Expressions and Equations Student Guide

Math 6 Unit 4 Accelerated

desmos

Unit 6.6, Student Goals and Glossary

Unit 6.6, Student Goals and Glossary

Glossary

Term	Definition
coefficient	A coefficient is a number multiplied by a variable, usually without a symbol in between the number and the variable. In the expression $5 x+8$, the coefficient of x is 5 .
dependent variable	The dependent variable is the variable in a relationship that is the effect or result. For example, if we are exploring the distance a boat can travel in different amounts of time, the dependent variable is the distance traveled, d. The dependent variable is typically on the vertical axis of a graph and the right-hand column of a table.
equivalent expressions	Equivalent expressions are different ways of describing the same quantity. $x+x+x$ is equivalent to $3 x$ because they both describe three copies of an unknown number, x.
exponent	Exponents describe repeated multiplication. For example, $2^{4}=2 \cdot 2 \cdot 2 \cdot 2=16$. 2^{4} is called " 2 to the power of 4 " or " 2 to the fourth." In $2^{4}, 2$ is called the base and 4 is called the exponent.
independent variable	The independent variable is the variable in a relationship that is the cause. For example, if we are exploring the distance a boat can travel in different amounts of time, the independent variable is the amount of time, t. The independent variable is typically on the horizontal axis of a graph and the left-hand column of a table.

desmos

Unit 6.6, Family Resource

Unit 6 Summary

Prior Learning Grades 1-5 - Basic operations $(+,-, \times, \div)$ - Operations with grouping symbols - Graphing positive numbers - Powers of 10 Math 6 - Dividing fractions (Unit 4) - Decimal operations (Unit 5)	Math 6, Unit 6 - Solving equations - Equivalent expressions - Expressions involving exponents - Introduction to representing relationships	Future Learning Math 6, Unit 7 - Graphing with positive and negative numbers Math 7 - Proportional relationships - Solving more complex equations - Factoring and expanding expressions

Solving Equations

A solution is a value of a variable that makes an equation true.

Tape diagrams and hangers can help us make sense of equations.

	15	
x	x	x

Here is a tape diagram and a hanger that show the equation $3 x=15$.

Solving an equation is the process of determining a solution.
In the equation $3 x=15$, the solution is $x=5$ because $3(5)=15$.
Replacing x with 5 in the hanger will keep the hanger balanced.

Equivalent Expressions

Equivalent expressions are different ways of describing the same quantity. $x+x+x$ is equivalent to $3 x$ because they both describe three copies of an unknown number, x.

The area of this rectangle can be written in two different ways.

$$
3(2 x+5)
$$

the length times width

$$
6 x+15
$$

the sum of two smaller areas

$$
3(2 x+5)=3(2 x)+3(5)=6 x+15
$$

This is an example of the distributive property.

desmos

Unit 6.6, Family Resource

Expressions Involving Exponents

Exponents are a way to describe repeated multiplication.
2^{4} is called " 2 to the power of 4 " or " 2 to the fourth".
In $2^{4}, 2$ is called the base and 4 is called the exponent.
$2^{4}=2 \cdot 2 \cdot 2 \cdot 2=16$

$$
5 \cdot 3^{2}=5 \cdot 9=45
$$

Diagrams can help make sense of expressions that involve exponents and other operations.

For example, $5 \cdot 3^{2}$ can describe 5 copies of a 3-by-3 square.

Exponents can also appear in expressions with variables.
What is the value of $4 x^{3}$ when $x=2 ?$

32 unit cubes

$$
4(2)^{3}=4(2 \cdot 2 \cdot 2)=4(8)=32
$$

Introduction to Representing Relationships

Math can help make sense of the relationship between two different quantities or variables.
Tables, equations, and graphs can each show the same relationship in different ways.
Here is an example:
$n=$ the number of quarters in my pocket

Description

Every quarter in my pocket is worth 25 cents.
$v=$ the value of my quarters (in cents)

Equation

Graph

n	v
1	25
2	50
3	75

desmos

Unit 6.6, Family Resource

Try This at Home

Solving Equations

1.1 Determine the solution to each equation. Draw a diagram if it helps you with your thinking.
$x+2=11$
$2 x=11$
$x-11=2$

Matias bought 2 plants, which cost $\$ 11$ total. x represents the cost of each plant.
1.2 Which of the equations above represents this situation? Explain how you know.
1.3 Explain what the solution to the equation means in this situation.

