A cylinder has a radius of 2.5 meters. Its volume is 37.5π cubic meters.

What is the height of the cylinder?

Unit 8.5, End-Unit Assessment: Form A

Name \qquad

Lucia counts 5 bacteria under a microscope.
She counts them again each day for 4 days and notices that the number of bacteria doubles each day.
5.1 Is the population of bacteria a function of the number of days?
Explain your thinking.

5.2 Is there a linear relationship between the number of days and the number of bacteria? Explain your thinking.

Each row of the table below represents a cone with a height of 9 inches and a different radius.
6.1 Calculate the volume of each cone.

Write your answer in terms of π or rounded to the nearest cubic inch.

Radius (in.)	Volume (cubic in.)
1	
2	
3	

6.2 Is there a linear relationship between the radius and the volume of these cones? Explain your thinking.
\qquad

Two plumbing companies charge for each hour of work, plus a one-time fee.

Quality Plumbing charges according to this graph.

7.1 How much does Quality Plumbing charge for each hour?

What is the one-time fee?

Explain or show your thinking.

A-Plus Plumbing charges according to this table.

Time (hours)	Cost (dollars)
1	140
4	320
6	440

7.2 How much does A-Plus Plumbing charge for each hour?

What is the one-time fee?

Explain or show your thinking.
7.3 Is the cost of using Quality Plumbing or A-Plus Plumbing ever the same for the same amount of time?

Explain or show your thinking.

Reflection: Select a question to answer.
What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

1. C. Decreasing at 2 gallons per minute.
2. A. $26 \mathrm{~cm}^{3}$
3. $\quad \checkmark$ The temperature was 74° twice during this time.
\checkmark There was a four-hour period during which the temperature did not change.
4. 6 meters
5.1 Yes.

Explanations vary. It is a function because there is a single output (the number of bacteria) for each input (the number of days).
5.2 No.

Explanations vary. It is not a linear relationship because the rate of change does not stay the same.
6.1

Radius (in.)	Volume (cubic in.)
1	3π or 9
2	12π or 38
3	27π or 85

6.2 No.

Explanations vary. The three points in the table would not be on a line because the slope between the pairs of points is not the same.
7.1 The cost for each hour of work is $\$ 50$.

The one-time fee is $\$ 150$.
Explanations vary. To determine the cost per hour, I looked at the slope of the line, which is 50 . To determine the one-time fee, I looked at the y-intercept of the graph.
7.2 The cost for each hour of work is $\$ 60$.

The one-time fee is $\$ 80$.
To determine the cost per hour, find the rate of change: $\frac{440-140}{5}$. To determine the one-time fee, subtract $\$ 60$ from $\$ 140$.
7.3 Yes. Responses vary. A-Plus Plumbing has a lower one-time fee but costs more per hour, so it will eventually catch up to Quality Plumbing.
 similarities and differences between the formulas．

corresponds most directly to the work students did in Lesson 13：Cones．
In this problem，students recognize the relationship between the volume of a cylinder and the volume of a cone．This problem
（6•0｀Ј‘8 ：pıepuets）
Problem 2

（ZdW＇t＇g＇ョ＇8 ：spıepuełS） Problem 1

L＇9＇\quad＇	でG ‘ $¢$	でし「トく	で9	$\varepsilon \cdot L$	$\stackrel{\square}{ }$ G	swejqoid
$6 \cdot \bigcirc \cdot \bigcirc \cdot 8$	¢＊${ }^{\text {g }}$－8	ガタゴ8	$\varepsilon \cdot \forall {f2f7c8d5b-5a65-4c69-b418-545b1d9408a5} 8$	でジゴ8	$\vdash^{*} \forall^{\prime} \exists^{\prime} 8$	prepueis

assessment question.

Consider revisiting Lesson 14, Activity 1. Choose one row to discuss as a class - the second row is the most similar to the

- Consider asking students to write down the formula for the volume of a cylinder, then substitute the given information into the

students did in Lesson 14: Missing Dimensions.
In this problem, students calculate the height of a cylinder given its volume. This problem corresponds most directly to the work
Problem 4

Hare.

In this problem, students interpret the graph of a functional relationship. Students make use of the graph structure to determine what
happened in the given situation. This problem corresponds most directly to the work students did in Lesson 5: The Tortoise and the
(LdW 's'g's'8 :spıepuełs) Problem 3

- Consider revisiting Lesson 7, Activity 1 time 0 , then ask how the corresponding y-value should be expressed in the equation.
 did in Lesson 7: Feel the Burn. and quantitatively when they compare and contrast the two scenarios. This problem corresponds most directly to the work students In this problem, students determine the initial value and rate of change of linear relationships in context. Students reason abstractly (ZdW 'z'V'コ’8't'g'g'8 :spıepuets) \angle Шวโqoud
> - Consider revisiting Lesson 13, Activity 2, Screen 7.

> Consider reminding students of the relationship between the volumes of a cone and cylinder with the same height and radius. corresponds most directly to the work students did in Lesson 12: Scaling Cylinders and Lesson 13: Cones.
Suggested Next Steps: If students struggle . . .

> In this problem, students calculate the volume of cones and demonstrate their understanding of linear relationships. This problem
(Standards: 8.G.C.9, 8.F.B.3) Problem 6
 Suggested Next Steps: If students struggle . . . Lesson 3: Function or Not? and Lesson 8: Charge. the definitions of function and linear to the problem context. This problem corresponds most directly to the work students did in In this problem, students determine whether or not a relationship is a function and/or linear. Students attend to precision as they apply (9dW 'c'g'y'8 'L'V'g'8 :sprepuets) Problem 5

＇łduməұе łOu p！	＇sәэ！๐чэ ґэәлоэ －ऽəэ！！๐чจ 	－әэ๐๐чจ ฉจәцоэи！әио pue səગ！！૦ч әио słวəәə ұиәрпłS	－әэ！๐чэ ґэәлоэи！ әио pue səә！๐чэ słəəઇəs łuəpnłS Kuе łəəəəs łou sәop pue sәэ！очэ słગəəəs łuəphłs	－әбиецэ ъои р！̣ әגпұеләdшәұ әцł цग！чм бuи̣np poب̣әd גnoч－גnof е Sем әдəц」 ә૫ł $\ddagger 0$ ॥е słગəəəs łuәpnłS	$\begin{gathered} \angle d W \\ c^{\prime} g^{\prime} \exists^{\prime} 8 \end{gathered}$	ε
＇Iduәңte łou p！	＇દ Кq ヶо реәғsu！乙 Кq рәр！м！p pue әшпןол әцł рәsnıuоว әлец кеш －би！̣！̣！！p peәısu！\＆Кq рә！！d！̣ןnu әлец Кеш 			${ }_{\text {¢ }}$ שכ 9 •	6＊О｀๑•8	乙
＇7dmełte łOU P！	иәәмұәq әбиецэ әцł рәґәлdıәґи！ Кןэәдиоэ әлкц Кеш＂әұпи！ ıəd suo॥e6 0L „о әұел е де ＇әseәдэи！ue se 			－әュnulu ィəd suо॥еб 乙 ұе би！ізеәләд •	$\begin{gathered} Z d W \\ \qquad \vdash \cdot G \cdot \exists^{\prime} 8 \end{gathered}$	\downarrow
0	\downarrow	Z	ε	t		
	6u！uu！̣бəg	6u！doןəләа	6u！¢	бu！pəәэхヨ／6u！əәәW	paepuers	mejqodd

7duməte łOU P！	uo！̣eue｜dxə ue łnout！M 10 uo！！eue｜dxə ŋэәлиоэи！ч！！М дәмsuе ұәәдоэи	＇uo！̣ent！s әцł „о бu！̣puełsıəрй ן！！иед sәұет！иишшоэ ұецъ ио！̣еиеןдхә Ч！！М ләмsư ґэәдиоэи －uо！̣еиеןdxә әғәןdmoэu！ 	－uo！̣eue｜dxə цџ！М дәмsǔ ұэәдиоэи｜ －uo！̣eue．jxә u！SMe｜， 	əןБu！s e s！әдə૫」＇sə入 uо！̣еиеןdxә әұәןdmoэ pue ןeo！boן e səpnןગu pue uol！sənb әцł sдәмsue K｜｜nłssəววกs ұuәpnłs	$\begin{aligned} & 9 \mathrm{~d} W \\ & \qquad V^{\prime} \forall-\exists^{\prime} 8 \end{aligned}$	－＇G
łOU P！	－6u！̣uełsıəpun џо әЈиәр！лә чеәМ	${ }^{\prime} \mathrm{S}^{\prime} L \varepsilon_{z}(\mathrm{~S} \cdot \mathrm{z}) \Perp$ рәғеןทэృ๐ әлеч әџ！мм очм słuәpnłs ＇sıoлә ұиет！！！uб！s Чд！М＇రu！̣puęsıəpun ןепңдәоиоэ әұәןdшоэи！ łnq 6u！̣doןəләр e SMOUS yIOM	－əseq pәsn әлец Кеш sıәәәи SI әчبмм очм sұuәрпłs －punoде Кем дәчłо әлец Кеш sдәғәш LI＂0 әџ！м очм słuәpnłs －əseq әцł рәґфиююеэ әлец кеш 6 ＇I әұ！мм очм słuәpnłS －sıодә дои！ pue бu！puełsıәpun ןenłdәәuоэ smoys yиом	sıәдәய 9 †эәлоэ pue әдәןdmoう s！чиом	6＂О＇⿹｀8	t
0	\downarrow	Z	ε	\dagger		
	6u！uu！ 6 өg	6u！doəләа	6u！	6u！pəəэxヨ／6u！łəәW	paepuets	merqodd

7duәдие łou P！ 0	иоо！еиејdxә ue łnout！M 10 uо！！eиеןdxә ¡эәлоэи！ цІ！М дәмsue ђәәлоэи	－uo！̣ent！s әцд „о бu！̣puełsıəpun łечł uo！̣еue｜dxə цџ！М дәмsuе ұэәдиоэи －uo！̣еиеןdxә әңәןdmoכu！ Чџ！М дәм	－uolıeue，dxә Ч！！М дәмsǔ ґэәдоэи －ио！̣еиеןdxә u！SME｜f dOu！u ЧІ！М дәмsue łכәлоつ	－əues әчł Кеłs łou sәор әбиечэ ґо әұед ә૫ł әsneכəq uo！ деәu！！ e łou s！ \boldsymbol{f} •ON pue uo！！sənb әчł sıәмsue K｜｜nłssəoэns łuәpnłS	＇əрqеł s؛孔uәрпıs ә૫ł Бuḷsn uo！+ Sənb s！पł ӘノOOS と・タョ・8	て＇9
7dmeдte łOU P！ 0	－6u！̣puełsıəpun әәиәр！лә чеәМ	 ＇sıодә ұиеэ！！！uб！s 	бии！ұеן әр！ィ！p łou səop łuәрnłs ＇SMOג әәдપł ӘЧł łО ОМł 		6＇プ૭｀8	L＇9
7düдие tou P！	－uolıeue．dxә ue znoułıм 10 uо！̣еие．dxә ¡эәлоэи！ पł！М גәмsue ฉәәлоэи	＊uo！̣ent！s ן！！̣ед sәғет！иишшоо ұечł uo！̣еиеןdxә ЧЏ！М дәмsue łכәлоэu｜ ＇uo！̣еиеןdxә әұәןdmoכu！ Чџ！М дәм	uoḷeue｜dxə Ч！！М дәмsǔ ґэәдоэи｜ －ио！̣еue，dxә u！SME｜f IOU！̣ 	－әшеs әцł Кеұs łои səop әбиецэ ృо әғед ә૫ł әsneoəq uo！\ddagger วunt pue uo！！sənb әцł sıəмsue K｜｜nłssəวэns łuәpnłs	$\begin{aligned} & 9 \mathrm{~d} W \\ & \mathrm{c}^{\prime} \mathrm{g}^{\prime} \mathrm{J}^{\prime} 8 \end{aligned}$	Z＇G
0	1	乙	ε	t		
	6u！̣uu！${ }^{\text {eg }}$	6u！doןəләа	6u！	бu！pəəэхヨ／6u！̣əәW	prepuers	melqodd

7duәәце łou p！0	＇uo！̣еuе．dxә ue ұnout！M 10 uо！̣еиеןdxә †эәлоэи Ч！！М дәмsue дәәлоэи	uo！！entis әЧł ґо Би！ ұечł ио！ұеие．｜dхә －uo！̣eue｜dxə ә્дㅎㅣㄸoэи！ ЧІ！М дәмsue ұэәлоЈ		＇0ヵI\＄سоィ 09\＄łכセגłqns ‘əə әш！！－әuо әપł ：əбиечэ ғо әұел әчъ ри！」 sıe｜｜op 08 sıe｜｜OP 09 ＇uo！̣еиеןdxә әұәןdmoэ pue ןеэ！бо｜e səpn｜ou！pue uo！！sənb 	ZdW＇t゙Gヨ＇8	でし
7duәде łou p！0	＇uo！̣eue｜dxə ue łnout！M 10 uo！̣еuе．dxә ґэәдоэи ЧІІМ дәмsue ғәәдоэи	－uo！̣entus ұечł ио！ұеие！dхә Ч！！̣ дәмsue џәәиот К｜п！！Мед －uo！̣eue｜dxə ә્дㅎㅣㄸoㄴ！ ЧІ！М дәмsue ұәәноЈ		$К$ әцł łе рәуоо।।＇әәц әш！！－әио ‘əu！！ә૫ł „О әdo৷s ә૫ł ұе рәуоо sıe｜｜op 0SI s．e｜｜op 0S －uo！̣еиеןdxә әғәןdmoэ pue 	ZdW＇t゙Gヨ’8	L＇L
0	\downarrow	乙	ε	t		
	6u！uu！ $\mathbf{c o g}^{\text {a }}$	6u！doןəләа	6u！	бu！pəəэхヨ／6u！̣əәw	paepueds	məq0ıd

7duәュе tou p！	－uоппеие．dxә ue łnout！M 10 uo！！feue｜dxə џэәдоэи！Ч！！м дәмsuе ұәәдоои	＇uoו！entus łечł uo！̣еue｜dxə цџ！м дәмsuе ұэәдиоэи －uo！̣еиеןdxә әғəןdmoכu！ 	－uo！̣еие．dxә дәмsue ұэәдоэи｜ ＇uo！̣eue．dxə u！SME｜f dOu！ 	－ Bu！̣qunld Kب！！eno оł dn цэұеэ К｜ןппұәәлә II！M＋！Os ‘xnou ıəd әдоu słsoつ łnq әәц әш！！－әио дәмоן е sец চuịqunid snid－\forall＇sə人 ＇uo！̣еиеןdxә әұәןdmoэ pue uo！！sənb әчł sıəмsue Kınıssəoวns ұuәpnłs	$\begin{gathered} \text { ZdW } \\ \text { ' } Z \cdot \forall-\exists^{\prime} 8 \end{gathered}$	$\varepsilon \cdot L$
0	1	乙	ε	t		
	6u！uu！${ }^{\text {a }}$	6u！doןəләа	6u！чэeorddv	6u！pəәэхヨ／6u！əәәW	paepuers	melqodd

\qquad

1. A line contains the points $(-3,-2)$ and $(7,2)$.

Use the coordinate plane if it helps you with your thinking.

1.1 Is the slope of this line positive or negative.

Explain your thinking.
1.2 Calculate the slope of the line.
2. Mio deposits money in his bank account from a summer job and doesn't spend any of it.

- After working 3 hours total, he has $\$ 71$.
- After working 12 hours total, he has \$134.

How much money does Mio earn per hour?
3. Here is a graph showing the amount in someone's savings account since the beginning of the year.

3.1 Write an equation for the line shown on the graph.
3.2 What does the slope mean in the situation?
3.3 What does the vertical intercept mean in the situation?
\qquad
4. In many schools, students have the choice between taking art, music, or some other elective.
4.1 At Euclid Middle School, there are 200 students in the 8th grade. 40 students are taking art.

What percentage of 8th graders at Euclid Middle School are taking art? Explain or show your thinking.
4.2 At Newton Middle School, there are 320 students in the 8th grade. 54 are taking music.

What percentage of 8th graders at Newton Middle School are taking music? Explain or show your thinking.
5. Students voted for their favorite entry in a Halloween costume contest.

5.1 Which costume got more votes:

The angel or the zombie?
5.2 How many votes did the vampire get?
5.3 Who won the contest?
6. Students at Kanna's school were polled about the animal they would most like to have as a pet.

Animal	Votes
Bird	22
Cat	45
Dog	55
Fish	37
Rabbit	15

Make a bar graph that displays this information.

1.1 The slope is positive. One way to see this is to plot the two points. Another is to note that as the x-coordinate increases, the y-coordinate also increases.
$1.2 \quad \frac{2}{5}$ (or equivalent)
2. $\$ 7$ per hour
$3.1 y=-5 x+120$ (or equivalent)
3.2 The slope of -5 means this person is spending $\$ 5$ per week.
3.3 The vertical intercept of 120 means this person started with $\$ 120$ in the account.
4.1 20%. Explanations vary. One strategy is to notice that $40: 200$ and $20: 100$ are equivalent ratios, so 20% of 8 th graders at Euclid Middle School are taking art.
4.2 16.875%. Explanations vary. Since there are 54 students taking music out of a total of 320 students in 8th grade, the proportion of 8th grade students taking music can be represented by the fraction $\frac{54}{320}$. This can be found as a percentage by dividing 54 by 320 and multiplying by 100 .
5.1 Zombie
5.218 votes
5.3 Werewolf
6.

Unit 8.6, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problems 1, 2, and 3 before Lesson 5
- Problems 4 and 5 before Lesson 9
- Problem 6 before Lesson 11

Problem 1

(Standard: 8.F.B.4)

This problem is intended to surface what students already know about the slope of a line given two points on a coordinate plane. In this unit, students will need to visually inspect the data in scatter plots to determine if the data points show a positive association, a negative association, or neither. This content first appears in Lesson 6: Interpreting Slopes.

Suggested Next Steps: If students struggle . . .

- Plan to reinforce language about positive and negative slopes, specifically "as the value of one variable increases, the value of the other increases" for positive slope, and "as the value of one variable increases, the value of the other decreases" for negative slope.

Problem 2

(Standard: 6.RP.A.3.B)
This problem is intended to surface what students already know about calculating a rate from context. Although this problem does not use the word "slope," students need to determine the rate of change. This content first appears in Lesson 6: Interpreting Slopes.

Suggested Next Steps: If students struggle . . .

- Plan to revisit this question during Activity 1 of Lesson 6.

