Fractions and Decimals Student Guide

Math 6 Unit 3 Accelerated Part 2

Unit 6.5, Student Goals and Glossary

Glossary

Term	Definition					
common	When two numbers have the same factor, we call that a common factor.	Factors of 8 1, 2, 4,8				
factor	For example, 2 is a factor of 8 and also of 12, so 2 is a common factor of 8 and 12.	Factors 12 1, 2, 3, 4, 6, 12				
common	When two numbers have the same multiple, we call that a common multiple.	Multiples of 2 2, 4, 6, 8, 10, 12,				
multiple	For example, 12 is a multiple of 2 and also of 3, so 12 is a common multiple of 2 and 3.	Multiples of 3 3, 6, 9, 12, 15, 18,				
greatest common factor (GCF)	The greatest common factor (GCF) is the largest number that is a common factor of two numbers. The common factors of 8 and 12 are 1, 2, and 4. The greatest common factor is 4.					
least common multiple (LCM)	The least common multiple (LCM) is the smallest nur multiple of two numbers. The common multiples of 2 and 3 are 6, 12, 18, The least common multiple is 6.	nber that is a common				
long division	Long division is a way to divide numbers in decimal form. When we use long division, we determine the quotient one digit at a time, from left to right. For example, here is the long division for $57 \div 4$.	$ \begin{array}{r} 1 3.25 \\ 8 \overline{\smash{\big)}106.00} \\ -8 \\ 26 \\ -24 \\ 20 \\ -16 \\ 40 \\ -40 \\ 0 \end{array} $				

Unit 6.5, Family Resource

Unit 5 Summary

Prior Learning	Math 6, Unit 5	Future Learning
 Grades 4–5 Rewriting decimals as fractions 	 Adding and subtracting decimals 	Math 6, Unit 6Solving equations with decimals and fractions
 Multiplying and dividing whole numbers Place value with decimals 	Multiplying and dividing decimals	Math 7 and 8 Operations with positive and negative numbers
Math 6, Unit 4 Dividing fractions 	 Least common multiple and greatest common factor 	 Converting fractions to decimals

Adding and Subtracting Decimals

When adding and subtracting decimals, it is important to consider the **place value** of each digit.

We can think about 0.25 as 2 tenths and 5 hundredths or as 25 hundredths.

We can think about 0.3 + 0.25 as 3 tenths and 25 hundredths. This is the same as 30 hundredths+25 hundredths, which is 55 hundredths, or 0.55.

Rewriting addition and subtraction problems vertically can help us keep the place values organized.

On the left, we are correctly subtracting 2 tenths from 34 hundredths. On the right, we are subtracting 2 hundredths instead of 2 tenths.

_	_	_	_	_	_	_	_	_

Unit 6.5, Family Resource

Multiplying and Dividing Decimals

It can be helpful to rewrite multiplication and division problems that have decimals by changing the decimals into whole numbers.

Multiplication

When we write $0.3 \cdot 0.04$ as fractions we can multiply whole numbers, and then think about the place value.

$$0.3 \cdot 0.04 = 3 \cdot 4 \cdot \frac{1}{10} \cdot \frac{1}{100}$$
$$= 12 \cdot \frac{1}{1000}$$
$$= 0.012$$

Division

When we write 3 as $\frac{30}{10}$ in the problem below, we are setting up a common denominator so that we can divide whole numbers.

$$3 \div 0.2 = \frac{30}{10} \div \frac{2}{10}$$

= 30 ÷ 2
= 15

Least Common Multiple and Greatest Common Factor

Here are lists of multiples of 3 and 4.

Common multiples of 3 and 4 are 12 and 24.

So the least common multiple (LCM) is 12.

Multiples of 3 3, 6, 9, 12, 15, 18, 21, 24,...

Multiples of 4 4, 8, 12, 16, 20, 24, 28, 32, ...

1, 2, 4, and 8 all divide into 8 evenly. These are called its factors.

Here are lists of factors of 8 and 12.

Common factors of 8 and 12 are 1, 2, and 4.

So the greatest common factor (GCF) is 4.

Factors of 8 1, 2, 4,8	
Factors 12	
1, 2, 3, 4, 6, 12	

© 2024 Amplify Education, Inc and its licensors. Amplify Desmos Math is based on curricula from Illustrative Mathematics (IM).

Unit 6.5, Family Resource

Try This at Home

Adding and Subtracting Decimals

- 1.1 Add 0.6 + 0.32.
- 1.2 Add 0.125 + 5.42.
- 1.3 Subtract 0.6 0.32.
- 1.4 Subtract 1 0.238.
- 1.5 If you are checking out at the grocery store, make a prediction about the total bill. What other operations with decimals can you find on the receipt?

Multiplying and Dividing Decimals

- 2.1 Multiply $0.6 \cdot 0.02$.
- 2.2 Find the area of the rectangle.

- 2.4 Divide $45 \div 0.9$.
- 2.5 If you are at a gas station, make a prediction about how much the gas will cost. How close did you get? How might you improve your prediction?

Least Common Multiple and Greatest Common Factor

- 3.1 What is the least common multiple of 6 and 8?
- 3.2 What is the greatest common factor of 12 and 30?
- 3.3 If you are grocery shopping, how many hot dogs come in each pack? What about buns? Discuss what combinations of packs could help you avoid leftovers.

Unit 6.5, Family Resource

Solutions:

- 1.1 0.92
- 1.2 5.545
- 1.3 0.28
- $1.4 \quad 0.762$
- 1.5 Responses vary.
- 2.1 0.012
- 2.2 4.32 square units
- 2.3 9
- 2.4 50
- 2.5 Responses vary.
- 3.1 24
- 3.2 6
- 3.3 Responses vary.

desmos 🗐 Unit 6.5, Lesson 1: Notes

Name _____

Fatima is making cheesy potatoes. She needs 5 russet potatoes and 1 container of parmesan cheese.