Equivalent Expressions

2. At Kai's pizza shop, they charge $\$ 4$ for delivery on top of the cost of the pizza. How much would the total charge be if the cost of the pizza was:
$\$ 15 ? \quad \$ 24 ? \quad d$ dollars?
3. Select all the expressions that describe the area of this rectangle.$2(4 x+3)$
$2(4 x+6)$$8 x+6$
$\square(4 x+3)+(4 x+3)$
$6 x+5$

desmos

Unit 6.6, Family Resource

Expressions Involving Exponents

4.1 Which expression represents the diagram on the right?
$\square 3+x^{2}$
$\square(3+x)^{2}$$3 x^{2}$

4.2 Determine the value of each expression when $x=4$.
5. What is $2(4)^{3}$? Explain how you know.

Introduction to Representing Relationships

Kai uses 6 mushrooms on every large Super Mushroom Pizza. They are wondering about the relationship between the number of pizzas made, p, and the number of mushrooms they use, m.
6.1 They started making a graph of the relationship. What does the point $(3,18)$ mean in Kai's situation?
6.2 Add at least three more points to Kai's graph. Use a table if it helps you with your thinking.

p	m

6.3 Write an equation to represent the relationship between p and m.

desmos

Unit 6.6, Family Resource

Solutions:

$1.1 x=9$
$x=5.5$ (or equivalent)
$x=13$
$1.22 x=11$
Explanations vary. Since each plant costs the same amount, we are doubling the cost of one plant, which we can show with $2 x$.
1.3 Responses vary. This means that each plant that Matias bought cost \$5. 50.
2. $\$ 19$
\$28

$$
d+4
$$

3. $\sqrt{ }(4 x+3)$
$\checkmark 8 x+6$
$\checkmark(4 x+3)+(4 x+3)$
$4.1 \vee 3 x^{2}$
$4.23+(4)^{2}=3+16=19$
$(3+4)^{2}=(7)^{2}=(7 \cdot 7)=49$
$3(4)^{2}=3(4 \cdot 4)=3(16)=48$
4. $2(4)^{3}=128$.

Explanations vary. Any number to the power of 3 is \# $\# \#$. \#, so $4^{3}=4 \cdot 4 \cdot 4=64$. The 2 in front means that there are two of the 64 s and $64 \cdot 2=128$.
6.1 Responses vary. $(3,18)$ means that when Kai makes 3 pizzas, they use 18 mushrooms.
6.2 Responses vary. See the graph to the right.

p	m
1	6
2	12
4	24

$6.3 m=6 p$

desmos 目

\qquad

My Notes

This raccoon and 2.5 pounds balance with a 9.5 lb . weight.

1.1 Nekeisha wrote $r+2.5=9.5$ to represent the situation. How is the equation like balancing the raccoon and weights?

Each side of the equation represents a side of the see-saw. The raccoon's weight plus 2.5 pounds is on the left, so the left side of the equation is $r+2.5$. The right side of the equation and the see-saw are both 9.5 lbs .
1.2 Nekeisha also drew a tape diagram to help determine the weight of the racoon.

Explain how this tape diagram is like the equation.
The tape diagram is like the left side of the equation because it adds
 r and 2.5 .
The total width of the tape diagram is like the right side of the equation.
1.3 How much does the racoon weigh?

Use the equation or tape diagram if it helps your thinking.
7 pounds

Summary

I can make connections between tape diagrams and equations.
I can use reasoning and tape diagrams to figure out unknown values.

desmos 目

Unit 6.6, Lesson 2: Notes
Name \qquad

My Notes
Here is a situation along with an equation that represents it.
Kiandra sold 40 hats and made $\$ 320$. The hats cost h dollars each.

Equation
$40 h=320$

Solution
$h=8$

Meaning of the Solution
The hats cost $\$ 8$ each.
1.1 What is the variable in the equation? \qquad h \qquad
What does the variable represent in this situation?
h represents the cost of each hat.
1.2 Circle the tape diagram that represents this situation.

1.3 Determine the solution to the equation.
$h=8$
1.4 Explain what the solution means in this situation.

Each hat costs $\$ 8$.