Problem 3

(Standards: 8.EE.B.6, 8.F.B.4, MP2)

This problem is intended to surface what students already know about linear equations and how they relate to the context that they represent. Students reason abstractly and quantitatively when interpreting the information in the graph to answer the questions. In this unit, students will draw lines that fit data in a scatter plot and estimate the slope, intercept, and equation for the line they drew. This content first appears in Lesson 8: Animal Brains.

Suggested Next Steps: If students struggle . . .

- Consider reviewing how to determine a slope from a graph in Lesson 4. In Lessons 5, 6, and 7, continue to invite students to show how the slope and intercepts of a linear model can be seen in the equation and in the graph. When students draw lines of fit, give them opportunities to practice estimating slope and intercepts using graphs.

Unit 8.6, Readiness Check Summary

Problem 4

(Standard: 6.RP.A.3.C)
This problem is intended to surface what students already know about calculating percentages from a context. In this unit, students will be introduced to two-way tables. Many questions that come up in the context of two-way tables are of the form "What percentage of \qquad are \qquad ?" This content first appears in Lesson 10: Finding Associations.

Suggested Next Steps: If students struggle . . .

- Plan to spend extra time on Screen 4 of Lesson 10 discussing how to calculate the percentage of each group that did and did not survive the Titanic.

Problem 5

(Standard: 2.MD.D.10)
This problem is intended to surface what students already know about how to interpret information presented in a bar graph. Bar graphs should be familiar to students from grade school, but it has been a long time since students have used this representation. In this unit, students will learn to use segmented bar graphs as a way of representing categorical data. This content first appears in Lesson 9: Tasty Fruit.

Suggested Next Steps: If students struggle . . .

- Plan to spend extra time in Activity 2 of Lesson 9. It may be helpful to invite students to make connections between the two-way tables and the bar graphs during the lesson synthesis.

Problem 6

(Standard: 3.MD.B.3, MP6)
This problem is intended to surface what students already know about how to construct a bar graph given a set of data. Students attend to precisions when they consider how many bars are needed and how to scale the vertical axis. This content first appears in Lesson 11: Federal Budgets.

Suggested Next Steps: If students struggle . . .

- Plan to review this question before Lesson 11. Consider offering individual support throughout the lesson as students create bar graphs for their posters.
\qquad

1. Here is a scatter plot.

Which equation fits this data?
A. $y=-\frac{1}{3} x+2$
B. $y=\frac{1}{3} x+2$
C. $y=-\frac{1}{3} x+6$
D. $y=\frac{1}{3} x+6$

2. Tariq gathered data to see if there was an association between grade level and handedness.

The number of right-handed 8th graders is missing from the table.
Tariq found no association. About how many right-handed 8th graders must there be?
A. 33
B. 85
C. 107
D. 157

	Left- Handed	Right- Handed
7th Grade	11	72
8th Grade	24	$?$

\qquad
3.1 Draw a scatter plot that includes:

- At least six points.
- A positive linear association.
- One obvious outlier.

4. Select all the pairs of variables that have a positive associationA: Outside temperature
B: Cost to heat a homeA: Number of people in a checkout line B: Time you have to wait to check outA: Minutes you have walked
B: Number of steps you've walked
\square A: Pounds of cherries you buy
B: Total cost of the cherries
\square A: Speed of a train
B: Time for the train to get to its destination

3.2 Draw a scatter plot that includes:

- At least six points.
- A negative, nonlinear association.

5. Diamond surveyed all 7th and 8th graders at her school about whether they have pets.

Complete this two-way table

	Have Pet	Have No Pet	Total
7th Grade	102		150
8th Grade		68	175
Total			

\qquad
6.1 This relative frequency table shows the percentage of adults and children who prefer

6.2 This two-way table shows the number of adults and children who prefer sweet or salty snacks. Complete the relative frequency table by row. Round to the nearest percent.

	Sweet Snack	Salty Snack	Total
Adult	57	88	145
Child	77	31	108
Total	134	119	253

	Sweet Snack	Salty Snack	Total
Adult			100%
Child			100%

\qquad
Jayla opened a lemonade stand during the summer. She noticed that she sold more lemonade on warmer days.

For each day she sold lemonade, she plotted the point (t, c) :

- t represents highest temperature.
- $\quad c$ represents cups of lemonade sold.
7.1 Draw a line that is a good fit for the data.
7.2 The equation of Jayla's line of fit is $c=2 t-89$.

Use this equation to predict how many cups of lemonade Jayla might sell on a day when the highest temperature is $74^{\circ} \mathrm{F}$.

7.3 How many more cups of lemonade would Jayla expect to sell if the temperature increases by $5^{\circ} \mathrm{F}$?

Explain or show your thinking.

Reflection: Select a question to answer.What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.Describe or show one strategy you found helpful in this unit.
Name any students who helped you with this strategy.What else would you like your teacher to know?

1. A. $y=-\frac{1}{3} x+2$
3.1 Responses vary. Plot shows at least five points nearly on the same line with a positive slope, and one point not near the line.
2. \checkmark A: Number of people in a checkout line B: Time you have to wait to check out
\checkmark A: Minutes you have walked B: Number of steps you've walked
\checkmark A: Pounds of cherries you buy B: Total cost of the cherries

Name \qquad
6.1

7.1 Responses vary.

3.2 Responses vary. Plot shows at least six
points that are not nearly on the same line
3.2 Responses vary. Plot shows at least six
points that are not nearly on the same line, with a generally negative trend.
5.

	Have Pet	Have No Pet	Total
7th Grade	102	48	150
8th Grade	107	68	175
Total	209	116	325

2. D. 157

6.2

	Sweet Snack	Salty Snack	Total
Adult	39%	61%	100%
Child	71%	29%	100%

7.259 cups

$7.3 \quad 10$ more cups

Explanations vary. The slope of the line is 2. This means that for each one-degree increase in temperature, Jayla can expect to sell about two more cups of lemonade. If the temperature increases by $5^{\circ} \mathrm{F}$, she can expect to sell about 10 more cups of lemonade.
－Consider revisiting Lesson 10，Activity 1. should stay the same between rows／columns．

Lesson 10：Finding Associations． quantitatively as they use proportional reasoning in context．This problem corresponds most directly to the work students did in

（ZdW＇t＇V＇dS＇8 ：spıepuełS）
Problem 2 －Consider revisiting Lesson 6，Activity 2，Screen 5.
－Consider reminding students what they need in order to define the equation of a line：a point and a slope，or two points on the line Suggested Next Steps：If students struggle ． Interpreting Slopes． In this problem，students identify an equation for a line fit to data on a graph．Students make use of the structure of the coordinate
plane to determine an appropriate equation．This problem corresponds most directly to the work students did in Lesson 6：
（Standards：8．SP．A．2，MP7） โ Шวโqoud

9 ＇s＇ C	ع＇L＇で	L＇L＇L	†＇ε	swelqodd
$t^{\prime} \forall^{\prime} d S^{\prime} 8$	$\varepsilon \cdot \forall \cdot d S * 8$	て＇V＇dS＇8	L＇V＇dS＇8	prepuels

\forall سл⿵」 ：

directly to the work students did in Lesson 7: Scatter Plot City.
In this problem, students recognize what it means to have a positive association between variables. This problem corresponds most
(r-V'dS'8 :psepuets)
Problem 4

- Consider revisiting the Cool-Down in Lesson 7.
understand the terms positive, negative, linear, and nonlinear as they relate to correlation in a data set.
- Math Language Development Consider using the mathematical language routine Critique, Correct, Clarify to help students
Suggested Next Steps: If students struggle
work students did in Lesson 7: Scatter Plot City.
correspondences between the verbal descriptions given and the visual they create. This problem corresponds most directly to the
In this problem, students construct a scatter plot that matches a description. Students must make sense of the problem by making
(LdW 'r•甘'dS'8 :spıepuets)
Problem 3
Unit 8.6, End Assessment Summary and Rubric: Form A

understand the terms segmented bar graph and relative frequency table and communicate the data represented in each.
- Math Language Development Consider using the mathematical language routine Critique, Correct, Clarify to help students

students did in Lesson 10: Finding Associations.
precision as they ensure their visual displays accurately reflect the given data. This problem corresponds most directly to the work
In this problem, students use a two-way table to generate a segmented bar graph and a relative frequency table. Students attend to
(9dW 't' \forall 'dS'8 :spıepuełs)

Problem 6

- Consider revisiting Lesson 9, Activity 2, Screen 7. they just completed.
- Consider having students complete just the first row, then the second row, and finally complete the third row using the information Suggested Next Steps: If students struggle . . . information. This problem corresponds most directly to the work students did in Lesson 9: Tasty Fruit. In this problem, students recognize how to represent data in a two-way table, using the structure of the table to complete missing
(Standards: 8.SP.A.4, MP7) Problem 5
Unit 8.6, End Assessment Summary and Rubric: Form A

directly. Then ask students how their answer relates to a feature of the equation (the slope).
Consider asking students to substitute two temperature values that are $5^{\circ} \mathrm{F}$ apart and comp

Lesson 4: Dapper Cats and Lesson 5: Fit Fights. quantitatively as they use a linear equation in context. This problem corresponds most directly to the work students did in
In this problem, students create and use a linear model between two quantitative variables. Students reason abstractly and
(Standards: 8.SP.A.2, 8.SP.A.3, MP2)
Problem 7
\forall שiog :

7duәәие łOU P!	 әлеч Кеш LOL łəəәऽ очм słиәpnłS uunjos әлец Кеш S8 łכәәә очм słuәpnłs 			LSI •	$\begin{gathered} \text { ZdW } \\ ‘ \forall \forall \mathrm{dS}^{\prime} 8 \end{gathered}$	Z
7duәңц łOu P!	'sıодә әлоqе әцł ґо цłоq әреш әлец -(Z ‘0) ұdәэдәұи! -К әцъ кеш $9+x \frac{\varepsilon}{\text { L }}-=\kappa$ ұәәәә очм sұuәрпıS			$z+x \frac{\varepsilon}{I}-=\kappa$		\downarrow
0	\downarrow	乙	ε	t		
	6u!	6u!doןəләа	6u! ${ }^{\text {¢ }}$	бu!pəәэхヨ/6u!̣әәW	prepuers	шәןq0.d

7duәәие ł0u p！	－uo！̣e！oosse деәи！！ әл！！！Sod e słold łuəpnłS －6u！̣puełsıəpun ๖о әәиәр！ィə уеәМ	－suolpe！oosse леәи！！uou pue reәu！｜ иәәмұәq әэиәлән！ ә૫ł Бu！̣puełsıəрии нoddns ןeuol！！ppe рәәи кеш ио！̣е！эоsse әм！ఛебәи леәи！！ е łold очм słuәpmłs ＇sıодә ұиеэ！！！uб！s бu！do｜әләр е smous yом	suolpe！oosse әл！！ебәи pue әл！！！！sod puełsıəри ұои Кеш риәдұ әл！！！！sod е ци！м ұnq әu！！әшes әчł uo łои ¡е łоᅵd очм słuәpnłS ＇sıодә дои！̣ш цџ！̣ ןentdəouoo smous yıом	е पł！̣ ‘әu！！әшes әЧł uо łои әде децұ słu！̣od x！s łseə łe smous łold 	$\begin{gathered} \text { LdW } \\ \because \cdot \forall \cdot d S 8 \end{gathered}$	て＇દ
＇7duәде ł0u p！ 0	－6upuełsıәрun ๖○ әวиәр！＾ə уеәМ	－Kiejnqeoos st！un S！पł Y uoddns ןeuo！！！！ppe pəәu кеш sıə！！！ uо！џе！ооsse әл！ұебәи ＇sıодәә ұиеэ！！！uб！ бu！̣doןəләр е sмочs уиом	＇sıə！！！no puełsıəpun łou Кеш дә！！ıno ue әрnןou！ е ц！！̣ әu！！әшes ә૫ł uo К｜иеәu słu！̣od x！s łseәә $\nvdash \vdash$ łold очм słuәpnłS ＇suo！̣！！ pue əハ！！！isod puełfıəpun łou Kem әdo．s әл！̣ебәи е цџ！м ұпq әu！！ әЧł ґеәu łOu łu！̣od әuо pue әu！！әسеs әપł uo ＇sıодә дои！̣ ч！！ ＇Kıəґsem pue бu！puełsıəрии ןenłdәouoo smous yıом	－әи！！ә૫ł ґеәи łou łu！̣od əuo pue ədo｜s әл！！！！sod e पџ！M әu！！әшes әцł uo Кциеәu słu！̣od əヘ！！łSeə łe sMOYS łOld ґәәдоэ pue әұәઇdmo๐ s！чиом	$\begin{gathered} \text { LdW } \\ \qquad \cdot \forall \cdot d S \text { ' } 8 \end{gathered}$	－＇$¢$
0	\downarrow	乙	ε	t		
	6u！uu！${ }^{\text {erg }}$	6u！doןəләа	6u！чэeosddv	6u！̣pəəวxヨ／6u！̣əəN	paepuels	melqodd

＇admette łou p！	sənןe＾ бu！̣ss！u әл！ 10 OMt łuəpnłs －6u！puełsıәрun ょ○ әэиәр！ィә чеәМ	иәл！̣Б омұ әчұ рәрре әлец Кеш＂孔әд ОN әлен ‘әред ЧłL＂，גOł ZSZ до દもZ ә！！мм очм słuәpnłS ＇sən｜e＾ К｜ңэәдоэ ұиәрпіS ＇sıодә ұиеэ！！！uб！s Чł！М＇6u！̣puełsıәpun бu！̣doןəләр е sмочs yдом	＇sənןe＾ 6u！̣s！！u ә＾！！ əપł fo ınof u！SI！！ ＇sıодә дои！ pue 6u！puełsıәpun ןепłdәэиоэ SMOUS YIOM	sZE：： 9LI ：łəd ou әлен 60Z ：łəd әлен • 「セłOL L0I ：łәd әлен ‘әрелб чł৪ 8ヵ ：łәd ou әлен ‘әрелб чłц 	$\begin{gathered} \angle d W \\ x^{\prime} \forall V^{\prime} S^{\prime} 8 \end{gathered}$	G
łOU p！	－รәэ！！ч๐ џәәиоО әшоs प！！М Səગ！૦૫ゝ ఛэәдоэи！әлои до OMt słəəן łuəpnłs －รәэ！！чว ఛวәлоэи！ Кןuo słəәןəs łuəpnłs	－әэ！очэ омł 10 әио słכəןəs ұuәpnts	－әэ！๐чэ ґэәлоэи！ әио pue səэ！๐чэ ॥е słכə｜əs ұuәpnts Kue łəәәs łou səop pue sәэ！๐чэ ґэәдоэ әЧł ІО Омұ 10 әио słəəઇəs łuəpnłs	Knq noर sə！uәцч Ło spunod ：\forall рәу｜ем рәу｜ем әлец noर səұnu！w ：\forall ұno צэəц๐ о子 әu！！łnoyวə૫ゝ e u！əldoəd Ł0 ґəqunn ：：\forall ＇səэ！очэ ફәәдоэи！ 	L＇V＇dS＇8	†
0	1	Z	ε	t		
	6u！uu！̣бeg	6u！doןəләа		6u！pəәэхヨ／6u！əәәW	prepuers	шə¢0，d

ł0u p！	－6u！puełsıәрй „о әэиәр！ィә уеәМ	səop łnq еұер әцł Łо дәұиәо －sıoнә ןenłdәэиоэ әұәןdшoэи！ łnq Suildoןəәәр е sмочs yлом	 s！$\ddagger n q$ еұер әчł ґо риәд әu！！әપł łО әdo｜s əપц pue 反u！puełsıəpun ןenłdәәuоэ smous yгом			$1 \cdot 2$
＇7duәə е ł0u p！	－6upuełsıәрй †о әЈиәр！＾ə уеәМ	＇Moィ Кq ґо peәłsu！ 10ł \％S＇Zぁ әұ！им очм słuәpnts ＇sıouə ұnq бuildoןләр е sмочs улом	‘sənןe＾ınof әЧł ！о әәццł ＇sıодл бu！punoд әреш әлец әsочм słuәpnłS pue 6u！puełsıəpun ןentdәouoo smoys yдом		$\begin{gathered} 9 \mathrm{dW} \\ \qquad \nabla^{\prime} \forall \mathrm{dS}^{\prime} 8 \end{gathered}$	て＇9
7dme»е ł0u p！	－6upuełsıәрии †о әЈиәр！＾ə уеәМ	¡ŋnpe pue р！！чэ ＇sıoдə ןепłдәэиоэ әұәддшоэи！ łnq бuildoןəәәр е sмочs улом	MOג цэеә доł səదิеұиәэләd yи！̣р рооэ pue łоч pue бu！puełsıəpun ןenłdәouoo smous yиом		$\begin{gathered} 9 \mathrm{dW} \\ \qquad \forall \forall \mathrm{dS}^{\prime} 8 \end{gathered}$	L＇9
0	\downarrow	Z	ε	t		
	6u！	6u！doןəләа	6u！	бu！pəəэхヨ／бu！łəәW	paepuets	məqodd

\forall שxos ：

＇7duәəие łou p！	＇uo！̣eue．｜dxə ue ұnoчł！M 10 uo！！feue｜dxə ఛэәноэи！प！！м дәмsuе ұәәдоэи৷	－uolitenbə ә૫ł $\downarrow 0$ әdoᅵs ә૫ł рәәәр！suoว әлец Кеш Z әр！им очм słuәрnłs uoוְ̣ent！s ן！！иед sәғеэ！иишшоэ ұечъ ио！ңеиеןdхә Ч！！М дәмsue ұэәдоэи｜ ＇uо！ңеие｜dxə әғә｜dmoэи！ 	－ио！ңеиејdxә ц！！М дәмsǔ ұэәдоэи －ио！ңеиејdxә u！SME｜t doulu 	－əрвиошə｜ Łо sdnэ әィош 0L łnoqe oMł łnoqe ॥əəs oł łכədxə иеэ ејКег ‘әдпұеләдшәт u！əseəдวu！әəцБәр－әuо sdno әлощ 0I • pue ןeo！ pue uo！！sənb әцł sぇəмsue K॥nłssəวэns ұuәpnłs	ZdW ＇ε＇V＇dS＇8	$\varepsilon^{\prime} L$
＇7dmeュе łOU P！	－әрош леәи！｜ е ґо uo！̣еnbə రu！̣puełsıəрй ıо әэиәр！лә уеәм	7 дон рәлоо иәчł рие uо！̣епbə әчł әлец Кеш sdno S＇L8 әџ！мм очм słuәpnłs ＇sıодәә ұиеэ！！！ии！！s ұnq రu！̣doןəләр e SMOUS yIOM	дои！ш $\boldsymbol{\varepsilon}$ әрвш иәцł ұnq uo！！enbe әчł u！ 7 доł әлец Кеш sұuәpnłS －sıoдə pue 反u！puełsıəpun јепңdәэиол sмочs уиом	sdno 6S •	ZdW ＇ε＇\forall＇dS＇ 8	でし
0	\downarrow	乙	ε	t		
	6u！	6u！doןəләа	6u！upeorddv	бu！pəəวxヨ／бu！łəəW	paepuets	melqord

\qquad

1. Select all the expressions that are equal to $761 \div 5$.$76.1 \div 0.05$$762 \div 6$$0.761 \div 0.005$$7.61 \div 0.5$$7610 \div 50$
2. Which is closest to the quotient $2967 \div 0.003$?
A. 1000
B. 10000
C. 100000
D. 1000000
3. Select all the expressions that are equivalent to $3^{4} \cdot 3^{2}$.$9^{8}$$9^{3}$$3^{6}$$9^{6}$$3^{8}$
4. A new phone costs $\$ 450$.