Summary

desmos 🗐

Unit 6.5, Lesson 2: Notes

Name _____

Summary

□ I can represent decimals using tenths, hundredths, and thousandths.

I can use diagrams to add and subtract decimals.

Unit 6.5, Lesson 3: Notes

Name _____

My Notes	1.	Describe a strategy for adding decimals like $0.106 + 0.35$.
		Responses vary. You can add by place value. So add tenths to tenths and hundredths to hundredths for example. Rewriting the problem vertically and lining up the numbers by their place value can help.
	2.1	Here is the work Arjun did to subtract $3.7 - 1.14$. What would you say to help him understand his mistake?
		I would remind Arjun that 3.7 is the same as 3 and 70 hundredths. He can subtract 14 hundredths from 70 hundredths. $3.7 - 1.14$ 2.64
	2.2	Calculate 3.7 - 1.14.
		2.56

Summary

□ I can use diagrams, vertical calculations, and place value to add and subtract decimals.

desmos 🗐

Unit 6.5, Lesson 4: Notes

Name

Summary

Unit 6.5, Lesson 5: Notes

Name _____

My Notes

1. Explain why $0.6 \cdot 0.3 = 0.18$.

Responses vary. $0.6 \cdot 0.3$ is equal to the area of the rectangle, which is 18 hundredths or 0.18.

Use the given information to complete each row.

	Decimals	Area	Fractions	Product
2.1	0.8 · 0.5		$\frac{8}{10} \cdot \frac{5}{10}$	0.4
2.2	0.3 • 0.08		$\frac{3}{10} \cdot \frac{8}{100}$	0.024
2.3	0.09 • 0.03		$\frac{9}{100} \cdot \frac{3}{100}$	0.0027

Summary

 \Box I can use area to reason about decimal multiplication.

 \Box I can use fractions to multiply decimals.

Unit 6.5, Lesson 6: Notes

Name _____

Summary

I can use area models to represent and calculate products of decimals.

desmos 🗐 Unit 6.5, Lesson 7: Notes

Name _____

1.	Miko wrote this expression to calculate 7.2 \cdot 0.19.
	$72 \cdot 19 \cdot \frac{1}{10} \cdot \frac{1}{100}$
	If $72 \cdot 19 = 1368$, then what is $7.2 \cdot 0.19$?
	A. 0.1368 B. 1.368 C. 13.68 D. 136.8
	Explain your thinking.
	Responses vary. $\frac{1}{10} \cdot \frac{1}{100} = \frac{1}{1000}$, so 72 \cdot 19 will be 1368 thousandths.
2.	$16 \cdot 12 = 192$. Select all of the expressions that equal 0.192.
	$\Box 1.6 \cdot 1.2 \qquad \checkmark 0.16 \cdot 1.2 \qquad \checkmark 1.6 \cdot 0.12$
	\Box 0.16 · 0.12 \checkmark 16 · 0.012
3.	Calculate 0. 15 · 0. 23.
	0.0345

Summary

□ I can use the product of whole numbers to calculate the product of decimals.

I can multiply decimals using different strategies.

desmos 自

Unit 6.5, Lesson 8: Notes

My Notes 1. The large square is 1. Explain how we can use this diagram to help us determine the value of $2 \div 0.4$. Responses vary. We can count how many groups of 0. 4 fit into 2. Juan claims that $1 \div 0.04$ has the same value as $100 \div 4$. 2. Explain why this makes sense. **Responses vary.** $1 \div 0.04$ is the same as $\frac{100}{100} \div \frac{4}{100}$, which is equal to $100 \div 4$. 3. Select all of the expressions that have the same value as $1.5 \div 0.05$. $\Box \ \frac{15}{10} \div \frac{5}{10} \qquad \Box \ \frac{15}{100} \div \frac{5}{100} \qquad \checkmark \ \frac{150}{100} \div \frac{5}{100}$ \Box 15 ÷ 5 \checkmark 150 ÷ 5 Determine the value of $1.5 \div 0.05$. 4. 30

Name

Summary

□ I can use a hundredths chart and reasoning to divide decimals.

□ I can make connections between decimal division and dividing fractions with common denominators.

desmos 🗐

Unit 6.5, Lesson 9: Notes

Name ___

Summary

 \Box I can use long division or other strategies to divide decimals with no remainders.

I can write an equivalent division expression in order to divide decimals.

Unit 6.5, Lesson 10: Notes

Name _

Summary

I can use long division to divide two numbers and use decimals to represent remainders.

desmos 自

Unit 6.5, Lesson 13: Notes

Lesson 13: Notes		Name
	ı	
My Notes	1.1	Select all of the expressions that are equal to 2% of $\$1400.$
		$\Box 0.2 \cdot 1400 \qquad \checkmark 0.02 \cdot 1400 \qquad \Box 0.2 \div 1400$
		\Box 1400 ÷ 0.02 \checkmark $\frac{2}{100}$ · 1400
	1.2	Calculate 2% of $$1400$.
		28
	The a Wash	verage cost of food per week for two people in Seattle, ington is \$90.
	2.1	Tyler spends around \$18 on salad ingredients each week. What percent of the weekly food cost is this?
		A. 0.02% B. 0.2% C. 2% D. 20%
	2.2	Fruit makes up 6% of the weekly food cost. How much money is that?
		\$5.40

Summary

□ I can make connections between percentages and decimals.

I can use decimal operations to answer questions about grocery prices.