Summary

I can make connections between tape diagrams, equations, and situations.
I know what the terms variable and solution mean when solving equations.

desmos 目

Unit 6.6, Lesson 3: Notes
Name \qquad

My Notes

1. What value of x balances this hanger?
$x=4$

2.1 Which equation represents this hanger?
A. $2 x=5$

B. $x+2=5$
C. $5 \cdot 2=x$
D. $x+5=2$
2.2 Determine the value of x that balances this hanger $x=\frac{5}{2} \quad$ or $\quad x=2.5$

Summary

I can make connections between balanced hangers and true equations.
I can use balanced hangers to solve equations.

desmos 目

\qquad

My Notes

1. Daeja and Juana solved this equation: $6=\frac{1}{2} s$.

Daeja: The solution is $s=12$.
Juana: The solution is $s=3$.
Who is correct? Daeja is correct.

Explanations vary. When I substitute 12 in for s, I get $6=\frac{1}{2} \cdot 12$, which is true.

Determine the solution to each equation.
Draw a hanger or a tape diagram if it helps you with your thinking.
$2.1 \quad y+1.8=14.7$
$2.2 \quad 1.8=3 t$
$0.6=t$

Summary

desmos 目

Unit 6.6, Lesson 5: Notes

Name \qquad

My Notes

1. You must be 3 feet tall to ride a roller coaster. Mauricio is $2 \frac{1}{4}$ feet tall.

Which equation represents the number of feet Mauricio must grow, f, in order to ride the roller coaster?
A. $3+2 \frac{1}{4}=f$
B. $2 \frac{1}{4}+f=3$
C. $3+f=2 \frac{1}{4}$
D. $2 \frac{1}{4} f=3$

Here is an equation: $0.5 \cdot 32=x$.
2.1 Write a situation to match this equation. Responses vary.

A shirt's original price is $\$ 32$. It is on sale for 50% of the original price. The new price of the shirt is x dollars.
2.2 Solve this equation.
$x=16$
2.3 Explain what the solution represents in your situation.

Responses vary. The new price of the shirt is $\$ 16$.

Summary

I can write a situation to represent an equation.
I can explain what the solution to an equation means in a situation.

desmos 自

\qquad

My Notes \begin{tabular}{c|c|c|}

1. Mangos cost $\$ 1.80$ per pound. Complete the table.

\qquad	Mangos (lb.)	Total Cost (\$)
1	1.80	
2	3.60	
5	9.00	
10	18.00	
p		

\end{tabular}

2.1 Adnan paid x dollars for a pizza and an extra $\$ 10.00$ to have it delivered. Write an expression for the total cost.
$x+10$
2.2 Explain how each part of your expression relates to the situation.

Responses vary. x is the cost of the pizza and 10 is the cost of delivery.

Summary

desmos 目

\qquad

2. Show or explain how you know that $2 n+2$ and $2(n+1)$ are equivalent.

Responses vary. One way to think about $2(n+1)$ is two groups of $n+1$, which is the same as $2 n+2$.

Summary

I can explain what it means for two expressions to be equivalent.
I can justify whether two expressions are equivalent.

desmos 目

Unit 6.6, Lesson 8: Notes

\qquad

My Notes

1. Write two equivalent expressions
that could be used to represent the area of this rectangle.

Expression 1

$$
3(2 x+5)
$$

Expression 2
$6 x+15$
2.1 Write an expression that is equivalent to $8 x+4$.

Draw a rectangle if it helps you with your thinking.
$4(2 x+1)$ (or equivalent)

2.2 Show or explain how you know that $8 x+4$ and $8(x+4)$ are not equivalent.

Responses vary. $8 x+4$ and $8(x+4)$ are not equivalent because $8(x+4)$ is equivalent to $8 x+32$.
8

Summary

desmos 目

\qquad

My Notes

1. Complete the table.

2.1 The expressions $2(m+8)$ and $2 m+16$ are equivalent. Write an expression that is equivalent to $2(m-8)$.
$2 m-16$ (or equivalent)
2.2 The expressions $3 p-18$ and $3(p-6)$ are equivalent. Write an expression that is equivalent to $18-3 p$.
$3(6-p)$ (or equivalent)

Summary

Unit 6.6, Lesson 10: Notes
Name \qquad

My Notes
The number of squares in each images represents a power of 4 .

1. Explain how you could figure out the value of 4^{4}.

Responses vary. Each step has 4 times as many squares as the step before. There are 64 squares in 4^{3}. If this is multiplied by 4 , then $64 \cdot 4=256$ squares, so $4^{4}=256$.
2. Complete the table.