There is a 40% discount on the price of the phone and an 8% sales tax on the discount price.

What is the final cost of the phone after the discount and the sales tax?
\qquad
5. Plot and label these numbers on the same number line:

$$
0.8,0.65,0.27,0.52,0.052
$$

6. Plot and label these numbers on the same number line:

$$
(-2)^{1},(-2)^{2},(-2)^{3},\left(\frac{1}{2}\right)^{2}
$$

7. Write three other fractions that are equivalent to $\frac{16}{128}$. Explain your thinking for each fraction.

1. $\checkmark 0.761 \div 0.005$
$\checkmark 7610 \div 50$
2. D. 1000000
3. $\quad \checkmark 9^{3}$
$\sqrt{ } 3^{6}$
4. $\$ 291.60$

After the discount, the phone costs $\$ 270$ because $(0.6) \cdot 450=270$. The sales tax is 8% of $\$ 270$, which is $\$ 21.60$. The total cost including the sales tax is $\$ 291.60$ since $270+21.6=291.60$.
5.

6.

7. Responses vary.
$\frac{1}{8}, \frac{2}{16}, \frac{3}{24}$
The fraction $\frac{16}{128}$ can be written as
$\frac{16 \cdot 1}{16 \cdot 8}$. This equals $\frac{1}{8}$ because it can be written as $\frac{16}{16} \cdot \frac{1}{8} \cdot \frac{2}{16}$ and $\frac{3}{24}$ are possible because they are equal to $\frac{2}{2} \cdot \frac{1}{8}$ and $\frac{3}{3} \cdot \frac{1}{8}$ respectively.

Unit 8.7, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problems 3 and 7 before Lesson 2
- Problems 1 and 4 before Lesson 7
- Problems 2, 5 and 6 before Lesson 8

Problem 1

(Standards: 6.NS.B.3, MP6)
This question is intended to surface what students already know about quotients of decimals and place value. Students attend to precision when they use properties of division to identify equivalent expressions. This content first appears in Lesson 7: Scales and Weights, where students begin to represent large and small numbers using powers of 10 .

Suggested Next Steps: If students struggle . . .

- Plan to review this question after Lesson 7. Consider inviting students to share how writing numbers using powers of 10 might be helpful.

Problem 2

(Standard: 6.NS.B.3)
This question is intended to surface what students already know about using estimation and place value to determine a quotient. This content first appears in Lesson 11: Balance the Scale, where students multiply and divide numbers given in scientific notation to answer questions in context.

Suggested Next Steps: If students struggle . . .

- Plan to review this question before Activity 1 of Lesson 11. Invite students to think about how writing each number in scientific notation might be helpful.

Problem 3

(Standards: 6.EE.A.1, MP6)
This question is intended to surface what students already know about equivalent expressions with positive whole number exponents. Students attend to precision when they use the properties of exponents to identify equivalent expressions. This content first appears in Lesson 2: Combining Exponents, where students write equivalent expressions involving the product of powers and powers of powers.

Suggested Next Steps: If students struggle . . .

- Consider giving them time to review and revise their response after Lesson 2 or as part of the Cool-down.

Unit 8.7, Readiness Check Summary

Problem 4

(Standards: 7.RP.A.3)
This question is intended to surface what students already know about solving problems involving percentages. This content first appears in Lesson 7: Scales and Weights, where students begin to represent large and small numbers using powers of 10 .

Suggested Next Steps: If students struggle . . .

- Plan to review calculations with percentages when time allows throughout the unit.

Problem 5

(Standards: 5.NBT.A.3, MP7)
This question is intended to surface what students already know about the relative size of decimals using the structure of the number line. This content first appears in Lesson 8: Point Zapper, where students represent large and small numbers on number lines.

Suggested Next Steps: If students struggle . . .

- Plan to extend Lesson 8's Warm-Up and revisit this question. If it does not come up naturally, discuss the size of the intervals on the number line.

Problem 6

(Standards: 6.EE.A.1, 6.NS.C.6, MP6)
This question is intended to surface what students know about numbers raised to different exponents. Students attend to precisions when they determine the sign of their answer. This content first appears in Lesson 8: Point Zapper, where students use number lines to represent large and small numbers.

Suggested Next Steps: If students struggle . . .

- Consider reviewing this problem before Lesson 8. Invite students to share how they know where each number belongs on the number line.

Unit 8.7, Readiness Check Summary

Problem 7

(Standards: 4.NF.A.1, 5.NF.B.5.B, MP1)
This question is intended to surface what students already know about equivalent fractions. Students may make sense of the problem by either reducing or multiplying. This content first appears in Lesson 3: Power Pairs, where students determine if two expressions are equivalent.

Suggested Next Steps: If students struggle . . .

- Consider making connections between writing equivalent fractions and writing equivalent expressions involving exponents as it comes up throughout Lesson 3.
\qquad

1. Three of these equations are false and one is true.

Circle the true equation.
A. $1^{0}=0$
B. $3^{-2} \cdot 4^{6}=12^{4}$
C. $\left(2^{5}\right)^{5}=2^{10}$
D. $\frac{1}{10^{2}}=10^{-2}$
2. Select all of the expressions that are equal to 12^{8}.
$\square 12^{10} \cdot 12^{-2}$
$\square 3^{2} \cdot 4^{6}$
$\square\left(12^{8}\right)^{0}$
$\square \frac{12^{10}}{12^{2}}$
$\square 2^{8} \cdot 6^{8}$
3. Rewrite each expression using a single exponent.

3.1$10^{2}$ 10	3.2	$10^{2} \cdot 10^{6} \cdot 10$	3.3	$\left(10^{2}\right)^{3}$

4. Place a number in each box so that each equation is true.

4.1		
$3^{\square} \square \cdot 3^{\square}=3^{0}$	$\left(3^{\square}\right)^{\square}=\frac{1}{3^{10}}$	$\frac{3^{\square} \cdot 3^{-2}}{3^{\square}}=3$

\qquad
5. Here are three expressions that have the same value:
A. $2^{3} \cdot 2^{3}$
B. 2^{6}
C. 4^{3}
5.1 Explain how you can tell that these expressions are equivalent.
5.2 Using one or more exponents, write another expression that has the same value as the ones above, and explain how you know this expression has the same value as the others.
5.3 Precious wrote that $\frac{2^{-4}}{2^{-10}}$ has the same value as the other expressions. Is this correct?

Explain how you know.

1. D. $\frac{1}{10^{2}}=10^{-2}$
2. $\checkmark 12^{10} \cdot 12^{-2}$
$\checkmark \frac{12^{10}}{12^{2}}$
$\checkmark 2^{8} \cdot 6^{8}$
$3.1 \quad 10^{-3}$ or $\frac{1}{10^{3}}$ (or equivalent)
$3.2 \quad 10^{9}$ (or equivalent)
$3.3 \quad 10^{6}$ (or equivalent)
4.1 Any pair of exponents whose sum is zero.
4.2 Any pair of exponents whose product is -10 .
4.3 Any pair of exponents whose difference is 3 .
5.1 Responses vary. All of the expressions equal 64 when evaluated.
5.2 Responses vary. $\left(2^{3}\right)^{2}$. I know it is equal because one of the given expressions is $2^{3} \cdot 2^{3}$, and multiplying something by itself is the same as raising it to the second power.
5.3 Responses vary. $\frac{2^{-4}}{2^{-10}}$ is equal to $2^{(-4+10)}$ which is equal to 2^{6}. This is the same as B and evaluates to 64 , which is equivalent to all of the given expressions.

（9dW＇L＇甘＇ヨヨ＇8 ：spxepuets）
Problem 2
－Consider revisiting Lesson 5，Activity 1. express the exponents as repeated multiplication（Note：students should not do the multiplication）．
－Consider asking students to convert all negative exponents to positive exponents．Then，if more support is needed，have students Suggested Next Steps：If students struggle ．． problem corresponds most directly to the work students did in Lesson 5：Zero and Negative Exponents． negative exponents．Students attend to precision when they apply properties of exponents to determine equivalent expressions．This In this problem，students reason about the value of expressions involving positive，zero，and
（Standards：8．EE．A．1，MP6） ［ ШวโqO』d

	swə¢q0．d
$1 \cdot \forall \cdot \exists \exists \cdot 8$	paepuels

Power Pairs． students did in Lesson 3：
 In this problem，students justify that exponential expressions involving powers of powers and products of powers are equivalent． （EdW＇L＇V＇ヨヨ＇8：spıepuets） Problem 5
 them adjust the numbers they wrote based on the result．
－Consider having students get started by writing small powers in each blank，simplifying the resulting expression，and then having Suggested Next Steps：If students struggle to the work students did in Lesson 6：Write a Rule． of the structure of each expression and properties of exponents to make each equation true．This problem corresponds most directly In this problem，students determine unknown exponents to create true statements using properties of exponents．Students make use
（LdW＇レ＇V＇ヨヨ’8：sprepuets） Problem 4 －Consider revisiting Lesson 4，Activity 1，Screen 4. single term
 Suggested Next Steps：If students struggle ．．．
problem corresponds most directly to the work students did in Lesson 4：Rewriting Powers
In this problem，students rewrite products of powers，quotients of powers，and powers of powers using a single exponent．This
（Standard：8．EE．A．1）
Problem 3
Unit 8．7，Quiz：Summary and Rubric

＇7duәине ł0u p！	＇səગ！очэ ұэәдоэ әшоs ＇sәэ！очэ ұэәдлоэи！Кјио	＇ธəэ！๐чэ ұэәлиоэи！ OMұ səpn｜כu！ osje łnq səગ！oчจ ఛวәлоэ Омұ 10 әио	－әэ๐очจ ఛэәมоэи！әио pue ou pue səગ！очว ¡эәдоэ омұ ло әио	 	L・ジヨヨ＊8	Z
＇7dmeдие ł0u p！ 0	дәмод е єо ләмод е к！！！dш！s о）рәрәәи sем ио！！！！ppe децұ ұчбпочł pue әseq әшеs әчд वәәу од имоиу әлец кеш ${ }_{01} Z={ }_{s}\left({ }_{\mathrm{s}} Z\right)$ рәґәәәәs очм słиәрпłs －әэ！๐чэ ұэәдоэи｜				L＇＊＇ヨヨ＊8	\downarrow
0	\downarrow	Z	ε	t		
	6u！	6u！doןəләа	6u！	6u！pəəэxヨ／6u！ŋəәW	paepueis	шә¢qodd

 evaluates to the same number．
－Consider asking students to compute the value of each expression，then work backward to determine why each expression

o！̣qny pue Kıewuns ：z！no＇ 2 ＇8 t！un

＇7duәə ł0u p！	¡uəuodxə ə｜Бu！s е రu！̣s sıəmod яо sıәмоd pue＇sдәмоd Ł0 słuə！！onb ‘sıәмоd „o słonpoud бu！！！uмәл „о Бu！puełsıәрй рәң！ш！！SMOUS צ10M	дәмод е ॰о ләмод e K！！！dm！s оұ рәрәәи sем ио！！！！pре ұечұ ұчБпочұ pue әseq әшеs әц7 дәәу од имоиу әлец кеш ${ }_{\text {s }} 0$ І әдолм очм ұиәрпнs ＇sлодә ұиет！！ииб！s Чџ！М бu！pueısıәpun әұәןdmoэu！sMoчs y⿺辶M	łuәuodxə ие бu！sn łnout！M 000000 I Ot sə！！！！／dw！s ұuәpn＋s＂ 6 ・ヨ งлоддә әшоs Чџ！М 6u！̣puełsıәpun ןепłdәouoo SMOYS Y，	（ұиәјел！！nbә до）${ }_{9} 0$ I ‘әммии ґэәдоう	L－$\forall^{\prime} \exists \exists \exists{ }^{\text {a }}$	$\varepsilon \cdot \varepsilon$
7duməце ł0u p！	孔uәuodxə ә｜దu！s е రu！̣s sıəmod ґо sıәмоd pue＇sıәмоd Łо słuə！！onb＇sдәмоd เо 6u！puezs．əәрй рәң！ш！！SMOYS צ10M		子иәиодхә ue bulsn ұnoyt！M 000000000 I Ot sə！！！！／dw！s ұuәpnłs＂ 6 ・ヨ งлоддә әшоs Ч！！М Бu！̣uełsıəpun fenłdəouos SMOUS Y10M	（ұひәןем！nbə до）${ }_{6} 0$ L ләмsuе ұәәдоэ	$L^{-} \forall^{\prime} \exists \exists \exists{ }^{\prime} 8$	て＇ع
－duməみе ł0u p！	孔uәuodxə ə｜டu！s sıәмоd pue＇sдәмоd Һо słuə！！onb＇sдәмоd Ło słonpoud бu！！！uмәл „о 6u！puezsıәрии рәң！ш！！SMOYS צ10M	坟0I е sәуеш диәрпнs＂ $6 \cdot \exists$ －sıодә ұиеэ！！！uи！ प！！M 6u！puełsıәpun 	łuәuodxә иe бu！sn Znout！M $\frac{000 \mathrm{~L}}{\mathrm{~L}}$ o ＇sıодәә әшоs ЧІ！М 6u！̣puełsıəpun ןепłdәэиoэ sMous you	（ұиәјел！̣nbə ıо）${ }_{\varepsilon-} 0$－• 		－＇E
0	1	乙	ε	t		
		6u！̣оןəләа	6u！		paepueis	mə¢q0．d

o！̣qny pue Kıemuns ：z！no＇ 2 ＇8 8 t！un

＇fduәдне łou p！a	łuәuodxə ә｜бu！ e бuḷsn sıəmod ıо sıәмоd pue＇sıәмоd „о słuә！ ๒о słэnpoıd би！！！！uмәд เо бu！puełsıәрй рәң！ш！！SMOYS צৰOM	－pə！！d！$!$ ！ иәчм әшеs әцд ॥е әле Кәчц＂${ }^{\circ} \cdot \exists$ ＇sıouә ұиеэ！！！ub！ Gu！puęsıәрй sMous yıom	„о ıәqunи әшеs әцł seц ио！ssəıdхә чэеョ＇ 6 ・ヨ ＇sıодәә әшоs पІ！м 6u！puełsıәрun jenłdəouos sMous yıoM	－рәдепןелә иәчм 	L＇V＇ヨヨ＊8	L＇G
＇7duәュе łou p！o	‘łuəuodxə ә｜бu！ е ठuịs sıәмоd ıо sıәмоd pue＇sдәмоd Łо słuә！ıonb ‘sдәмоd Łо słэnpoıd би！！！！uмәд เо бu！puełsıәрй рәң！ш！！SMOपs צноM	ґวәдио s！uо！ұепbә әио ＇sıодә 6u！pueis．әрии әұ키쑤oכu！ smous yıoM	’әәдио әле suопұепbә омュ ＇sıодәә әسos पł！̣M 6u！pueısıәрй ןепłdәouoo sMOYS yом	＇ε s！әЈиәәәц！әлочм sұuәuodxә f0 ب！ed Ku甘 ：\＆uo！ıenbヨ 0L－s！ł．npodd әsoчм sұuәuodxə fo ب！ed Kuも ：乙 uo！̣enbヨ －oגəz s！uns әsoym sұuәuodxə f0 ג！ed Ku甘：：uo！̣enbヨ	L＇V゙ヨヨ＊8	\dagger
0	\downarrow	τ	ε	t		
	6u！	6u！doəләа	6u！	бu！pəəวxヨ／6u！łəəW	paepuets	məqodd

＇7dmәние ł0u p！	ио！！еиеןdxә ¡эәлоэи！ ло uo！̣еиејdxә ou पџ！M ләмsuе ұэәлоэи	Gu！̣иеұsıәрй ן！！ped smous łечł ио！̣еиејdxә Ч！！м ләмsue ұәәлиоэи ．K！！｜dm！s иәчł pue dot әчł ot ${ }_{01} Z$ əлоW＂ 6 • \exists uo！̣еиеןdxә ләмsue ұэәлоэ	uo！̣еue，dxә U！SME！f IOU！ L प！！M ләмsue łэәлоつ	－suolssaıdxə иәл！！әцұ до ॥е оұ ұиәןеп！пьә s！чЈ！чм ‘七9 оұ sәłепןелә рие Sə人 uo！̣fuédxə 	L＇＊＇ヨヨ＇8	$\varepsilon \cdot \mathcal{S}$
－дduәәце ł0u p！	uo！ңеиејdxә ¡эәдоэи！ ло ио！ңеиеןdxә ou L！！M ләмsuе ґэәлоэии	Gu！puezsıәрии ן！！ped smoys łечł ио！̣еиејdxә Чџ！м ләмsuе ұэәлоэи －рә！｜d！！｜nu иәчм әшеs әцд ॥е әле кәчд＇ $6 \cdot \exists$ uo！̣еuédxә ләмsuе ұэәлоэ	uoḷеиедdxә әұәјவшоэ pue ןеכ！бо ч！！M ләмsuе ұэәлоэи ＇sz ıо ıәqunи әшеs әц7 sey uо！ssəдdxә чоеョ＇ 6 ・ヨ uo！peuejdxә U！SME｜f dOu！̣ प प！M ләмsuе ґәәлоэ	 pue＇${ }_{\varepsilon} Z \cdot{ }_{\varepsilon} Z$ s！suo！ssəлdxә иәл！Б әчt ：suo！ssəıdxə əવ！ssod əш๐S ＇ио！ңвиеןdxә ¡эәлоэ Чџ！М ләмsue ¡эәлоэ	L＇＊＇ヨヨ＇8	て＇G
0	\downarrow	乙	ε	t		
	6u！uu！̣əəg	6u！doןəләа		бu！pəəэхヨ／6u！ŋəәW	prepuets	шәqоıd

\qquad

1. Which expression has the same value as 4^{12} ?
A. $4^{2} \cdot 4^{10}$
B. $4^{6}+4^{6}$
C. $4^{3} \cdot 4^{4}$
D. 12^{4}
2. Select all the expressions that have the same value as $4 \cdot 10^{6}$.
40^{6}
$\square 4000000$
$\square 40 \cdot 10^{5}$
$\square \frac{1.2 \cdot 10^{9}}{3 \cdot 10^{2}}$
$\square 400000$
3. About 3.9 $\cdot 10^{7}$ people live in California.