With Exponent	Without Exponent
3^{5}	$3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$
$\left(\frac{1}{2}\right)^{4}$	$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$
$(0.6)^{3}$	$0.6 \cdot 0.6 \cdot 0.6$

3. Select all the expressions that are equal to 81 .1^{81}
$\checkmark 81^{1}$
Summary
$\checkmark 3^{4}$
$\square 2^{9}$
$\checkmark 3^{3} \cdot 3$

I can explain what an expression with an exponent means (e.g., 3^{5}).
I can decide whether two expressions that include exponents are equivalent.

desmos 目

Unit 6.6, Lesson 11: Notes

Name \qquad
My Notes
Here are two figures.
Figure \mathbf{A}
Figure B

1. Match each figure with an expression that describes its area. You will have one expression left over.
$(4 \cdot 2)^{2}$
$4 \cdot 2^{2}$
$(2+4)^{2}$

Figure \qquad Figure B
Figure \mathbf{A}

Calculate the value of each expression.

Summary

I can determine the value of an expression that has an exponent and addition, subtraction, multiplication, or division.
\qquad

My Notes

Here are two figures. They are not drawn to scale.

Figure A

Figure B

1.1 Match each figure with an expression that describes its area. You will have one expression left over.

$$
x+5^{2} \quad(x+5)^{2} \quad x^{2}+5^{2}
$$

Figure \qquad Figure \qquad Figure \qquad B
1.2 Explain why $(x+5)^{2}$ and $x+5^{2}$ are not equivalent.

Responses vary. $(x+5)^{2}$ and $x+5^{2}$ are not equivalent because they represent different diagrams. When $x=1$, $(x+5)^{2}$ is $(1+5)^{2}=36$ and $x+5^{2}$ is $1+5^{2}=26$.

Calculate the value of each expression when $x=2$.

2.1	2.2	$(x+1)^{4}$	2.3
		$5 x^{3}$	
$2+3^{3}$			
$2+27$	$(2+1)^{4}$	$5(2)^{3}$	
29	4	$5 \cdot 8$	
		41	40

Summary

I can determine the value of an expression that has a variable, an exponent, and addition, subtraction, multiplication, or division for a specific value of the variable.

Here is a pattern of turtles.

The independent variable is t, the number of turtles.
1.1 Explain what an independent variable is. Responses vary.

The independent variable is the variable in a relationship that you can control.
1.2 Explain what a dependent variable is. Give one example.

Responses vary. The dependent variable is the variable that changes as a result of the independent variable. An example is the total area of the turtles.

Adah made a table to represent the relationship between the number of turtles, t, and the total area, a.
2.1 What is the dependent variable?

Total area, a
2.2 Which equation represents this relationship?

$$
t=9 a \quad \checkmark a=9 t \quad a=t+9
$$

Explanations vary.

t	a
1	9
2	18
3	27

If you look at the numbers in the table you see that the area is equal to nine times the number of turtles.

Summary

I understand what the independent and dependent variables are in a relationship.
I can use a table or an equation to represent a relationship.

desmos 目

Unit 6.6, Lesson 14: Notes
Name \qquad

My Notes
Kanna is exploring the relationship between the side length, n, and the total area of the border, b.

1. Use Kanna's table to create a graph of the relationship. Be sure to label each axis with what it represents.

n	b
1	6
2	10
4	18

2. If the graph were larger, it would include the point $(6,26)$. Describe what this point means in the situation.

The point $(6,26)$ means that when the side length is 6 units, the area of the border is 26 square units.

Summary
\square I can represent relationships using tables and graphs.

Unit 6.6, Lesson 15: Notes \qquad

My Notes

1. Create a table that represents this graph.

2. Which equation represents this graph?

Explain how you know.
Explanations vary. If you substitute 1 in for p in the equation, you get $d=4$. This means that 1 popsicle earns $\$ 4$, which matches with the point $(1,4)$ in the graph.

Summary
\qquad

My Notes
In 2021, one regular-fare subway ride costs $\$ 2.75$ in New York City.

1.1 Write an equation to represent the relationship between total cost, t, and number of rides, r.

$$
t=2.75 r
$$

1.2 Use the equation to determine how much 15 rides would cost.
$t=2.75(15)=41.25$ So it would cost $\$ 41.25$ for 15 rides.

An unlimited monthly pass costs $\$ 127$.

2.1 Describe things to consider when buying an unlimited monthly pass.

You might consider how many times in a month you ride the subway.
2.2 Explain when it would be a good deal to buy the unlimited monthly pass.

It would be a good idea to buy the monthly pass when the price of all your single ride tickets is more than $\$ 127$. You can use the equation to find out how many rides that would be. $127=2.75 r$ when $r=46$. 2 . This means that after 46 rides you would begin to save money with the monthly pass.

Summary