About $1.3 \cdot 10^{6}$ people live in Maine.
About how many more people live in California than live in Maine?
A. $2.6 \cdot 10^{6}$
B. $2.6 \cdot 10^{7}$
C. $3.77 \cdot 10^{6}$
D. $3.77 \cdot 10^{7}$

CALIFORNIA

POPULATION $3.9 \cdot 10^{7}$

MAINE

 POPULATION $1.3 \cdot 10^{6}$4. What number is represented by point P ?

5. A person blinks about 20 times each minute.

About how many times will a person blink in 80 years ($4.2 \cdot 10^{7}$ minutes)?
Write your answer in scientific notation.

Place a number in each box so that:

- Each equation is true.
- Each equation has at least one negative number.

6.1

6.2

6.3

$$
2^{-3} \cdot \square^{-3}=10
$$

Unit 8.7, End-Unit Assessment: Form A
Name
7.1 Calculate the combined mass of Earth and Pluto.
7.2 Amoli says the mass of 100 Plutos is less than the mass of Earth.

Is this correct?
Explain or show your thinking.
7.3 What is the difference between the mass of Earth and the mass of Venus?

Explain or show your thinking.

Reflection: Select a question to answer.
\square What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.
\square Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

1. A. $4^{2} \cdot 4^{10}$
2. $\checkmark 4000000$
$\checkmark 40 \cdot 10^{5}$
$\checkmark \frac{1.2 \cdot 10^{9}}{3 \cdot 10^{2}}$
3. D. $3.77 \cdot 10^{7}$
4. $5.7 \cdot 10^{-3}$ or 0.0057 (or equivalent)
5. $8.4 \cdot 10^{8}$ times
6.1 Any pair of a positive and a negative exponent whose sum is zero.

Responses vary. $2^{-3} \cdot 2^{3}=2^{0}$
6.2 Any pair of a positive and a negative exponent whose sum is 3 .

Responses vary. $\frac{2^{3}}{2^{-1}}=2^{4}$
$6.32^{-3} \cdot 5^{-3}=10^{-3}$
$7.1 \quad 5.983 \cdot 10^{24} \mathrm{~kg}$ (or equivalent)
7.2 Yes.

Explanations vary. 100 Plutos would have a mass of $1.3 \cdot 10^{24} \mathrm{~kg}$, which is less than the mass of Earth.
$7.3 \quad 1.1 \cdot 10^{24} \mathrm{~kg}$ (or equivalent)
Explanations vary. In order to subtract, I rewrote Venus's mass as $4.87 \cdot 10^{24}$, then I subtracted the coefficients.

－Consider reminding students about the order of operations and have them expand the given exponent and product

In this problem，students compare numbers expressed in both decimal form and scientific notation．This problem corresponds most
directly to the work students did in Lesson 9：Use Your Powers．
（がジヨヨ＇8：：pıepuets）
Problem 2

－Consider revisiting Lesson 2，Activity 1，Screen 2.
 －Consider reviewing the properties of combining exponents，then ask students how many total factors should be in their product．

 work students did in Lesson 2：Combining Exponents．In this problem，students identify equivalent expressions involving positive exponents．This problem corresponds most directly to the
（レ・ジヨヨ＇8：：pıepuełs） Problem 1

ع＇L＇r＇L＇G＇t＇E＇ర	でし	9 ＇	swejqodd
$カ^{*} \checkmark^{\prime} \exists \exists \cdot 8$	ど＊゚ヨヨ 8	$1 \cdot \forall * \exists \exists \cdot 8$	paepueis

In this problem，students reason abstractly and quantitatively to multiply large numbers in context and express the result in
scientific notation．This problem corresponds most directly to the work students did in Lesson 11：Balance the Scale．
（ZdW＇カ＇V＇ヨヨ’8 ：spıepuets） Problem 5 －Consider revisiting Lesson 8，Activity 1，Screen 3. number line to the given number line．
－Consider asking students how they would evenly divide a similar number line between 5 and 6 ，then ask how they can relate that
 This problem corresponds most directly to the work students did in Lesson 8：Point Zapper．
In this problem，students use the structure of the number line and scientific notation to identify very small numbers on the number line．
（LdW＇カ＇V＇ヨヨ’8 ：sprepuets） Problem 4 －Consider revisiting Lesson 12，Activity 1，Screen 8. －Consider asking students to first express the numbers using the same power of 10. Suggested Next Steps：If students struggle
work students did in Lesson 12：City Lights．
In this problem，students subtract numbers expressed in scientific notation in context．This problem corresponds most directly to the
（t・ジヨヨ・8：：pıepuets） ६ யวโq0лд
Unit 8．7，End Assessment Summary and Rubric：Form A
 Suggested Next Steps: If students struggle . . .

- Consider asking students to express all quantities first in scientific notation, then adjust their expressions so that each has a
comparing planetary weight. This problem corresponds most directly to the work students did in Lesson 13: Star Power. In this problem, students add, subtract, and compare numbers expressed in decimal form and scientific notation in the context of
(Standards: 8.EE.A.4, 8.EE.A.3, MP2)
Problem 7
- Consider revisiting Problems 1 or 2 from Lesson 4: Practice Problems. negative exponent.
- Consider having students write their negative exponent first, then fill in the other values in the expression to accommodate the Suggested Next Steps: If students struggle .
students did in Lesson 4: Rewriting Powers and Lesson 5: Zero and Negative Exponents. each expression and properties of exponents to make each equation true. This problem corresponds most directly to the work In this problem, students rewrite products and quotients of powers using a single exponent. Students make use of the structure of (Standards: 8.EE.A.1, MP7)

Problem 6
Unit 8.7, End Assessment Summary and Rubric: Form A

$$
\text { - Consider revisiting Lesson 13, Activity } 1 .
$$

7dшәџе łou P！ 0	u！додә ue әреш łnq 0I fo дәмод рәңэедqпs К｜ұәәлоэ әлец Кеш ${ }_{9} 0 I \cdot L L \cdot \varepsilon$ łכәəә очм słuәpnłS ＇słuәuodxə әлеч кеш 0 ОI • 9 ＇Z до ${ }_{9} 0 I \cdot 9^{\circ} Z$ łכәәәs очм słuәpnłS •			${ }_{L} 0 \mathrm{I} \cdot L L^{\circ} \mathrm{E}$ •	ナ＇＊＇ヨヨ＇8	ε
7dшәџе łou P！ 0	－รәэ！๐чэ ‘səэ！๐чэ ¡әәиоэи！К｜ио słәәәәs ұиәрпłS	－әэ！๐чэ ¡コәиоэи！ue səpn｜ou！os｜e łnq ә૫ł $\downarrow 0$ Омұ ло әио słəəəə ұиәрпłs	－әэ！ฺ๐э ґэәлоэи！ әио pue sәэ！оч๐ ॥e słગəəəs łuəpnłS Kue łวәəə łou səop pue әЧł 10 Омұ 10 әио słəəઇəs łuəpnłs			乙
7duәəие łou P！ 0	 ＇sудом әјпд децł Кчм рие иәчм puełsıəpun łou ұnq рәрре әле sұиәиodxә ұецұ дәqшәшәл кеш 			${ }_{01}{ }^{\square} \cdot{ }_{2}^{\text {® }}$	$L^{\prime} \forall^{\prime} \exists \exists{ }^{\prime} 8$	\downarrow
0	\downarrow	乙	ε	t		
	6u！̣uu！ $\boldsymbol{c}^{\text {eg }}$	6u！̣оןəләа	6u！	бu！pəәэхヨ／6u！ŋəәW	prepuers	шə¢qodd

7dmәұе ł0u p！	－uoıperou ว！！！！uә！ u！se！！！！uenb би！！лоли！ шәवoxd e әл이 Ot MOY 6u！̣puełsıəpun ґо әэиәр！ィә уеәм	－pə！｜d！ „о реә！su！рәр！л！р әлец Кеш ${ }_{9} 0 І$ • I＇Z әч！им очм słuәpnłs ＇sıодәә ұиеэ！！！uи！ 6uidoןəләр е sмочs yом	－uo！̣ełou כ！！！！ua！os и！Би！！！！им иәчм ұиәиodхә К｜ŋәәлоэ әлец Кеш әұ！мм очм słuәpnłS ＇sıoдə әسos पł！М 	$\text { səw!t }_{8} 0 L \cdot \downarrow \cdot 8 \bullet$ †эәдоэ 	$\begin{gathered} Z d W \\ ‘ \forall \forall ‘ \exists \exists>8 \end{gathered}$	S
＇qdmә»е ł0u p！	－uo！pełou ว！！！！uข！ 6u！̣n əu！！ ıəqunu әцł uo גәqunu e K！！\quad иәр！оł моч 6u！̣иедsıәрй †о әэиәр！＾ә уеәм	－0І Łо дәмод әчł łou łnq әu！！дəqunu ә૫ł uo әпןел әцł рәu！̣иәəәр К｜ңәдлоэ әлец кеш －sıодә ұиеэ！！！ub！s бu！doןəләр е sмочs yом	¡孔uәuodxə әлец Кеш ${ }_{\varepsilon} 0$ I • L＇S әџ！мм очм słuәpnłs ＇syィеш жə！！әપł рәұunos К｜Ғэәдоэи！әлец Кеш ${ }_{\varepsilon_{-}} 0 L \cdot 8$ S ${ }^{10}{ }_{\varepsilon_{-}} 0 L \cdot 9$＇S әџ！мм очм słuәpnłs ＇sıодәә әшоs पџ！！м ‘Kıəısem pue бu！̣ ןепłdәouoo sмочs yдом		$\begin{gathered} \angle d W \\ ‘ \forall \forall \neq \exists \exists 8 \end{gathered}$	t
0	1	乙	ε	†		
	6u！	6u！doןəләа	6u！	бu！pəәэхヨ／6u！əәәW	paepuets	யə｜q0．d

7duәұде ł0u p!	-6u!̣puełsıəpun †О әЈиәр!^ә уеәМ	‘słuəuodxə әцł цłоq рәрре 6u!̣n ołnld to ssem әчъ иәџ!им Кџәәлоэ әлец Кеш ${ }_{9 t} 0 І \cdot L Z{ }^{\circ}$ әұим очм słuәрпs 'sıодәә ұиеэ!!!uи!! ЧІ!М 'రи!̣puetsıəpun бu!do\|əләр е smous yом	-6u!ppe әлоəəq uo!̣еłou כ!!!!uə!วs of ołnld Łо ssew әчł дәлиоэ -sıодә әшоs पд!м 	(ұиәјел!!nbә ィо) $\text { бу }{ }_{\iota z} 0 L \cdot \varepsilon 86^{\circ} \mathrm{S} \bullet$ ¡эәдоэ 	$\begin{gathered} Z d W \\ ‘ \forall \forall V^{\prime} \exists \exists>8 \end{gathered}$	-2
7duәə ł0u p! 0	-6u!̣puełsıəpun $\downarrow 0$ әЈиәр!лә чеәМ	'suoḷenbə К\|†эәมоэ ұиәрпłя 'sıодәә ұиеэ!!!uи!!s бu!do\|әләр е sмочs yлом	'suo!̣enbə әәцц әцł ґо Омł 'sıодә лоu!u чд!M ןenłdәouoo smoys yдом	-Киел səsuodsəy †эәлоэ 	$\begin{gathered} \angle d W \\ \qquad V^{\prime} \exists \exists \cdot 8 \end{gathered}$	9
0	\downarrow	Z	ε	t		
	6u!uu! ${ }^{\text {a }}$	6u!̣doןəләа	6u!чэeordd*	6u!pəəэxヨ/6u!	prepuets	шә¢qodd

Ł0u p！ 0		－Кןәұеледәs słuәuodxә әцұ pue әлец Кеш ${ }_{z} 0$ I • E0＇L8t әџ！мм очм słuәpnłs －uoוְent！s ן！̣иед sәғеэ！unwmos ұецł ио！ңеиеןdхә ЧІ！М дәмsue łэәлоэи 	 pue $6^{\circ} \mathrm{S}$ סulıoexłqns додә ие әреш әлец Kеш sұuәpnłS －uo！̣eue，dxә әұәןdmos pue ןеэ！ Чł！М גәмsue łәәдоои ＇uo！̣еue｜dxə u！SME｜t 		$\begin{gathered} \text { ZdW } \\ ‘ \forall \cdot \forall \exists \cdot 8 \end{gathered}$	$\varepsilon \cdot L$
7duәə е łOU P！	uo！̣eueןdxə ŋэәлоэи！ ue पұ！M 10 uo！̣еиеןdxә ue ұnout！м дәмsue ґэәдоэи	－К｜ןеэиәшии бu！К！！иәл ұnout！м uo！̣nןos e ұnoqe pəuоseәд әлец Кеш sołnld 00I pue чдеヨ „о ssem әцъ әцедшоэ ұои op ұnq ＂Sə人，» $\supseteq ə ə ə$ Очм słuәpnłS ＊uo！̦ent！s ן！̣иеd sәғеэ！иишшоэ ¡ецł ио！џеиеןdxә ЧЏ！М дәмsue łכәдоэи৷ 	＊uo！ 1 sənb әЧł poołsıəpuns！ய әлеч кеш Бу ${ }_{\succsim 乙} 0 \tau \cdot \varepsilon ‘ \tau$ łnoqe s！sołnld 00I Ł0 ssew әЧł łецł и！̣ן К｜ŋәәцоэ иәцł łnq＂oN，＂ ґəəઇ૦ очм słuәpnłS －uoḷeue｜dxə әұәןdmoo pue ןeכ！ Чџ！М дәмsǔ ґэәлоэи ＇uo！̣еue｜dxə u！SME｜t 	‘પમеヨ fo ssew ә૫ł ueપł SSə S！પગ！чМ ‘চ૪ ${ }_{\llcorner 乙} 0 L \cdot \varepsilon$＇I әлеч pınom sołnld 00I $\operatorname{s} \partial \lambda$ －uo！̣eue，dxə әұәдышоэ рие ןอэ！ßoן e səpn｜ou！pue uo！ısənb ә૫ł SıəMsue K｜｜nıssəวэns ұuәpnłS	$\begin{gathered} \text { ZdW } \\ { }^{\prime} \cdot \forall \cdot \exists \exists \cdot 8 \end{gathered}$	て＇L
0	\downarrow	乙	ε	†		
	6u！uu！6eg	6u！doןəィəด	6u！	6u！pəəэхヨ／6u！¢әәw	рлериеłS	wəq0，d

\forall שxos ：
\qquad

1. How long is the segment from $(-5,2)$
to $(-5,-8)$?
Use the graph if it helps you with your thinking.
2. Evaluate each expression for the given value.

2.1	a^{2} when $a=\frac{3}{4}$	b^{3} when $b=1.1$

3. Plot these numbers on the number line: $\frac{3}{4},-1.5,3^{2}, 0.5^{3}$

\qquad
4. Find a fraction that is equal to each decimal.

4.1	0.4	4.2	1.15	4.3	0.125

5. Find a decimal that is equal to each fraction.

| 5.1 | $\frac{3}{5}$ | $\frac{271}{100}$ | 5.3 | $\frac{1}{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

6. What is the area of this triangle (in square units)? Explain your thinking.

7. Find a solution for each equation.

7.1	$a^{2}=25$	7.2	$b^{3}=8$	7.3
			$10^{c}=1000$	

1. 10 units
$2.1 \quad \frac{9}{16}$ (or equivalent)
2.2 $\quad 1.331$ (or equivalent)
2.

$4.1 \frac{4}{10}$ or $\frac{2}{5}$ (or equivalent)
$4.2 \quad \frac{115}{100}$ or $\frac{23}{20}$ (or equivalent)
$4.3 \frac{125}{1000}$ or $\frac{1}{8}$ (or equivalent)
$5.1 \quad 0.6$ (or equivalent)
5.2 2.71 (or equivalent)
$5.30 . \overline{1}$ or 0.111 (rounded to three or more decimal places)
6. Explanations vary. Draw a rectangle around the triangle. This rectangle has area of 20 square units. Then subtract away the area of three right triangles. These triangles have areas of 5,4 , and 2 square units, so the original triangle has an area of 9 square units.
7.1 $a=5$ or $a=-5$
$7.2 b=2$
$7.3 c=3$

Unit 8.8, Readiness Check Summary

For teachers who choose to spread out the questions, consider assigning the following:

- Problems 6 and 7 before Lesson 1
- Problems 2 and 3 before Lesson 3
- Problem 1 before Lesson 11
- Problems 4 and 5 before Lesson 12

Problem 1

(Standards: 6.G.A.3, MP7)
This question is intended to surface what students already know about using the structure of the coordinate plane to determine the distance between two points that share the same x - or y-coordinate in preparation for their work calculating distances in the coordinate plane. This content first appears in Lesson 11: Pond Hopper.

Suggested Next Steps: If students struggle . . .

- Consider spending more than the suggested time on Lesson 11's Warm-Up. Invite students to share strategies for determining the distance between two points that share one coordinate.

Problem 2

(Standard: 6.EE.A.1)
This question is intended to surface what students already know about calculating squares and cubes of rational numbers. This content first appears in Lesson 3: Between Squares and in Lesson 5: Filling Cubes, where students calculate square roots and cube roots.

Suggested Next Steps: If students struggle . . .

- Consider revisiting Problem 2.1 before Lesson 3's Warm-Up and Problem 2.2 before Lesson 5's Warm-Up. Encourage students to use the Desmos scientific calculator to help them calculate the values of square and cube roots as needed throughout the unit.

Problem 3

(Standards: 6.EE.A.1, 6.NS.C.6.C, MP7)
This question is intended to surface what students already know about the value of numbers less than 1 raised to different exponents relative to more familiar numbers. Students use the structure of the number line to support their thinking. This content first appears in Lesson 4: Root Down, where students represent square roots as points on a number line.

Suggested Next Steps: If students struggle . . .

- Plan to spend extra time during Lesson 4's Warm-Up. Consider inviting students to discuss where 3^{2} and 0.5^{3} would go on the number line.

Unit 8.8, Readiness Check Summary

Problem 4

(Standards: 4.NF.C, MP7)
This question is intended to surface what students already know about writing decimals as fractions. Students make use of the structure of place value in their conversions. This content first appears in Lesson 13: Decimals to Fractions, where students express repeating decimals as fractions.

Suggested Next Steps: If students struggle . . .

- Plan to take opportunities starting in Lesson 12 to practice writing numbers in different forms. This skill will be particularly important in Lesson 12: Fractions to Decimals and in Lesson 13: Decimals to Fractions.

Problem 5

(Standards: 7.NS.A.2.D, MP7)
This question is intended to surface what students already know about writing fractions as decimals. Students make use of structure when writing equivalent fractions with denominators that lend themselves to decimal expression. This content first appears in Lesson 12: Fractions to Decimals, where students express fractions as either repeating or terminating decimals.

Suggested Next Steps: If students struggle . . .

- Plan to take opportunities starting in Lesson 12 to practice writing numbers in different forms. This skill will be particularly important in Lesson 12: Fractions to Decimals and in Lesson 13: Decimals to Fractions.

Problem 6

(Standards: 6.G.A.1, MP7)
This question is intended to surface strategies students use to calculate the area of a triangle using the structure of a grid. This content first appears in Lesson 1: Tilted Squares, where students calculate areas of squares on a grid whose side lengths do not align with grid lines.

Suggested Next Steps: If students do well . . .

- It may be possible to skip or move faster through Lesson 1's Warm-Up.

Unit 8.8, Readiness Check Summary

Problem 7

(Standards: 6.EE.A.1, 8.EE.A)

This question is intended to surface what intuitions students already have about square and cube roots. Students are not expected to "take the square root of each side" to solve equations like this. This content first appears in Lesson 2: From Squares to Roots, where students use square root notation to represent the side length of a square given its area.

Suggested Next Steps: If students struggle

- Plan to revisit this question after Lesson 2. If needed, provide a list or visual display of perfect squares and cubes and highlight the values of perfect squares and cubes as they arise throughout the unit.
\qquad

1. Which value is an exact solution to the equation $z^{2}=20$?
A. $z=10$
B. $z=\sqrt{20}$
C. $z=4.5$
D. $z=\sqrt{10}$
2. Which value is the exact edge length of a cube whose volume is 36 cubic inches?
A. $\sqrt[3]{36}$ inches
B. 6 inches
C. $\sqrt{36}$ inches
D. 12 inches
3. Determine the exact length of each line segment. Explain or show your reasoning.

a	
b	

\qquad
4. Plot these numbers on the number line:

$$
\sqrt[3]{9}, \sqrt{10}, \sqrt{16}, \sqrt[3]{27}
$$

5. Find values for c and d so that the shaded square has a side length between 6 and 7 centimeters. Explain or show your reasoning.

1. B. $z=\sqrt{20}$
2. A. $\sqrt[3]{36}$ inches
3.

Explanations vary. I drew a tilted square using the segment as one side. The area of a tilted square can be divided into four congruent triangles and a square. I calculated the area of one triangle, multiplied that by 4, and then added the area of the square. The segment length is the square root of the area of the tilted square.
4.

5.

Explanations vary. With these measurements, the outer square would have sides lengths of 9 cm , making its area 81 square cm . The four triangles have a total area of 40 square cm .

When you subtract the triangle area from the outer square, the shaded square's area is $81-40$, or 41 square cm . If the area of the shaded square is 41 square cm , then its side length must be $\sqrt{41}$ cm , which I know is between 6 and 7 cm , since $6^{2}=36$ and $7^{2}=49$.
（でV＇ヨヨ＇8：pıepuets）

$G^{\prime} \varepsilon^{\prime} \chi^{\prime} \downarrow$	suəๆq0．d

sməgodd
0
$\frac{0}{3}$
$\frac{2}{2}$
$\frac{2}{2}$

Unit 8．8，Quiz：Summary and Rubric
to the work students did in Lesson 4：Root Down．
In this problem，students recognize square roots as solutions to equations of the form $x^{2}=n$ ．This problem corresponds most directly Lesson 5：Filling Cubes．
use the language given in the problem to determine a cube root．This problem corresponds most directly to the work students did in In this problem，students understand that a cube root represents the side length of a cube．Students attend to precision when they
（Standards：8．EE．A．2，MP6）
 －

 －Consider revisiting Lesson 5，Activity 1. 8．Then ask students to name and write down the relationship between 2 and 8 ，and then express it using radical symbols．
Consider starting students with an example that only involves integers，such as finding the side length of a cube with a volume of

Problem 2

 Suggested Next Steps If sude stugg ．．

8．EE．A． 2

uare roots as

alutions 2

－

corresponds most directly to the work students did in Lesson 1: Tilted Squares.
In this problem, students use strategies like "surround and subtract" to solve problems involving areas of tilted squares. This problem
(IdW ' Z 'V'SN'8' ' \quad ' \forall ' $\exists \exists>8$:spiepuetS)
Problem 5

- Consider revisiting Lesson 4, Activity 2, Screen 5 or Problems 1 and 6 from Practice Day 1. cubes to estimate between which consecutive integers the remaining values are.
- Consider asking students to look for integer values and plot those first. Then have students use their knowledge of squares and Suggested Next Steps: If students struggle . . .
corresponds most directly to the work students did in Lesson 4: Root Down.
In this problem, students use the structure of the number line to estimate the value of square roots and cube roots. This problem (Standards: 8.NS.A.2, MP7) Problem 4 - Consider revisiting Lesson 1, Activity 1 or Lesson 3, Activity 2.

 Suggested Next Steps: If students struggle
to the work students did in Lesson 3: Between Squares.
In this problem, students use the structure of the grid and square roots to calculate distances. This problem corresponds most directly (Standards: 8.EE.A.2, MP7) Problem 3
Unit 8.8, Quiz: Summary and Rubric

7duәəие ł0u p！	＇ио！ңеиерыхә ұэәлоэи！ ло ио！̣еиеןdxә ou ЧІ！М ләмsue łэәллоэи		－st！un $\mathrm{g} \int$ I os＇st！un \＆иeчł ssə łnq Z иецł әлош әу！！ sуоо ұиәшбәs әцд ॰о чдбиә әчь＂＇$\quad \exists$ ио！ңеиерыхә u！SME！t dou！̣ Чџ৷м рәұерпэןе sұuәu6əs omł 10 әuO	әлеnbs әцł S！цłБиә ұиәшбәs әчц －әлпnbs әчł „о еәле әчъ рәрре иәчұ әио до еәле әцł рәғеןпэеэ ।＇әлепbs е рие sәןБие！диәпибиот ınot оұи！рәр！м！p әq иеэ әлеnbs pәғ！！ е до еәле әцц＇әр！s әио se ұиәшбәs $\begin{aligned} \text { st!un } \mathrm{S} & =q \\ \text { st!un } \mathrm{S} & =p \end{aligned}$	でV＇ヨヨ゙8	ε
łOU P！	＇peәtsu！ $9 \varepsilon=s \varepsilon$ рәл／оs әлец Кеш зәцои！ZI рәґวәәә очм słиәрпłs 				でV｀ヨヨ＊8	Z
7duәュе ł0u p！o	＇реәґsu！ $0 Z=z Z$ рәл／оs әлец Кеш 0I＝z рәґวәәอ очм słuәрпłs －әэ！ฺчэ ґэәлоэи｜			$\underline{0 Z} \mathcal{Y}=z$ ‘әગ！๐чэ ґэәлоう	でV｀ヨヨ＊8	\downarrow
0	\downarrow	Z	ε	t		
	6u！	6u！doןəләа	6u！upeordd \forall	6u！pəəэxヨ／6u！łəəW	paepuets	məqodd

o！ıqny pue Kıemuns ：z！no ‘ 8 ＇8 8 ！！un

7dmente ł0u p！	К／дэәноо sıәqunu әчł $\downarrow 0$ әиои słold łиәрпts дәqunи әио ұsеә ұе słold słoo әqno pue słooд әдenbs łо әпןе＾ә૫ł әłеய！！！Sə Oł əu！！дəqunu рәң！ш！！smoчs צдом	ऽ＇Z pие 乙 иәәмұәq и！әдәцмәшоs $6 \int_{\varepsilon}$ † pue ε \＆ әІрр！ш әчł леәи 0 I／ ：дәчұ！ə słold ұиәрпłs＂ 6 ・ヨ ＇sıодә ұиеэ！！！uб！s Ч！！М Бu！̣uełsıәpun әұәןdmoכu！SMOYs צдоМ	＇s＇z рие 乙 иәәмұәq и！әдәчмәшоs 6¢ 6 † pue ε яо әрр！ш әчł леәи 0Lᄀ ：yłoq słold zuәpnts＂6・ヨ ＇sıодә әшоs ןenłdәәuos sмочs yооМ	ұขәлоэ pue 	でV＇SN＇8	\dagger
0	\downarrow	Z	ε	t		
	6u！uu！${ }^{\text {a }}$	6u！̣doןəләа	6u！		paepuers	шә¢qodd

o！ıqny pue Kıewuns ：z！no ‘8‘8 t！un

7dmәие łou P！	uo！ңeue，${ }^{\text {dxә }}$ †כәдиоэu！ ло uo！̣еиеןdxә ou पұ！M ләмsuе łэәлиоэи	＇sиопұеппэеэ д！әчд u！ 700 длеnbs ә૫ł səsn рие еәле sәғеןпэет łuәphis＂6’ヨ ＇6u！pueqsıәрй ן！！ued smoys ұецұ ио！ұеиеןdхә ЧІ！М ләмsue łэәлдоэи uo！̣eue．jxә әұәोயسoэu！ цџ！м рәұеןпэן sұuәuбәs омұ 10 әuо	долә ио！ұеןпэет лои！ш e səyеш ¥nq әчł słэeдłqns pue әıеnbs ıәґпо әЧł $\downarrow 0$ еәле әцұ sәґеןпэю диәрпts＂ 6 ・ヨ uo！̣eue．jxa U！SME｜！dOu！̣ Ч！！м рәұеןпэןе sұuәubes OMł 10 әuO	$6 t={ }_{z} \angle \text { pue } 9 \varepsilon=_{z} 9 \text { əou!s }$ ‘шว L pue 9 иәәмłәq s！моия । st！иәч7＇wo əлenbs It s！әлеnbs pәрецs әчł „о еәле әЧł fl＇wo əıenbs еәл әןБиеид әчд дэедяп поК иәчМ L8 eәлe st！би！чеш＇mo 6 เo sцłбиә sәр！s әлец рınом әлепbs ıәґпо $\begin{aligned} & \text { wo } \begin{array}{l} =p \\ \text { wo } \mathrm{s}=0 \end{array} \end{aligned}$ ¿ L pue 9 иәəмłəq s！ ${ }_{z} p+{ }_{z}^{3} \wedge$ \square 	Z＇V＇SN＇8 ＇Z＇ジヨヨ＇8	G
0	\downarrow	Z	ε	t		
	6u！	6u！doןəләа	6u！	бu！pəəэxヨ／6u！łəәW	paepuets	шәq0ıd

o！ıqny pue Kıemuns ：z！no ‘ 8 ＇8 8 ！！un
\qquad

1. Select all the numbers that are solutions to the equation $x^{3}=27$.$\sqrt{27}$3$\sqrt[3]{27}$$27^{3}$
9
2. Circle all the right triangles.

3.1 Which of these is equivalent to $0.1 \overline{3}$?
A. $\frac{1}{3}$
B. $1 \frac{1}{3}$
C. $\frac{13}{99}$
D. $\frac{12}{90}$
3.2 Which of these describes $0.1 \overline{3}$?
A. Rational
B. Irrational

Explain your thinking.
\qquad
4. Calculate the length of the unlabeled side of this right triangle.

5.1 Plot these numbers on the number line:
$\sqrt[3]{28}$
$\sqrt{16}$

5.2 Kai plotted $\sqrt{8}$ on the number line at 4.

Explain how you know this cannot be the correct position for $\sqrt{8}$ on the number line.
\qquad
6. How many units long is the line segment between the points $(-5,4)$ and $(6,-3)$?

Use the graph if it helps with your thinking.

Wey Wey drops a pencil in her cup and notices that it only fits diagonally.
The pencil is 17 centimeters long and the cup is 15 centimeters tall.
7.1 What is the diameter of the cup?

Show or explain your thinking.
7.2 What is the volume of the cup?

Show or explain your thinking.

Reflection: Select a question to answer.
What is something you are proud of from this unit?Write what you know about a topic from this unit that you weren't asked about today.
\square Describe or show one strategy you found helpful in this unit. Name any students who helped you with this strategy.What else would you like your teacher to know?

1. $\sqrt{ } 3$
$\checkmark \sqrt[3]{27}$
2.

3.1 D. $\frac{12}{90}$
4. $\sqrt{45}$ units (or equivalent)
5.1

6. $\sqrt{170}$ units (or equivalent)

7.18 centimeters

Explanations vary. The diameter of the cylindrical cup can be found using the Pythagorean theorem: $\sqrt{17^{2}-15^{2}}=8$.

3.2 Rational

Explanations vary. I know this number is rational because I can write it as a fraction.
5.2 Responses vary. $\sqrt{8}$ cannot equal 4 because 4 is 16 , not 8 .
7.2 240π cubic cm (or equivalent) Explanations vary. The diameter of the cylinder is 8 cm . That means the radius is 4 cm . The volume of the cylinder is $\pi \cdot 4^{2} \cdot 15=240 \pi$.
－Consider revisiting Lesson 9，Activity 1.

－Consider reminding students of the Pythagorean Theorem and its converse，then ask how they could apply these theorems Suggested Next Steps：If students struggle ．．．
This problem corresponds most directly to the work students did in Lesson 9：Make It Right．
In this problem，students attend to precision when they determine whether each triangle satisfies the Pythagorean theorem．
（Standards：8．G．B．6，MP6）
Problem 2

Lesson 5：Filling Cubes．
In this problem，students identify the value of a cube root．This problem corresponds most directly to the work students did in
（で甘＇ヨヨ＇8：：pxepuełs） โ Шวโqoud

G	ε	でし	9	L＇L＇カ	乙	G＇ 1	swəq］．d
て＇V＇SN＇8	$L^{\prime} \forall^{\prime} \mathrm{SN} \cdot 8$	6．0・ソ・8	8．9＇9．8	L＇9＇9＊8	$9 \cdot 9 \cdot 9 \cdot 8$	て＇＊＇ヨヨ＇8	prepue7s

directly to the work students did in Lesson 8: Triangle-Tracing Turtle.
In this problem, students apply the Pythagorean theorem to determine an unknown side length. This problem corresponds most
(Standard: 8.G.B.7)
Problem 4

Lesson 13: Decimals to Fractions and Lesson 14: Hit the Target. language when they identify the decimal as rational or irrational. This problem corresponds most directly to the work students did in
In this problem, students express a repeating decimal as a fraction and describe it as rational or irrational. Students use precise
(Standards: 8.NS.A.1, MP6) Problem 3
Unit 8.8, End Assessment Summary and Rubric: Form A

and the grid to determine the missing side length.

- Consider helping students draw and label an appropriate right triangle, then ask how they can use the structure of the triangle
Suggested Next Steps: If students struggle . .
between two points. This problem corresponds most directly to the work students did in Lesson 11: Pond Hopper.
In this problem, students use the structure of the coordinate grid and apply the Pythagorean theorem to calculate the distance
(Standards: 8.G.B.8, MP7)
Problem 6

directly to the work students did in Lesson 4: Root Down.
Students also critique the reasoning of another to explain why a certain value has been misidentified. This problem corresponds most
In this problem, students use the structure of the number line to locate approximate square and cube roots and estimate their value.
(Standards: 8.EE.A.2, 8.NS.A.2, MP3, MP7)
Problem 5
Unit 8.8, End Assessment Summary and Rubric: Form A

students did in Lesson 10: Taco Truck. they decide how to represent and apply each dimension of the cup in context. This problem corresponds most directly to the work
In this problem, students apply the Pythagorean theorem in a volume context. Students reason abstractly and quantitatively when

Problem 7
Unit 8.8, End Assessment Summary and Rubric: Form A

7dmә»е ъ0u p！	＇$\underline{\varepsilon}$＇ 0 pue $\underline{\varepsilon L}{ }^{\circ} 0$ ґо ұиәөел！̣ивә ןеш！эәр ә૫ł pəsnłиоэ әлец кеш $\frac{66}{\varepsilon I}$ џәәәь очм sұuәpnłS ع Би！̣еәdәл е s！әдәцł łецł рәдәqшәшә» әлеч Кеш $\frac{\varepsilon}{\mathrm{L}}$ ఛəәәәs очм słuәpnıs			$\frac{06}{Z I} \bullet$	L•＊＇SN•8	－＇E
7． d мшәұе 10u P！	‘səэ！๐чэ ұәәдоэ słəəઇəs К｜ио ұиәрпіs	－әэ！ฺ๐э ґэәлоэи！ әио рие sәэ！очэ әио słวəəəs łuəpnłs	－әэฺ๐чจ ŋวәцоэи！әио рие Ł0 પł૦q słכəןəs łuәpnłs ‘səગ！очэ ұэәдиоэu！Kue ¡эәə๐ łou səop pue 	－səэ！очэ ұכәдоэи！Kue ¡əəઇ૦ łOu səop pue 	$\begin{aligned} & 9 \mathrm{dW} \\ & 9^{\prime} \mathrm{a}^{\prime} ⿹ 勹 \end{aligned}$	乙
10u P！	－ธəэ！！ч๐ ұәәлоэ 	－әэ！ฺчэ ґэәлоэи！ әио рие səэ！๐чว әио słəəəəs łuәpnłs	－әэฺ๐чэ ¡əәมоэи！әио pue Ł0 પł૦q słכə｜əs łuәpnłs ‘səэ！丨чэ ұэәдиоэu！Kue łวəə๐ łou səop pue 		でV゙ヨヨ＊8	\downarrow
0	\downarrow	乙	ε	†		
	6u！uu！${ }^{\text {eg }}$	6u！doəəләа	6u！		paepueis	melqord

7dme»！ Ł0u p！o	＇шәлоәцł иеәлобечł＾＿d әчł Кן ${ }^{\text {dde }}$ Oł моч రu！̣риеłsぇәрип ईо әэиәр！ィә уеәМ	 ұnочұ！м sцұбиә бә әчł рәрре әлец Кеш 6／ 106 әұ！мм очм słuәpпłs sлодә ұиет！！ииб！s ЧІ！М＇దи！̣риедsıәрй ұnq 6u！̣doəəләр e SMOUS y10M	－бu！̣ィィоs иәчм z uo łuəuodxə łou p！p łnq шәдоәчł әлец Кеш St әџ！！м очм słuәpnłs ＇s．ouд pue 6u！puełsıəpun 		L＇g＇Э｀8	t
	1о ио！！еие｜dхә ұәшиоэи！ Ч！！ג дәмsue łәәиоои	－uo！̣ent！s ә૫ł „о бu！̣puełsıəрй ן！！̣еd sәңет！unumos łеपł uo！łеue｜dxә цџ！М ләмsuе ұэәдоэи｜ －uo！̣еие｜dxә әұәןdmoכu！ 	әлец Кеш ио！！эед ґəəəəડ очм słuәpnłS －uo！̣еue｜dxә Ч！！М дәмsǔ ґэәдоэи －uo！̣еие．dxә u！SME｜t dOu！ Чџ！М дәм	－ио！！эели е se ueว｜əsneoəq ןeuo！̣eג s！лəqunu s！Чł моиу I puo！pey －uoḷeue，dxә әұәןdmoэ pue uo！！sənb әцł sдəмsue K｜｜nłssəวэns łuəpnłS	$\begin{gathered} 9 \mathrm{dW} \\ \cdot \cdot \forall \cdot \mathrm{SN} .8 \end{gathered}$	て＇દ
0	\downarrow	乙	ε	t		
	6u！̣u！̣əəg	6u！doןəләа	6u！	бu！pəəวхヨ／6u！	paepuets	məqodd

7dшәџе łOU P！O	－ ә૫ł uo słכәsıəłu！әu！！ әлец Кеш 9I до SI ә！！мм очм słuәpnts －әиеן әұеи！̣риооэ Łо әЈиәр！лә уеәМ	＇sıодә ұиеэ！！！uб！s पł！M ‘欠u！̣puełsıəpun ןenłdәоиоэ әұәןdmoэи！ ұnq ठu！̣doןəәр е SMOYS y＿оM	$z^{2} L+{ }_{z} L I \mathcal{L}$ เо реәısu！ әлеч Кеш ZL人 әұ！̣м очм sұuәpnis －s．дид әшоs чł！м＇Кдәұsem pue бu！puełsıəpun ןenłdəouos smous yıom	（ұиәןем！̣nbə 10）St！un $0 \angle L$ ＇ఛวәиоэ pue 		9
7duә立e łou P！	－6u！̣ииедsıəpun юо әэиәр！лә чеәм	¡ou səop әsuodsəy －sıодә ұиеэ！！！uб！！ Чџ！м ‘Ки！риеґsıәрй ןепłdәэиоэ әұә！дшоэи！ ұnq 6u！doןəләр e Smous yrom	 －sıддә ןenłdəouoo sмочs yıом	－ 8 łou pue＇91 s！${ }_{z}^{\text {† әsneəəq } \downarrow ~}$ ןenbə łоиues 8 ＇łวәлоэ pue әұәןdmos s！чィоМ	$\varepsilon d W$ ＇で甘プSN＇8 ‘でマ゚ヨヨ’8	て＇G
7dшәџе tou P！	－әu！！ ıəqunu ә૫ł uo sənןе＾ －6u！̣puełsıәрй юо әэиәр！лә уеәм	uo sən！e＾əл！！әપł ło әәдЧł до Омł ऽәłеכо। ＇sıoдəә ұиет！！！uи！！s ןепłдәэиоэ әұәјдшоэи！ łnq 6u！̣оןəләр e SMOUS yIOM	－әu！！ ıəqunu әЧł uo sənןゃ＾ ＇sıoдə ıои！ pue 6u！puełs．əәpun jenłdәәuoう smoys yиом	†эәлоэ pue 		L＇G
0	1	乙	ε	t		
	6u！uu！ 6 өg	6u！doןəләа	6u！	6u！pəәэхヨ／6u！ŋəәW	prepuers	merqodd

7duәュе Ł0u p！o	－uo！̣eue｜dxә ue łnout！M 10 uol！eue｜dxə †эәдоэи！ प \ddagger ！М дәмsue ฉэәлоэи	－dno ә૫ł ґ0 ләəәше！ рәғепләет Кןэәдоэ ィәұем Ło ш๐ э！̣no 8 рןоч ueo dno әЧł łецł ә！！̣м очм słuәpnłS －uo！ұепи！ әчł „о бu！̣puełsıəрй ן！！иед sәғеэ！иишшоэ ұечł ио！ңеиеןdхә Чџ！М ләмsuе ұәәдоэи ＇uo！̣еиеןdxə әғəןdmoэu！ 	Oł sn！̣pe» әЧł łO peəəsu！ dno əપł ！o дəұәшய！ әЧł pəsn әлец кеш шว э！̣nว ${ }^{096}$ әт！мм очм słuәpnłs Ч！！М дәмsue łэәдоэи｜ ＇uol！ңeue．dxә u！SME｜f dOu！w 	$\cdot u_{0 ヵ Z}=S I \cdot{ }_{z} \downarrow \cdot \amalg$ s！גәри！！ －سo ォ s！sn！̣peд ә૫ł sueəu แว ว！̣nว ${ }_{0} 0 \succsim Z ~ \cdot ~$ pue ןeo！boן e səpnןગu！ pue uo！！sənb әчł sıəмsue K｜｜ņssəoวns ұuәpnis	$\begin{gathered} \text { ZdW } \\ 6 \cdot 0 {fdfd7062d-3839-47a4-97ef-849cbbcf8332} 8 \end{gathered}$	でし
7dшәџе ł0u p！	uoḷeue，dxә ue łnout！M 10 uo！！eue｜dxə †эәдоэи！ प ґэәдоэи｜	sбəə ә૫ł se SI pue LI pəsn әлец Кеш ш๐ L＇ZZ s！dnэ ә૫ł ！ әцұ ұецł әب！мм очм sұuәpnłs －uo！̣ent！s ә૫ł „о 6u！̣puełsıəрй ן！̣иед sәғеэ！иишшоэ łечł иo！̣еие｜dхә Чџ！М дәмsuе ұэәдоэи｜ ＇uo！̣еиеןdxə әғәןdmoэи！ ЧІ！М дәмsue ґәәдоว	－иo！̣еие｜dxә －uoļ̣eue．dxə u！SME｜f dOu！̣ ЧІ！М дәMSUQ łכәлоつ	$8={ }_{z} \mathrm{SI}-{ }_{z} \mathrm{LI} \mathcal{L}$ ：шәлоәчъ иеәлобечұКд ә૫ł Бu！̣sn punoł pue ןeo！ pue uo！！sənb әчł sıəмsue K｜｜ņssəoэns ұuәpnłs	$\begin{aligned} & \text { ZdW } \\ & \therefore \cdot g \cdot 9 \cdot 8 \end{aligned}$	$1 \cdot 2$
0	1	乙	ε	t		
	6u！	6u！doןəләа	6u！upeorddv	бu！pəəวxヨ／6u！ŋəәW	prepuets	шәq\％od

GRADE 8

Exit Tickets

Exit Tickets provide an opportunity for students to show what they individually understood about the main idea of the lesson.

This section includes all Exit Tickets and Teacher Moves for Units 1-8, as well as printable PDFs for sample lessons. Please note that Exit Tickets are referenced as Cool Downs in this review.

Exit Tickets are available as PDFs for download from the teacher experience in the platform, as well as digitally in the student experience. Amplify Desmos Math does not include them in the core student print materials to ensure students do not have access prior to the end of the lesson. (Teachers can control access to the Exit Ticket in the digital experience, too.)

Nyanna solved the equation $8(x-3)+7=2 x(4-17)$
incorrectly. Her work is shown.

1. Determine Nyanna's error.
$8(x-3)+7=2 x(4-17)$
$8(x-3)+7=2 x(13)$
$8 x-24+7=26 x$
$8 x-17=26 x$
$-17=34 x$ $-\frac{1}{2}=x$

How well did you understand the math in this lesson?

How did you feel about this lesson?

Reflect on the math from this lesson

- I can solve a linear equation.
- I can analyze strategies for solving a linear equation.

> Exit Ticket PDFs are available for all lessons. Here are samples from Amplify Desmos Math New York, fully designed.

Exit Ticket

5.06

A bucket is half full of water. Hoang fills the rest of the bucket at a constant rate. Once the bucket is full, Hoang pours the water over his head - starting slowly, then speeding up until the bucket is empty.

Which graph could represent the relationship between the volume of water in the bucket and time? Explain your thinking.

How well did you understand the math in this lesson?

How did you feel about this lesson?

Reflect on the math from this lesson.

- I can draw the graph of a function that represents a real-world situation.
- I can describe where the graph of a function is increasing, decreasing, linear, or non-linear.

The following pages in this section include digital versions of all Exit Tickets and their Teacher Moves for Units 1-8.

Please note that Exit Tickets are referenced as Cool Downs in the partially designed samples that follow.

8.1 Cool-Downs

Lesson Checklist

\square Complete the lesson using the student preview.
\square Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.
\square Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.
\square Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?
\square Anticipate screens where students will struggle, then plan your response.
\square Consider how to use snapshots to select and present student thinking for class discussion.
\square Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.

1 Lesson 1: Describing Movemen..
:二 \quad Marcela saw a and described the shape before (gray) and after (red) lilonthin.

Marcela saw a transformer and described the shape before (gray) and after (red) like this:
"The shape turned and then moved down and to the right."

Which transformer do you think Marcela was describing?

Teacher Moves

Support for Future Learning

Students will have more opportunities to describe transformations more formally, so if students struggle with this cool-down, there is no need to slow down or add additional work to the next lessons.

Early Student Thinking

Later in Unit 1, students will be introduced to the formal language of transformations (i.e., translations, reflections, and rotations). The purpose of this lesson is for students to describe these movements using everyday language. Because of this, it is possible that students may interpret a "turn" as either a rotation or a reflection, so there are two possible correct responses for this problem.

: Sample Responses

Responses vary.
Top left or bottom left

2 Lesson 2: Naming Transforma...
What type of move takes the blue

What type of move takes the blue polygon to the white polygon?

Use the sketch tool if it helps you to show your thinking.

Teacher Moves

Support for Future Learning
If students struggle with distinguishing between reflection, rotation, and translation, plan to revisit this when opportunities arise over the next several lessons. Consider spending extra time on Lesson 3's warm-up to discuss how each of the three transformations would affect the shape.

比 Sample Responses

Rotation

Responses vary.
If the blue polygon is rotated around the point shared by both polygons, it will land on the white polygon.

3 Lesson 3: Sequences of Transf...

This challenge can be solved using . . .

P] Teacher Moves
Support for Future Learning
Students will have more opportunities to describe transformations, so if students struggle with this cool-down, there is no need to slow down or add additional work to the next lessons.

E Sample Responses

This challenge can be solved using . . .

- . . . only reflections.
- . . . a reflection and a translation.

4 Lesson 4: Transformations on...
Triangle $A B C$ is drawn on a grid.

Using the sketch tool, -.........-」

Triangle $A B C$ is drawn on a grid.

Using the sketch tool, draw and label:

1. A reflection of triangle $A B C$.
2. A translation of triangle $A B C$.
3. A rotation of triangle $A B C$.

Teacher Moves

Support for Future Learning

If students struggle to perform each transformation, consider reviewing this cool-down as a class before Lesson 5 or offering individual support where needed during the next lesson.

比 Sample Responses

The pre－image （shaded）is reflected across the x－ axis to create the image •．．．．－レールール

Theacher Moves

Support for Future Learning

If students struggle with identifying the coordinates，plan to revisit this when opportunities arise in Lesson 6．Consider asking students to identify the coordinates of the points in the pre－image and image on Screen 4 and connecting what they notice to the type of transformation．

泪 Sample Responses

Clockwise from the top of the outlined image：
$(3,-1)$
$(4,-3)$
$(2,-5)$

Point A is located at $(2,-1)$ ．

Complete the table．

Use the sketch tool if it helps you with your thinking．

Teacher Moves

Support for Future Learning
If students struggle to identify the coordinate after the transformation，consider reviewing this problem as a class before the quiz．

畈 Sample Responses

Point $B:(4,-1)$
Point C : $(-2,-1)$
Point $D:(-2,1)$

Are figures A and B congruent?

Use the sketch tool if it helps you with your thinking.

Teacher Moves

Support for Future Learning

Students will have more opportunities to understand how to determine whether shapes are congruent, so if students struggle with this cool-down, there is no need to slow down or add additional work to the next lessons.

讯 Sample Responses

No
Responses vary.
The figures are not congruent because they do not have the same length and width. Figure B is 2 units wide by 3 units long, and figure A is about 3.5 units wide by 2 units long.

8 Lesson 8: Rigid Transformations

Trapezoid B is the image of trapezoid A under a series of rigid transformation

Trapezoid B is the image of trapezoid A under a series of rigid transformations.

Use the information in trapezoid A to label the measurements of the corresponding parts in trapezoid B.

Reacher Moves

Support for Future Learning

If students struggle with identifying corresponding sides and angles, plan to revisit this when opportunities arise in Lesson 9.

Consider pausing on Screen 3 to discuss pairs of corresponding sides and what students know about the angle measures of JKLM.

Sample Responses

Image solution

9 Lesson 9: Rigid Transformatio...

Describe a sequence of transformation

Describe a sequence of transformations to convince a classmate that quadrilateral $A B C D$ is congruent to quadrilateral $E F G H$.

T] Teacher Moves

Support for Future Learning

If students struggle to describe a series of transformations, consider reviewing this screen as a class or offering individual support where needed during the Practice Day.

泪 Sample Responses

Responses vary.

- Translate $A B C D$ down 1 and 5 to the right. Then reflect over GH.
- Translate $E F G H$ up 1 and 5 to the left. Then reflect over $D C$.

10 Lesson 10: Angle Measures in...

Xavier says that the information given is enough to determine the measures of angle C and angle D.

Which angle measures can Xavier actually determine?

Use the sketch tool if it helps you with your thinking.

Teacher Moves

Support for Future Learning

Students will have more opportunities to identify congruent angles, so there is no need to slow down or add additional work to the next lessons.

畈 Sample Responses

Both
Responses vary．

Xavier can know the measurements of both C and D ．You can use a rotation to transform the 74° angle onto angle C ．You can use a translation to transform the 106° angle onto angle D ．

11 Lesson 11：Angle Sums in Tria．．
Select three angle measures that could be angles in the same triangle．
：二

Select three angle measures that could be angles in the same triangle．

Teacher Moves
Support for Future Learning
Students will have more opportunities to understand the angle measures in a triangle，so if students struggle with this cool－down， there is no need to slow down or add additional work to the next lessons．

讯 Sample Responses

$42^{\circ}, 18^{\circ}, 120^{\circ}$

Responses vary．
I know these could be the angles in a triangle because $42^{\circ}, 18^{\circ}$ ， and 120° sum to 180° ．

12 Lesson 12：Proving the Triangl．．．

$A B$ is parallel to $D E$ ．

What is the measure of angle $C A B$ ？

Use the sketch tool if it helps you with your thinking．

Teacher Moves

Support for Future Learning

If students struggle to calculate the measure of the missing angle， consider making time to explicitly revisit these ideas before the End－

Unit Assessment.

Facilitation

Consider allowing students to use paper and pencil to record their ideas in addition to using the sketch tool.

押 Sample Responses

$$
100^{\circ}
$$

Responses vary.
$A C E=180^{\circ}-\left(37^{\circ}+43^{\circ}\right)=100^{\circ} . C A B$ and $A C E$ are congruent (alternate interior angles), so $C A B=100^{\circ}$.

Student Supports

Students With Disabilities

- Visual-Spatial Processing: Visual Aids

Provide printed copies of the representations for students to draw on or highlight.

13 Lesson 13: Using Transformat...

Tyani drew the center square (square A), then used transformations to create a tessellation.

Describe how square A could have been transformed to create square B.

T] Teacher Moves

Support for Future Learning

If students struggle to describe transformations used to create a tessellation, consider making time to revisit these ideas before the End-Unit Assessment.

畈 Sample Responses

Responses vary.
To create Square B, you can reflect Square A horizontally across its right edge.

8.2 Cool-Downs

Lesson Checklist

\square Complete the lesson using the student preview.
\square Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.
\square Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.

1 Lesson 1: Exploring Dilations a...

Click on the figures that you think are similar to figure A.

Click on the figures that you think are similar to figure A.

Teacher Moves

Support for Future Learning

Students will have more opportunities to identify similar figures, so if students struggle with this cool-down, there is no need to slow down or add additional work to the next lessons.

Early Student Thinking

Recall from Screen 7 that while figure A is technically similar to itself, we haven't included it as an answer choice in this introductory lesson. Similarity will be explored in more depth later in Unit 2.

讯 Sample Responses

- Bottom right
- Bottom left

Segment $B M$ is dilated using C as the center of dilation.

What is the scale factor?

Teacher Moves

Support for Future Learning

Students will have more opportunities to work with scale factors, so if students struggle with this cool-down, there is no need to slow down or add additional work to the next lessons.

押 Sample Responses

4

Responses vary.

- The scale factor is 4 because the distance between C and M^{\prime} is 4 times the distance between C and M.
- The scale factor is 4 because $B M$ is 5 ft . and $B^{\prime} M^{\prime}$ is 20 ft . since $5 \cdot 4=20$.

Rectangle $W X Y Z$ is dilated using center P and a scale factor of $\frac{1}{2}$.

Drag the movable points to indicate the location of the image.

T- Teacher Moves

Support for Future Learning

If students struggle with performing the dilation, plan to revisit this when opportunities arise during Lesson 4. Consider spending extra time discussing the dilations in Lesson 4, Activity 1.

㨡 Sample Responses

Image solution

The smaller triangle is dilated to create the larger triangle. The center of dilation is plotted but not labeled.

Describe this dilation. Be sure to include all of the information someone would need to perform the dilation.

Teacher Moves

Support for Future Learning

If students struggle to describe the dilations, consider making time to explicitly revisit these ideas before the quiz.

畈 Sample Responses

Responses vary.
Information that must be included:

- The center of dilation is $(3,0)$.
- The scale factor is 3 .
- The triangle being dilated has vertices at $(2,0),(4,2)$, and $(5,1)$.

5 Lesson 5: Dilations and Simila...

The figures shown are similar.

Describe a sequence of transformations that takes the shaded figure to the outlined figure.

Use the sketch tool if it helps you with your thinking.

P] Teacher Moves

Support for Future Learning

If students struggle to describe a sequence of transformations, plan to revisit this when opportunities arise during the next several lessons. Consider making explicit connections to transformations in Lesson 7, Activity 1.

泪 Sample Responses

Responses vary.
-Reflect across the x-axis. Then dilate with center $(0,-6)$ and a scale factor of 2 .

- Dilate with center $(0,6)$ and a scale factor of 2 . Then reflect across the x-axis.

Is $A B C D$ similar to $E F G H$?

Teacher Moves

Support for Future Learning

Students will have more opportunities to determine whether or not two figures are similar, so if students struggle with this cool-down, there is no need to slow down or add additional work to the next lessons.

㨡 Sample Responses

Yes, $A B C D$ is similar to $E F G H$.
Responses vary.

- Corresponding angles are congruent, and there is a common scale factor $\left(\frac{4}{3}\right)$ between corresponding sides.
- Dilating quadrilateral $A B C D$ with center A and a scale factor $\frac{3}{4}$ of gives a quadrilateral that is congruent to $E F G H$. This can be shown with a translation of A to E and then a rotation with center E.

Here are two triangles.

Are they similar?

Use the sketch tool if it helps you with your thinking.

PT Teacher Moves

Support for Future Learning

If students struggle to use angles to determine if two triangles are similar, consider making time to explicitly revisit these ideas before the quiz.

㨡 Sample Responses

Similar

Responses vary.
These triangles are similar because all three pairs of corresponding angles are congruent.

8 Lesson 8: Side Length Quotien...

Triangles $A B C$ and $D E F$ are similar.

Enter the missing values.

Then explain your reasoning.

P] Teacher Moves

Support for Future Learning

If students struggle to identify the coordinate after the transformation, consider reviewing this problem as a class before the quiz.

把 Sample Responses

$A C=8, E F=7.5$

Responses vary.
I saw in triangle $D E F$ that the longest side was double the shortest side, so $A C$ had to be 8 . Then I saw in triangle $A B C$ that the medium-length side was 1.5 times the shortest side, so $E F$ had to be 7.5 .

What is the slope of line k ?

Teacher Moves

Support for Future Learning

If students struggle to identify the slope, plan to revisit this when opportunities arise during Lesson 10. Consider spending extra time during the warm-up discussing the slope of the line.

讯 Sample Responses

$\frac{3}{2}$ (or equivalent)

Select all the points that are on line m.

Use the sketch tool if it helps you with your thinking.

Teacher Moves

Support for Future Learning

If students struggle to identify other points on the line, consider making time to explicitly revisit these ideas before the End-Unit Assessment or spend extra time on Problem 7 of the Practice Day.

讯 Sample Responses

$(6,5)$
$(12,9)$
$(18,13)$

8.3 Cool-Downs

Lesson Checklist

Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.1 Lesson 1: Understan...
 This graph shows the distance vs.
: 三

This graph shows the distance vs. time relationship for the Lane 1 and Lane 2 turtles. Here are their equations:

Lane 1: $d=6+1 t$
Lane 2: $d=3 t$

Select all of the true statements.

Teacher Moves

Support for Future Learning

Students will have more opportunities to analyze graphs of linear equations, so if students struggle with this cool-down, there is no need to slow down or add additional work to the next lessons.

Sample Responses

- The Lane 2 turtle is faster than the Lane 1 turtle.
- The Lane 1 turtle has a head start.

2 Lesson 2: Graphs of ...

Consider the proportional relationship on
!二

Consider the proportional relationship on the left.
Which of the graphs below show the same relationship?

Teacher Moves

Support for Future Learning

If students struggle to identify equivalent scales, plan to revisit this when opportunities arise over the next several lessons. Consider spending extra time during the warm-up of Lesson 3 discussing possible scales for the axes.

Sample Responses

The original graph shows the relationship $y=\frac{1}{2} x$. The top-left and bottom-right graphs show this same relationship.

3 Lesson 3: Comparing...田

Two seeds were planted and their
!二

Two seeds were planted and their heights were measured each day.
Plant A's data was recorded in a table, while Plant B's data is in a graph.
Which plant grew at a faster rate?

Teacher Moves

Support for Future Learning

If students struggle to determine the rates of change, plan to revisit this when opportunities arise over the next several lessons. Consider focusing Lesson 4's lesson synthesis discussion on the slope of the line.

Sample Responses

Plant B

Responses vary.

The point $(5,15)$ is on Plant B's graph, so Plant B's growth rate is 3 centimeters per day. From the table, you can calculate the unit rate for Plant $\mathrm{A}, 3 \div 2=1.5$, and see that it is a slower rate than Plant B .

4 Lesson 4: Introductio...

This graph displays the height of the $f(x)$

This graph displays the height of the stack in centimeters for different numbers of cups.

How much does each cup after the first add to the height of the stack?

Teacher Moves

Support for Future Learning

If students struggle to determine the slope of the line, plan to revisit this when opportunities arise over the next several lessons. Consider spending extra time during Lesson 5's warm-up discussing the slope of the line representing the purple flag's height.

Sample Responses

0.5 cm (or equivalent)

Responses vary.

The line passes through $(3,5.5)$ and $(8,8)$, which means that adding 5 cups added 2.5 centimeters to the stack. So each cup adds

5 Lesson 5: Represent...

A bucket is filling with water.
The graph shows the relationship between water in the bucket, w, and time, t.

What does the 10 in the equation mean in this scenario?
Use the sketch tool if it helps you with your thinking.

Teacher Moves

Support for Future Learning

If students struggle to describe the meaning of the slope in context, plan to revisit this when opportunities arise over the next several lessons. Consider spending extra time on Screen 6 of Lesson 7 discussing the meaning of 8 in the expression $640-8 x$.

Sample Responses

Responses vary.
10 is the vertical intercept. When the pouring began, there were 10 liters of water in the bucket.

6 Lesson 5: Represent...

What does the 2 in the equation mean in this scenario?
Use the sketch tool if it helps you with your thinking.

Sample Responses

Responses vary.
2 is the slope (i.e., speed). Water is pouring into the bucket at 2 liters per minute.

7 Lesson 6: Translating ... \square Here is the graph of $v=2 x$.

Here is the graph of $y=2 x$.
How will the graph of $y=2 x-7$ look the same and different?
Use the sketch tool if it helps you with your thinking.

Teacher Moves

Support for Future Learning

Students will have more opportunities to analyze graphs of linear equations, so if students struggle with this cool-down, there is no need to slow down or add additional work to the next lessons.

Sample Responses

Responses vary.

- Both graphs are the same because they both have a slope of 2 .
- The graphs are different because $y=2 x-7$ is shifted down 7 units from $y=2 x$.

8 Lesson 7: Slopes Do...

1. Sketch a line that passes through point $f(x)$
2. Sketch a line that passes through point P and has a slope of -2 .
3. What is the slope of line l ?

Teacher Moves

Support for Future Learning

If students struggle to sketch a graph with a specific negative slope, plan to revisit this when opportunities arise over the next several lessons. Consider spending extra time on Screen 2's card sort discussing students' strategies for deciding the sign of the slope.

Sample Responses

1. A line through the indicated point with a slope of -2 .
2. -4

9 Lesson 8: Calculating...

- Determine the slope of the line that goes through the points in the table.

Determine the slope of the line that goes through the points in the table.

Teacher Moves

Support for Future Learning

If students struggle with calculating the slope between two points, consider making time to explicitly revisit these ideas before the quiz.

Sample Responses

$\frac{3}{8}$

Here are four lines on a coordinate grid.
Write an equation for each line.

Teacher Moves

Support for Future Learning

If students struggle with writing an equation for a line, consider making time to explicitly revisit these ideas before the quiz.

Sample Responses

- Line $a: x=-4$
- Line $b: x=4$
- Line $c: y=4$
- Line $d: y=-2$

11 Lesson 9: Equations...
Here is a line on a coordinate grid.

Here is a line on a coordinate grid.
Write an equation for the line.

Sample Responses

Line $g: y=-\frac{3}{4} x+1$ (or equivalent)

12 Lesson 10: Solution...

The graph shows the line $y=-3 x-6$.
Complete the table so it includes two solutions to the equation.

Teacher Moves

Support for Future Learning

If students struggle to identify solutions from a graph, plan to revisit this when opportunities arise over the next lesson. Consider spending extra time identifying other solutions to the equation on Screen 5 of Lesson 11.

Sample Responses

- When $x=0, y=-6$.
-When $y=-15, x=3$.

13 Lesson 11: Using Li...

The graph of a linear equation passes through the points $(-2,0)$ and $(0,6)$.

Is $3 x-y=-6$ an equation for this graph?

Teacher Moves

Support for Future Learning

If students struggle with identifying solutions to an equation not in $y=m x+b$ form, consider making time to explicitly revisit these ideas before the End-Unit Assessment.

Sample Responses

Yes.

Explanations vary.

- The points $(-2,0)$ and $(0,6)$ both make the equation $3 x-y=-6$ true.
- The graph of $3 x-y=-6$ goes through both the points.

8.4 Cool-Downs

Lesson Checklist

Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.1 Lesson 1: Solving Nu...

Gabriella put a number into this machine, $f(x)$

Gabriella put a number into this machine, and 9 came out.
What number did Gabriella put in?

Teacher Moves

Support for Future Learning

Students will have more opportunities to work on multistep equations, so if students struggle with this cool-down, there is no need to slow down or add additional work to the next lessons.

Sample Responses

14

2 Lesson 2: Keeping th...

Here is a new balanced hanger.
In this hanger, each square weighs 5 pounds.
What is the weight of a triangle?
Use the sketch tool if it helps you with your thinking.

Teacher Moves

Support for Future Learning

If students struggle with naming moves, consider spending extra time on Lesson 3's warm-up to reflect on and review the types of hanger diagram moves that keep the hanger balanced.

Sample Responses

3
Responses vary.

I took two squares off each side and saw that 15 on the left is balanced with 5 triangles on the right. This means that each triangle must weigh 3 pounds.

3 Lesson 3: Balancing ...

Put the equation balancing
$\uparrow 三$

Put the equation balancing moves in order so that they match up with what was done in each step to solve the equation $12 x-6=10$.

Teacher Moves

Support for Future Learning

Students will have more opportunities to name the moves for keeping equations balanced while moving towards solving, however they won't be prompted as explicitly to name or label the moves. Consider prompting students to name the moves they are using and recognizing in Lesson 4, Activity 1.

Sample Responses

- Divide both sides by 2
- Add 3 to both sides
- Divide both sides by 6

4 Lesson 4: Solving Lin...
Nyanna solved this equation incorrectly: $f(x)$

Nyanna solved this equation incorrectly:
$8(x-3)+7=2 x(4-17)$

1. Find and circle an error in her solution.
2. Find the correct solution to the equation.

Use paper to help you with your thinking.

Teacher Moves

Support for Future Learning

Students will have more opportunities to develop fluency with solving multistep equations. However, Lesson 5's cool-down provides a similar error analysis to this cool-down.

Sample Responses

Nyanna made an error moving from line one to line two: $4-17=-13$, not 13 . She also made an error going from steps four to five. She should have subtracted $8 x$ from both sides.

The correct solution is $x=\frac{1}{2}$.

\section*{5 Lesson 5: Solving Lin...
 Melanie and

Kala each

started solving

x.
 \square}

Melanie and Kala each started solving equation 2 for x.

$$
\frac{1}{2}(7 x-6)=6 x-10
$$

One of them made an error.
Who was it?

Teacher Moves

Support for Future Learning

Students will have more opportunities to develop fluency with solving multistep equations. However, Problem 2 in the Practice provides a similar error analysis to this cool-down.

Sample Responses

Melanie made an error.
Responses vary.
Melanie forgot to distribute $\frac{1}{2}$ to both terms in the parentheses. The result of her first step should have been $3.5 x-3=6 x-10$.

6 Lesson 6: Solving Lin...
Without solving, identify whether this equation has a solution that is positive, negative, or zero:

: $=$

Without solving, identify whether this equation has a solution that is positive, negative, or zero:
$3 x-5=-3$

Teacher Moves

Support for Future Learning

If students struggle, plan to discuss the answer to the first problem in the cool-down as a class so that students can hear how other students recognized that the solution must be positive. If students struggle to operate with negative numbers in the second part of the cool-down, leverage the Practice Problems to provide extra attempts with discussion.

Sample Responses

Positive

Responses vary.

If you add 5 to each side, you will be left with positive $3 x$ equal to a positive number.

7 Lesson 6: Solving Lin... Solve this equation:
$x-5(x-1)=x-(2 x-3)$

$f(x)$

Solve this equation:
$x-5(x-1)=x-(2 x-3)$
Use paper to help you with your thinking.
Sample Responses

$$
x=\frac{2}{3}
$$

8 Lesson 7: Equations ...

Teacher Moves

Support for Future Learning

If students struggle with this cool-down, plan to review it as a class and invite students to share their strategies for using the structure of the equations to sort the cards. Consider making an explicit connection between this cool-down and the work in Lesson 8, Screens 4-8.

Sample Responses

Image solution

9 Lesson 8: Solving Lin...
Andrea is considering the costs of
$f(x)$

Andrea is considering the costs of printing p pages at home and at a store.
She wrote the following equation: $100+0.05 p=0.25 p$
Solve Andrea's equation.
Use paper if it helps you with your thinking.

Teacher Moves

Support for Future Learning

If students struggle to solve and interpret a solution in context, plan to revisit this concept before the quiz.

Sample Responses

$p=500$ (or equivalent)
Responses vary.
The solution represents the number of pages for when the cost will be the same for printing at the store and at home.

10 Lesson 9: Interpretin...

Here is a graph with two lines.

- One line shows combinations of dimes and quarters that are worth $\$ 3$ altogether.
- The other line shows combinations of dimes and quarters that total to 12 coins.

How many quarters and dimes would you need to have both 12 coins and $\$ 3$ at the same time?

Teacher Moves

Support for Future Learning

Students will have more opportunities to identify solutions on lines, so if students struggle with this cool-down, there is no need to slow down or add additional work to the next lessons.

Sample Responses

Number of Quarters: 12
Number of Dimes: 0

11 Lesson 10: Represe...

Amanda and Trevon started tracking their savings at the same time.

- Trevon starts with $\$ 15$ and deposits $\$ 4$ per week. The graph of Trevon's savings is given, and his equation is $y=4 x+15$, where x is the number of weeks and y is his savings.
- Amanda starts with $\$ 10$ and deposits $\$ 5$ per week.

1. Drag the points to graph Amanda's savings.
2. Explain what the intersection point of the graphs means in this situation.

Teacher Moves

Support for Future Learning

If students struggle to graph and interpret the relationship correctly, consider reviewing this cool-down as a class before Lesson 11 or offering individual support where needed during the next lesson.

Sample Responses

Responses vary.
In this situation, the intersection at $(5,35)$ means that after 5 weeks, Trevon and Amanda each have \$35.

12 Lesson 11: Graphin...

Find the solution to this system of
$f(x)$

Find the solution to this system of equations:
$y=2 x$
$2 x+2 y=15$

Teacher Moves

Support for Future Learning

If students struggle to solve and interpret the solution of the system, consider reviewing this cool-down as a class before Lesson 12 or offering individual support where needed during the next lesson.

Sample Responses

$(2.5,5)$

Responses vary.
The solution $(2.5,5)$ means that when the weight of the triangle is 2.5 and the weight of the circle is 5 , both hangers will be balanced. This makes sense because plugging in those values makes each side of Hanger A 5 pounds and each side of Hanger B 15 pounds.

13 Lesson 12: Solving ...
What is the solution to the system of equations below?

$f(x)$

What is the solution to the system of equations below?
$y=2 x$
$y=3 x-10$
Enter your solution as an ordered pair.

Teacher Moves

Support for Future Learning

Students will have more opportunities to solve a system of equations algebraically, so if students struggle with this cool-down, there is no need to slow down or add additional work to the next lessons.

Sample Responses

$(10,20)$

14 Lesson 13: Systems...

How many solutions will the following system have?
$4 x+y=13$
$\frac{1}{2} y=-2 x+5$

Use the sketch tool or paper if that helps you with your thinking.

Teacher Moves

Support for Future Learning

If students struggle to identify the number of solutions a system of equations has, plan to have two different students share their strategies during the following lesson.

Sample Responses

No solutions
Responses vary.
If you rewrite each equation in the form $y=$, both equations will have a slope of -4 . Since they have the same slope but different y intercepts, this system will have no solutions.

15 Lesson 14: Solving ...
$\left\{\begin{aligned} x+y=10 & \text { Solve this }\end{aligned}\right.$ system of equations.
$f(x)$

Solve this system of equations.
Use paper if it helps you with your thinking.

Teacher Moves

Support for Future Learning

If students struggle to solve a system of equations, consider making time to explicitly revisit these ideas before the End-Unit Assessment.

Sample Responses

$(7,3)$

8.5 Cool-Downs

Lesson Checklist

\square Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.
\square Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.

Here is the graph for a new turtle．Use the graph to answer the following questions：

1．At 3 seconds，how far is the turtle from the water？

2．When is the turtle 4 feet away from the water？

讯 Sample Responses
1． 6 feet
2． 2 seconds， 5 seconds，and 7 seconds

2 Lesson 2：Introduction to Func．．．

Every birthday has an astrological sign，like Gemini or Scorpio．Both tables show a relationship between birthday and astrological sign．

Which table（s）represent a function？

猢 Sample Responses

Table B
Responses vary．
－Table B is a function because for any date（input），there is only one possible astrological sign（output）．
－Table A is a not function because each astrological sign（input） has many different outputs．

3 Lesson 3：Graphs of Functions．．．
Select the graphs that represent y as a function of x ．
：三

Select the graphs that represent y as a function of x ．

㨡 Sample Responses

Image solution

4 Lesson 4: Functions and Equa...
Ariel earns $\$ 9.60$ per hour at their part-time job.

: $=$

Ariel earns $\$ 9.60$ per hour at their part-time job.

Ariel wrote the equation $y=9.60 x$.

Which variable is independent based on the equation given?

四 Sample Responses

Number of hours worked
Responses vary.
The independent variable is the input or x-value. If you multiply the number of hours worked by $\$ 9.60$, you will find the amount of money earned.

5 Lesson 5: Interpreting Graphs..

Three snails compete in a race.

The graph shows their distance vs. time relationships.

Which snail is traveling the fastest at 4 minutes?

四 Sample Responses

Snail 3
Responses vary.

- At 4 minutes, Snail 3 has the steepest line.
- At 4 minutes, Snail 1 is standing still, Snail 2 is moving at 2 feet per minute, and Snail 3 is moving at $\frac{16}{3}$ (or about 5.3) feet per minute.

Which graph could represent the distance between Clem and the seat of the swing vs. time?

四 Sample Responses

The graph on the left (blue)
Responses vary.

- For most of the graph, Clem is on the swing, so the distance between Clem and the seat of the swing is 0 feet.
- At about 12 seconds, Clem jumps off the swing and his distance from the seat of the swing increases quickly.
- At the end of the video, Clem is much more than 2.5 feet away from the swing.

7 Lesson 7: Comparing Represe...

Let's compare areas for circles and squares.

This table shows circle area for specific radius values.

The equation $A=s^{2}$ gives the area, A, of a square with side length s.

Which is larger?

㨡 Sample Responses

A circle with a radius of 1.5 inches

Responses vary.
The area of a square with side length 2.5 inches is 6.25 square inches. The area of a circle with radius 1.5 inches is 2.25π, which is approximately 7.07 square inches. Therefore, the circle is larger.

8 Lesson 8: Modeling With Linea...
Here is a new scenario. A candle is burning.

9 Lesson 9: Modeling With Piece..

Abdel ran a 100-yard dash. The red points show his distance every half-second.

Draw line segments to approximately model the data.

Then answer this question:

When Abdel was running his fastest, approximately how fast was he running?

四 Sample Responses

- Image solution
- Approximately 10 yards per second

Order the objects by volume from least to greatest.

Note: All the diameters and heights of the objects are equal.

門 Sample Responses
From least to greatest: cone, sphere, cylinder, cube
Responses vary.
The sphere and cone each clearly fit inside of the cylinder, which clearly fits inside of the cube. The top half of the sphere is slightly larger than the top half of the cone. The bottom half of the sphere is clearly larger than the bottom half of the cone. Therefore, the sphere is larger than the cone.

11 Lesson 11: The Volume of a Cy... Which cylinder has the greater

Which cylinder has the greater volume?

Use paper and pencil if it helps you with your thinking.

㨡 Sample Responses
Short cylinder
Responses vary.
The volume of the short cylinder is $V=\pi \cdot(2)^{2} \cdot 2=8 \pi$. The volume of the tall cylinder is $V=\pi \cdot(1)^{2} \cdot 6=6 \pi$. Therefore, the short cylinder has the greater volume.

Which of the following best describes this graph?

Teacher Moves

Facilitation

Consider using pacing to restrict students to Screens 11-12.

畈 Sample Responses

Radiuses and volumes of cylinders with a 8 -cm height.
Responses vary.
The relationship between height and volume is linear, and this graph is not linear, so I knew it had to be a relationship between radius and volume. I noticed that the point $(10,800 \pi)$ was on the curve. That could represent a cylinder that has a radius of 10 and a height of 8 , so I concluded that the graph was all cylinders with a height of 8 centimeters.

Which figure has the greater volume?

Use paper and pencil if it helps you with your thinking.
Sample Responses
Cylinder
Responses vary.
The volume of the cone is $\frac{1}{3} \cdot \pi \cdot(3)^{2} \cdot 6=18 \pi$. The volume of the cylinder is $\pi \cdot(2)^{2} \cdot 5=20 \pi$, which is greater than the volume of the cone.

Recall that the volume of a sphere is given by the formula $V=\frac{4}{3} \pi r^{3}$, where r represents the radius.

A sphere has a diameter of 10 inches.
Use paper and pencil to calculate the sphere's volume.

比 Sample Responses

$\frac{500}{3} \pi$ cubic inches

8.6 Cool-Downs

Lesson Checklist

\square Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.
\square Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.

2 Lesson 1: Organizing Data

About how long will a 2000-kilometer flight take?

Use the sketch tool if it helps you with your thinking.

四 Sample Responses

Responses vary.
A $\sqrt{ }$ indicates an answer between 2.5 and 3 hours.

The table shows measurements of right hand length and right foot length for five people.

Use the sketch tool to create a scatter plot of the data.

㨡 Sample Responses

The graph should have points located at $(19,27),(21,30)$, $(17,23),(18,24)$, and $(19,26)$.

Student Supports

Students With Disabilities

- Fine Motor Skills: Peer Tutors

Pair students with their previously identified peer tutors and allow students who struggle with fine motor skills to dictate physical manipulation of objects and graphing as needed.

The table shows the heights and eye distances for some of the robots in the scatter plot.

1. Circle the point in the scatter plot that represents Robot B.
2. Plot a point in the scatter plot that represents Robot E .
3. Fill in the table with the values representing Robot F.

田 Sample Responses

1. The point $(2,38)$ should be circled.
2. There should be a point added at $(7,22)$.
3. Row F in the table should have 6 for eye distance and 14 for height.

5 Lesson 4: Lines of Fit and Outl...

Here is a scatter plot that shows the lengths and widths of 20 left feet together with the graph of a model of the relationship between foot length and width.

Circle the point that represents the foot length closest to 29 centimeters. Then complete the table below.

四 Sample Responses

- Actual Width: About 10.3 centimeters
- Predicted Width: About 11.6 centimeters

泪 Sample Responses

No
Responses vary.

- The line is not a good fit because the data shows a negative association, but the line has a positive slope.
- The line does not follow the dots.
- The line is increasing, but the data is decreasing

Binta thinks this line is a good fit because half of the points are on one side of the line and half of the points are on the other side.

Is Binta correct?

7 Lesson 5: Fitting a Line to Data

Marco thinks this line is a good fit because it passes through the leftmost point and the right-most point.

Is Marco correct?

㨡 Sample Responses

No
Responses vary.

- The line is not a good fit because most of the points are below it.
- The line is not a good fit because the trend of the scatter plot is
steeper than the slope of the graph.
- It isn't close to as many of the points as another line could be.
- Marco is wrong because if he shifted the line down, it could be through more dots compared to the line he created.

8 Lesson 6：The Slope of a Fitte．．．

Here is a scatter plot that shows the age of some used cars and their prices in 2020，together with the graph of a linear model for the relationship between price and age．

Approximate the slope of the linear model shown in the scatter plot．

田 Sample Responses

$$
-1000
$$

Responses vary．
For every 1 －year increase in age，the predicted car price decreases by about 1000 dollars．

9 Lesson 7：Observing More Patt．．．

Make a scatter plot that has a POSITIVE LINEAR association WITH －1．．．．．．．．．．～

Make a scatter plot that has a POSITIVE LINEAR association WITH clustering．

四 Sample Responses

Responses vary．
A scatter plot with a clear separation between groups of points， generally increasing at a constant rate from left to right．

Student Supports
Students With Disabilities
－Fine Motor Skills：Peer Tutors
Pair students with their previously identified peer tutors and allow students who struggle with fine motor skills to dictate graphing as needed．

11 Lesson 8：Analyzing Bivariate ．．．

1．Sketch a line on the scatter plot that fits $f(x)$

Make a scatter plot that has a NEGATIVE NON－LINEAR association WITHOUT clustering．

把 Sample Responses

Responses vary．
A scatter plot with no clear separation between groups of points， generally decreasing from left to right．

1．Sketch a line on the scatter plot that fits the data well．

2．If a new point is added to the scatter plot with $x=4$ ，what do you predict for the y－value of this point？

眜 Sample Responses

Responses vary．
1．The graph of the line $y=8.2-0.5 x$ ．
2． $5.9,6,6.2$

12 Lesson 9：Two－Way Tables an．．．

A group of people were asked whether or not they liked their food and if they were satisfied with the service at a restaurant．

Some of the responses are recorded in the two－way table and the bar graph．

1．Complete the table．

2．Drag the point in the bar graph to make the representations match．

讯 Sample Responses

Graph

- The Satisfied With Service/Did Not Like Food bar in the bar graph should be 9 units tall.

Table

- Liked Food/Dissatisfied With Service: 8
- Liked Food total: 80
- Did Not Like Food/Satisfied With Service: 9
- Total surveyed: 110

13 Lesson 10: Using Data Displa...

The data shows responses from 110 people who were asked whether they liked the food and the service at a restaurant.

Is there an association between liking food and liking service?

四 Sample Responses

Association

Responses vary.

- The relative frequency table shows that 90% of those who liked the food also liked the service, while only 30% of those who didn't like the food did like the service.
- The segmented bar graph shows that those who liked the food generally liked the service, while those who didn't like the food generally didn't like the service.

Students in two different classes were asked whether they prefer math, English, or science.

Here is a frequency table and a segmented bar graph showing the results.

Is there evidence of an association between class and favorite subject?

㨡 Sample Responses
Responses vary.

No. There isn't an association because class isn't helpful in predicting favorite subject. It's always English regardless of the class.

8.7 Cool-Downs

Lesson Checklist

Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.1 Lesson 1: Exponent ...

-	How many
: : : : : : :	circles will there
:: :: :: :	be in Stage 4?
:: :: : : : :	
:: :: : : :	$f(x)$

How many circles will there be in Stage 4?

Sample Responses

256 (or equivalent)

2 Lesson 1: Exponent ...
How many times as large as 4^{4}
is 4^{7} ?
$f(x)$

How many times as large as 4^{4} is 4^{7} ?

Sample Responses

64 times as large (or equivalent)

3 Lesson 2: Equivalent ...
Which expressions are equivalent to 8^{6} ?

Sample Responses

- $\left(8^{3}\right)^{2}$
- $2^{6} \cdot 4^{6}$

4 Lesson 3: Multiplying ...
Write at least four different expressions that have the same value as $\left(3^{4}\right)^{2}$ usinn onlv

目

Write at least four different expressions that have the same value as $\left(3^{4}\right)^{2}$ using only numbers, multiplication, and exponents.

Sample Responses

Responses vary.

- 3^{8}
- $3^{(4 \cdot 2)}$
- $3^{4} \cdot 3^{4}$
- $(3 \cdot 3 \cdot 3 \cdot 3)^{2}$

5 Lesson 4: Rewriting E...
Select each expression that can be rewritten as 8^{8}.
: 三

Select each expression that can be rewritten as 8^{8}.
Sample Responses

- $2^{8} \cdot 4^{8}$
- $\frac{8^{10}}{8^{2}}$
- $\frac{8^{2} \cdot 8^{3} \cdot 8^{4}}{8^{1}}$

6 Lesson 5: Using Patt...
Select each expression that is equivalent to 10^{-6}.
: $=$

Select each expression that is equivalent to 10^{-6}.

Sample Responses

- $\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10}$
- $\frac{10^{3}}{10^{9}}$

7 Lesson 6: Generalizin.. Yona was trying to write $2^{3} \cdot 2^{2}$ as a single power of 2 and usirnto the follnisinc.
: 三

Yona was trying to write $2^{3} \cdot 2^{2}$ as a single power of 2 and wrote the following:
$2^{3} \cdot 2^{2}=2^{3 \cdot 2}=2^{6}$
Is Yona correct?

Sample Responses

No
Responses vary.
When multiplying terms with the same base, you can simplify by adding the exponents.

8 Lesson 7: Describing ... Write each number as a single multiple of a power of 10 .

Write each number as a single multiple of a power of 10 .

Sample Responses

Responses vary.

- $123 \cdot 10^{-6}$
- $123 \cdot 10^{6}$

What number is represented by the point on the number line?
Sample Responses
$6.2 \cdot 10^{-8}$ (or equivalent)

10 Lesson 9: Applicatio...
There are about:

- $8 \cdot 10^{9}$ arains of sand in one
¿三
There are about:
- $8 \cdot 10^{9}$ grains of sand in one cubic meter
- $1 \cdot 10^{11}$ stars in the galaxy
- $7.5 \cdot 10^{9}$ cubic meters of sand on Earth
- $1 \cdot 10^{10}$ galaxies in the universe

Which is larger?
Sample Responses
The number of stars in the universe is larger.
Responses vary.
$\left(1 \cdot 10^{11}\right) \cdot\left(1 \cdot 10^{10}\right)$ is $1 \cdot 10^{21}$ stars in the universe. There are only $60 \cdot 10^{18}$ grains of sand because $\left(8 \cdot 10^{9}\right) \cdot\left(7.5 \cdot 10^{9}\right)$ is $60 \cdot 10^{18}$.

11 Lesson 10: Definitio...
\because

12 Lesson 11: Multiplyi...
Fill in the blank:
$6.1 \cdot 10^{13}$ is about
$f(x)$

Sample Responses

- $4.82 \cdot 10^{4}$
- $9.9 \cdot 10^{-4}$
- $3.6 \cdot 10^{6}$

Fill in the blank:
$6.1 \cdot 10^{13}$ is about \qquad times as large as $2.1 \cdot 10^{2}$.

Use scientific notation.

Sample Responses

Responses vary.

13 Lesson 12: Adding ...
Add these two numbers:
$2.3 \cdot 10^{5}+3.6 \cdot 10^{6}$
$f(x)$

Add these two numbers:
$2.3 \cdot 10^{5}+3.6 \cdot 10^{6}$
Write your answer in scientific notation.

Sample Responses

$3.83 \cdot 10^{6}$ watts

14 Lesson 13: Let's Put... As of 2019, there were about 210000000 adults in the I Inited. States
$f(x)$

As of 2019, there were about 210000000 adults in the United States.

On average, they each purchased 60 clothing items per year.
About how many clothing items did all of the adults in the United States purchase in 2019?

Express your answer using scientific notation.
Sample Responses

$$
1.26 \cdot 10^{10} \text { items }
$$

8.8 Cool-Downs

Lesson Checklist

\square Complete the lesson using the student preview.Identify how this lesson extends the learning from previous lessons, and how it prepares students for future lessons.
\square Think about how you will introduce each new section within the lesson to engage students in the task and maintain focus on the learning goals.Determine the screens where you'll use Pacing and Pause to bring the class together. What questions will you ask on those screens?Anticipate screens where students will struggle, then plan your response.Consider how to use snapshots to select and present student thinking for class discussion.Think about how you will use the results of previous Cool-Downs and student surveys to inform your approach to this lesson.

1 Lesson 1：The Areas of Tilted S．．．

Determine the area of the shaded $f(x)$

Determine the area of the shaded square．

比 Sample Responses

100 square units

What is the side length？

\＄Sample Responses

10 units
3 Lesson 2：Side Lengths and Ar．．．
Complete the table for each
square．

Complete the table for each square．

把 Sample Responses

Side length of Square A：$\sqrt{100}$ or 10
Side length of Square B：$\sqrt{95}$
Area of Square C： 36
Side length of Square C：$\sqrt{30}$

Drag the blue point to estimate the location of $\sqrt{18}$ on the x－axis．

Then approximate $\sqrt{18}$ as a decimal．
讯 Sample Responses
The point and the decimal response should be between 4.1 and 4．4．

5 Lesson 4：Reasoning About Sq．．． Which of these numbers are greater than 6 and less than 8？
：$=$

6 Lesson 5：Edge Lengths，Volu．．．
What is the exact solution to $x^{3}=150$ ？

$f(x)$

7 Lesson 6：Exploring Squares in．．．

For which triangle（s）will the equation
：三

Which of these numbers are greater than 6 and less than 8 ？

㨡 Sample Responses

－$\sqrt{47}$
－$\sqrt{60}$
Responses vary．
Since $6^{2}=36$ and $8^{2}=64$ ，the square roots of values between 36 and 64 will evaluate to be between 6 and 8 ．

What is the exact solution to $x^{3}=150$ ？

讯 Sample Responses
3
$x=\sqrt{150}$ ，which is between 5 and 6 ，because 150 is between $5^{3}=125$ and $6^{3}=216$.

For which triangle（s）will the equation $a^{2}+b^{2}=c^{2}$ be true？

Use the sketch tool if it helps you to show your thinking．
㨡 Sample Responses
Triangle L
Responses vary．
The Pythagorean theorem only applies to right triangles．

Student Supports

Students With Disabilities

－Conceptual Processing：Eliminate Barriers

Allow students to use calculators to ensure inclusive participation in the activity.

Adjust the point to create two figures that show $3^{2}+4^{2}=5^{2}$.

1. Explain how you can see the above equation in the figures.
2. Describe how this relates to the Pythagorean theorem.

比 Sample Responses

The diagram should show squares with side lengths of 7 units, and each side should include line segments of length 3 and 4 units.

Responses vary.

1. The areas of the two large squares are the same since they are both 7 by 7 units. The area of the two unshaded rectangles in the left square is the same as the area of the four unshaded triangles in the right square (each pair of triangles makes a rectangle). So the area of the two smaller shaded squares on the left must be the same as the area of the tilted shaded square on the right. This means $3^{2}+4^{2}=5^{2}$.
2. The Pythagorean theorem also says that $3^{2}+4^{2}=5^{2}$ (because 3 and 4 are the lengths of the legs and 5 is the length of the hypotenuse of this right triangle).

9 Lesson 8: Finding Unknown Si...
A right
triangle has sides of length
$f(x)$

A right triangle has sides of length 3,4 , and x.

What is a possible value for x ?

Use the sketch tool if it helps you to show your thinking.

四 Sample Responses

Responses vary.

- 5
$\cdot \sqrt{7}$

There are two possible responses for x because it can be a leg or a hypotenuse.

Is this a right triangle?

Use the sketch tool if it helps you to show your thinking.

四 Sample Responses
No
Responses vary.
$7^{2}+10^{2}$ is not equal to 12^{2}.

11 Lesson 10: Applications of the...
Television screens are classified by $f(x)$

Television screens are classified by the length of their diagonal.

The television screen shown here is 22.5 inches tall and 40 inches wide.

What is the length of its diagonal?
比 Sample Responses
45.9 inches or equivalent, such as $\sqrt{40^{2}+22.5^{2}}$.

The graph shows two line segments：a and b ．
What is the length of each segment？

畈 Sample Responses

$$
\begin{aligned}
a & =\sqrt{17} \\
b & =\sqrt{18}
\end{aligned}
$$

Does the decimal representation of $\frac{1}{30}$ terminate or repeat？

比 Sample Responses

$\frac{1}{30}$ will repeat because $\frac{1}{30}=\frac{1}{2 \cdot 3 \cdot 5}$ ，and the denominator includes at least one factor other than 2 or 5 ．

14 Lesson 13：Infinite Decimal Ex．．．
Write each decimal as a fraction．

15 Lesson 14：Rational and Irrati．．．

	Enter two examples of a rational number and two examples of an irrational numnnnin thn

Write each decimal as a fraction．

四 Sample Responses

－ $0.147=\frac{147}{1000}$
$\cdot 0 . \overline{147}=\frac{147}{999}$

Enter two examples of a rational number and two examples of an irrational number in the table．

畈 Sample Responses

Responses vary．
－Rational：3， 0.7

```
- Irrational: \sqrt{}{101},\sqrt{}{2}
```

Amplify. For more information visit amplify.com

